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Abstract. Finite automata are basic for efficient implementation and application of reg-
ular expressions. Derivatives and partial derivatives are fundamental concepts for regular
expressions which are useful tools to study automata construction from regular expressions.
This paper studies derivatives, partial derivatives and automata in the case of expressions in
star normal form as defined by Brüggemann-Klein, and of one-unambiguous expressions as
defined by Brüggemann-Klein and Wood. If an expression is in star normal form, the paper
first shows a property of derivatives which is stronger than Berry and Sethi’s result. Second,
it is known that the equation automaton and the follow automaton are two small automata,
each of which is a quotient of the position automaton. For the relation between the equation
and follow automata, however, Ilie and Yu stated that a rigorous analysis is necessary but
difficult. The paper tackles the issue, and presents several results. For one-unambiguous ex-
pressions, the paper shows that the equation and follow automata can be computed in linear
time, and sets up relations between the equation automaton and various constructions of Br-
zozowski automaton. In particular, when an expression is both one-unambiguous and in star
normal form, we get a simple construction of the Brzozowski automaton, and show that the
resulting automaton is equal to the equation automaton and that the original construction
of Brzozowski automaton is a quotient of the equation automaton. Summary of relations of
different sets of (partial) derivatives is presented.
keywords: Regular expressions, finite automata, derivatives, partial derivatives, star normal
form, one-unambiguity

1 Introduction

Finite automata are basic for efficient implementation and application of regular expressions.
Derivatives and partial derivatives are fundamental concepts for regular expressions which are use-
ful tools to study automata construction from regular expressions. This paper studies derivatives,
partial derivatives and automata in the case of regular expressions in star normal form, defined
by Brüggemann-Klein [4], and of one-unambiguous expressions, defined by Brüggemann-Klein and
Wood [6, 4, 5]. It is known that every regular expression can be turned into star normal form in
linear time [4], and several algorithms depend on star normal form (e. g., [4, 8]). One-unambiguous
expressions are often found in document definition languages. For example, in Document Type
Definitions (DTDs) of XML the content models are required to be one-unambiguous expressions.
A regular expression is one-unambiguous (or deterministic) if, informally, a symbol in the input
word should be matched uniquely to a position in the regular expression without looking ahead in
the word. It is known that the set of one-unambiguous languages is a proper subclass of regular
languages. Since XML Schema both includes numeric occurrence indicators and requires one-
unambiguity, one-unambiguous expressions with numeric occurrence indicators were studied [17].
Several authors investigated k-unambiguous regular expressions with a lookahead of k symbols [13,
14].

Derivatives of regular expressions were introduced by Brzozowski [7]. It has been established
by Bruggemann-Klein and Wood [6] that one-unambiguous languages are closed under derivatives.
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The notion of derivatives was generalized to partial derivatives by Antimirov [1]. There has been
no result about partial derivatives particular for one-unambiguous expressions. Among the many
constructions of ϵ-free non-deterministic finite automata (NFA) from regular expressions, we con-
sider position automata proposed separately by Glushkov [15] and McNaughton and Yamada [20],
equation automata using partial derivatives [1], and follow automata proposed by Ilie and Yu [16].
The position automaton has size at most quadratic and can be computed in quadratic time [4, 11,
22]. Berry and Sethi [2] showed that the position automaton has a natural connection with the
derivatives. It is known that a regular expression is one-unambiguous iff its position automaton is
deterministic [6]. The equation automaton has also been proved to be equivalent to the automaton
constructed from the prebase [21]. Champarnaud and Ziadi [9] proposed a quadratic algorithm for
computing the equation automata which improved very much the original algorithm [1], and proved
that the equation automaton is a quotient of the position automaton. Ilie and Yu [16] proposed
a simplified proof of the result. Lombardy and Sakarovitch [19] gave another proof in the more
general setting of expressions with multiplicity which applies to present Boolean case. Recently
Ilie and Yu [16] introduced the follow automaton which can be computed in quadratic time, and
proved that the follow automaton is a quotient of the position automaton. Champarnaud, Nicart
and Ziadi presented another quadratic algorithm [8] for computing the follow automaton. The
construction of the Brzozowski deterministic finite automaton (DFA) [7] uses derivatives. In [1] a
similar construction using partial derivatives was presented. The work of the present paper is as
follows.

The paper studies relations of different automata, in the case of star normal form expressions
and of one-unambiguous expressions. In particular:

– The paper discusses the relation between the equation and follow automata. It has been known
that both the equation and follow automata are quotients of the position automaton. The ques-
tion is what is the relation between the first two automata. In [16] Ilie and Yu compared some
examples and stated that the two automata “are incomparable”, and that “a more rigorous
comparison” between the automata “should be done” but “seems difficult”. The paper tackles
the issue, giving several conditions for the following relations between the two automata: one
is a quotient of the other, the converse, and the two automata are isomorphic. Our work thus
shows, for the first time, there are different conditions under which the relation of the two
automata is different.

In concrete, it first presents several simple characterizations, in terms of derivatives, of the
above relations between the two automata.

It then considers conditions in terms of the structure of expressions for the relations. To this
end, we find conditions that are connected to the relations, and give several properties of the
conditions.

We show that for an expression in star normal form satisfying CSE condition (see Section 4)
the equation automaton is a quotient of the follow automaton. Champarnaud, Ouardi and
Ziadi [10] gave a related result concerning this issue. Their main theorem (Theorem 4, p.11)
states for a normalized regular expression, the size of the equation automaton is smaller than
the size of the follow automaton. Normalized regular expressions, however, constitute only a
very restrictive and small subset of expressions satisfying CSE condition. For examples, none
of the expressions in Example 4 are normalized regular expressions, while they all satisfy CSE
condition.

We further present conditions for some special situations, in which the two automata are
isomorphic or the follow automaton is a quotient of the equation automaton.

– For one-unambiguous expressions, the aforementioned three NFA’s become deterministic. What
are the relations among these and other DFA’s? The paper sets up relations between the
equation automaton and various constructions of Brzozowski automaton. When an expression is
both one-unambiguous and in star normal form, we get a simple construction of the Brzozowski
automaton, and prove that the resulting automaton is equal to the equation automaton. This
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equality also leads to the fact that the original construction of Brzozowski automaton is a
quotient of the equation automaton.

The paper considers constructions of automata for the special expressions. For one-unambiguous
expressions, it is known that the position automaton can be constructed in linear time. Could the
efficiency of construction of the equation or follow automaton be improved? In the paper we show
that they can also be computed in linear time for this class of expressions.

In the meantime, the paper presents several properties of derivatives and/or partial derivatives.
If an expression is in star normal form, the paper shows that the derivatives of the marked expres-
sion (see Section 2 for the explanation of marked expression) with respect to words ending with
a same letter are either ∅ or unique, a stronger property than Berry and Sethi’s result [2] which
establishes that in general the above derivatives are either ∅ or similar. This uniqueness of deriva-
tives is of course an attractive property. For a one-unambiguous expression in star normal form,
we present simple computation of derivatives and partial derivatives, which is of help in practice.

There have been several sets of derivatives and partial derivatives which are used in construc-
tion of different automata. Relations among the sets, under different conditions, are discussed.
The results, though most of which are quite straightforward, are the basis for comparing related
automata, and have not been studied all together in the literature.

Summary of relations of different sets of (partial) derivatives are presented in the paper. There
has been no similar result in the literature on the subject that addresses constructions on star
normal form expressions, to the best knowledge of the author. Also there has been no result about
most of the above constructions for one-unambiguous expressions.

Section 2 introduces notations and notions required in the paper. Derivatives and partial deriva-
tives are discussed in Section 3. Expressions in different cases including star normal form, one-
unambiguity, and a combination of the first two cases are considered respectively in Sections 4, 5,
and 6. Section 7 presents two algorithms for checking inclusion of one-unambiguous expressions.
Section 8 gives concluding remarks.

2 Preliminaries

We assume the reader to be familiar with basic regular language and automata theory, e.g., from
[23], so that we introduce here only some notations and notions used later in the paper.

2.1 Regular expressions and finite automata

Let Σ be an alphabet of symbols. The size of Σ is denoted by |Σ|. The empty word is denoted
by ε. The set of all finite words over Σ is denoted by Σ∗. A regular expression over Σ is ∅, ε or
a ∈ Σ, or is obtained from these by applying the following rules finitely many times: for two regular
expressions E1 and E2, the union E1 + E2, the concatenation E1E2, and the star E∗

1 are regular
expressions. For a regular expression E, the language specified by E is denoted by L(E). Define
λ(E) = ε if ε ∈ L(E) and ∅ otherwise. The size of E is denoted by |E| and is the length of E
when written in postfix (parentheses are not counted). The number of symbol occurrences in E, or
the alphabetic width of E, is denoted by ∥E∥. The symbols that occur in E, which is the smallest
alphabet of E, is denoted by ΣE .

We assume that the rules E + ∅ = ∅+E = E,E∅ = ∅E = ∅, and Eε = εE = E (rules-∅ε) hold
in the paper.

One-unambiguous regular expressions are also called deterministic regular expressions, the name
came from Brüggemann-Klein and Wood [6].

For a regular expression we can mark symbols with subscripts so that in the marked expression
each marked symbol occurs only once. For example (a1 + b2)

∗a3b4(a5 + b6) is a marking of the
expression (a+b)∗ab(a+b). A marking of an expression E is denoted by E. The same notation will
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also be used for dropping of subscripts from the marked symbols: E = E. We extend the notation
for words and automata in the obvious way. It will be clear from the context whether · adds or
drops subscripts.

Definition 1. An expression E is one-unambiguous iff, for all words uxv, uyw ∈ L(E) where
|x| = |y| = 1, if x ̸= y then x ̸= y. A regular language is one-unambiguous if it is denoted by some
one-unambiguous expression.

Besides one-unambiguity, there is also a notion of unambiguous regular expressions [3]. It is
known that for each ambiguous regular expression there is an unambiguous regular expression that
denotes the same language. On the other hand, expressions that are not one-unambiguous may
not be defined by one-unambiguous expressions that denote the same languages. In other words,
the set of one-unambiguous languages is a proper subclass of regular languages.

For an expression E over Σ, we define the following functions:

first(E) = {a | aw ∈ L(E), a ∈ Σ,w ∈ Σ∗}
last(E) = {a | wa ∈ L(E), w ∈ Σ∗, a ∈ Σ}
follow(E, a) = {b | uabv ∈ L(E), u, v ∈ Σ∗, b ∈ Σ}, for a ∈ Σ

One can easily write equivalent inductive definitions of the above functions on E, which is
omitted here.

Define followlast(E) = {b | vbw ∈ L(E), v ∈ L(E), v ̸= ε, b ∈ Σ,w ∈ Σ∗}.

Definition 2. An expression E is in star normal form (SNF) [4] if, for each starred subexpression
H∗ of E, followlast(H) ∩ first(H) = ∅ and ε /∈ L(H).

It is known that regular expressions can be transformed to SNF in linear time [4].
A finite automaton is a quintuple M = (Q,Σ, δ, q0, F ), where Q is a finite set of states, Σ is

the alphabet, δ ⊆ Q×Σ ×Q is the transition mapping, q0 is the start state, and F ⊆ Q is the set
of accepting states. Denote the language accepted by the automaton M by L(M).

Let ≡⊆ Q × Q be an equivalence relation. For q ∈ Q, [q]≡ denotes the equivalence class of q
w.r.t. ≡ and, for R ⊆ Q,R/≡ denotes the quotient set R/≡ = {[q]≡ | q ∈ R}. We say that ≡ is
right invariant w.r.t. M iff (1) ≡⊆ (Q − F )2 ∪ F 2 and (2) for any p, q ∈ Q, a ∈ Σ, if p ≡ q, then
δ(p, a)/≡ = δ(q, a)/≡.

If ≡ is right invariant, the quotient automaton of M is M/≡ = (Q/≡, Σ, δ≡, [q0]≡, F/≡), where
δ≡ = {([p]≡, a, [q]≡) | (p, a, q) ∈ δ}. One can prove that L(M/≡) = L(M).

2.2 Position automata

The position automaton was introduced independently by Glushkov [15] and McNaughton and
Yamada [20]. The position automaton of E is

Mpos(E) = (Qpos, Σ, δpos, qE , Fpos),

where
1. Qpos = ΣE ∪ {qE}, qE is a new state not in ΣE

2. δpos(qE , a) = {x | x ∈ first(E), x = a} for a ∈ Σ
3. δpos(x, a) = {y | y ∈ follow(E, x), y = a} for x ∈ ΣE and a ∈ Σ

4. Fpos =

{
last(E) ∪ {qE}, if ε ∈ L(E),
last(E), otherwise

For further purpose we set last0(E) equal to last(E) if ε /∈ L(E) and last(E)∪{qE} otherwise,
and extend follow(E, qE) = first(E).

Example 1. The position automaton Mpos(E1) for the regular expression E1 = (ab(c + ε))∗ is
shown in Figure 1(a).
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Fig. 1. (a) Mpos(E1), (b) Md1(E1) and Mpd(E1), and (c) Mf(E1), corresponding to E1 = (ab(c+ ε))∗.

As shown by Glushkov [15] and McNaughton and Yamada [20], L(Mpos(E)) = L(E).
Mpos(E) can be computed in quadratic time [4, 11, 22]. A quadratic time algorithm is given in

[4], which has linear running time for one-unambiguous expressions. The algorithm uses the star
normal form.

3 Derivatives

Derivatives of regular expressions were introduced by Brzozowski [7].

Definition 3. (Brzozowski [7]) Given a regular expression E and a symbol a, the derivative a−1(E)
of E w.r.t. a is defined inductively as follows:

a−1(∅) = a−1(ε) = ∅

a−1(b) =

{
ε, if b = a
∅, otherwise

a−1(F +G) = a−1(F ) + a−1(G)

a−1(FG) =

{
a−1(F )G+ a−1(G), if ε ∈ L(F )
a−1(F )G, otherwise

a−1(F ∗) = a−1(F )F ∗

Derivative w.r.t. a word is computed by ε−1(E) = E, (wa)−1(E) = a−1(w−1(E)).

Partial derivatives were introduced by Antimirov [1].

Definition 4. (Antimirov [1]) Given a regular expression E and a symbol a, the set of partial
derivatives ∂a(E) of E w.r.t. a is defined as follows:

∂a(∅) = ∂a(ε) = ∅

∂a(b) =

{
{ε}, if b = a
∅, otherwise

∂a(F +G) = ∂a(F ) ∪ ∂a(G)

∂a(FG) =

{
∂a(F )G ∪ ∂a(G), if ε ∈ L(F )
∂a(F )G, otherwise

∂a(F
∗) = ∂a(F )F ∗

Partial derivative w.r.t. a word is computed by ∂ε(E) = {E}, ∂wa(E) =
∪

p∈∂w(E) ∂a(p). The

language denoted by ∂w(E) is L(∂w(E)) =
∪

p∈∂w(E) L(p)
1.

1 RF = {EF |E ∈ R} for a set R of regular expressions and a regular expression F .
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Two regular expressions E1 and E2 which reduce to the same expression using associativ-
ity, commutativity, and idempotence of + are called similar [7], which is denoted E1 ∼aci E2.
The expressions E1 and E2 are equal, denoted E1 ≡ E2, if L(E1) = L(E2). Let D1(E) =
{[w−1(E)]∼aci |w ∈ Σ∗}, D0 = {[w−1(E)]≡ |w ∈ Σ∗}, DD(E) = {∂w(E) |w ∈ Σ∗}, PD(E) =
∪w∈Σ∗∂w(E). These sets are useful in construction of automata from regular expressions. The
equivalence of two sets A and B is denoted A ∼ B (i. e., there is a one-one correspondence between
A and B). Let [p]∼aci , [q]∼aci ∈ D1(E), define [p]∼aci ≈ [q]∼aci if p ≡ q. We have the following
properties.

Proposition 1. For a regular expression E, we have
(1) D0(E), D1(E) are finite ([7]), and D0(E) ∼ D1(E)/≈,
(2) |PD(E)| ≤ ∥E∥+ 1 ([1]),
(3) |D0(E)| ≤ |DD(E)| ≤ 2∥E∥+1.

Proof. Below is the proof of (3). For a set R = {t1, . . . , tk} of regular expressions, denote ΣR
an expression t1 + . . . + tk up to an arbitrary permutation. For any expression E and w ∈ Σ∗,
L(w−1(E)) = L(Σ∂w(E)) [1]. If L(w1

−1(E)) = L(w2
−1(E)), then L(Σ∂w1

(E)) = L(Σ∂w2
(E)),

but not necessarily Σ∂w1(E) = Σ∂w2(E), which implies |D0(E)| ≤ |DD(E)|. By definition, the
number of elements in DD(E) can not be more than 2∥E∥+1. ⊓⊔

The notion of derivatives leads to a very natural construction of the Brzozowski deterministic
automaton [7], defined as

Md1(E) = (D1(E), Σ, δ, E, {p ∈ D1(E) | ε ∈ L(p)}),

where δ(p, a) = a−1(p), for any p ∈ D1(E), a ∈ Σ.
A similar construction was introduced in [1]:

Mdd(E) = (DD(E), Σ, δ, {E}, {P ∈ DD(E) | ∃p∈P, ε ∈L(p)}),

where δ(P, a)=∪p∈P∂a(p), for any P ∈DD(E), a∈Σ.

Example 2. Md1(E1) for the expression E1 from Example 1 is shown in Figure 1(b). Mdd(E1) is
the same as Md1(E1).

The equation automaton [1] constructed by partial derivatives is

Mpd(E) = (PD(E), Σ, δpd, E, {q ∈ PD(E) | ε ∈ L(q)}),

where δpd(q, a) = ∂a(q), for any q ∈ PD(E), a ∈ Σ. An example is shown in Figure 1(b).
It is proved that for a regular expression, the equation automaton is a quotient of the position

automaton [9, 16]. Another proof is given by Lombardy and Sakarovitch [19], which is in the more
general setting of expressions with multiplicity but still applies to present case (multiplicities over
the Boolean semiring).

In general Mpd(E) is incomparable with Md1(E) or Mdd(E), but in some situations they are
comparable; See Section 5,6.

Expressions with distinct symbols are called linear. For any expression E, E is the linearized
version of E.

For linear expressions from Brzozowski [7] and Berry and Sethi [2] the following fact is easily
derived.

Proposition 2. Let E be linear. Given x ∈ ΣE, for all words w,
1. If E = E1 + E2, then

(wx)−1(E1 + E2) =

{
(wx)−1(E1) if x ∈ ΣE1

(wx)−1(E2) if x ∈ ΣE2

(1)
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2. If E = E1E2, then

(wx)−1(E1E2) =


(wx)−1(E1)E2 if x ∈ ΣE1

(vx)−1(E2) if w = uv, ε ∈ L(u−1(E1)), x ∈ ΣE2 ,
u ∈ Σ∗

E1
, v ∈ Σ∗

E2

∅ otherwise

(2)

Proof. 1. It is directly from Berry and Sethi [2].
2. From Berry and Sethi [2] it is already known

(wx)−1(E1E2) =

{
(wx)−1(E1)E2 if x ∈ ΣE1 (a)
Σw=uvλ(u

−1(E1))(vx)
−1(E2) otherwise (b)

Let us consider (b) and set wx = a1a2 . . . at. For a concrete sequence of a1 . . . at, a subterm
(ar+1 . . . at)

−1(E2) in (b) can exist only if a1, . . . , ar ∈ E1 and ar+1, . . . , at ∈ E2. Since an, 1 ≤ n ≤ t
is either in E1 or in E2, there is at most one such subterm in (b). If such condition is not satisfied,
then (wx)−1(E1E2) = ∅. ⊓⊔

4 Expressions in SNF

4.1 Derivatives

Berry and Sethi [2] have shown that, for a marked expression E, given a fixed x ∈ ΣE , (wx)
−1(E)

is either ∅ or unique modulo ∼aci for all words w. In [2], based on this a natural connection between
the position automaton and derivatives is set up.

Here, we further show that, if E is in SNF then the aci-similarity in the above is unnecessary.

Proposition 3. For a marked expression E, if E is in SNF then given a fixed x ∈ ΣE, (wx)
−1(E)

is either ∅ or unique for all words w.

Proof. We prove it by induction on the structure of E. The cases for E = ε, ∅, x, x ∈ ΣE , are
obvious.

1. E = E1 +E2. By Eq (1), if x is in E1, then (wx)−1(E1) is left, and the inductive hypothesis
applies to it. The same is for x in E2.

2. E = E1E2. If x is in E1, then by Eq (2) (wx)−1(E) = (wx)−1(E1)E2, and the inductive
hypothesis applies to it. Otherwise, x is in E2 and (wx)−1(E) = (vx)−1(E2) for some w = uv or
(wx)−1(E) = ∅. Therefore the inductive hypothesis applies to it.

3. E = E1
∗
. From [7] and [2] (wx)−1(E) is a sum of subterms of the form (vx)−1(E1)E1

∗
where

wx = uvx. We show that there is at most one non-null subterm.
Suppose there are two non-null subterms (v1x)

−1(E1)E1
∗
and (v2x)

−1(E1)E1
∗
. If v1 ̸= v2, sup-

pose |v1| < |v2|. Let wx = a1a2 . . . at. We can suppose v1x = ar1 . . . at, v2x = ar2 . . . ar1 . . . at, 1 ≤
r2 < r1 ≤ t. Since (v1x)

−1(E1) ̸= ∅, we have ar1 ∈ first(E1). Since (v2x)
−1(E1) ̸= ∅, there exists

a word w1, such that ar2 . . . ar1 . . . atw1 ∈ L(E1). Then ar1 ∈ follow(E1, ar1−1).
A careful analysis on the derivation of (wx)−1(E) shows that if (v1x)

−1(E1) ̸= ∅, then either
ε ∈ L((ar1−1)

−1(E1)) or ε ∈ L((an . . . ar1−1)
−1(E1)) for some n < ar1−1. In either case, we have

ar1−1 ∈ last(E1). Therefore E is not in SNF, which is a contradiction.
If v1 = v2, then v1x = v2x = ar1 . . . at, 2 < r1 ≤ t. Similarly, a careful analysis on (wx)−1(E)

shows that there must be ε ∈ L((an1 . . . ai)
−1(E1)), ε ∈ L((an2 . . . ai)

−1(E1)) and ε ∈ L((an3 . . .
an1−1)

−1(E1)), n2 < n1 ≤ i ≤ r1−1, n3 < n1. So we have an1 ∈ first(E1), an1 ∈ follow(E1, an1−1),
an1−1 ∈ last(E1). Therefore E is not in SNF, which is a contradiction.

So there is at most one non-null subterm, and the inductive hypothesis applies to it. ⊓⊔

Corollary 1. If E is in SNF and there are non-null (w1)
−1(E) and (w2)

−1(E), such that (w1)
−1(E) ∼aci

(w2)
−1(E), then (w1)

−1(E) = (w2)
−1(E).
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From the proof of Proposition 3 above, it follows

Corollary 2. If E = E∗
1 is in SNF, then for a non-null (wx)−1(E), (wx)−1(E) = (vx)−1(E1)E

for some wx = uvx.

4.2 Equation and follow automata

This subsection discusses the relation between equation and follow automata.
The follow automatonMf(E) was introduced by Ilie and Yu [16]. It is constructed by eliminating

ε-transitions from an ε-automaton defined in [16]. We do not present the construction in detail
here. Instead, an example is shown in Figure 1(c). What is important here is the following.

Define the equivalence ≡f⊆ Q2
pos by x1 ≡f x2 iff x1 ∈ last0(E) ⇔ x2 ∈ last0(E) and

follow(E, x1) = follow(E, x2). The equivalence relation is right invariant w.r.t. Mpos(E). Define
M1 ≃M2 if M1 and M2 are isomorphic. It is known that

Proposition 4. Mf(E) ≃Mpos(E)/≡f
([16]).

As we have mentioned, it is well-known that the equation automaton is a quotient of the
position automaton [9, 16, 19]. Here it is presented following [16]. For a letter x ∈ ΣE , denote

Cx(E) any expression (wx)−1(E) ̸= ∅. Denote also CqE (E) = E (qE is the start state of the
position automaton of E). For a SNF expression E (which is the subject of the present paper),
Cx(E) is already unique. For general expressions assume that we find a proper representative for
each Cx(E) [9, 16]. Define the equivalence =c⊆ Q2

pos by x1 =c x2 iff Cx1(E) = Cx2(E). Define the

equivalence ≡c⊆ Q2
pos by x1 ≡c x2 iff Cx1(E) = Cx2(E). Each of the equivalence relations is right

invariant w.r.t. Mpos(E). It is known that

Proposition 5. (1) Mpd(E) ≃Mpos(E)/≡c ;

(2) Mpd(E) ≃Mpos(E)/=c .

From Propositions 4 and 5 both Mpd(E) and Mf(E) are always smaller than or equal to Mpos(E).
However, for the relation between Mpd(E) and Mf(E), Ilie and Yu [16] compared some examples
and showed that it is difficult to give a theoretical analysis. Here we give a theoretical analysis.

First we present some simple results. It is easy to see that

Lemma 1. For any a ∈ ΣE,

(1) first(Ca(E)) = follow(E, a) ([2]), and (2) a ∈ last0(E)⇔ λ(Ca(E)) = ε.

From Lemma 1 and the above definitions of the equivalence relations, the following are implied

Lemma 2. (1) =c ⊆ ≡f ; (2) =c ⊆ ≡c.

Then we give a characterization of =c = ≡f as follows.

Proposition 6. For an expression E, we have =c = ≡f iff ∀a, b ∈ Qpos, first(Ca(E)) = first(Cb(E))∧
λ(Ca(E)) = λ(Cb(E))⇒ Ca(E) = Cb(E).

Proof. =c = ≡f iff =c ⊆ ≡f ∧ ≡f ⊆ =c

iff true ∧ ≡f ⊆ =c (Lemma 2 (1))
iff ≡f ⊆ =c

iff ∀a, b ∈ Qpos, follow(E, a) = follow(E, b) ∧ (a ∈ last0(E)⇔ b ∈ last0(E))⇒ Ca(E) = Cb(E)
iff ∀a, b ∈ Qpos, first(Ca(E)) = first(Cb(E)) ∧ (λ(Ca(E)) = ε ⇔ (λ(Cb(E)) = ε) ⇒ Ca(E) =
Cb(E) (Lemma 1)
iff ∀a, b ∈ Qpos, first(Ca(E)) = first(Cb(E)) ∧ λ(Ca(E)) = λ(Cb(E))⇒ Ca(E) = Cb(E). ⊓⊔
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Similarly the following is a characterization of =c = ≡c.

Proposition 7. For an expression E, we have =c = ≡c iff ∀a, b ∈ Qpos, Ca(E) = Cb(E) ⇒
Ca(E) = Cb(E).

The proof is similar to the proof of Proposition 6.
And the following is a characterization of ≡c = ≡f .

Proposition 8. For an expression E, we have ≡c = ≡f iff ∀a, b ∈ Qpos, Ca(E) = Cb(E) ⇔
first(Ca(E)) = first(Cb(E)) ∧ λ(Ca(E)) = λ(Cb(E)).

The proof is similar to the proof of Proposition 6.
On the other hand, from Propositions 4,5 and Lemma 2 it follows

Proposition 9. For an expression E,

(1) if =c = ≡f , then Mpd(E) is a quotient of Mf(E), Mpd(E) ≃Mf(E); and

(2) if =c = ≡c, then Mf(E) is a quotient of Mpd(E), Mpd(E) ≃Mpd(E); and
(3) if ≡c = ≡f , then Mpd(E) ≃Mf(E).

Proof. We prove (1) only, others are proved similarly. LetMpos(E) = (Q,Σ, δ, q0, F ), thenMf(E) ≃
(Q/≡f

, Σ, δ≡f
, [q0]≡f

, F/≡f
),Mpd(E) ≃ (Q/≡c , Σ, δ≡c , [q0]≡c , F/≡c). Define equivalence∼=⊆ Q/≡f

×
Q/≡f

by [ai]≡f
∼= [aj ]≡f

iff ai ≡c aj for ai, aj ∈ Q. Since ≡f⊆≡c, ∼= is well-defined. It is

easy to know ∼= is right invariant. Then Mpd(E) ≃ Mf(E)/∼=. From Propositions 5,4, Mpd(E) ≃
Mpos(E)/=c = Mpos(E)/≡f

≃Mf(E). ⊓⊔

Example 3. Let E1 = aa∗ + ba∗, E2 = (a∗ + ε)a∗a∗, E3 = a∗, one can verify that Mpd(E1) is a
quotient of Mf(E1), Mf(E2) is a quotient of Mpd(E2), and Mpd(E3) ≃Mf(E3).

The above characterizations are given in terms of Cx(E). Below we consider conditions in terms
of the structure of expressions.

We first prove the following Lemmas. Recall that we assume that the rules (rules-∅ε) hold.
It is known that the following property holds:

first(F +G) = first(F ) ∪ first(G), first(F ∗) = first(F ),
first(FG) = first(F ) ∪ first(G) if ε ∈ L(F ), first(F ) otherwise.
last(F +G) = last(F ) ∪ last(G), last(F ∗) = last(F ),
last(FG) = last(F ) ∪ last(G) if ε ∈ L(G), last(G) otherwise.

follow(F +G, a) =

{
follow(F , a), if a ∈ ΣF

follow(G, a), if a ∈ ΣG

follow(FG, a) =


follow(F, a), if a ∈ ΣF − last(F )
follow(F, a) ∪ first(G), if a ∈ last(F )
follow(G, a), if a ∈ ΣG

follow(F ∗, a) =

{
follow(F , a), if a ∈ ΣF − last(F )
follow(F , a) ∪ first(F ), if a ∈ last(F )

Lemma 3. For b ∈ ΣE, follow(E, b) = ∅ iff ∀w ∈ Σ∗
E
, (wb)−1(E) = ∅ or (wb)−1(E) = ε.

Proof. (Only if). Since follow(E, b) = ∅, it must have b ∈ last(E), and b can only appear in the
last position of a word of L(E). Then ∀w ∈ Σ∗

E
, if wb /∈ L(E), then (wb)−1(E) = ∅. Otherwise,

(wb)−1(E) = ε.
(If). If ∀w ∈ Σ∗

E
, (wb)−1(E) = ∅ or (wb)−1(E) = ε, then follow(E, b) = first((wb)−1(E)) = ∅. ⊓⊔

For an expression E, the leftmost expression of E w.r.t. concatenation is le(E) = le(F ) if E =
FG; E otherwise. We say an expression E is leftmost ε-reduced if le(E) does not contain any
subexpression F + ε where λ(F ) = ε. Obviously if E = FG then E is leftmost ε-reduced iff F is
leftmost ε-reduced.
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Lemma 4. If an expression E is leftmost ε-reduced and in SNF, b ∈ ΣE and E satisfies the
following condition:

(1) b ∈ ΣE − last(E) and ε /∈ L(E), or b ∈ last(E) and ε ∈ L(E), and
(2) first(E) = follow(E, b),

(3)

then E can be only of the form F ∗ or T ∗
nGn . . . G0, n ≥ 0, where b ∈ ΣTn

, and T ∗
n satisfies

Condition (3); and ∀w ∈ Σ∗
E
, if (wb)−1(E) ̸= ∅ then (wb)−1(E) = E.

Proof. If E satisfies Condition (3), it is obvious that E cannot be ∅, ε or a ∈ ΣE .

We show E cannot be F +G.
Let E = F + G, then first(E) = first(F ) ∪ first(G). Assume b ∈ ΣF , then follow(E, b) =

follow(F , b). So by Condition (3), first(F )∪first(G) = follow(F, b), then first(F ) = follow(F, b)
and first(G) = ∅. Since first(G) = ∅, G = ∅ or ε. Since E is reduced by rules (rules-∅ε), G cannot
be ∅. So G = ε, then E = F + ε, ε ∈ L(E), and since E is leftmost ε-reduced, ε /∈ L(F ). From
ε ∈ L(E), by Condition (3), we have b ∈ last(E), then b ∈ last(F ). We show this is impossible.
Since ε /∈ L(F ) and b ∈ last(F ), F cannot be ∅, ε or I∗. If F = b, first(F ) ̸= follow(F , b),
which is a contradiction. If F = I + J , suppose b ∈ ΣI , similarly as above,we can deduce J = ε.

But this contradicts with ε /∈ L(F ). If F = IJ , then if b ∈ ΣI , since b ∈ last(F ), ε ∈ L(J).

Since ε /∈ L(F ), ε /∈ L(I). Then follow(F, b) = follow(I, b) ∪ first(J), first(F ) = first(I). So
first(J) = ∅, J = ∅ or ε, but this contradicts with F being reduced by rules (rules-∅ε). If b ∈ ΣJ ,

then first(F ) = first(I) ∪ λ(I)first(J), follow(F, b) = follow(J, b). So first(I) = ∅, I = ∅ or ε,
but this contradicts with F being reduced by rules (rules-∅ε). If b ∈ ΣG, the proof is similar.

If E = F ∗, since ε ∈ L(E), by Condition (3), b ∈ last(E), then b ∈ last(F ). So follow(E, b) =
follow(F , b)∪first(F ), first(E) = first(F ). Since E is in star normal form, we have follow(F , b)∩
first(F ) = ∅ for b ∈ last(F ). So follow(F, b) = ∅. Then from Lemma 3, ∀w ∈ Σ∗

F
, if (wb)−1(F ) ̸= ∅

then (wb)−1(F ) = ε, so (wb)−1(E) = (wb)−1(F )F ∗ = E.
If E = FG, then first(E) = first(F )∪λ(F )first(G). If b ∈ ΣF − last(F ), then follow(E, b) =

follow(F , b). So if ε /∈ L(F ), then first(F ) = follow(F , b). Otherwise ε ∈ L(F ), then first(G) =
∅, G = ∅ or ε. But this contradicts with E being reduced by rules (rules-∅ε). If b ∈ last(F ),
then follow(E, b) = follow(F, b) ∪ first(G). Then if ε /∈ L(F ), then first(G) = ∅. Similarly
this contradicts with E being reduced by rules (rules-∅ε). Otherwise ε ∈ L(F ), then first(F ) =
follow(F , b). If b ∈ ΣG, then follow(E, b) = follow(G, b). So first(F ) = ∅, F = ∅ or ε. Similarly

this contradicts with E being reduced by rules (rules-∅ε).
So we have F is leftmost ε-reduced and satisfies Condition (3), b ∈ ΣF . Then repeat the above

reasoning to F , F must be of the form T ∗
0 or F1G1, and repeatedly proceed if necessary . . .. Since

|E| is finite, the iteration must terminate, and E must be E = T ∗
nGn . . . G0, n ≥ 0, where G0 = G,

b ∈ ΣTn
, and T ∗

n satisfies Condition (3). Then, (wb)−1(E) = (wb)−1(T ∗
n)Gn . . . G0 = E. ⊓⊔

Conversely we have

Lemma 5. If ∀b ∈ ΣE ,∀w ∈ Σ∗
E
, whenever (wb)−1(E) ̸= ∅ then (wb)−1(E) = E, then E satisfies

Condition (3).

Proof. If ∀b ∈ ΣE ,∀w ∈ ΣE
∗ , whenever (wb)−1(E) ̸= ∅ then (wb)−1(E) = E, then for any non-null

(wb)−1(E), first(E) = first((wb)−1(E)) = follow(E, b). Furthermore, if b ∈ ΣE − last(E), then

wb /∈ L(E), thus ε /∈ L((wb)−1(E)) = L(E). If b ∈ last(E), then ε ∈ L((wb)−1(E)) = L(E). ⊓⊔

For an expression E, we call the following the CSE (Concatenation Sub-Expressions) condition
of E:

If E satisfies Condition (3) then E is leftmost ε-reduced; For any subexpression FG of E, if
follow(F , a) = ∅ and G satisfies Condition (3) for some a ∈ ΣF and b ∈ ΣG then G is leftmost
ε-reduced.

The significance of CSE condition and Condition (3) can be seen from the following two lemmas.
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Lemma 6. For E = FG, a ∈ ΣF and b ∈ ΣG, a ≡f b iff follow(F , a) = ∅ and G satisfies
Condition (3).

Proof. (Only if). If a ≡f b, it is not difficult to prove that a ∈ last(F ), and (1) b ∈ ΣG − last(G)

and ε /∈ L(G) or (2) b ∈ last(G) and ε ∈ L(G), then follow(E, a) = follow(F, a) ∪ first(G),
follow(E, b) = follow(G, b). So follow(F, a) = ∅, and first(G) = follow(G, b). Then G satisfies
Condition (3).

(If). Since follow(F, a) = ∅, a ∈ last(F ). So follow(E, a) = follow(F , a) ∪ first(G) =
first(G). Since G satisfies Condition (3), follow(E, b) = follow(G, b) = follow(E, a). Further-
more, by Condition (3), if b ∈ ΣG − last(G) and ε /∈ L(G), then a, b /∈ last(E); if b ∈ last(G) and

ε ∈ L(G), then a, b ∈ last(E).
So a ≡f b. ⊓⊔

Lemma 7. For a SNF expression E = FG, a ∈ ΣF and b ∈ ΣG,

if a =c b then follow(F, a) = ∅ and G satisfies Condition (3); and
if follow(F, a) = ∅, G satisfies Condition (3) and is leftmost ε-reduced then a =c b.

Proof. By Eq (2), for any non-null (w1a)
−1(E), (w2b)

−1(E),
(w1a)

−1(E) = (w1a)
−1(F )G, (w2b)

−1(E) = (vb)−1(G) for some w2 = uv.
If a =c b, then (w1a)

−1(F ) = ε and (vb)−1(G) = G. By (w1a)
−1(F ) = ε and Lemma 3,

follow(F , a) = ∅. By (vb)−1(G) = G and Lemma 5, G satisfies Condition (3).
If follow(F , a) = ∅,G satisfies Condition (3) and is leftmost ε-reduced, then from follow(F , a) =

∅ and Lemma 3, ∀w ∈ Σ∗
F
, if (wa)−1(F ) ̸= ∅ then (wa)−1(F ) = ε. Since G satisfies Condition (3)

and is leftmost ε-reduced, and G is in SNF, from Lemma 4, ∀w ∈ Σ∗
G
, if (wb)−1(G) ̸= ∅ then

(wb)−1(G) = G. So (w1a)
−1(E) = (w1a)

−1(F )G = G, (w2b)
−1(E) = (vb)−1(G) = G. Then a =c b.

⊓⊔

The following is a sufficient condition for =c=≡f .

Proposition 10. For a SNF expression E satisfying CSE condition, we have =c = ≡f .

Proof. By Lemma 2(1), we only need to prove that ≡f ⊆ =c.
Let a ≡f b.
(1) If a = qE , we show that a =c b. If b = qE then a =c b. Otherwise, if a ∈ last0(E), then

b ∈ last(E) and ε ∈ L(E), otherwise b ∈ ΣE − last(E) and ε /∈ L(E). Furthermore, follow(E, b) =

first(E). Then E satisfies Condition (3), and so is leftmost ε-reduced. From Lemma 4, (wb)−1(E) =
E if (wb)−1(E) ̸= ∅. Therefore Cb(E) = E = Ca(E).

(2) Similarly if b = qE , we have a =c b.

(3) Below we consider situations when a ̸= qE and b ̸= qE .
Now we prove if a ≡f b then a =c b by induction on the structure of E.
Base. If E = ∅, ε, or a, this is obvious.
Induction. 1. E = F +G. Without losing generality, suppose a ∈ ΣF , then follow(F +G, a) =

follow(F , a). If b ∈ ΣF , then follow(F +G, b) = follow(F, b). By the induction hypothesis,

for any non-null (w1a)
−1(F ) and (w2b)

−1(F ), (w1a)
−1(F ) = (w2b)

−1(F ). Note any non-null
(w1a)

−1(F ) is unique and is Ca(F ) since F is in SNF. Since (w1a)
−1(E) = (w1a)

−1(F ) and
(w2b)

−1(E) = (w2b)
−1(F ), a =c b. Otherwise b is in ΣG. So follow(F +G, b) = follow(G, b).

It is only possible that follow(F +G, a) = follow(F +G, b) = ∅. Since follow(F, a) = ∅, from
Lemma 3, ∀w ∈ Σ∗

F
, if (wa)−1(F ) ̸= ∅ then (wa)−1(F ) = ε. So, (wa)−1(E) = (wa)−1(F ) = ε.

Similarly, ∀w ∈ Σ∗
G
, if (wb)−1(E) ̸= ∅, then (wb)−1(E) = ε. So a =c b.

2. E = FG. It is not difficult to prove that (i) if a ∈ ΣF − last(F ), then b ∈ ΣF − last(F ), (ii)

if a ∈ last(F ), then (a) b ∈ last(F ), (b) b ∈ ΣG − last(G) and ε /∈ L(G) or (c) b ∈ last(G) and

11



ε ∈ L(G), (iii) if a ∈ ΣG − last(G), then (a) b ∈ last(F ) and ε /∈ L(G) or (b) b ∈ ΣG − last(G),

and (iv) if a ∈ last(G), then (a) b ∈ last(F ) and ε ∈ L(G) or (b) b ∈ last(G). For example, if
a ∈ ΣF − last(F ), then a /∈ last(FG). So (a) b ∈ ΣF − last(F ), (b) b ∈ last(F ) and ε /∈ L(G) or

(c) b ∈ ΣG− last(G). Suppose G ̸= ∅, ε, otherwise E is reduced to ∅ or F by rules (rules-∅ε). If (b),
follow(FG, a) = follow(F, a), follow(FG, b) = follow(F , b)∪first(G). Since follow(F, a) ⊆ ΣF ,

first(G) = ∅, but this is impossible if G ̸= ∅, ε. If (c), follow(F, a) = follow(G, b), which is
possible only if follow(F, a) = ∅, but this is impossible for a ∈ ΣF − last(F ). Other proofs are left
to readers.

If (i), then follow(FG, a) = follow(F, a), follow(FG, b) = follow(F, b). By the induction
hypothesis, similarly to 1, we can prove a =c b. If (ii.a), then follow(FG, a) = follow(F , a) ∪
first(G), follow(FG, b) = follow(F, b)∪first(G). Since follow(F, a)∩first(G) = ∅, and follow(F, b)∩
first(G) = ∅, we have follow(F , a) = follow(F, b). By the induction hypothesis, similarly we can
prove a =c b. If (ii.b) or (ii.c), then from Lemma 6, follow(F , a) = ∅ and G satisfies Condition (3).
By CSE condition G is leftmost ε-reduced, then from Lemma 7 we have a =c b.

The proofs for (iii) and (iv) can be given similarly (In fact, (iii.a) and (iv.a) are symmetrical
to (ii.b) and (ii.c), respectively.).

3. E = F ∗. If a, b ∈ ΣF − last(F ), then follow(F ∗, a) = follow(F, a), and follow(F ∗, b) =

follow(F , b). By the induction hypothesis, similarly as before we can prove a =c b. If a, b ∈ last(F ),
then follow(F ∗, a) = follow(F , a)∪ first(F ), follow(F ∗, b) = follow(F , b)∪ first(F ). Since E is
in SNF, followlast(F )∩first(F ) = ∅, so follow(F , a)∩first(F ) = ∅, follow(F, b)∩first(F ) = ∅
for a, b ∈ last(F ). Then follow(F, a) = follow(F , b). By the induction hypothesis, similarly we
can prove a =c b. ⊓⊔

Note the restriction that final and non-final states cannot be ≡f -equivalent is essential, as
shown by the expression E = b∗a(b∗a)∗. Let E = b∗1a2(b

∗
3a4)

∗. Then Ca2(E) = Ca4(E) ̸= Cb3(E),
follow(E, a2) = follow(E, b3) = follow(E, a4). However, a2, a4 ∈ last(E) and b3 /∈ last(E).

Corollary 3. For a SNF regular expression E satisfying CSE condition, Mpd(E) ≃Mf(E).

Corollary 4. For a SNF regular expression E satisfying CSE condition, Mpd(E) is a quotient of
Mf(E).

Example 4. Let E1 = a∗(a∗ + ε)c∗, E2 = a(a∗ + ε+ b), E3 = (a∗ + ε)b∗c∗ + d, they all are in SNF
and satisfy CSE condition. One can verify that for each Ei, =c=≡f , and Mpd(Ei) is a quotient of
Mf(Ei), i = 1, 2, 3.

Also, the expressions E1 in Example 1, E1 and E3 in Example 3 are in SNF and satisfy CSE
condition, and their equation automata are quotients of the follow automata.

We further present the following conditions for some special situations, concerning also =c and
≡c.
Condition 1. Let E = F1F2 . . . Fn, Fr is of the form: a, a∗, a∗+ε or ε+a∗, a ∈ Σ, r = 1, . . . , n, n ≥ 1.
(a) F1 is of the form a or a∗, and
(b) if Fr = a, then Fr+1 is of the form b or b∗.

Proposition 11. For a regular expression E satisfying Condition 1, we have =c=≡f , =c=≡c,
and ≡c=≡f .

Proof. Since E is in SNF and satisfies CSE condition, by Proposition 10, =c=≡f .
Now we prove =c=≡c. E = F1F2 . . . Fn, ∀a, b ∈ Qpos, a ̸= b, write a < b if a = qE , b ∈ E or

a ∈ Fi, b ∈ Fj , i < j. Without losing generality suppose a < b. Suppose Ca(E) = Cb(E). This is

possible only if a = qE and b ∈ F1, or a ∈ Fr and b ∈ Fr+1, otherwise |Ca(E)| ̸= |Cb(E)|, hence
Ca(E) ̸= Cb(E). Furthermore, if a = qE , then F1 is b∗, and Ca(E) = Cb(E) = E. If a ∈ Fr, then
Fr = a, and Fr+1 is b∗, and Ca(E) = Cb(E) = Fr+1 . . . Fn. So from Proposition 7, =c=≡c.

Then ≡c=≡f follows. ⊓⊔
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Condition 2. Let E = F1F2 . . . Fn, n ≥ 1 the same as in Condition 1. The following is satisfied at
least once:
(a) F1 is of the form a∗ + ε or ε+ a∗, or
(b) if Fr = a, then Fr+1 is of the form b∗ + ε or ε+ b∗.

Note Condition 2 is the negated one of Condition 1 w.r.t. E.

Proposition 12. For a regular expression E satisfying Condition 2, we have =c ̸=≡f and =c=≡c.

The proof of Proposition 12 is similar to the proof of Proposition 11.

Corollary 5. For a regular expression E satisfying Condition 1, Mpd(E) ≃Mf(E) ≃Mpd(E).

For a regular expression E satisfying Condition 2, Mpd(E) ̸≃ Mf(E),Mpd(E) ≃ Mpd(E), and
Mf(E) is a quotient of Mpd(E).

For example, the expressions E3 in Example 3 and E1 in Example 4 satisfy Condition 1, and
their equation and follow automata are isomorphic. The expression E2 in Example 3 satisfies
Condition 2, and its follow automaton is a quotient of the equation automaton.

If an expression E is linear, there is a one-one correspondence between the symbols in E and

E. Then for Ca(E) ̸= Cb(E) it cannot be Ca(E) = Cb(E). So

Proposition 13. For a linear expression E, we have =c=≡c.

Corollary 6. For a linear expression E, Mpd(E) ≃Mpd(E), and Mf(E) is a quotient of Mpd(E).

For example, the expression E1 in Example 1 is linear, so =c=≡c. We also know that for E1

we have =c=≡f . Therefore ≡c=≡f , that is, Mpd(E1) ≃ Mf(E1). Similarly, for the expression E3

in Example 4, we have Mpd(E3) ≃ Mf(E3) since it is linear and as we know from Example 4 for
E3 we have =c=≡f .

So far we have presented some conditions for the relations among =c,≡c and ≡f , hence the
relations between Mpd(E) and Mf(E). Since regular expressions can be transformed to SNF in
linear time [4], we can easily get the smaller automaton when one of the above conditions is satisfied.
It would be interesting to find some more conditions, which remains as a further research.

5 One-unambiguous expressions

5.1 Properties of automata

As shown by Brüggemann-Klein [4] and Brüggemann-Klein and Wood [6], we have the following
properties.

Proposition 14. (1) E is one-unambiguous iff Mpos(E) is deterministic.
(2) It can be decided in linear time whether E is one-unambiguous.

For a one-unambiguous expression E, from Proposition 14(1) and Propositions 4 and 5 it is
easy to have

Proposition 15. If a regular expression E is one-unambiguous, then Mpd(E) (Mf(E)) is deter-
ministic, but not vice versa.

Proof. For a one-unambiguous expression E, since Mpos(E) is deterministic, and both Mpd(E)
and Mf(E) are quotients of Mpos(E), it is implied that Mpd(E) and Mf(E) are deterministic.

Conversely, for a regular expressionE, ifMpd(E) is deterministic, E may not be one-unambiguous.
This can be shown by the example E = (c+ b)d+ cd, of which Mpd(E) is deterministic, but E is
not one-unambiguous. Similarly, if Mf(E) is deterministic, E may not be one-unambiguous. This
can be shown by the example E = a + b∗a. One can easily verify that Mf(E) is deterministic.
However, E is not one-unambiguous. ⊓⊔
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Corollary 7. For a one-unambiguous expression E, we have
(1) for any word u, ∂u(E) which is not empty is a singleton set,
(2) DD(E) ∼ PD(E),
(3) |DD(E)| ≤ ∥E∥+ 1.

Proof. (1) For a one-unambiguous expression E, since Mpd(E) is deterministic by Proposition 15,
then the result follows.

(2) By (1), there is a 1-1 function between DD(E) and PD(E).
(3) |DD(E)| ≤ ∥E∥+ 1 follows from (2) and Proposition 1. ⊓⊔

Proposition 16. For a one-unambiguous expression E, we have Mdd(E) ≃Mpd(E).

Proof. Mdd(E) ≃Mpd(E) follows from Corollary 7 (2). ⊓⊔

5.2 Constructing equation and follow automata

For one-unambiguous expressions, it is known that Mpos(E) can be constructed in linear time [4].
Could the efficiency of construction of Mpd(E) or Mf(E) be improved? In the following we an-
swer the question and show that they can also be computed in linear time for one-unambiguous
expressions.

Constructing equation automata So far there have been two quadratic time algorithms for
construction of the equation automaton. Champarnaud and Ziadi’s algorithm [9] is based on the
concepts of c-derivatives and c-continuation defined by them, and makes use of the result that
the equation automaton is a quotient of the c-continuation automaton. The algorithm consists of
computations of the states and the transitions of the quotient of the c-continuation automaton.
The key technique is in the sorting of projections of c-continuations used for identifying identical
sub-expressions. Khorsi, Ouardi and Ziadi’s algorithm [18] is an improvement of the previous one.
They avoid the sorting step and replace it by a minimization of an acyclic finite deterministic
automaton which requires linear time. Other computations are similar to the previous one.

Proposition 17. For a one-unambiguous expression E, Mpd(E) can be computed in linear time.

Proof. Since the equation automaton is a quotient of the position automaton, we sketch the fol-
lowing construction for a regular expression E.

(1) Computation of Mpos(E); (2) Computation of the equivalence relation ≡c; (3) Computation
of Mpos(E)/≡c .

(1). It is known that Mpos(E) can be computed in quadratic time, and in linear time if E is
one-unambiguous.

(2). We can use the technique for computing equivalence relation on c-derivatives introduced
in [18] to compute ≡c, which is in linear time.

(3). Mpos(E)/≡c can be computed by using standard techniques such as coding and arrays, as
follows. In step (1), we can use 1, . . . , ∥E∥ as subscripts of symbols in E. Also associate 0 as the
subscript for qE . Denote pos(x) the subscript of x for x ∈ ΣE ∪ {qE}. Then we can use an array
Tr[0..∥E∥, ΣE ] as the transition table, such that if (x, a, y) ∈ δE then Tr[pos(x), a] ← pos(y).
In step (2), we associate each equivalence class C of states of Mpos(E) w.r.t. ≡c with a unique
number nC , such that all the numbers are consecutive and starting from 0, and keep the coding
in another table Cd[0..∥E∥] such that if x ∈ C then Cd[pos(x)] = nC . Suppose the maximum of
the coding is N . The set of states of Mpos(E)/≡c consists of the numbers representing equivalence
classes. To compute the transitions of Mpos(E)/≡c , we start from the equivalence classes and create
a new transition table Tr/≡c [0..N,ΣE ] according to Tr and Cd, as follows: First, associate each
Tr/≡c [k, a] with an auxiliary array A(k,a)[0..N ], of which each element is set to 0 initially. For each
equivalence class C, for each x ∈ C, for each r in Tr[pos(x), a], let t = Cd[r], if A(nC ,a)[t] ̸= 1,
then Tr/≡c [nC , a] ← t, and A(nC ,a)[t] = 1. It is easy to see that transitions can be computed in
O(∥E∥2 · |ΣE |) time. If Mpos(E) is deterministic, then the time is O(∥E∥ · |ΣE |).

So the above computation is in quadratic time, and in linear time if E is one-unambiguous. ⊓⊔
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Constructing follow automata Ilie and Yu presented a quadratic time algorithm [16] to com-
pute follow automaton by constructing an ε-automaton and eliminating ε-transitions from the
automaton. Champarnaud, Nicart and Ziadi presented another quadratic construction [8] by com-
puting ≡f and the transitions of the follow automaton.

Proposition 18. For a one-unambiguous expression E, Mf(E) can be computed in linear time.

Proof. For a one-unambiguous expression E, the follow automaton can be computed very simply.
The construction is based on Mf(E) ≃ Mpos(E)/≡f

. Mpos(E) can be computed in linear time.

Since Mpos(E) is deterministic, follow(E, x) is either ∅ or singleton for x ∈ ΣE . We can use an

array F [0..∥E∥] to compute ≡f . If follow(E, ar) = aj , then F [pos(aj)] ← pos(ar). This can be
computed in linear time. Then, similar as in constructing equation automata introduced above,
Mpos(E)/≡f

can be computed in linear time. So the computation is in linear time. ⊓⊔

6 One-unambiguous expressions in SNF

When expressions are both one-unambiguous and in SNF, we also have the following constructions
and properties for derivatives and partial derivatives. Note we assume that the rules (rules-∅ε) hold
in the paper.

Proposition 19. (1) For a one-unambiguous expression E and a symbol a, a−1(E) can be com-
puted as follows:

a−1(∅) = a−1(ε) = ∅

a−1(b) =

{
ε, if b = a
∅, otherwise

a−1(F +G) =

a−1(F ), if a ∈ first(F )
a−1(G), if a ∈ first(G)
∅, otherwise

a−1(FG) =

a−1(F )G, if a ∈ first(F )
a−1(G), if a ∈ first(G) and ε ∈ L(F )
∅, otherwise

a−1(F ∗) = a−1(F )F ∗

(2) For a one-unambiguous expression E in SNF, the derivatives of E with respect to words can
be computed by application of the equations in (1).

Proof. (1) We need to prove only for E = F +G or FG.
If E = F + G, then first(F ) ∩ first(G) = ∅ by [6]. So if a ∈ first(F ) then a /∈ first(G),

then a−1(G) = ∅, a−1(E) = a−1(F ). The same is for a ∈ first(G). If both a /∈ first(F ) and
a /∈ first(G), then a−1(E) = ∅.

If E = FG, by definition a−1(E) = a−1(F )G + a−1(G) if ε ∈ L(F ), or a−1(F )G otherwise.
Consider ε ∈ L(F ). First we show first(F ) ∩ first(G) = ∅. If L(E) = ∅, obviously first(F ) ∩
first(G) = ∅, otherwise L(F ), L(G) ̸= ∅ which means L(E) ̸= ∅. If L(E) ̸= ∅, then from [6]
first(F )∩ first(G) = ∅. Then, the remaining proof is similar to that of the above for E = F +G.
If ε /∈ L(F ), then if a ∈ first(F ), a−1(E) = a−1(F )G, otherwise a−1(E) = ∅.

(2) If a one-unambiguous expression E is in SNF, it is known [6] that a−1(E) is one-unambiguous
and in SNF, then the computation of derivatives of E with respect to words can always use the
equations in (1). ⊓⊔

Note the above is an improved result in [12]. In [12] to define a−1(E) it is required that E is
in SNF. This is actually unnecessary. SNF is only necessary for derivatives of E with respect to
words to ensure the derivatives are one-unambiguous.

Similarly, we have
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Proposition 20. (1) For a one-unambiguous expression E and a symbol a, ∂a(E) can be computed
as follows:

∂a(∅) = ∂a(ε) = ∅

∂a(b) =

{
{ε}, if b = a
∅, otherwise

∂a(F +G) =

∂a(F ), if a ∈ first(F )
∂a(G), if a ∈ first(G)
∅, otherwise

∂a(FG) =

∂a(F )G, if a ∈ first(F )
∂a(G), if a ∈ first(G) and ε ∈ L(F )
∅, otherwise

∂a(F
∗) = ∂a(F )F ∗

(2) For a one-unambiguous expression E in SNF, the partial derivatives of E with respect to words
can be computed by application of the equations in (1).

It is known [6] that derivatives of a one-unambiguous expression in SNF are one-unambiguous
and in SNF. Now we have the following closure property from Proposition 20.

Corollary 8. Partial derivatives of a one-unambiguous expression in SNF are one-unambiguous
and in SNF.

Example 5. Let E1 be the one from Example 1, E1= (ab(c + ε))∗, and E = a +(b∗+c)∗. E1 and
E are one-unambiguous, with E1 in SNF and E not.
(1) a−1(E1) = b(c+ ε)(ab(c+ ε))∗ = r1,

(ab)−1(E1) = b−1(r1) = (c+ ε)(ab(c+ ε))∗ = r2,
(aba)−1(E1) = a−1(r2) = r1,
(abc)−1(E1) = c−1(r2) = E1.

(2) a−1(E) = ε,
b−1(E) = b−1(b∗ + c)(b∗ + c)∗ = b∗(b∗ + c)∗ = r1,
r1 = b∗1(b

∗
2 + c1)

∗, b1b1, b1b2 ∈ L(r1), so r1 is not one-unambiguous.
(bb)−1(E) = b−1(r1) = r1 + r1,
∂b(E) = {ε},
∂b(E) = {r1},
∂bb(E) = {r1}.

(3) ∂a(E1) = {b(c+ ε)E1} = {r1},
∂b(r1) = {(c+ ε)E1} = {r2},
∂a(r2) = {r1},
∂c(r2) = {E1}.

As is shown in Example 5(2), for the expression E which is not in SNF, b−1(E) is not one-
unambiguous, then the computation of derivatives of E uses the original definition.

The above new constructions both are useful in practice for one-unambiguous expressions in
SNF and provide the basis of the results below.

When an expression E is one-unambiguous, we already have that ∂u(E) is either ∅ or a singleton
set, as shown in Corollary 7. Furthermore, if E is also in star normal form, then from Proposition 19
and Proposition 20 it is easy to see

Proposition 21. For a one-unambiguous expression E in SNF, ∂u(E) = ∅ iff u−1(E) = ∅, and
if ∂u(E) ̸= ∅, ∂u(E) = {u−1(E)}, for any word u.

The above proposition sets up a one-one correspondence between derivatives and partial deriva-
tives of a one-unambiguous expression in SNF. Then, Proposition 22 shows the relation among
various sets of derivatives and partial derivatives for one-unambiguous expressions in SNF.
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Proposition 22. For a one-unambiguous expression E in SNF, we have
(1) the set D(E) = {w−1(E) |w ∈ Σ∗} of derivatives of E is finite,
(2) D(E) = PD(E),
(3) ∥E∥+ 1 ≥ |D(E)| = |DD(E)| = |PD(E)| ≥ |D1(E)| ≥ |D0(E)|.

Proof. (1) The finiteness of D(E) follows from Proposition 21.

(2) D(E) = PD(E) follows from Proposition 21.

(3) The equalities and inequalities then follow from the above and D1(E) = D(E)/∼aci and
Proposition 1. ⊓⊔

The bound of D(E) is worst case optimal, one example is the expression E = abc, for which
D(E) = {abc, bc, c, ε}. Note the finiteness of D(E) is also directly proved by induction in [12]. Here
it is a result of Proposition 21.

If E is one-unambiguous but not in SNF, then the above correspondence between derivatives and
partial derivatives does not exist (see an example in Example 5(2), where ∂bb(E) ̸= {(bb)−1(E)}).
Furthermore in this case the derivative of E with respect to a word w may not necessarily be
one-unambiguous, so the number of derivatives of E with respect to words prefixed by w may be
infinite.

For one-unambiguous expressions in SNF, since D(E) is finite, another construction of DFA,
similar to Brzozowski automaton, simply can be

Md(E) = (D(E), Σ, δ, E, {p ∈ D(E) | ε ∈ L(p)}),

where δ(p, a) = a−1(p), for any p ∈ D(E), a ∈ Σ.

An example is shown in Figure 1(b), where Md(E1) is the same as Md1(E1).

Theorem 1. For a one-unambiguous expression E in SNF, we have
(1) Mpd(E) = Md(E),
(2) Md1

(E) ≃Md(E)/∼aci
,

(3) Md1(E) ≃Mpd(E)/∼aci .

Proof. (1) Mpd(E) = Md(E) follows from Proposition 22.

(2) Since D1(E) = D(E)/∼aci , we only need to show ∼aci is right invariant w.r.t. Md(E) as
follows. It is easy to know that for any p, q ∈ D(E), if p ∼aci q then ε ∈ L(p) ⇔ ε ∈ L(q). We
also show that if p ∼aci q then a−1(p) ∼aci a

−1(q) for any a ∈ Σ. This can be done by induction
on p. We consider the case of p = E1 + E2 here. In this case, since p ∼aci q, q can be one of
the two forms: 1. E′

1 + E′
2, 2. E

′
2 + E′

1, where Ei ∼aci E
′
i, i = 1, 2. Suppose q = E′

1 + E′
2. Then,

a−1(E1 +E2) = a−1(E1)+ a−1(E2) ∼aci a
−1(E′

1)+ a−1(E′
2) = a−1(E′

1 +E′
2). The same applies to

q = E′
2 + E′

1. Other cases of p are similar.

(3) Md1(E) ≃Mpd(E)/∼aci follows from (1) and (2). ⊓⊔

Corollary 9. There is a one-unambiguous expression E in SNF, such that Md(E) is larger than
Md1(E).

Proof. It suffices to show D(E) may contain similar derivatives. Let E = a(b+ c) + d(c+ b), then
a−1(E) = b+ c, d−1(E) = c+ b, so a−1(E) and d−1(E) are similar. ⊓⊔

Md(E) provides another construction of deterministic automaton by derivatives, and exists
when a one-unambiguous expression E is in SNF. Corollary 9 shows that Md(E) and Md1(E) can
be different.

The sets of derivatives and partial derivatives and their relations discussed in the previous
sections and this section are summarized in Table 1.
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Table 1. Summary of sets of (partial) derivatives. NSNF–Non SNF, w = ∥E∥

Regular expression E D(E), D1(E), D0(E), DD(E), PD(E) and their relations

one- SNF D(E) = PD(E) ∼ DD(E), D1(E) = D(E)/∼aci , D0(E) ∼ D1(E)/≈
unambiguous w + 1 ≥ |D(E)| = |DD(E)| = |PD(E)| ≥ |D1(E)| ≥ |D0(E)|

NSNF DD(E) ∼ PD(E), D0(E) ∼ D1(E)/≈
w + 1 ≥ |DD(E)| = |PD(E)| ≥ |D0(E)|, |D1(E)| ≥ |D0(E)|

other D0(E) ∼ D1(E)/≈
2w+1 ≥ |DD(E)| ≥ |D0(E)|, w + 1 ≥ |PD(E)|, |D1(E)| ≥ |D0(E)|

7 Concluding remarks

1. For a one-unambiguous expression E in SNF, since Md(E) is equal to Mpd(E), we obtain a
way to reduce the size of Mpd(E) by using dissimilar states in the building of the automaton. The
resulting automaton is equal to Md1(E).

2. The Brzozowski automaton Md1(E) may not be minimal. If we consider equality of deriva-
tives, and use D0(E) as the set of states, the resulting DFA is minimal [7]. However, equality test
has PSPACE time complexity for regular expressions, and is in quadratic time for one-unambiguous
expressions [12].

3. Usually one would consider that the Brzozowski automaton is the determinisation (by the
subset construction) of Mpd(E) (e. g., [19]). This is however imprecise. Actually Mdd(E) is ex-
actly converted by subset construction from Mpd(E) [1]. However, from Theorem 1, we know that
Md1(E) and Mpd(E) can be different, which proves Md1(E) is not the determinisation of Mpd(E).

The paper discussed derivatives, partial derivatives and automata in the case of expressions
in SNF and of one-unambiguous expressions. It showed that if an expression E is in SNF, then
(wx)−1(E) is either ∅ or unique for all words w, which is a stronger property than Berry and
Sethi’s [2]. For a regular expression in SNF it presented several conditions for the quotient or
isomorphism relation between the equation and follow automata. The paper have given a figure,
though probably incomplete yet, of various relations that are possible between the two automata.
Star normal form also makes sense for one-unambiguous expressions, in which case the expressions
bear more good properties; For example, a simple construction of the Brzozowski automaton can
be get, and the paper showed that the resulting automaton is equal to the equation automaton. It
showed that the equation and follow automata can be computed in linear time for one-unambiguous
expressions.

Several problems can be investigated as future work. For example, as mentioned in a previous
section, whether there are some more conditions for the relation between Mpd(E) and Mf(E)
remains as a further research.
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