
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 1

Memory-Efficient Single-Pass GPU Rendering
of Multi-fragment Effects

Wencheng Wang*, and Guofu Xie*

Abstract—Rendering multi-fragment effects using GPUs is attractive for high speed. However, the efficiency is seriously compromised,
because ordering fragments on GPUs is not easy and the GPU’s memory may not be large enough to store the whole scene geometry.
Hitherto, existing methods have been unsuitable for large models or have required many passes for data transmission from CPU to
GPU, resulting in a bottleneck for speedup. This paper presents a stream method for accurate rendering of multi-fragment effects. It
decomposes the model into parts and manages these in an efficient manner, guaranteeing that the parts can easily be ordered with
respect to any viewpoint, and that each part can be rendered correctly on the GPU. Thus, we can transmit the model data part by part,
and once a part has been loaded onto the GPU we immediately render it and composite its result with the results of the processed
parts. In this way, we need only a single pass for data access with a very low bounded memory requirement. Moreover, we treat parts in
packs for further acceleration. Results show that our method is much faster than existing methods, and can easily handle large models
of any size.

Index Terms—Multi-fragment effects, depth ordering, fixed amount of memory, large models, accurate rendering.

F

1 INTRODUCTION

Rendering multi-fragment effects is important in com-
puter graphics and is required in many areas such as
rendering transparent and semi-transparent objects, anti-
aliasing, and volume rendering. To utilize the great com-
putational power of graphics processing units (GPUs),
much research has focused on rendering multi-fragment
effects on a GPU. Here, the main problem addressed is
sorting the fragments efficiently by depth, a key require-
ment for many multi-fragment effects, because ordering
fragments on GPUs is not easy and the GPU’s memory
may not be large enough to store the whole scene
geometry. With regard to this, many methods such as
depth peeling (DP) [1], dual depth peeling (DDP) [2], k-
buffer [3], and bucket depth peeling (BDP) [4] attempt to
sort a few fragments at a time while excluding the other
fragments. As such, the model data are read many times
for depth ordering of all fragments. As the bandwidth
for transmitting data from the CPU to GPU is limited,
data transmission has become a bottleneck in rendering
multi-fragment effects using GPUs. To reduce the cost
of data transmission, some methods sort fragments on
the GPU using an allocated buffer, such as the Freepipe
architecture [5] in CUDA. If the buffer is large enough,
these methods require only a single pass over the data.
However, owing to the limited memory on the GPU,
large models cannot be dealt with efficiently, especially

• * Wencheng Wang and Guofu Xie are joint first authors and are sorted
by the alphabetic order of their last names.

• W. Wang and G. Xie are with State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China.
E-mail: whn@ios.ac.cn, guofu@ios.ac.cn

• G. Xie is also with Graduate University of Chinese Academy of Sciences
and University of Chinese Academy of Sciences, Beijing 100049, China.

models with high depth complexity. Wexler et al. [6]
suggested to partition the model into smaller data sets by
the depth and so reduce the cost on data transmission.
But it remains unsolved how to efficiently partition
geometry into sets that are bounded in depth complexity
to ensure that the model can be rendered using a fixed
amount of memory.

This paper presents a new method for rendering multi-
fragment effects on a GPU, addressing the challenge of
accurately rendering large models in a fixed amount
of video memory. The proposed method is memory-
efficient and requires only a single pass over the data in
a stream, thereby achieving considerable speedup, espe-
cially for models with high depth complexity. Moreover,
it is very efficient in dealing with large models, even out-
of-core models that are very difficult to handle using
existing methods. Unlike some methods that sacrifice
correct depth ordering for speedup, e.g., BDP [4], our
method orders all fragments correctly for high quality
rendering. The key idea is to decompose the model
into parts, each of which has very few depth layers for
any viewing direction, thereby guaranteeing the correct
rendering of a part on the GPU, and to manage the
parts using grids for efficiently ordering of the parts with
respect to any a viewpoint. During rendering, we use
grid cells to order the parts quickly by the occlusions
between them according to the viewpoint, thus obtaining
the order in which to transmit the parts one by one
from the CPU to the GPU in a stream. Thus, their trans-
mission order is guaranteed in accordance with their
depth ordering. When a part is loaded onto the GPU, its
fragments can be correctly ordered and rendered on the
GPU using existing techniques, and the rendered results
can be composited immediately with those of processed
parts without any problems. In this way, the storage

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 2

Fig. 1. Overview of our method: In preprocess (a), model decomposition is by clustering the facets in each grid
cell respectively to form their related convex polyhedrons, then parts are generated by combining nearby convex
polyhedrons, and at last a new grid is constructed with its cells each recording which parts are in it. For a rendering
(b), the parts are first ordered by the viewpoint in a sequence, and the nearby parts causing no ordering errors in the
sequence are further packed, so that the parts are transmitted one by one to GPU for rendering.

requirement can be reduced considerably, without de-
pendence on the depth complexity, and the data can be
transmitted in a single pass, alleviating the bottleneck
problem of transmitting data from the CPU to the GPU.
To further reduce the times of data transmission and
flushing the rendering pipeline for result composition,
we combine the parts that cause no ordering errors in a
rendering in a pack to treat simultaneously. Results show
that our method is much faster than existing methods,
and using a common PC it is able to render very large
models interactively, which has always been difficult for
existing methods. Fig. 1 gives a conceptual overview of
our method.

In the remainder of this paper, we first discuss related
work in Section 2, and then present our techniques for
model decomposition in Section 3. Management of the
decomposed parts using grids is discussed in Section
4, followed by our rendering techniques in Section 5.
Thereafter, experimental results are given and discussed
in Section 6, and our conclusion is presented in Section
7.

2 RELATED WORK

Rendering multi-fragment effects requires operations on
multiple fragments at the same pixel location. Here,
depth ordering of the fragments is a decisive factor for
many effects such as translucency. For this, the popular
Z-buffer technique keeps only the nearest (or the fur-
thest) fragment at every pixel [7], while the A-buffer
technique [8] tries to maintain an unbounded, sorted list
of fragments per pixel. Many methods have extended the
A-buffer method for execution on hardware, including

the R-buffer method using a first-in-first-out strategy [9],
as well as the F-buffer [10], stencil-routed A-buffer [11],
Z3 algorithm [12], and k-buffer methods [3], [13]. How-
ever, in these methods, the size of the per-pixel array
is fixed, which prevents their use in many applications
such as dealing with models with high depth complexity.

To sort fragments efficiently for rendering multi-
fragment effects on a GPU, some methods, including
the DP algorithm [1], [14], the DDP algorithm using a
min-max depth buffer [2], and the algorithm to peel
multiple layers simultaneously using multiple render
targets (MRT) on the GPU [15], proposed dealing with
one or more layers of fragments in each pass. Carr et
al. [16] proposed using coherent layer peeling to exploit
correctly sorted sequences of layers at a given pixel for a
partially sorted collection of meshes between successive
frames at the fragment level. Generally, this requires
many data access passes to sort all the fragments.

To reduce the cost of depth ordering of fragments,
some methods have proposed handling other primitives,
thereby reducing the number of primitives to be pro-
cessed or adopting efficient sorting techniques for the
corresponding primitives. For example, Govindaraju et
al. [17] proposed executing visibility ordering of the
objects in a scene, Wexler et al. [6] proposed discretizing
the scene into grids of pixel-sized quadrilateral microp-
olygons, while Eisemann et al. [18] tried to voxelize the
scene into regular volume data. Though these methods
increase the efficiency of depth ordering, they also need
to read the data many times for high quality rendering.

In some cases, the rendering effect is determined
mainly by the first few layers of fragments, while the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 3

contribution of subsequent layers of fragments is ig-
nored. Thus, some methods read the data only once to
render multi-fragment effects by considering only the
first few layers of fragments. As these methods execute
ordering operations on the GPU, ordering errors may
occur, thus reducing the rendering quality. For example,
the k-buffer method [3] uses read-modify-write opera-
tions to implement ordering of the first k fragments.
When multiple fragments at the same pixel have simul-
taneous read or write operations to the same entry of
the k-buffer, read/write conflicts occur, causing ordering
errors. To avoid such conflicts, multi-sample anti-aliasing
buffers [11] have been proposed to work with the stencil
routing operation for ordering fragments. Owing to the
size limit of the buffer, it can only handle at most
the first eight layers. Liu et al. [4] tried to render 32
layers of fragments by allocating a bucket array of 32
entries per pixel from the MRT buffer and dividing the
depth range of the model into 32 intervals. Using this
array, a fragment is inserted into its corresponding entry
according to its ordering depth. However, fragments
with their depth values in the same depth interval may
be inserted into the same entry, causing ordering errors.
Generally speaking, these methods work well when
there are not many depth layers. If the model has high
depth complexity, however, the data must still be read
many times, mainly to reduce the sorting conflicts.

To reduce the number of data passes, Liu et al. [5]
proposed implementing a complete rendering pipeline
for multi-fragment effects in CUDA by exploiting CUDA
atomic operations, where a buffer is allocated to sort
all depth layers. In this method, a fixed-size array is
used for every pixel, which prevents its use in handling
models with a high depth complexity. Yang et al. [19]
also proposed allocating a buffer to construct lists of
fragments on the GPU, but with a more efficient way
of using memory, which allows the lists at pixels to be
of arbitrary length. It was reported that this method is
much faster than the Freepipe method [5] for an order-
independent transparency rendering. To summarize, us-
ing a single pass to obtain the data, these methods
work well with smaller models. However, owing to the
size limit of the memory on the GPU, they cannot deal
efficiently with large models.

The deferred blending method [20] for point-based
rendering adopts the strategy of separating the model
data to promote multi-fragment effects rendering. How-
ever, this decomposition differs from ours in that the
point data are decomposed into groups, guaranteeing
that any pair of points in a group is far enough apart to
be ordered correctly. As a result, the points in a group
can be rendered correctly. But the rendered results of
the groups are composited with weights, irrespective of
the ordering relations between the points from different
groups. Thus, this method cannot guarantee correct ren-
dering of order-dependent effects, especially for models
with high depth complexity.

From the above discussion, it is clear that existing

methods cannot deal efficiently with large models, which
may prevent application in many cases since large mod-
els are required more and more in practice. As for our
method, it has a very low bounded memory requirement
independently of the depth complexity and requires only
a single data access pass. As such it is ideal for dealing
with large models and is likely to promote widespread
application as well.

Besides depth ordering fragments, some methods
studied how to compute transmittance information of
fragments efficiently for high quality rendering. Kim
et al. [21] took opacity shadow maps to reuse pre-
accumulated opacity on a regular grid along light rays.
To remove layering artifacts, the method using deep
opacity maps tries to shift the depth slices through the
nearest layer to the light [22]. Recently, approximation-
based techniques have attracted much attention. These
include extending screen-door transparency with ran-
dom sub-pixel stipple patterns to construct a stochastic
representation of transmittance [23], using a Fourier
series to represent a transmittance function [24], and
building an adaptively compressed representation of the
transmittance function in bounded memory [25]. In fact,
since our proposed method focuses on depth ordering,
which is helpful to efficient visibility computation, it can
be used to improve transmittance computation, because
accurate visibility is very important for high quality
rendering, as discussed by Salvi et al. [25].

3 MODEL DECOMPOSITION

In our method, the model is decomposed into many
parts, with the aim of correctly rendering each part
on a GPU. As we use the stencil-routed A-buffer tech-
nique [11] for rendering, which can correctly handle at
most eight layers of fragments at a same time, we assume
that each decomposed part can have at most eight depth
layers for any viewing direction, in order to be dealt with
efficiently.

As is known, a convex polyhedron has at most two
depth layers with respect to any viewing direction. Thus,
we first decompose the model into convex polyhedrons,
and then create a part composed of at most four nearby
convex polyhedrons. In this way, every decomposed part
has no more than eight depth layers of fragments. In our
method, the number of decomposed parts determines
the number of iterations for data transmission and result
composition, which has a great influence on the render-
ing efficiency if there are many decomposed parts. Thus,
we aim to produce the smallest number of decomposed
parts. Unfortunately, this is an NP-hard problem. Con-
sidering this, we attempt to combine as many parts as
possible, while executing model decomposition quickly
for applying our method easily, as described in the
following paragraph.

To decompose a model quickly, we construct a grid
structure based on the bounding box of the model so
that the facets in a grid cell can be treated locally and in

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 4

// Input all the facets of a grid cell, tagged unused.
void ConstructConvexs (in facets, out convexs)

while(there are facets unused)
Select a facet from unused facets as a seed;
Constructing a convex polyhedron by greedily

clustering the seed facet with adjacent facets;
end while

Fig. 2. Pseudocode for constructing convex polyhedrons
from the facets in a grid cell.

parallel. In a grid cell, we sample some facets as seeds
to be extended individually to form their respective
convex polyhedrons, which may be unclosed. The algo-
rithm of constructing convex polyhedrons is described
in Fig. 2. Then, from the facets across neighboring grid
cells, their related convex polyhedrons in different cells
are combined to form a larger convex polyhedron if
possible, to reduce the number of decomposed parts.
Thereafter, we find the grid cells that have no more
than four convex polyhedrons, and allow each of these
grid cells to form a decomposed part. The decomposed
parts in nearby grid cells are further combined to form
a larger decomposed part if there are no more than four
convex polyhedrons in these grid cells. Here, a convex
polyhedron overlapping several grid cells is allowed to
be in only one decomposed part. As for a grid cell
containing more than four convex polyhedrons, it is
subdivided iteratively into smaller grid cells until no cell
contains more than four convex polyhedrons. Clearly,
in our decomposition process, some operations can be
implemented in parallel to achieve greater speedup, as
discussed in Section 6.

Without loss of generality, a 2D example is illustrated
in Fig. 3, where the grid consists of 5×4 cells. The convex
parts in cells (0, 0) and (0, 1) can be combined to form a
larger convex part, which can be further combined with
the parts in cells (1, 0) and (1, 1) to form an even larger
decomposed part, Part 1. The convex part P1P2 in cell (0,
3) cannot be combined with the convex part P1P3 in cell
(0, 2) to form a larger convex part, but the parts in these
two cells can be combined to form the decomposed part,
Part 6. Part 2 is composed of the parts in cell (2, 0) and
a convex part in cell (3, 1), so that the convex parts in
cell (3, 1) are separated into two decomposed parts, Part
2 and Part 5. Because there are more than four convex
parts in cell (4, 0), this cell is subdivided, and Parts 3 and
4 are formed from the parts in the subdivided subcells.

4 MANAGING PARTS WITH GRIDS

Our method manages the decomposed parts in grids,
allowing the parts in different grid cells to be efficiently
sorted, since it is very easy to order grid cells. If all grid
cells contain at most one part, the ordering of parts is
very easy. However, some grid cells may contain more
than one part. To correctly order the parts in a grid cell,

Fig. 3. Model decomposition. First, the facets in every grid
cell are respectively clustered into convex polyhedrons
with a seeding algorithm. Second, by the facets across
neighboring grid cells, their related convex polyhedrons
are combined, e.g. the facets in cells (0, 0) and (0, 1)
are combined into a convex polyhedron. Afterwards, the
grid cells are checked whether the convex polyhedrons
in neighboring cells can be combined as a part. If there
are no more than four convex polyhedrons in neighboring
cells, they are combined, such as the formed Parts 1, 2
and 5. If a cell contains more than four convex polyhe-
drons, this cell should be subdivided iteratively until every
subcell contains no more than four convex polyhedrons,
as for treating the cell containing Parts 3 and 4. Here, the
grid cells are swept from left to right and from bottom to
up.

we define two procedures, for a grid cell containing two
parts and more than two parts, respectively.

4.1 For a Cell Containing Two Parts
If two parts are interlocking, it is impossible to order
them. In this case, we produce a slab structure between
the two parts to separate them, thereby obtaining the
correct ordering. Without loss of generality, we describe
this measure using the 2D example illustrated in Fig. 4,
where the rectangle in cyan represents a slab. A slab
is determined by two parallel planes, as represented by
lines 1 and 2 in Fig. 4, including the facets from the
two parts that are in between these two parallel planes.
As shown in Fig. 4, besides the facets within the slab,
the remaining facets of Part 1 are on the left of the slab,
while the remaining facets of Part 2 are on the right of the
slab. Thus, the set of facets in Part 1 excluding its facets
within the slab, the slab, and the set of facets in Part
2 excluding its facets within the slab, can be correctly
ordered for any viewing direction because they can be
separated by the planes between them. As a result, for
a grid cell containing two parts, we decompose the
two parts further with the slab between them, and also
consider the slab as a part to be rendered. To ensure that
the slab can be ordered conveniently, we use a cuboid
to represent the slab. This is produced by projecting
the facets of the slab onto one of its parallel planes
orthogonally along the normal of the parallel planes

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 5

Fig. 4. A slab is constructed to separate two neighboring
parts; it includes the facets from the two parts that lie in
between the two parallel planes of the slab.

to obtain the projection regions. Using the bounding
box of the projection regions and the distance between
the two parallel planes, the cuboid is obtained as the
representation of the slab.

To produce the slab, we first need to find two parallel
planes in between the two parts with as small a distance
between them as possible. Our aim is to try to obtain a
plane to separate the two parts to avoid the decompo-
sition of these two parts as far as possible. Numerous
methods exist for finding separating planes between
shapes. These have been developed most in the context
of collision detection. However, these methods are valid
for convex polyhedrons, not suitable for our case of
finding the plane that is most possible to separate two
polyhedrons that are interlocked each other, as shown in
Fig. 4. For example, the methods proposed by Chung et
al. [26] and Wang et al. [27] can efficiently get separating
planes between two convex polyhedron or two ellip-
soids, but are invalid when the polyhedrons or ellipsoids
have an overlapping region. Therefore, to deal with such
a difficult problem, we use an approximate measure to
estimate the normal of the planes, and then from the
normal find a pair of parallel planes to produce a slab.
The process comprises three steps. The first generates
two bounding ellipsoids of the two parts, respectively,
the second collects the facets of the parts that are inside
the overlapping region of the two ellipsoids, and the
third generates a small ellipsoid bounding the collected
facets using principal component analysis. As a result,
the direction of the shortest axis of the small ellipsoid
is taken as the normal. Because the overlapping region
of the bounding ellipsoids covers well the facets that
are close to each other, and the largest section of the
bounding ellipsoid for the collected facets is on the plane
with the lowest quadric errors from the facets to the
plane [28], it is highly likely that the estimated normal
will produce a very thin slab. This process is illustrated
in Fig. 4.

Though a part has at most eight depth layers, a
slab may have more than eight depth layers for some

Fig. 5. Sub-grids are optimistically constructed by the
distribution of slabs in a cell, where cyan rectangles
represent slabs, and gray lines denote the partition lines
for producing sub-cells.

viewing directions because it includes facets from two
parts. Thus, every slab should be checked to see that
it satisfies our requirement that each decomposed part
should have no more than eight depth layers for any
viewing direction. If it does not, the slab will have its
representative cuboid subdivided iteratively by the mid-
planes parallel to the faces of the cuboid, until every sub-
cuboid contains no more than four convex polyhedrons.
As the sub-cuboids can be ordered correctly for any
viewing direction, there is no problem in rendering when
the facets in a sub-cuboid are dealt with as a decomposed
part.

4.2 For a Cell Containing More Than Two Parts
Any cell containing more than two parts is recursively
subdivided to construct a local hierarchical grid in which
a cell at a leaf node contains at most two parts. We then
use the process in Subsection 4.1 to deal individually
with those cells containing two parts. Iteratively dealing
with the hierarchical grid cells causes no problems in
ordering the parts.

4.3 Grid Resolution
Our method employs grid cells to facilitate ordering of
decomposed parts. If too many cells are produced, this
may seriously impact the ordering efficiency. To ensure
that not too many cells are produced and to support
the ordering computation, we adopt the following tech-
niques to build grids and sub-grids.

The initial grid is constructed with its cell size as the
average size of the bounding boxes of the decomposed
parts. For this, we first compute the bounding box for
every part, and then average the sizes of the bounding
boxes along the three axes separately.

Each cell in the initial grid containing more than two
parts is subdivided to construct a local hierarchy of grids
until the cells at leaf nodes contain at most two parts.
To subdivide a grid cell efficiently, we investigate the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 6

distribution of the slabs in the cell to find a suitable grid
resolution to construct its sub-grid, with the aim that
every sub-cell contains at most one slab as illustrated in
Fig. 5. Of course, if a sub-cell has more than one slab, it
should be further subdivided iteratively using the same
technique.

5 RENDERING

Our rendering pipeline consists of three steps. First,
according to the viewpoint, the parts are ordered from
front to back or from back to front, and then transmitted
orderly from the CPU to the GPU. Next, every part trans-
mitted to the GPU is rendered using the stencil-routed
A-buffer method [11] to obtain an individual rendered
image. Finally, after the individual image for a part has
been rendered, it is immediately composited with the
previously rendered parts. These steps are discussed in
the following subsections.

5.1 Ordering Parts
When a viewpoint is set, we can easily order the parts
via the constructed grids. Without loss of generality,
we discuss this with respect to ordering the parts from
front to back. Ordering the parts from back to front can
be dealt with similarly. For simplicity, we only discuss
ordering the parts in a grid. As for a cell with local sub-
grids, its hierarchical sub-grids are iteratively dealt with
in a similar manner, and the results are used when the
cell is processed in its located grid.

Our strategy is to order parts by their related grid cells.
As we know, the grid cells can be processed sequentially
slice by slice, row by row in a slice, and one by one in a
row. Thus, from the sequence of cells sequentially from
front to back, we can find the order to transmit these
parts, thereby ensuring that every part is transmitted and
processed earlier than its occluded parts. In this way, we
can immediately composite the rendered image of a part
with the rendered results of the processed parts, causing
no problems in rendering multi-fragment effects.

We illustrate this using the 2D example in Fig. 6,
which contains five decomposed parts. For viewpoint
V, according to its relative position to the bounding box
of the scene, we know that Row 3 is in front of Row 2,
Row 2 is in front of Row 1, and Row 1 is in front of
Row 0. Moreover, in each row, a grid cell is in front of
the grid cell to its right. Checking the cells in Row 3,
we find that Cell (0, 3) contains Part A and since Part A
occupies no other cells, it is in front of the other parts.
Next, on checking Cell (2, 3), we find that this cell is
occupied by Part B, which also occupies several cells
that have not yet been checked. In this case, we proceed
to check the rows that have cells occupied by Part B. In
checking the rows sequentially from front to back, we
find that Cell (0, 2) is occupied by Part C, which also
occupies some cells that have not yet been checked. We
again proceed to check the rows that have cells occupied
by Part C. After checking Cell (0, 1), we are sure there is

Fig. 6. The decomposed parts can be correctly depth
ordered with respect to viewpoint V by ordering the grid
cells containing the parts.

no other part in front of Part C, so we let Part C follow
Part A. Then, we recursively check Cells (1, 2), and (2,
2) sequentially to ascertain that there are no other parts
in front of Part B. At this time, we let Part B follow Part
C. With similar recursive checks, we know that Part D
follows Part B, with Part E being the last. Therefore, the
order for transmitting these parts is Part A, Part C, Part
B, Part D, and Part E.

By the ordered sequence for transmitting parts as
discussed in the above paragraph, we can further pack
the nearby parts in the sequence that cause no ordering
errors in this rendering, and take the union as a part
to transmit and render. With this, the times for data
transmission and result composition can be reduced for
more acceleration. As illustrated in Fig. 6, we project the
bounding boxes of Part A, Part C and Part B orderly
onto the image plane through the projection matrix in
the CPU, and find no overlaps between Projection Ia and
Ic, and then between the bounding box of Ia and Ic and
Projection Ib, so that these three parts can be packed
together. Similarly, Part D and Part E can be packed.
As a result, these five parts are finally transmitted and
rendered in two packs.

However, in determining the order of transmitting
parts, a cyclic occlusion between the parts may occur,
which means the involved parts each are occluded by at
least another one, causing no part selected to transmit
from the involved parts. For this, we transmit the parts
gradually in packs by every time forming a pack of the
unoccluded parts in the remained parts that have not
been transmitted, and we know cyclic occlusions occur
when no unoccluded part can be found in the remained
parts, according to the discussion by Williams [29]. When
a cyclic occlusion is met, we adopt the heuristic as sug-
gested by Williams [29] to iteratively find the biggest part
from the involved parts and decompose it in the middle,
which may take a reverse procedure of generating the
part from its facets, until the cyclic occlusion is erased,
meaning some parts become unoccluded. In the worst
case we decompose a part into its occupied cells with the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 7

cells each having a sub-part of the part, because cyclic
occlusions cannot occur between grid cells.

5.2 Rendering a Part
We render a part on the GPU using the method with
stencil routed a-buffer [11]. First, all the fragments from
the part are rasterized and a multi-sample texture is
used to store a vector of fragments per pixel. Then, in
the bounding quad of the projection of the bounding
box of the part, a shader pass is carried out to order
the fragments from the part using a bitonic sort. After
the fragments have obtained their colors by illumination
computation, they are blended to give colors to their
corresponding pixels.

5.3 Composition
On the GPU, we allocate a buffer to store the colors at
pixels in order to render the whole model. Each time
a part is rendered, its rendered image is composited
with the colors of the pixels in the buffer. After all the
parts have been processed, we obtain the final image of
rendering the whole model.

6 IMPLEMENTATION, RESULTS, AND DISCUS-
SION

We performed our tests on a personal computer run-
ning Microsoft Windows 7 and installed with an Intel
Xeon E5620 2.4 GHz CPU with 8 cores, 8 GB RAM,
and an NVIDIA GTX 680 card with 2048 MB video
memory. For comparison, we implemented our method
using OpenGL, and also some existing methods that
can execute order-dependent rendering, namely DP [1],
DDP [2], BDP [4], bucket depth peeling in two passes
(BDP2) [4], adaptive bucket depth peeling (ADP) [4], and
two schemes for the Freepipe method in CUDA [5], that
is, one using a multi-depth test (MDTS) and the other
an A-buffer (ABS).

6.1 Preprocessing
Our preprocessing is executed on the CPU. For greater
speedup, we use multiple threads to deal with certain
operations for model decomposition in parallel. These
operations include greedily clustering from a seed facet
to form a convex polyhedron in a grid cell, combining
convex polyhedrons via their shared facets across neigh-
boring cells, detecting the grid cells that have no more
than four convex polyhedrons, subdividing grid cells
that have more than four convex polyhedrons, and so
on.

The tested models together with statistics on their
triangles and preprocessing are listed in Table 2. From
these statistics, it can be seen that our preprocessing
can handle a very large model in several minutes. This
means that our preprocessing should not be an obstacle
in adopting our method for various applications. Ac-
tually, managing parts instead of facets in representing

TABLE 1

Comparison between our scheme and kd-trees for man-
aging parts from the Dragon model.

Schemes Parts *Storage (MB) Preprocessing (s) Performance (ms)
Kd-tree (facets) 216K 10.5 7 103.09
Kd-tree (parts) 52 3.9 17 4.88

Ours 36 3.7 15 3.98

*Storage (MB) : the listed storage excludes that for the information
representing the model, including vertices, normals, indices, and so
on.

a model can bring many benefits in model processing,
such as treating facets in groups. This is an interesting
issue for future study.

6.2 Management
In our method, we use grids to manage decomposed
parts for easy ordering, instead of using hierarchical
management schemes such as the kd-tree, although these
are popular for efficient queuing. This is because it is
very time-consuming to construct a hierarchical tree, and
the partition planes for tree construction may intersect
parts, thereby increasing the number of parts and result-
ing in greater storage and time for parts.

We conducted tests on the Dragon model to compare
our management scheme and a kd-tree structure. Two
kd-trees were used for the facets and our decomposed
parts, respectively. Leaf nodes in the kd-tree for facets
each contain at most 8 facets so that the facets of a leaf
node can be transmitted and rendered as a part, while
leaf nodes in the kd-tree for our decomposed parts each
contain one part. The statistics for the comparison are
given in Table 1, where the rendered images are each
1024×1024 pixels and parts are all transmitted in packs,
irrespective of the management scheme used.

From the statistical data in Table 1, it can be seen
that managing parts instead of facets can considerably
reduce storage requirements and rendering time, though
the kd-tree for facets can be constructed much faster.
As for managing parts, our scheme is faster than a
kd-tree for preprocessing, which has more parts added
by dividing our decomposed parts with partitioning
planes, and achieves a speedup of (4.88-3.98)/3.98=22.6%
for rendering. Thus, our management scheme is more
efficient for rendering multi-fragment effects.

6.3 Rendering
We tested the efficiency of these methods in render-
ing the effects of transparency and translucency. For
transparent rendering, depth ordering of fragments is
only required for compositing the illumination colors
via the opacity values. As for translucent rendering,
the depth values of fragments are required to compute
the attenuation effects. Here, two kinds of attenuation
effects are taken into account. The first, caused by ray
traversal through the model, is computed according to
Beer-Lambert’s law. The second is the Fresnel effect

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 8

Ours MDTS BDP BDP2 ADP DP

Fig. 7. Rendered images for the Buddha model with translucent effects using various methods for comparison. The
compared methods are the Freepipe method using a multi-depth test (MDTS) [5], the methods with bucket depth
peeling (BDP) [4], bucket depth peeling in two passes (BDP2) [4], adaptive bucket depth peeling (ADP) [4] and depth
peeling (DP) [1]. As for the Freepipe method using an A-buffer (ABS) [5] and the method with dual depth peeling
(DDP) [2], we don’t displayed their rendered images, since the images by MDTS and ABS are the same, and similarly
for DP and DDP.

caused by ray refraction, which is approximated using
the Schlick formula [30].

Fig. 7 shows the rendered images when applying these
methods to the Buddha model with translucent effects.
We also present an enlarged rectangle for each image
showing some of the rendering details by these methods.
It is clear that our method produces the same high
quality results to the DP and DDP methods, in which
all fragments are ordered correctly, and superior results
to the other methods. In Fig. 8, we display the ren-
dered images by our method for the tested models with
transparent or translucent effects. All images are of high
quality. More results are presented in the supplemental
video.

As for rendering efficiency, we give the statistics for
rendering transparent and translucent effects by these
methods in Table 2. The results show that our method
is faster than existing methods, except in the case of
rendering the transparent effect of the Powerplant model
where it is a little slower than BDP, which only handles
32 depth layers compared with the 152 depth layers
considered in our model. Of course, the rendered images
by BDP are generally inferior to those obtained by our
method owing to ordering errors caused by its limited
depth layers. When the model has fewer depth layers,
our method is much faster than BDP, for example, ren-
dering the Horse, Dragon, and Buddha models. From

the data in Table 2, our method achieves greater speedup
in rendering translucent effects than in rendering trans-
parent effects. This may be because our low memory
requirement is more beneficial in supporting complex
illumination, where it is required more data to transmit,
such as normal information.

By investigating the relation between depth layers and
speedup ratios, we find that our method tends to obtain
greater speedup with more depth layers, compared with
the MDTS, ABS, DP, and DDP methods. As for the BDP,
BDP2, and ADP methods dealing with a fixed number of
depth layers, our speedup ratios compared with theirs
decrease with an increase in depth layers, because our
cost increases as the number of depth layers increases.

As our method immediately composites the rendered
result from a part and each part has at most eight
depth layers, it can effectively restrict the length of
the linked nodes at a pixel on the GPU, and so has a
low bounded storage requirement. The memory require-
ments for rendering an image with 1024×1024 pixels of
our method and the compared methods are given in
Table 3. Obviously, our memory requirement is very low
and bounded, not increasing with an increase in depth
layers. Though BDP, BDP2, ADP, DDP, and DP do not
require much memory for rendering, they need a buffer
to store the whole model on the GPU. This prevents
them from rendering large models, e.g., they may crash

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 9

TABLE 2

Statistical data for the tested models, and their decomposition and rendering efficiency using the compared methods,
where these methods are the Freepipe method using a multi-depth test (MDTS) or an A-buffer (ABS) [5], the methods
with bucket depth peeling (BDP) [4], bucket depth peeling in two passes (BDP2) [4], adaptive bucket depth peeling
(ADP) [4], dual depth peeling (DDP) [2] and depth peeling (DP) [1]. The rendering time for a frame (milliseconds/frame)
for a model using a particular method is obtained by averaging the rendering time to produce many images around
the model, where the images all contain 1024×1024 pixels and are rendered with similar distances from the viewpoint
to the model.

Model Horse Dragon Buddha Powerplant Lucy Xyzrgb dragon
Triangles 97K 871K 1, 087K 12, 748K 28, 055K 43, 313K

Averaged max layers 11 13 16 152 26 29
Decomposed parts 14 36 48 2968 1131 2115

Preprocessing (seconds) 2 15 19 286 143 206
Transparent Effect

Ours 2.05 3.98 4.24 64.18 79.55 114.03
MDTS 3.18(0.55) 6.61(0.66) 7.23(0.71) 127.39(0.98) 147.93(0.86) 221.24(0.94)
ABS 2.6(0.27) 5.54(0.39) 6.05(0.43) 96.9(0.51) 123.15(0.55) 190.11(0.67)
BDP* 2.97(0.45) 6.15(0.55) 6.98(0.65) 62.93(−0.02) 122.7(0.54) 187.27(0.64)

BDP2** 4.44(1.17) 8.6(1.16) 9.6(1.26) 96.43(0.5) 158.23(0.99) 300.3(1.63)
ADP 7.76(2.79) 12(2.02) 13.59(2.21) 202.43(2.15) 289.02(2.63) 476.19(3.18)
DDP 3.09(0.51) 5.37(0.35) 7.17(0.7) 4761.9(73.2) 4166.67(51.38) 6250(53.81)
DP 4.32(1.11) 10.83(1.72) 13.63(2.21) 10000(154.81) 8333.33(103.76) 12500(108.62)

Translucent Effect
Ours 2.15 4.56 4.7 82.24 106.16 149.03

MDTS 3.35(0.56) 7.79(0.71) 8.29(0.76) 168.92(1.05) 204.5(0.93) 299.4(1.01)
ABS 2.89(0.34) 6.87(0.51) 7.22(0.54) 124.84(0.52) 160.51(0.51) 252.53(0.69)
BDP* 3.9(0.81) 7.17(0.57) 8.21(0.75) 88.81(0.08) 160(0.51) 249.38(0.67)

BDP2** 5.45(1.53) 10.18(1.23) 11.96(1.54) 125.47(0.53) 240.38(1.26) 413.22(1.77)
ADP 8.43(2.92) 11.73(1.57) 17.66(2.76) 266.67(2.24) 358.42(2.38) 636.94(3.27)
DDP 3.49(0.62) 6.13(0.34) 8.24(0.75) 6666.67(80.06) 5555.56(51.33) 8333.33(54.92)
DP 5.17(1.4) 12.31(1.7) 16.32(2.47) 14285.71(172.71) 11111.11(103.66) 16666.67(110.83)

Note 1: The numbers in brackets are the speedup ratios of our method to the compared method, computed as (oldtime-newtime)/newtime, where newtime
refers to the rendering time of our method and oldtime to that of the other method.
Note 2: ”Averaged max layers” refers to the averaged maximum depth layers for rendering images of a model, where the maximum depth layer for an
image is obtained by checking the depth layer at each individual pixel.
Note 3: BDP* and BDP2** only handle the first 32 and 64 layers, respectively, while the others deal with all the depth layers.

TABLE 3

Memory requirements (MB) of the various methods for
rendering an image (1024×1024 pixels) with different
depth layers. These methods are the Freepipe method
using a multi-depth test (MDTS) or an A-buffer (ABS) [5],
the methods with bucket depth peeling (BDP) [4], bucket
depth peeling in two passes (BDP2) [4], adaptive bucket
depth peeling (ADP) [4], dual depth peeling (DDP) [2] and
depth peeling (DP) [1].

Depth Layers Ours MDTS ABS BDP BDP2 ADP DDP DP
20 36 80 81 128 256 208 16 8
60 36 240 244 128 256 208 16 8
100 36 400 404 128 256 208 16 8

if a large model cannot be loaded onto the GPU. On the
contrary, our method is suitable for dealing with very
large models of any size, as long as each decomposed
part can be loaded onto the GPU. This is easy to achieve
by partitioning a part into smaller ones if the part is too
big to be loaded.

From the above discussion, it is clear that our method
can efficiently speed up rendering multi-fragment ef-
fects with all fragments ordered correctly. As the model
becomes larger with more depth layers, our method
generally yields a higher speedup.

6.4 Limitations
In our method, we need preprocess to reorganize the
model, which prevents ours from treating the dynamic
case that the model changes its shape with time. It is an
interesting issue to study efficient techniques for multi-
fragment effects rendering of deforming models.

In our method, we try to reduce the times for data
transmission and result composition, achieving much
faster than existing methods. However, for a model with
a large quantity of small-scale features, our decomposed
parts will be in a large number, and so lowering the
rendering efficiency. This should be further studied,
e.g., we plan to integrate our method and instancing
techniques to treat some cases.

7 CONCLUSION

This paper presents a new method for rendering multi-
fragment effects on a GPU, focusing particularly on ren-
dering order-dependent effects. The method decomposes
the model into parts, each of which has very few depth
layers for any viewing direction, and manages the parts
using grids. Because each part can be correctly depth
ordered on the GPU, and the depth ordering of the
parts can be easily obtained via the grid cells, we can
transmit parts one by one according to their depth order

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 10

Fig. 8. Images rendered by our method with transparent
or translucent effects: (a) Horse with translucent effects;
(b) Dragon with transparent effects; (c) Powerplant with
translucent effects; (d) Lucy with translucent effects; and
(e) Xyzrgb dragon with transparent effects. Here, some
thin objects in the Powerplant image are not displayed
with high quality, because their width is much smaller than
the size of a pixel. This aliasing problem is not addressed
in this paper since it is beyond the scope of this research.

for rendering and compositing in time on the GPU. All
fragments are guaranteed to be ordered correctly for
rendering multi-fragment effects. In this way, we need
only conduct a single pass over the data, with a very low
bounded memory requirement, which is not sensitive to
the number of depth layers. Thus, our method is much
faster than existing methods, and yields even greater
speedup for larger models with more depth layers. The
results verify the effectiveness of our method and its
potential to deal with very large models, which are
generally very difficult for existing methods to handle.

There are some issues associated with our new method

that need further investigation. The first is to reduce the
times for data transmission even more by reducing the
number of parts, or more efficiently packing parts that
cause no ordering errors for simultaneous transmission.
The second is to integrate our method with its orthogo-
nal methods, such as the method using fragment-parallel
composition and filtering [31], to further enhance the
rendering of multi-fragment effects on a GPU. The third
is to extend our method for treating dynamic scenes.
Although our preprocessing takes much time, the larger
portion (about 90% in our tests) is on model decomposi-
tion and part generation, and the results can be reused in
some dynamic applications, such as for a rigid motion.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for
their valuable comments, and Fang Liu and Mengcheng
Huang for discussion and providing the source codes for
bucket depth peeling and Freepipe. This work was par-
tially supported by NSF of China (60773026, 60833007).

REFERENCES
[1] C. Everitt, “Interactive order-independent transparency,” NVIDIA

Corporation, Tech. Rep., 2001.
[2] L. Bavoil and K. Myers, “Order independent transparency with

dual depth peeling,” NVIDIA Corporation, Tech. Rep., 2008.
[3] L. Bavoil, S. P. Callahan, A. Lefohn, J. L. D. Comba, and C. T.

Silva, “Multi-fragment effects on the gpu using the k-buffer,” in
Proc. of the 2007 symposium on Interactve 3D graphics and games,
2007, pp. 97–104.

[4] F. Liu, M. C. Huang, X. H. Liu, and E. H. Wu, “Efficient depth
peeling via bucket sort,” in Proc. of the Conference on High Perfor-
mance Graphics 2009, 2009, pp. 51–57.

[5] ——, “Freepipe: programmable parallel rendering architecture for
efficient multi-fragment effects,” in Proc. of the 2010 symposium on
Interactve 3D graphics and games, 2010, pp. 75–82.

[6] D. Wexler, L. Gritz, E. Enderton, and J. Rice, “Gpu-accelerated
high-quality hidden surface removal,” in Proc. of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware, 2005,
pp. 7–14.

[7] E. Catmull, “A subdivision algorithm for computer display of
curved surfaces,” Ph.D. dissertation, University of Utah, Dept. of
Computer Science, 1974.

[8] L. Carpenter, “The a-buffer, an antialiased hidden surface
method,” Computer Graphics (Proc. of SIGGRAPH ’84), vol. 18,
no. 3, pp. 103–108, 1984.

[9] M. Wittenbrink, “R-buffer: a pointerless a-buffer hardware ar-
chitecture,” in Proc. of the ACM SIGGRAPH/EUROGRAPHICS
workshop on Graphics hardware, 2001, pp. 73–80.

[10] W. R. Mark and K. Proudfoot, “The f-buffer: a rasterization-order
fifo buffer for multi-pass rendering,” in Proc. of the ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, 2001,
pp. 57–64.

[11] K. Myers and L. Bavoil, “Stencil routed a-buffer,” in Proc. of
SIGGRAPH ’07 sketches, 2007.

[12] P. Jouppi and F. Chang, “z3: an economical hardware technique
for high-quality antialiasing and transparency,” in Proc. of the
ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics hard-
ware, 1999, pp. 85–93.

[13] S. P. Callahan, M. Ikits, J. L. D. Comba, and C. T. Silva, “Hardware-
assisted visibility sorting for unstructured volume rendering,”
IEEE Transactions on Visualization and Computer Graphics, vol. 11,
no. 3, pp. 285–295, 2005.

[14] A. Mammen, “Transparency and antialiasing algorithms imple-
mented with the virtual pixel maps technique,” IEEE Computer
Graphics and Applications, vol. 9, no. 4, pp. 43–55, 1989.

[15] B. Q. Liu, L. Y. Wei, and X. Y. Q, “Multi-layer depth peeling via
fragment sort,” Microsoft Research Asia, Tech. Rep., 2006.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2012 11

[16] N. Carr, R. Měch, and G. Miller, “Coherent layer peeling for
transparent high-depth-complexity scenes,” in Proc. of the ACM
SIGGRAPH/EUROGRAPHICS symposium on Graphics hardware,
2008, pp. 33–40.

[17] N. K. Govindaraju, M. Henson, M. C. Lin, and D. Manocha,
“Interactive visibility ordering and transparency computations
among geometric primitives in complex environments,” in Proc.
of the 2005 symposium on Interactive 3D graphics and games, 2005,
pp. 49–56.

[18] E. Eisemann and X. Décoret, “Fast scene voxelization and appli-
cations,” in Proc.of the 2006 symposium on Interactive 3D graphics
and games, 2006, pp. 71–78.

[19] J. C. Yang, J. Hensley, H. Grün, and N. Thibieroz, “Real-time
concurrent linked list construction on the gpu,” Computer Graphics
Forum (Proc. of the Eurographics Symposium on Rendering ’10),
vol. 29, no. 4, pp. 1297–1304, 2010.

[20] Y. ZHANG and R. PAJAROLA, “Deferred blending: Image com-
position for single-pass point rendering,” Computers & Graphics,
vol. 31, no. 2, pp. 175–189, 2007.

[21] T. Y. Kim and U. Neumann, “Opacity shadow maps,” in Proc. of
the 12th Eurographics Workshop on Rendering Techniques, 2001, pp.
177–182.

[22] C. Yuksel and J. Keyser, “Deep opacity maps,” Computer Graphics
Forum (Proc. of EUROGRAPHICS ’08), vol. 27, no. 2, pp. 675–680,
2008.

[23] E. Enderton, E. Sintorn, P. Shirley, and D. Luebke, “Stochastic
transparency,” in Proc. of the 2010 symposium on Interactve 3D
graphics and games, 2010, pp. 157–164.

[24] J. Jansen and L. Bavoil, “Fourier opacity mapping,” in Proc. of
the 2010 symposium on Interactve 3D graphics and games, 2010, pp.
165–172.

[25] M. Salvi, J. Montgomery, and A. Lefohn, “Adaptive transparency,”
in Proc. of the ACM SIGGRAPH Symposium on High Performance
Graphics, 2011, pp. 119–126.

[26] K. Chung and W. Wang, “Quick collision detection of polytopes
in virtual environments,” in Proc. of the ACM Symposium on Virtual
Reality Software and Technology, 1996, pp. 125–132.

[27] W. Wang, Y.-K. Choi, B. Chan, M.-S. Kim, and J. Wang, “Efficient
collision detection for moving ellipsoids using separating planes,”
Computing, vol. 72, pp. 235–246, 2004.

[28] P. Lindstrom, “Out-of-core simplification of large polygonal mod-
els,” in Proc. of SIGGRAPH ’00, 2000, pp. 259–262.

[29] P. Williams, “Visibility-order meshed polyhedra,” ACM Transac-
tions on Graphics, vol. 11, no. 2, pp. 103–126, 1992.

[30] C. Schlick, “An inexpensive brdf model for physically-based
rendering,” Computer Graphics Forum, vol. 13, no. 3, pp. 233–246,
1994.

[31] A. Patney, S. Tzeng, and J. D. Owens, “Fragment-parallel compos-
ite and filter,” Computer Graphics Forum (Proc. of the Eurographics
Symposium on Rendering ’10), vol. 29, no. 4, pp. 1251–1258, 2010.

Wencheng Wang received his Ph.D. degree
from Institute of Software, Chinese Academy
of Sciences in 1998, where he is currently a
professor of the State Key Laboratory of Com-
puter Science. His research interests include
computer graphics, visualization, virtual reality
and expressive rendering and editing.

Guofu Xie received his BS degree in software
engineering from Xiamen University in 2007. He
is now a PhD student at State Key Laboratory
of Computer Science, Institute of Software, Chi-
nese Academy of Sciences. His major research
interests lie in real-time photorealistic rendering
and vector rendering.

