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Abstract. Logical inconsistency may often occur throughout the devel-
opment stage of a DL-based ontology. We apply the lexicographic infer-
ence to reason over inconsistent DL-based ontologies without repairing
them first. We address the problem of checking consequences in a SHIQ
ontology that are classically inferred from every consistent (or coherent)
subontology having the highest lexicographic precedence. We propose a
method for compiling a SHIQ ontology to a propositional program so
that the problem can be solved in polynomial calls to a SAT solver. We
prove that this time complexity is worst-case optimal in data complexity.
In order to make the method more scalable, we also present partition-
based techniques to optimize the calling of SAT solvers.

1 Introduction

Ontologies play a core role for the success of the Semantic Web (SW) as they
provide shared vocabularies for different domains. The Web Ontology Language
(OWL) [25] is a standard language for modeling ontologies in the SW, which
is based on Description Logics (DLs) [1]. The quality of ontologies is highly
important for the SW technology. However, in practice it is difficult to construct
an error free or logically consistent DL-based ontology. Logical inconsistency
may often occur in different scenarios, such as ontology modeling, evolution,
migration and merging [30, 11]. For example, if ontologies such as SUMO and
CYC are directly merged into a single ontology, there will be misalignments of
concepts that introduce logical inconsistency [29].

Given an inconsistent ontology, one may want to repair it so as to apply stan-
dard reasoners to access its (implicit) information. To fulfill this requirement,
some methods (e.g. [30, 29, 24, 15, 6]) emerge. They repair inconsistent ontologies
through debugging or diagnosing. Nevertheless, as pointed out by Haase et al.
[11], in some cases consistency cannot be guaranteed at all and inconsistency
cannot be repaired, still one wants to reason over ontologies in order to sup-
port information access and integration of new information. Hence, some other



methods (e.g. [13, 20, 19]) emerge to fulfill the latter requirement. They tolerate
inconsistency and apply non-standard reasoning methods to obtain meaningful
answers from an inconsistent ontology. Our method given in this paper belongs
to the latter family of methods.

The notion of ordering plays a crucial role in handling inconsistency as it
gives clues to tell which information is more important and should be kept.
The well-known lexicographic ordering is defined for stratified knowledge bases
in propositional logic [3], where a knowledge base, viewed as a set of formulas, is
divided into a set of strata with priorities. A subbase is lexicographically prefer-
able to another one if it contains more formulas in strata with higher priorities. A
lex-maximal consistent subbase is defined as a subbase that has the highest lex-
icographic precedence. To reason with inconsistency, the lexicographic inference
based on such ordering checks consequences that are classically inferred from
every lex-maximal consistent subbase. Since many advantages of lexicographic
inference have been shown in the literature [3, 4], such as the flexibility for uti-
lizing priority information (e.g., priorities of different sources in the situation of
ontology merging) and the conformity to the minimal-change point of view, we
apply lexicographic inference to DLs.

The major challenge in applying lexicographic inference to DLs lies on the
practicality of the computational aspect, because both reasoning in expressive
DLs and lexicographic inference in propositional logic are already computation-
ally hard. To take this challenge, we develop a method that is expected to work
well on SHIQ [12] ontologies with simple terminologies and large ABoxes. The
method checks lex-consistent consequences (resp. lex-coherent consequences) of
a SHIQ ontology that are classically inferred from every lex-maximal consis-
tent (resp. coherent4) subontology. Basically, the method first compiles the input
SHIQ ontology into a propositional program, then performs the checking over
the propositional program by polynomial calls to a SAT solver. We prove that
this time complexity is worst-case optimal in data complexity, i.e. the complexity
measured in the size of the ABox only. The compilation is based on an extension
of the KAON2 transformation [14, 21] in which decision atoms are embedded,
where decision atoms are new nullary atoms one-to-one corresponding to axioms
in the original ontology. In order to make the method more scalable, we further
adapt the partitioning technique in [6] to decompose the compiled propositional
program, and develop a novel algorithm for using the partitioning results to
check lex-consistent consequences. For the problem of checking a lex-coherent
consequence, we first reduce it to the problem of checking a lex-consistent con-
sequence, then solve it in the same way.

By now we have not fully tested the proposed method but a complete imple-
mentation is under way. Some relevant experimental results were reported in [6].
The method given in [6]5 similarly applies SAT solvers to compute consistent

4 An ontology is called coherent if all atomic concept in it are satisfiable.
5 The method employs the original KAON2 transformation and has a restriction that

the terminology must be fixed and consistent. Such restriction is removed in the
current work.
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subontologies with certain maximality, such as those ones having the maximum
number of ABox axioms6. It was shown [6] that for a SHIQ ontology, even
though the ABox is large (i.e. has over tens of thousands of axioms), as long
as the KAON2 transformation can reduce the terminology to over hundreds of
DATALOG∨ [8] rules within which only a few are disjunctive or with equality,
the subsequent partitioning step yields small propositional subprograms that
can be efficiently handled by SAT solvers. Based on the fact that the extended
KAON2 transformation spends almost all the time on the terminology (it di-
rectly translates atomic ABox axioms to ground clauses), the effectiveness of
the partitioning step in decomposing a large propositional program into much
smaller subprograms, as well as the efficiency of current powerful SAT solvers,
we expect that the proposed method works well on SHIQ ontologies with simple
terminologies and large ABoxes.

The remainder of this paper is organized as follows. Section 2 discusses re-
lated work. Section 3 gives some background on SHIQ and lexicographic in-
ference. Section 4 formally defines lex-consistent and lex-coherent consequences
for lexicographic inference in DLs. Section 5 presents our method for checking
a lex-consistent (or lex-coherent) consequence of a stratified SHIQ ontology.
Section 6 concludes.

2 Related Work

There exist some computational methods for lexicographic inference in DLs. In
the work of Meyer et al. [20], the lexicographic inference and its refined version
are respectively applied to ALC and its extension with cardinality restrictions
on concepts. These inferences are computed through a disjunctive DL knowl-
edge base (DKB for short) compiled from the original ontology. A lex-consistent
consequence of the original ontology amounts to a consequence of the compiled
DKB that is classically inferred from all disjuncts of the compiled DKB, where
each disjunct is a DL-based ontology. In the work of Qi et al. [27], two other
refined versions of lexicographic inference are proposed. The corresponding com-
putational methods are also DKB-based. It should be noted that the DKB-based
methods have a very high computational complexity. First, the compilation of a
DKB needs up to exponential number of DL satisfiability tests wrt the number of
axioms in the original ontology. Note that a satisfiability test in SHIQ is already
NP-complete in data complexity [14]. Second, the checking of a consequence of
a DKB is performed over all its disjuncts. Since the number of disjuncts can
be exponential in the the number of axioms in the original ontology, the check-
ing phase may need another exponential number of DL satisfiability tests. In
contrast, our proposed method performs polynomial number of propositional
satisfiability tests wrt the number of axioms in the original ontology in both
6 They are actually lex-maximal consistent subontologies of a stratified ontology O =

(O1, O2), where O1, consisting of all terminological axioms, is the stratum with
higher priority; and O2, consisting of all ABox axioms, is the stratum with lower
priority.
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the compiling phase and the checking phase. Each such satisfiability test is also
NP-complete in data complexity and can further be optimized by our proposed
partition-based techniques.

There exist other methods for reasoning over inconsistent DL-based ontolo-
gies [23, 13, 28, 18, 19]. As ours, most of them first specify the preferred consistent
subontologies, then check consequences classically inferred from those subontolo-
gies. The method proposed in [13] first selects a consistent subontology based
on a selection function, which is defined on the syntactic or semantic relevance,
then reasons over the selected subontology. Such selected subontology is not
always maximal, so the inference is less satisfactory from the minimal-change
point of view. The methods given in [28] respectively extend possibilistic and
linear order inferences in DLs by exploiting uncertainty degrees on DL axioms.
Each extended inference selects a consistent subontology that keeps more DL
axioms than the original one does, but the selected subontology is still often not
maximal, so these extended inferences are also less satisfactory from the minimal-
change point of view. The method given in [18] essentially checks consequences
that are classically inferred from every maximal consistent subontology. It does
not consider priority information on DL axioms and has a restriction that the
terminology must be fixed and consistent. The reasoning methods proposed in
[23] and [19] adopt a different idea. To tolerate inconsistency, they weaken an
interpretation from two truth values to four truth values. Thus they result in a
completely different reasoning mechanism for DL-based ontologies.

3 Preliminaries

3.1 SHIQ Syntax and Semantics

The SHIQ description logic [12] is highly related to OWL DL [25]. It seman-
tically equals OWL DL without nominals and datatype specifications but with
qualified number restrictions.

Given a set of role names NR, a role is either some R ∈ NR or an inverse role
R− for R ∈ NR. An RBox OR is a finite set of transitivity axioms Trans(R) and
role inclusion axioms R v S, for R and S roles. For R ∈ NR, we set Inv(R) = R−

and Inv(R−) = R, and assume that R v S ∈ OR implies Inv(R) v Inv(S) ∈
OR and Trans(R) ∈ OR implies Trans(Inv(R)) ∈ OR. A role R is called
transitive if Trans(R) ∈ OR; simple if it has not any transitive subrole. Given
a set of concept names NC , the set of SHIQ concepts is the minimal set such
that each A ∈ NC is a SHIQ concept (called an atomic concept) and, for C
and D SHIQ concepts, R a role, S a simple role, and n a positive integer,
>,⊥,¬C,C u D,C t D, ∃R.C, ∀R.C,≤ n S.C and ≥ n S.C are also SHIQ
concepts. A TBox OT is a finite set of concept inclusion axioms C v D, where C
and D are SHIQ concepts. An ABox OA is a set of concept membership axioms
C(a), role membership axioms R(a, b), and (in)equality axioms a ≈ b, a 6≈ b,
where C is a SHIQ concept, R a role, and a and b individuals. The axioms
C(a), R(a, b), a ≈ b and a 6≈ b are also called ABox axioms; called atomic ABox
axioms if C is a concept name and R is a role name.
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A SHIQ ontology O consists of an RBox OR, a TBox OT , and an ABox
OA. OR ∪ OT is also called the terminology of O.

The semantics of a SHIQ ontologyO is given by translating it into first-order
logic by the operator π from Table 1. O is consistent/satisfiable iff there exists a
first-order model of π(O). In this paper, a first-order model M is represented as
a set of ground atoms, where ground atoms in M are interpreted as true; outside
M are interpreted as false. A concept C is satisfiable in O iff there exists a first-
order model of π(O) that satisfies C(a) for some individual a. O is coherent iff
all atomic concepts in it are satisfiable.

Table 1. Semantics of SHIQ by mapping to first-order logic

Mapping concepts to first-order logic

πy(>, x) = 1 (i.e., true) πy(⊥, x) = 0 (i.e., false)
πy(A, x) = A(x) πy(¬C, x) = ¬πy(C, x)

πy(C1 u C2, x) = πy(C1, x) ∧ πy(C2, x)
πy(C1 t C2, x) = πy(C1, x) ∨ πy(C2, x)

πy(∃R.C, x) = ∃y : R(x, y) ∧ πy(C, y) πy(∀R.C, x) = ∀y : R(x, y) → πy(C, y)

πy(≤n R.C, x) = ∀y1, . . . , yn+1 :
∧n+1

i=1
[R(x, yi) ∧ πx(C, yi)] →

∨n

i=1
n+1
j=i+1yi ≈ yj

πy(≥n R.C, x) = ∃y1, . . . , yn :
∧n

i=1
[R(x, yi) ∧ πx(C, yi)] ∧

∧n−1

i=1
n
j=i+1yi 6≈ yj

Mapping axioms to first-order logic

π(C v D) = ∀x : πy(C, x) → πy(D, x) π(R v S) = ∀x, y : R(x, y) → S(x, y)
π(Trans(R)) = ∀x, y, z : R(x, y) ∧R(y, z) → R(x, z)

π(C(a)) = πy(C, a) π(R(a, b)) = R(a, b)
π(a ≈ b) = a ≈ b π(a 6≈ b) = a 6≈ b

π(O) =
∧

R∈NR
∀x, y : R(x, y) ↔ R−(y, x) ∧∧

ax∈O π(ax)

Note: x is a meta variable and is substituted with the actual variable. πx is obtained
from πy by simultaneously substituting all y(i) with x(i) respectively, and πy with πx.

3.2 Lexicographic Inference

The lexicographic inference is originally defined for stratified knowledge bases
in propositional logic [3]. A stratified knowledge base S is viewed as a set of
formulas and is divided into a set of strata {S1, . . . , Sn}, where Si is a subset of
formulas in S such that S =

⋃n
i=1 Si and Sj ∩ Sk = ∅ for any j 6= k. S can be

written as (S1, . . . , Sn). The formulas in Si have the same priority and have a
higher priority than the ones in Si+1. Let |S(i)| denote the number of formulas
in S(i). The lexicographic ordering is a complete preordering between any two
subbases A = (A1, . . . , An) and B = (B1, . . . , Bn) of S = (S1, . . . , Sn), where
Ai ⊆ Si and Bi ⊆ Si for any i, defined as follows: A <lex B iff there exists i
such that |Ai| < |Bi| and |Aj | = |Bj | for any j < i; A =lex B iff |Ai| = |Bi| for
any i. By A ≤lex B we denote A <lex B or A =lex B. S is called consistent if it
has a model. A lex-maximal consistent subbase S′ of S is defined as a consistent
subbase of S such that for any consistent subbase S′′ of S, S′′ ≤lex S′. A formula
ψ is called a lex-consistent consequence of S if for any lex-maximal consistent
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subbase S′ of S, S′ |= ψ, i.e., every model of S′ is a model of ψ. Given a stratified
knowledge base S and a formula ψ, the lexicographic inference problem checks
if ψ is a lex-consistent consequence of S.

4 Lexicographic Inference in DLs

In order to apply lexicographic inference to DLs, we view a DL-based ontology
as a set of axioms (i.e. as a syntactic object). This syntactic approach to treating
DL-based ontologies is commonly used in handling inconsistency [11]. From this
point of view, two DL-based ontologies are regarded as the same iff they have
the same set of axioms.

A stratified ontology O is an ontology divided into a set of strata {O1, . . . ,On},
where Oi is a subset of axioms in O such that O =

⋃n
i=1Oi and Oj ∩ Ok = ∅

for any j 6= k. O is written as (O1, . . . ,On), where the axioms in Oi have
the same priority and have a higher priority than the ones in Oi+1. By |O(i)|
we denote the number of axioms in O(i). Then the notions of lexicographic or-
dering and lex-maximal consistent subontology are defined analogously as in
stratified knowledge bases by treating axioms as formulas [20]. Since an inco-
herent ontology cannot deduce nontrivial consequences on the unsatisfiable con-
cepts, one may expect that a lex-maximal subontology is not only consistent but
also coherent. For example, in the following incoherent but consistent ontology
O = {A v B, A v ¬B, B(a)}, we trivially have O 6|= A(x) for any individual x
because A is unsatisfiable in O. Hence, we introduce the notion of lex-maximal
coherent subontology. A lex-maximal coherent subontology O′ of O is defined as
a coherent subontology of O such that for any coherent subontology O′′ of O,
O′′ ≤lex O′. Two sorts of lexicographic consequences in DLs are defined below.

Definition 1. For a stratified ontology O, an axiom ax is called a lex-consistent
consequence (resp. lex-coherent consequence) of O, written O `lex

cons ax (resp.
O `lex

cohe ax), if for any lex-maximal consistent (resp. coherent) subontology O′
of O, O′ |= ax, i.e., every model of O′ is a model of ax.

It should be noted that a lex-maximal coherent subontology is not necessar-
ily a lex-maximal consistent subontology, and vice versa. There is no straight-
forward correspondence between lex-consistent consequences and lex-coherent
consequences, as shown in the following example.

Example 1. Let O = ({A v ⊥}, {A(a)}). Then O′ = (∅, {A(a)}) is the unique
lex-maximal coherent subontology of O, but it is not a lex-maximal consistent
subontology of O, because O′′ = ({A v ⊥}, ∅) is consistent and O′ <lex O′′. On
the other hand, O′′ is the unique lex-maximal consistent subontology of O, but
it is not coherent. Hence, O `lex

cohe A(a) but O 6`lex
cons A(a); O `lex

cons A v ⊥ but
O 6`lex

cohe A v ⊥.

In this paper we consider checking both sorts of lexicographic consequences,
where the axiom ax in Definition 1 can be a concept membership axiom C(a) or
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a concept inclusion axiom C v D. The following theorem shows a reduction from
the problem of checking a lex-coherent consequence to that of checking a lex-
consistent consequence. So we focus on the problem of checking a lex-consistent
consequence.

Theorem 1. Let O = (O1, . . . ,On) be a stratified DL-based ontology, and ax
a DL axiom. Then O `lex

cohe ax iff O′ `lex
cons ax, where O′ = (A,O1, . . . ,On)

and A = {A(a) | A is an atomic concept in O, and a is a new globally unique
individual not occurring in O and ax}.
Proof. It is sufficient to show a bijection between the set of lex-maximal coherent
subontologies of O and the set of lex-maximal consistent subontologies of O′.

(1) Let S = (S1, . . . , Sn) be a lex-maximal coherent subontology of O. Then
S′ = (A, S1, . . . , Sn) is obviously consistent. S′ must be a lex-maximal consistent
subontology of O′, otherwise there exists a consistent subontology S′′ = (S′′0 ,
S′′1 , . . . , S′′n) of O′ such that S′ <lex S′′. Then S′′0 = A and thus (S′′1 , . . . , S′′n)
is coherent. But then S <lex (S′′1 , . . . , S′′n) contradicts that S is a lex-maximal
coherent subontology of O.

(2) Let S = (S0, S1, . . . , Sn) be a lex-maximal consistent subontology of
O′. Since {A, ∅, . . . , ∅} is consistent, we have S0 = A, so S′ = (S1, . . . , Sn) is
coherent. S′ must be a lex-maximal coherent subontology of O, otherwise there
exists a coherent subontology S′′ = (S′′1 , . . . , S′′n) of O such that S′ <lex S′′.
Then (A, S′′1 , . . . , S′′n) is consistent. But then S <lex (A, S′′1 , . . . , S′′n) contradicts
that S is a lex-maximal consistent subontology of O′. ut
Example 2. Our running example is a stratified ontology O = (O1,O2,O3,O4),
where O1 = {A(a), B(b), ≤1 T.>(a)}, O2 = {T (a, b), T (a, c), b 6≈ c}, O3 =
{A v ∃R.B, ∃S.B v ¬A} and O4 = {R v S}. It can be checked that there
are three lex-maximal consistent subontologies of O, i.e. O1 = ({A(a), B(b),
≤1 T.>(a)}, {T (a, b), T (a, c)}, {A v ∃R.B, ∃S.B v ¬A}, ∅), O2 = ({A(a), B(b),
≤1 T.>(a)}, {T (a, b), b 6≈ c}, {A v ∃R.B, ∃S.B v ¬A}, ∅) and O3 = ({A(a),
B(b), ≤1 T.>(a)}, {T (a, c), b 6≈ c}, {A v ∃R.B, ∃S.B v ¬A}, ∅). It can then be
seen that A(a) is a lex-consistent consequence of O, while B(c) is not. ut

5 Computing Lexicographic Inference in SHIQ
The number of lex-maximal consistent subontologies of a stratified SHIQ on-
tology O can be exponential in |O| (even in |OA|, the number of ABox axioms in
O). Take an ontology O† = (O†1, . . . , O†n) for example, where O†1 = {AuB v ⊥}
and O†i = {A(ai), B(ai)} for 2 ≤ i ≤ n. O† has 2n−1 lex-maximal consistent
subontologies. Note also that the time complexity for lexicographic inference in
propositional logic is ∆p

2-complete [5], i.e. exactly in polynomial calls to an NP
oracle. It is not desirable to compute all lex-maximal consistent subontologies be-
fore checking lex-consistent consequences, because such computation needs up to
exponential calls to a SHIQ reasoner, where each call is worst-case NP-complete
in data complexity [14].
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To obtain a worst-case optimal method for computing lexicographic inference
in SHIQ, we consider transforming SHIQ to propositional logic. SHIQ is a
subset of first-order logic. The hardness for transforming SHIQ to propositional
logic lies on handling function symbols. Though the KAON2 transformation [14,
21] can get rid of function symbols and obtain an equisatisfiable DATALOG∨ [8]
program from a SHIQ ontology, it does not maintain the correspondence be-
tween resulting DATALOG∨ rules and original axioms in the input ontology. We
therefore extend the KAON2 transformation to maintain such correspondence
by introducing new nullary atoms one-to-one corresponding to axioms in the
original ontology. Afterwards, we ground the transformed DATALOG∨ program
and apply current powerful SAT solvers to compute lexicographic inference. In
this way we obtain a worst-case optimal method in data complexity. There re-
mains a practical problem in such method, i.e. SAT solvers lack of scalability for
handling large propositional programs. To tackle this problem, we partition the
transformed propositional program so that we can apply SAT solvers to handle
much smaller subprograms.

Our approach is outlined as follows. Let O be a (possibly inconsistent) strati-
fied SHIQ ontology. We first consider the basic case, i.e. checking ifO `lex

cons A(a)
for A(a) an atomic concept membership axiom, then consider the checking of
other consequences. The basic case is addressed in two phases. In phase 1 (subsec-
tion 5.1), we compute a DATALOG∨ program R(O), called the repair program
of O, by using the extended KAON2 transformation. In phase 2 (subsection
5.2), we first ground R(O) to GR(O), then treat the problem of deciding if
O `lex

cons A(a) as a set of satisfiability problems over GR(O) and solve them by
polynomial calls to a SAT solver; in this phase we also exploit partition-based
optimizations (subsection 5.3). The problem of checking other consequences is
first reduced to the basic case, then solved in the same way (subsection 5.4).

5.1 Computing the Repair Program

To compute lexicographic inference in SHIQ, we associate each axiom ax ∈ O
with a new nullary decision atom h̄ax, such that the truth value of h̄ax determines
the existence of ax in O. It should be noted that S v R and Inv(S) v Inv(R)
(resp. Trans(R) and Trans(Inv(R))) are treated as the same axiom and thus
associated with the same decision atom, because they are assumed present or ab-
sent together (see this assumption in Preliminaries). Let X be the set of decision
atoms wrt O, i.e., X = {h̄ax | ax ∈ O}. We extend the KAON2 transformation
[14, 21] to compile a DATALOG∨ program R(O) (called the repair program of
O), such that for any truth assignment φX on X, the reduction of O wrt φX

(i.e. O ↓ φX , see Definition 2) is satisfiable iff the reduction of R(O) wrt φX

(i.e. R(O) ↓ φX , see Definition 3) is satisfiable. Simply speaking, R(O) ↓ φX is
a DATALOG∨ program without atoms in X. The relationship between O ↓ φX

and R(O) ↓ φX implies a correspondence between lex-maximal consistent sub-
ontologies of O and certain optimal models of R(O), where the optimality is
defined over X.

8



Definition 2. Let O be a SHIQ ontology and φX a truth assignment on the
set X of decision atoms. The reduction of O w.r.t. φX , written O ↓ φX , is a
subontology obtained from O by deleting each axiom ax such that φX(h̄ax) = 1.

Definition 3. Let P be a logic program, i.e. a set of rules (or clauses), X be a
set of ground atoms that only occur in rule heads (or only occur positively) in
P , and φX be a truth assignment on X. The reduction of P w.r.t. φX , written
P ↓ φX , is a subprogram obtained from P by deleting each rule (or clause) in
P that has a head atom (or positive atom) α ∈ X such that φX(α) = 1, and by
removing any ground atom α ∈ X from remaining rules (or clauses).

The main steps for computing the repair program include converting SHIQ
to ALCHIQ (i.e. SHIQ without transitive roles), clausifying axioms, embed-
ding decision atoms into the initial clause set, and appending to the clause set
all nonredundant consequences.

Simplifying the Elimination of Transitivity Axioms In the original KAON2
transformation, a SHIQ ontology O is initially converted to an equisatisfiable
ALCHIQ ontology Ω(O), by eliminating all transitivity axioms, and by adding
the axiom ∀R.C v ∀S.(∀S.C) for each concept ∀R.C ∈ clos(O) and each role S
such that S v∗ R and Trans(S) ∈ O, where clos(O) is the concept closure of
O (see Definition 4). To correctly embed decision atoms into the clauses trans-
formed from axioms, we remove some redundant axioms from Ω(O). By Ω−(O)
we denote the ALCHIQ ontology converted from O by eliminating all transi-
tivity axioms, and by adding the axiom ∀S.C v ∀S.(∀S.C) for each concept
∀R.C ∈ clos(O) and role S such that S v∗ R and Trans(S) ∈ O. It can be
shown in Lemma 1 that O and Ω−(O) are equisatisfiable.

Definition 4 (Definition 5.2.2 [21]). For a SHIQ ontology O, the con-
cept closure of O, written clos(O), is the smallest set of concepts satisfying the
following conditions (where NNF(C) denotes the negation normal form of C):

– If C v D ∈ OT , then NNF(¬C uD) ∈ clos(O);
– If C(a) ∈ OA, then NNF(C) ∈ clos(O);
– If C ∈ clos(O) and D occurs in C, then D ∈ clos(O);
– If ≤n R.C ∈ clos(O), then NNF(¬C) ∈ clos(O);
– If ∀R.C ∈ clos(O), S v∗ R, and Trans(S) ∈ OR, then ∀S.C ∈ clos(O).

Lemma 1. A SHIQ ontology O is satisfiable iff Ω−(O) is satisfiable.

Proof. Obviously, Ω−(O) v Ω(O). By Theorem 5.2.3 [21], O and Ω(O) are
equisatisfiable, so Ω−(O) is satisfiable if O is satisfiable. On the other hand, if
Ω−(O) is satisfiable, there will be a model I of Ω−(O). Consider each axiom
∀R.C v ∀S.(∀S.C) in Ω(O) \Ω−(O). For any two individual a and b such that
I |= ∀R.C(a) and I |= S(a, b), since I |= S v∗ R, we have I |= R(a, b) and
then I |= C(b), so I |= ∀R.C v ∀S.C. In addition, I |= ∀S.C v ∀S.(∀S.C), so
I |= ∀R.C v ∀S.(∀S.C). I.e., I is also a model of Ω(O), so O is satisfiable. ut
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Embedding Decision Atoms into the Initial Clause Set After a given
SHIQ ontology is converted to an equisatisfiable ALCHIQ ontology Ω−(O),
each axiom in Ω−(O) can be transformed to a set of clauses via the well-known
structural transformation [26], mapping to first-order formulas, Skolemization
and rewriting into conjunctive normal form. By Cls(ax) we denote the set of
clauses obtained from the axiom ax via the translation process given in Definition
5. For each axiom ax ∈ Ω−(O) and each clause cl ∈ Cls(ax), by em(cl, ax)
we denote the modified clause of cl into which a decision atom about ax is
embedded, defined as follows: if ax ∈ Ω−(O) \ O, ax must be of the form

∀S.C v ∀S.(∀S.C), then em(cl, ax)
def
= cl ∨ h̄Trans(S); otherwise, em(cl, ax)

def
=

cl ∨ h̄ax. Recall that h̄ax is the corresponding decision atom of ax. By Ξ(O)
we denote ClsNR

∪ ⋃
ax∈Ω−(O){em(cl, ax) | cl ∈ Cls(ax)}, where the clause set

ClsNR
= {¬R(x, y) ∨ R−(y, x),¬R−(x, y) ∨ R(y, x) | R ∈ NR} with x and y

variables is introduced for mapping Ω−(O) to first-order logic (see Table 1).

Definition 5. The result Θ(A v C) of applying the structural transformation
to A v C is recursively defined as follows, where A and B are concept names
or >, C, C1 and C2 are arbitrary concepts of the negation normal form, R is a
role, and QX is X if X is a literal concept or else a new globally unique concept
name for X (note that ¬¬A is treated as A):

– Θ(A v A) = ∅; Θ(¬A v ¬A) = ∅;
– Θ(A v B) = {A v B}; Θ(A v ¬B) = {A v ¬B};
– Θ(A v C1 u C2) = Θ(A v C1) ∪Θ(A v C2);
– Θ(A v C1 t C2) = {A v QC1 tQC2} ∪Θ(QC1 v C1) ∪Θ(QC2 v C2);
– Θ(A v ∃R.C) = {A v ∃R.QC} ∪Θ(QC v C);
– Θ(A v ∀R.C) = {A v ∀R.QC} ∪Θ(QC v C);
– Θ(A v≥n R.C) = {A v≥n R.QC} ∪Θ(QC v C);
– Θ(A v≤n R.C) = {A v≤n R.¬QD} ∪Θ(QD v D) for D = NNF(¬C).

Let Clsfo denote the operator for clausifying a first-order formula. Then, for each
axiom ax in an ALCHIQ ontology, Cls(ax) is defined as follows (see Table 1 for
the operator π which maps axioms to first-order formulas):

– If ax is of the form C v D where C and D are concepts, then Cls(ax) =⋃
ε∈Θ(>vNNF(¬CtD)) Clsfo(∀x : πy(ε, x));

– If ax is of the form R v S where R and S are roles, then Cls(ax) =
{¬R(x, y) ∨ S(x, y)};

– If ax is of the form C(a) where C is not a literal concept, then Cls(ax) =
{QC(a)} ∪ Cls(QC v C), where QC is a new globally unique concept name
for C;

– If ax is of the other forms, i.e., ax is of the form (¬)A(a), R(a, b), a ≈ b or
a 6≈ b, Cls(ax) = Clsfo(π(ax)).

Example 3 (Example 2 continued). Consider the stratified ontology O in Ex-
ample 2. Let ax1 = A(a), ax2 = B(b), ax3 =≤1 T.>(a), ax4 = T (a, b),
ax5 = T (a, c), ax6 = b 6≈ c, ax7 = A v ∃R.B, ax8 = ∃S.B v ¬A and
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ax9 = R v S. Then O can be rewritten as ({ax1, ax2, ax3}, {ax4, ax5, ax6},
{ax7, ax8}, {ax9}). Ξ(O) consists of the following clauses. Note that the clauses
on R− and S− are removed from Ξ(O), because neither R− nor S− occurs in
O and the removal does not affect the satisfiability of Ξ(O) ↓ φX for any truth
assignment φX on X = {h̄ax1 , . . . , h̄ax9}.
cl1 : A(a) ∨ h̄ax1 . cl2 : B(b) ∨ h̄ax2 . cl3 : Q1(a) ∨ h̄ax3 .
cl4 : y1 ≈ y2 ∨ ¬Q1(x) ∨ ¬T (x, y1) ∨ ¬T (x, y2) ∨ h̄ax3 .
cl5 : T (a, b) ∨ h̄ax4 . cl6 : T (a, c) ∨ h̄ax5 . cl7 : ¬(b ≈ c) ∨ h̄ax6 .
cl8 : R(x, f(x)) ∨ ¬A(x) ∨ h̄ax7 . cl9 : B(f(x)) ∨ ¬A(x) ∨ h̄ax7 .
cl10 : ¬A(x) ∨ ¬S(x, y) ∨ ¬B(y) ∨ h̄ax8 . cl11 : S(x, y) ∨ ¬R(x, y) ∨ h̄ax9 . ut

Lemma 2. For a SHIQ ontology O, a set of decision atoms X = {h̄ax | ax ∈
O} and a truth assignment φX on X, O ↓ φX is satisfiable iff Ξ(O) ↓ φX is
satisfiable.

Proof. For any SHIQ ontology O′, we define Ω−(O′) ↓ φX as the subontol-
ogy obtained from Ω−(O′) by deleting each axiom ax ∈ Ω−(O′) ∩ O′ such
that φX(h̄ax) = 1 and each ∀S.C v ∀S.(∀S.C) ∈ Ω−(O′) \ O′ such that
φX(h̄Trans(S)) = 1. Note that for any concept C in an axiom of the form
∀S.C v ∀S.(∀S.C) with Trans(S) ∈ O ↓ φX , C occurs in O if it occurs in
O ↓ φX , but not vice versa. So Ω−(O ↓ φX) ⊆ Ω−(O) ↓ φX and the dif-
ference between them consists of axioms of the form ∀S.C v ∀S.(∀S.C) with
Trans(S) ∈ O ↓ φX .

We show that O ↓ φX is satisfiable iff Ω−(O) ↓ φX is satisfiable. (⇒) If
O ↓ φX is satisfiable, there exists a model I of O ↓ φX . For each axiom ax ∈
(Ω−(O) ↓ φX) \O, ax is of the form ∀S.C v ∀S.(∀S.C), where Trans(S) ∈ O ↓
φX . Since I |= Trans(S), I |= ∀S.C v ∀S.(∀S.C) for any concept C. So I is
also a model of Ω−(O) ↓ φX . (⇐) If Ω−(O) ↓ φX is satisfiable, Ω−(O ↓ φX) is
satisfiable too. By Lemma 1, O ↓ φX is satisfiable.

Let ClsNR denote the set of clauses {¬R(x, y)∨R−(y, x),¬R−(x, y)∨R(y, x) |
R ∈ NR}. For each axiom ax in Ω−(O) ↓ φX , {em(cl, ax) | cl ∈ Cls(ax)} ↓
φX = Cls(ax). For each axiom ax in Ω−(O) \ (Ω−(O) ↓ φX), {em(cl, ax) |
cl ∈ Cls(ax)} ↓ φX = ∅. So Ξ(O) ↓ φX = ClsNR

∪ ⋃
ax∈Ω−(O){em(cl, ax) |

cl ∈ Cls(ax)} ↓ φX = ClsNR ∪
⋃

ax∈Ω−(O)↓φX
Cls(ax). Note that the structural

transformation, mapping to first-order formulas (see Table 1), Skolemization and
rewriting into conjunctive normal form do not affect satisfiability, i.e., ClsNR ∪⋃

ax∈Ω−(O)↓φX
Cls(ax) and Ω−(O) ↓ φX are equisatisfiable, so Ξ(O) ↓ φX and

O ↓ φX are equisatisfiable. ut

Extending BS+
DL to BS+

DL+ The KAON2 transformation extends the Basic
Superposition (BS) calculus [2, 22] with a decomposition rule, yielding an ex-
tended calculus BS+, and then parameterizes BS+ to BS+

DL to handle clauses
transformed from DL axioms. The decomposition rule (cf. Definition 5.4.7 [21])
is an additional inference rule that decomposes some conclusions of BS into sim-
pler rules so as to guarantee termination. In order to handle clauses with decision
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atoms, we further extend BS+
DL to BS+

DL+ by considering decision atoms in the
term ordering. The extended term ordering is a lexicographic path ordering in-
duced by a total precedence Â such that f Â c Â P Â QR,f Â h̄ax Â >, for
each function symbol f , constant c, predicate P , predicate QR,f (introduced by
the decomposition rule) and decision atom h̄ax. The selection function and the
decomposition rule in BS+

DL+ are the same as that in BS+
DL.

We define ALCHIQ+-closures (see in Table 2) as ALCHIQ-closures7 in Ta-
ble 5.2 [21] extended with disjunction of decision atoms. Then Ξ(O) consists
of ALCHIQ+-closures; any BS+

DL+ inference, when applied to ALCHIQ+-
closures, produces an ALCHIQ+-closure or a redundant closure (Lemma 3).
By size(O) we denote the size of O with numbers coded in unary, i.e., size(≤n

S.C) = size(≥n S.C) = size(C) + n + 1. Note that in [14, 21] |O| denotes the
size of O, while in this paper |O| denotes the number of axioms in O. It can be
shown in Lemma 4 that saturating Ξ(O) by BS+

DL+ with eager elimination of
redundancy terminates in exponential steps.

Lemma 3. Let N0, . . . , Ni∪{cl} be a BS+
DL+-derivation, where N0 = Ξ(O) and

cl is the conclusion derived from premises in Ni. Then cl is either an ALCHIQ+-
closure or it is redundant in Ni.

Proof Sketch. The proof is by considering all BS+
DL+ inferences on all types of

ALCHIQ+-closures analogously as in Lemma 5.3.6 and Theorem 5.4.8 [21]. ut
Lemma 4. For a SHIQ ontology O, saturating Ξ(O) by BS+

DL+ , with eager
application of redundancy elimination rules, terminates in time exponential in
size(O), for unary coding of numbers in input.

Proof Sketch. The proof is by considering the maximum number of each type
of ALCHIQ+-closures analogously as in Lemma 5.3.10 and Theorem 5.4.8 [21].
The number of ALCHIQ+-closures is at most exponential in size(O) for unary
coding of numbers in input. By Lemma 3, each BS+

DL+ inference produces an
ALCHIQ+-closure or a redundant closure. Furthermore, it can be shown that
any saturation derives at most exponentially many redundant closures. Hence,
saturating Ξ(O) by BS+

DL+ takes at most exponential steps. ut

Computing the Repair Program from Ξ(O) Let Ξvar(O) denote the set
of ALCHIQ+-closures in Ξ(O) that have variables, and Ξcon(O) = Ξ(O) \
Ξvar(O). In a way analogous to the KAON2 transformation, we compute a
DATALOG∨ [8] program from Ξ(O) through the following steps:

1. Saturating Ξvar(O) by BS+
DL+ . Let Γvar = Ξvar(O) ∪ gen(O), where

gen(O) (cf. Definition 5.4.9 [21]) is the set of clauses of the form ¬QR,f (x)∨
7 A closure C · σ consists of a skeleton clause C and a substitution σ, and is logically

equivalent to a clause Cσ. Closures and clauses are called interchangeably in this
paper.
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Table 2. Types of ALCHIQ+-closures

1 ¬R(x, y) ∨ Inv(R)(y, x)

2 ¬R(x, y) ∨ S(x, y) ∨ h̄ax

3 P(x) ∨R(x, 〈f(x)〉) ∨ h̄ax

4 P(x) ∨R([f(x)], x) ∨ h̄ax

5 P1(x) ∨P2(〈f(x)〉) ∨∨〈f(xi)〉 ◦ 〈f(xj)〉 ∨ h̄ax for ◦ ∈ {=, 6=}
6 P1(x) ∨P2([g(x)]) ∨P3(〈f([g(x)])〉) ∨∨〈ti〉 ◦ 〈tj〉 ∨ h̄ax for ◦ ∈ {=, 6=},

where ti and tj are either of the form f([g(x)]) or of the form x

7 P1(x) ∨∨¬R(x, yi) ∨P2(y) ∨∨
yi = yj ∨ h̄ax

8 R(〈a〉, 〈b〉) ∨P(〈t〉) ∨∨〈ti〉 ◦ 〈tj〉 ∨ h̄ax for ◦ ∈ {=, 6=},
where t, ti and tj are either some constant b or a function term fi([a])

Conditions:
(i): In any term f(t), the inner term t occurs marked.
(ii): In all positive equality literals with at least one function symbol,

both sizes are marked.

Note: For a term t, P(t) denotes a disjunction of the form (¬)P1(t) ∨ . . . ∨ (¬)Pn(t).
P(f(x)) denotes a disjunction of the form P1(f1(x)) ∨ . . . ∨ Pm(fm(x)). h̄ax denotes
a disjunction of the form h̄ax1 ∨ . . . ∨ h̄axk . 〈t〉 denotes that the term t may, but need
not be marked. In all closure types, some of the disjuncts may be empty.

R(x, [f(x)]) that can possibly be introduced by decomposition during the
saturation of Ξvar(O), i.e., the decomposition rule introduces only new pred-
icates QR,f occurring in gen(O). As in [14, 21], we append gen(O) to Ξvar(O)
in advance, before saturation. Let SATR(Γvar) denote the set of ALCHIQ+-
closures of types 1,2,3,5 and 7, obtained by saturating Γvar by BS+

DL+ .
2. Eliminating function symbols. Let λ be an operator that maps constant

a to a, variable x to x, function term f(a) to a fresh globally unique constant
af , and function term f(x) to a fresh globally unique variable xf . Intuitively,
λ simulates function terms with new constants or variables. For a clause cl,
λ(cl) is obtained from cl as follows: each term t in cl is replaced with λ(t);
for each fresh variable xf occurring in λ(cl), the literal ¬Sf (x, xf ) is added
to λ(cl); for each variable x only occurring in positive literals in cl, the literal
¬HU(x) is added to λ(cl).
For a substitution σ, let λ(σ) denote the substitution obtained from σ by
replacing each assignment x 7→ t with x 7→ λ(t). By λ− we denote the inverse
of λ, i.e., λ−(λ(α)) = α for any term, closure, or any substitution α. Note
that λ is injective, but not surjective, so to make the definition of λ− correct,
we assume that λ− is applicable only to the range of λ.
Let FF(O) = FFλ(O)∪FFSucc(O)∪FFHU (O)∪Ξcon(O) denote the function-
free version of Ξ(O), where FFλ, FFSucc and FFHU are defined as follows:

FFλ(O) = {λ(cl)|cl ∈ SATR(Γvar)}
FFSucc(O) = {Sf (a, af )| for each constant a and each function symbol f in Ξ(O)}
FFHU (O) = {HU(a)| for each constant a in Ξ(O)} ∪

{HU(af )| for each constant a and function symbol f in Ξ(O)}
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3. Removing irrelevant clauses. Let cl1, cl2, . . . , cln be a sequence of clauses
from FF(O) such that λ−(cln), . . . , λ−(cl2), λ−(cl1) is the order in which the
clauses are derived in the saturation of Γvar. Let FF(O) = N0, N1, . . . , Nn

be a sequence of clause sets such that Ni = Ni−1 if cli is relevant w.r.t.
Ni−1, and Ni = Ni−1 \ {cli} if cli is irrelevant w.r.t. Ni−1, where cl is
irrelevant w.r.t. N if λ−(cl) is derived by a inference rule ξ with substitution
σ (excluding the decomposition rule) such that each premise pi of ξ occurs
in N and each variable occurring in λ(piσ) also occurs in cl. FFR(O) = Nn

is called the relevant subset of FF(O).
4. Converting to a DATALOG∨ program. ByR(O) we denote the DATALOG∨

program that contains the rule R : A1 ∨ . . . ∨ An ← B1, . . . , Bm for each
clause A1 ∨ . . .∨An ∨¬B1 ∨ . . .∨¬Bm in FFR(O). head(R) = {A1, . . . , An}
is called the head of R; body(R) = {B1, . . . , Bm} is called the body of R;
R(O) is called the repair program of O.

Example 4 (Example 3 continued). The repair program R(O) is constructed as
follows. First, Ξ(O) is separated into Ξvar(O) = {cl4, cl8, cl9, cl10, cl11} and
Ξcon(O) = {cl1, cl2, cl3, cl5, cl6, cl7}. Second, Ξvar(O) is saturated by BS+

DL+ ,
yielding the following new clauses (the notation R(cli, clj) means that a clause
is derived by resolving clauses cli and clj).

cl12 : S(x, f(x)) ∨ ¬A(x) ∨ h̄ax7 ∨ h̄ax9 . R(cl8, cl11)
cl13 : ¬A(x) ∨ ¬B(f(x)) ∨ h̄ax7 ∨ h̄ax8 ∨ h̄ax9 . R(cl12, cl10)
cl14 : ¬A(x) ∨ h̄ax7 ∨ h̄ax8 ∨ h̄ax9 . R(cl13, cl9)

Third, the clauses containing function symbols are mapped to function-free
clauses given below, where each mapped clause is associated with the original
sequence number.

cl8 : ¬Sf (x, xf ) ∨R(x, xf ) ∨ ¬A(x) ∨ h̄ax7 .
cl9 : ¬Sf (x, xf ) ∨B(xf ) ∨ ¬A(x) ∨ h̄ax7 .
cl12 : ¬Sf (x, xf ) ∨ S(x, xf ) ∨ ¬A(x) ∨ h̄ax7 ∨ h̄ax9 .
cl13 : ¬Sf (x, xf ) ∨ ¬A(x) ∨ ¬B(xf ) ∨ h̄ax7 ∨ h̄ax8 ∨ h̄ax9 .

Fourth, cl13 and cl12 are in turn detected to be irrelevant and removed. Finally,
remaining clauses, together with ground clauses instantiated from Sf (x, xf ), are
translated into rules given below.

R1 : A(a) ∨ h̄ax1 . R2 : B(b) ∨ h̄ax2 . R3 : Q1(a) ∨ h̄ax3 .
R4 : y1 ≈ y2 ∨ h̄ax3 ← Q1(x), T (x, y1), T (x, y2).
R5 : T (a, b) ∨ h̄ax4 . R6 : T (a, c) ∨ h̄ax5 . R7 : h̄ax6 ← b ≈ c.
R8 : R(x, xf )∨h̄ax7 ← A(x), Sf (x, xf ). R9 : B(xf )∨h̄ax7 ← A(x), Sf (x, xf ).
R10 : h̄ax8 ← A(x), S(x, y), B(y). R11 : S(x, y) ∨ h̄ax9 ← R(x, y).
R12 : h̄ax7 ∨ h̄ax8 ∨ h̄ax9 ← A(x).
R13 : Sf (a, af ). R14 : Sf (b, bf ). R15 : Sf (c, cf ).

Hence, R(O) = {R1, . . . , R15}. ut
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The following theorem shows the equisatisfiability between O ↓ φX and
R(O) ↓ φX for an arbitrary truth assignment φX on X. Note that when O
is a stratified ontology, R(O) is not stratified according to the stratification of
O. Instead, we associate the stratification of O with the stratification of decision
atoms (see Theorem 3).

Theorem 2. Let O be a SHIQ ontology and X the set of decision atoms.

1. (i) If O \D is satisfiable for some set D of axioms, then R(O) has a model
M such that M ∩ X = {h̄ax|ax ∈ D}; (ii) If R(O) has a model M , then
O \ {ax|h̄ax ∈ M ∩X} is satisfiable;

2. The number of atoms in each rule in R(O) is at most polynomial, the number
of rules in R(O) is at most exponential, and R(O) can be computed in time
exponential in size(O), for unary coding of numbers in input.

Proof Sketch. (1) We can show by (a) to (e) given below and Lemma 2 that, for
any truth assignment φX on X, O ↓ φX is unsatisfiable iff R(O) ↓ φX is un-
satisfiable. Hence (i) and (ii) can be proved as follows: (i) If O \D is satisfiable
for some set D of axioms, O ↓ φX is satisfiable for the truth assignment φX on
X, such that for each axiom ax ∈ O, φX(h̄ax) = 1 iff ax ∈ D. So R(O) ↓ φX

is satisfiable and thus has a model M . Then, M ′ = M ∪ {h̄ax|ax ∈ D} is a
model of R(O) such that M ′ ∩X = {h̄ax|ax ∈ D}. (ii) If R(O) has a model M ,
R(O) ↓ φX is satisfiable for the truth assignment φX on X, such that for each
axiom ax ∈ O, φX(h̄ax) = 1 iff h̄ax ∈ M ∩X. So O ↓ φX is satisfiable. It follows
that O \ {ax|h̄ax ∈ M ∩X} is satisfiable.

(a) Ξ(O) ↓ φX is unsatisfiable iff (Γvar∪Ξcon(O)) ↓ φX is unsatisfiable, because
the predicates QR,f do not occur in Ξ(O) ↓ φX .

(b) Let SAT(Γvar) denote a saturated set of Γvar by BS+
DL+ . For any BS+

DL

inference from closures in SAT(Γvar) ↓ φX with conclusion cl, there must exist
a BS+

DL+ inference from closures in SAT(Γvar) with conclusion cl′ such that cl′

is redundant and cl′ is of the form cl ∨ h̄ax1 ∨ . . . ∨ h̄axm with φX(h̄axi) = 0
for i = 1, . . . , m. Note that the set S of closures in SAT(Γvar) making cl′ re-
dundant contains no decision atoms not occurring in cl′. So S′ = S ↓ φX is
actually the set of closures obtained from S by deleting all decision atoms. It
follows that S′ ⊆ SAT(Γvar) ↓ φX makes cl redundant. Hence, SAT(Γvar) ↓ φX

is a saturated set of Γvar ↓ φX by BS+
DL. Since BS+

DL is sound and complete,
(Γvar ∪Ξcon(O)) ↓ φX is unsatisfiable iff (SAT(Γvar) ∪Ξcon(O)) ↓ φX is unsat-
isfiable.

(c) Since SAT(Γvar) ↓ φX already contains all nonground consequences of (Γvar∪
Ξcon(O)) ↓ φX , according to the syntactic form of ALCHIQ-closures, only
ground closures of type 8 are derived in the saturation of (Γvar ∪Ξcon(O)) ↓ φX

by BS+
DL. Furthermore, closures of types 4 and 6 cannot participate in any BS+

DL

inference with a ground closure, so they can be removed from SAT(Γvar) ↓ φX

without affecting the satisfiability of (SAT(Γvar) ∪ Ξcon(O)) ↓ φX . Recall that
SATR(Γvar) ↓ φX is obtained from SAT(Γvar) ↓ φX by deleting ALCHIQ-
closures of types 4 and 6. So (SAT(Γvar) ∪ Ξcon(O)) ↓ φX is unsatisfiable iff
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(SATR(Γvar) ∪Ξcon(O)) ↓ φX is unsatisfiable.

(d) By considering all inferences of BS+
DL analogously as in Lemma 7.2.4 [21],

we can see that for each closure cl derived in the saturation of (SATR(Γvar) ∪
Ξcon(O)) ↓ φX , λ(cl) can be derived from FF(O) ↓ φX . Hence, if the empty
closure is derived by saturating (SATR(Γvar) ∪ Ξcon(O)) ↓ φX by BS+

DL, it
can also be derived by saturating FF(O) ↓ φX by BS+

DL. In a similar way we
can show that if a closure cl is derivable by saturating FF(O) ↓ φX by BS+

DL,
the closure λ−(cl) can be derived from (SATR(Γvar) ∪ Ξcon(O)) ↓ φX . Hence,
(SATR(Γvar) ∪Ξcon(O)) ↓ φX is unsatisfiable iff FF(O) ↓ φX is unsatisfiable.

(e) We show that FF(O) ↓ φX is unsatisfiable iff FFR(O) ↓ φX is unsatisfiable.
The (⇐) direction is trivial, because FFR(O) ⊆ FF(O). For the (⇒) direction,
let N0 = FF(O), N1, . . . , Nn = FFR(O) be a sequence of clause sets obtained
in course of deleting irrelevant clauses, and cl be the irrelevant clause w.r.t.
Ni−1 ↓ φX such that λ−(cl) is derived from premises p1, . . . , pk in Ni−1 ↓ φX

by an inference ξ with a substitution σ. We show that if Ni ↓ φX has a model
M , M is also a model of Ni−1 ↓ φX . Then by induction on i, N0 ↓ φX is satis-
fiable if Nn ↓ φX is satisfiable. Consider each ground substitute τ of cl. Clauses
p1, . . . , pk can be of type 1,2,3,5 or 7, so σ can contain only mappings of the form
x 7→ x′, x 7→ f(x′), or yi 7→ f(x′). The set of variables in λ(pjσ) and λ(pj)λ(σ)
obviously coincide. Since cl is irrelevant, all variables occurring in each λ(pjσ)
occur in cl as well, so τ instantiates all variables in each λ(pj)λ(σ). Further-
more, λ(pj)λ(σ)τ ⊆ λ(pjσ)τ for any j. If the inclusion is strict, then the latter
clause contains literals of the form ¬Sf (a, af ) that do not occur in the former
one, because σ instantiates a variable from pj to a term f(x′) which comes from
another premise pl. Then, λ(pl) contains the literal ¬Sf (x′, x′f ), so λ(pl)λ(σ)τ
contains ¬Sf (a, af ). Hence, {λ(pj)λ(σ)τ}1≤j≤k can participate in a ground in-
ference corresponding to ξ whose conclusion is cl τ . Since λ(p1), . . . , λ(pk) occur
in Ni ↓ φX , λ(p1)λ(σ)τ, . . . , λ(pk)λ(σ)τ are satisfied by M , so cl τ is satisfied
by M too. It follows that M is a model of Ni−1 ↓ φX .

(2) By the proof of Lemma 4, for each clause cl ∈ SATR(Γvar), the number
of literals in cl is at most polynomial in size(O), and the number of clauses
|SATR(Γvar)| is at most exponential in size(O). The number of constants af

added to R(O) equals c ·f , where c is the number of constants and f the number
of function symbols occurring in Ξ(O). Under the assumption that numbers are
coded in unary, both c and f are polynomial in size(O), so is the number of
constants af . By Lemma 4, SATR(Γvar) can be computed in time exponential
in size(O). In addition, computing FF(O) and its relevant subset FFR(O) from
SATR(Γvar) can be performed in polynomial time in |SATR(Γvar)| + size(O).
Hence, the number of atoms in each rule in R(O) is at most polynomial, the
number of rules in R(O) is at most exponential, and R(O) can be computed in
time exponential in size(O). ut
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5.2 Checking the Basic Consequences

To decide if O `lex
cons A(a) for an atomic concept membership axiom A(a), we

establish, by Claim 1 of Theorem 2, a correspondence between X-lex-minimal
models of the repair program R(O) and lex-maximal consistent subontologies of
O (see Theorem 3). This correspondence implies that the problem of deciding
if O `lex

cons A(a) can be reduced to a certain problem of cautious reasoning over
R(O) (see Theorem 4), solved by a set of satisfiability tests (see Theorem 5).

Definition 6. For a logic program P and a stratification X = (X1, . . . , Xn)
of some ground atoms occurring in P , a model M of P is called an X-lex-
minimal model of P if for any model M ′ of P , (M ∩ X1, . . . ,M ∩ Xn) ≤lex

(M ′ ∩X1, . . . , M
′ ∩Xn).

Theorem 3. Let O = (O1, . . . ,On) be a stratified SHIQ ontology, and X =
(X1, . . . , Xn) be the corresponding stratification of decision atoms in R(O),
i.e., Xi = {h̄ax | ax ∈ Oi} for i = 1, . . . , n. Then: (1) If M is an X-lex-minimal
model of R(O), then O \ {ax | h̄ax ∈ M ∩ X} is a lex-maximal consistent
subontology of O; (2) If O′ = (O′1, . . . ,O′n) is a lex-maximal consistent subon-
tology of O, then R(O) has an X-lex-minimal model M such that for each i,
M ∩Xi = {h̄ax | ax ∈ Oi \ O′i}.
Proof. (1) Let M be an X-lex-minimal model of R(O). By Theorem 2, O′ = O\
{ax | h̄ax ∈ M ∩X} is satisfiable. Suppose O′ is not lex-maximal consistent, i.e.,
there exists a consistent subontology O′′ = (O′′1 , . . . ,O′′n) such that O′ <lex O′′.
By Theorem 2, R(O) has a model M ′ such that M ′ ∩Xi = {h̄ax|ax ∈ Oi \ O′′i }
for each i. But (M ′∩X1, . . . , M

′∩Xn) <lex (M∩X1, . . . ,M∩Xn), contradicting
that M is an X-lex-minimal model of R(O). So O′ is a lex-maximal consistent
subontology of O.

(2) Let O′ = (O′1, . . . ,O′n) be a lex-maximal consistent subontology of O. By
Theorem 2, R(O) has a model M such that M ∩Xi = {h̄ax|ax ∈ Oi \ O′i} for
each i. Suppose M is not an X-lex-minimal model of R(O), i.e., there exists a
model M ′ of R(O) such that (M ′∩X1, . . . , M

′∩Xn) <lex (M∩X1, . . . , M∩Xn).
By Theorem 2, O′′ = O \ {ax | h̄ax ∈ M ′ ∩ X} is satisfiable. But O′ <lex O′′,
contradicting thatO′ is lex-maximal consistent. So M is an X-lex-minimal model
of R(O). ut
Theorem 4. O `lex

cons A(a) iff A(a) is in all X-lex-minimal models of R(O).

Proof. Suppose O = (O1, . . . ,On). We assume that the constant a occurs in O,
otherwise this theorem trivially holds.

(⇒) Suppose O `lex
cons A(a) and there exists an X-lex-minimal model M of

R(O) such that A(a) 6∈ M . Then M is also an X-lex-minimal model ofR(O)∪{←
A(a)}. Let Oext = ({¬A(a)},O1, . . . ,On) and Xext = ({h̄¬A(a)}, X1, . . . , Xn).
Then M is an Xext-lex-minimal model of R(Oext) = R(O) ∪ {h̄¬A(a) ← A(a)}.
By Theorem 3, O′ext = Oext \ {ax | h̄ax ∈ M ∩X} is a lex-maximal consistent
subontology of Oext. Let O′ = (O′ext ∩ O1, . . . ,O′ext ∩ On). Then O′ is a lex-
maximal consistent subontology of O, otherwise by Theorem 2, M cannot be an
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X-lex-minimal model of R(O). Since O′ext is consistent and ¬A(a) ∈ O′ext, we
have O′ 6|= A(a), contradicting that O `lex

cons A(a).
(⇐) Suppose A(a) is in all X-lex-minimal models of R(O) and there exists

a lex-maximal consistent subontology O′ = (O′1, . . . ,O′n) of O such that O′ 6|=
A(a). Let Oext = ({¬A(a)},O1, . . . ,On) and Xext = ({h̄¬A(a)}, X1, . . . , Xn).
Then O′ext = ({¬A(a)},O′1, . . . ,O′n) is a lex-maximal consistent subontology of
Oext. By Theorem 3, there exists an Xext-lex-minimal model M of R(Oext) such
that h̄¬A(a) 6∈ M and M∩Xi = {h̄ax|ax ∈ Oi\O′i} for each i > 0. Then M is also
an X-lex-minimal model of R(O), otherwise by Theorem 2, O′ cannot be lex-
maximal consistent. Since h̄¬A(a) 6∈ M and R(Oext) = R(O)∪{h̄¬A(a) ← A(a)},
M is also an X-lex-minimal model of R(O) ∪ {← A(a)}. But then A(a) 6∈ M
contracts that A(a) is in all X-lex-minimal models of R(O). ut

Suppose X = (X1, . . . , Xn). It is easy to see that (|M ∩X1|, . . . , |M ∩Xn|)
is the same for every X-lex-minimal model M of R(O). By lmw(R(O), X) =
(|M ∩ X1|, . . . , |M ∩ Xn|) we denote the unique lex-minimal weight vector of
every X-lex-minimal model M of R(O), and by lmwi(R(O), X) we denote the
ith element |M ∩ Xi| in lmw(R(O), X). Note that an interpretation is an X-
lex-minimal model of R(O) iff it is a model of R(O) ∪ {∑h̄ax∈Xi

assign(h̄ax) ≤
lmwi(R(O), X) | 1 ≤ i ≤ n}, where assign(α) denotes the 0-1 truth value of α.
So Theorem 4 can be reformulated into the following theorem.

Theorem 5. O `lex
cons A(a) iff R(O)∪{∑h̄ax∈Xi

assign(h̄ax) ≤ lmwi(R(O), X) |
1 ≤ i ≤ n} ∪ {← A(a)} is unsatisfiable. ut

In order to apply Theorem 5 to check if O `lex
cons A(a), we need to com-

pute lmw(R(O), X). By Definition 6, it can be seen that lmwi(R(O), X) is the
minimum number v such that Pi(v) is satisfiable, where

Pi(v) = R(O) ∪ {
∑

h̄ax∈Xj

assign(h̄ax) ≤ lmwj(R(O), X) | 1 ≤ j < i} ∪ (1)

{
∑

h̄ax∈Xi

assign(h̄ax) ≤ v} ∪ {assign(h̄ax) = 0 | h̄ax ∈
n⋃

j=i+1

Xj}.

I.e., lmwi(R(O), X) is defined based on lmwj(R(O), X) for all j < i, and can
be computed one by one from i = 1 to n.

In order to check the satisfiability of a logic program of the form in The-
orem 5 or Formula (1), we need to handle Pseudo-Boolean constraints (PB-
constraints) of the form

∑
i ci · assign(xi) ≤ d with constants ci, d ∈ Z and

variables xi ∈ {0, 1}, where Z denotes the integer domain. There has been well
study on handling PB-constraints; especially, powerful SAT solvers that support
PB-constraints competed each other in an annual competition8. A satisfiability
problem with PB-constraints can be either solved by standard SAT solvers after
translating PB-constraints to SAT clauses [7], or solved by extended SAT solvers
that support PB-constraints natively, such as PUEBLO [31].
8 http://www.cril.univ-artois.fr/PB07/
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There are some issues for applying SAT solvers that support PB-constraints:
they work on propositional programs only and do not distinguish equational
atoms (of the form a ≈ b) from other atoms. To treat the equality predicate ≈,
which is interpreted as a congruence relation in SHIQ, as an ordinary predicate,
we use a well-known transformation from [10]. For a DATALOG∨ program P ,
let P≈ denote the logic program consisting of the rules stating that the equal-
ity predicate is reflexive, symmetric and transitive, as well as the replacement
rules of the form “T (X1, . . . , Yi, . . . , Xn) ← T (X1, . . . , Xi, . . . , Xn), Xi ≈ Yi”,
instantiated for each predicate T in P (excluding ≈) and each position i. Then,
appending P≈ to P allows to treat ≈ as an ordinary predicate. It should be
noted that the reflexive rule is not safe, so it is instead represented as a set of
ground facts of the form a ≈ a, instantiated for each constant a in P .

To ground R(O) ∪R(O)≈, we apply the disk-based grounding (DBG) tech-
nique proposed in [6]. The DBG technique extends the well-known intelligent
grounding technique [9] for DATALOG∨ programs by pruning instantiated rules
that are trivially satisfied by every minimal model. Basically, the DBG tech-
nique iteratively instantiates each rule in the input program by using deriv-
able ground atoms (i.e. ground atoms occurring in the input program or head
atoms in instantiated rules), until there is no more ground atom that can be
derived. Note that if some head atom of an instantiated rule r is in the unique
minimal model Mdef of the definite fragment of the input program (i.e. the
set of rules with single head atoms), r will be pruned and its head atoms
that are not previously derived are not used to instantiate rules. In this work,
Mdef = FFSucc(O) ∪ FFHU (O) ∪ {a ≈ a | a occurs in R(O)}. In the DBG
technique, derivable ground atoms are maintained in a SQL database and new
ground instances of rules are retrieved via SQL queries. By GR′(O) we denote the
program grounded from R(O)∪R(O)≈ by using the DBG technique. Then M is
a minimal model of GR′(O) iff M ∪Mdef is a minimal model of R(O)∪R(O)≈.

We assume that there is a total ordering Â on all constants occurring in
GR′(O). By GR(O) we denote the program obtained from GR′(O) by rewriting
each equality atom a ≈ b such that b Â a into b ≈ a and then deleting all
rewritten rules that are duplicate or of the form a ≈ b ← a ≈ b. Obviously, there
exists a bijection between the set of minimal models of GR′(O) and the set of
minimal models of GR(O); the difference between two corresponding minimal
models consists of equality atoms a ≈ b such that b Â a. The following corollary
is an immediate consequence that follows from Theorem 4 and Theorem 5, where
lmwi(GR(O), X) = lmwi(R(O), X) for each i.

Corollary 1. O `lex
cons A(a) iff A(a) is in all X-lex-minimal models of GR(O),

i.e., GR(O)∪{∑h̄ax∈Xi
assign(h̄ax) ≤ lmwi(GR(O), X) | 1 ≤ i ≤ n}∪{← A(a)}

is unsatisfiable.

Proof. It is sufficient to show that A(a) is in all X-lex-minimal models of R(O)∪
R(O)≈ iff A(a) is in all X-lex-minimal models of GR′(O), where the equality
predicate ≈ is treated as an ordinary predicate in both logic programs.

(⇒) Let M is an arbitrary X-lex-minimal model of GR′(O). Then there
exits a minimal model M ′ of GR′(O) such that M ′ ⊆ M and M ′ ∩ X = M ∩
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X, i.e., M ′ is also an X-lex-minimal model of GR′(O). Since M ′ ∪ Mdef is a
minimal model of R(O)∪R(O)≈, M ′ ∪Mdef must be an X-lex-minimal model
of R(O)∪R(O)≈, otherwise there exits a minimal model M ′′ of R(O)∪R(O)≈
such that (M ′ ∪Mdef )∩X <lex M ′′ ∩X. M ′′ \Mdef is also a minimal model of
GR′(O), contradicting that M ′ is an X-lex-minimal model of GR′(O). Hence,
M ′ ∪Mdef is an X-lex-minimal model of R(O) ∪ R(O)≈ and thus A(a) ∈ M ′.
Since M ′ ⊆ M , we have A(a) ∈ M and thus A(a) is in all X-lex-minimal models
of GR′(O).

(⇐) The proof is the same as above by exchanging the places of GR′(O) and
R(O) ∪R(O)≈. ut

Example 5 (Example 4 continued). The unique minimal model of the definite
fragment of R(O) ∪ R(O)≈ is Mdef = {S(o, of ) | o = a, b, c} ∪ {o ≈ o | o = a,
b, c, af , bf , cf}. The initial set of ground atoms used to instantiate rules is
Mdef ∪ {A(a), B(b), Q1(a), T (a, b), T (a, c), b ≈ c}. By iteratively instantiating
rules using the DBG technique and then rewriting equality atoms,R(O)∪R(O)≈
is grounded to GR(O) = {r1, . . . , r16} given below, assuming a total ordering on
constants a Â b Â c Â af Â bf Â cf .

r1 : A(a) ∨ h̄ax1 . r2 : B(b) ∨ h̄ax2 . r3 : Q1(a) ∨ h̄ax3 .

r4 : T (a, b) ∨ h̄ax4 . r5 : T (a, c) ∨ h̄ax5 . r6 : h̄ax6 ← b ≈ c.

r7 : b ≈ c ∨ h̄ax3 ← Q1(a), T (a, b), T (a, c). r8 : R(a, af ) ∨ h̄ax7 ← A(a).
r9 : B(af ) ∨ h̄ax7 ← A(a). r10 : S(a, af ) ∨ h̄ax9 ← R(a, af ).
r11 : h̄ax8 ← A(a), S(a, af ), B(af ). r12 : h̄ax7 ∨ h̄ax8 ∨ h̄ax9 ← A(a).
r13 : T (a, c) ← T (a, b), b ≈ c. r14 : T (a, b) ← T (a, c), b ≈ c.

r15 : B(c) ← B(b), b ≈ c. r16 : B(b) ← B(c), b ≈ c.

It can be computed by Formula (1), where R(O) is replaced with GR(O),
that lmw(GR(O), X) = (0, 1, 0, 1). Consider deciding if O `lex

cons A(a). The
satisfiability of Π = GR(O) ∪ {assign(h̄ax1) + assign(h̄ax2) + assign(h̄ax3) ≤ 0,
assign(h̄ax4) + assign(h̄ax5) + assign(h̄ax6) ≤ 1, assign(h̄ax7) + assign(h̄ax8) ≤ 0,
assign(h̄ax9) ≤ 1} ∪ {← A(a)} is tested. It is easy to see that Π is unsatisfiable,
so O `lex

cons A(a). ut

Consider the time complexity for checking if O `lex
cons A(a) in terms of data

complexity, i.e. the complexity measured as a function of |OA|. Since saturat-
ing the clause set Ξ(O) is only performed over the subset transformed from
terminological axioms, by viewing the considering ontology in Claim 2 of The-
orem 2 as the terminology of O only, the saturation of Ξ(O) is accomplished
in constant time and the number of rules in R(O) is polynomial in |OA|. For
every rule R ∈ R(O), the number of variables in R is bounded by a constant, so
there are at most polynomial ground instances of R in GR(O). It follows that
the number of rules in GR(O) is polynomial in |OA|. In addition, the compu-
tation of lmw(GR(O), X) needs at most |X| satisfiability tests, so checking if
O `lex

cons A(a) is accomplished in |X| + 1 satisfiability tests over GR(O). Since
the satisfiability problem with PB-constraints is NP-complete, the problem of
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deciding if O `lex
cons A(a) is thus in ∆p

2 in data complexity. Note that the ad-
dressing problem is also ∆p

2-hard (see the following theorem), so our proposed
method is worst-case optimal in data complexity.

Theorem 6. For a stratified SHIQ ontology O = (O1, . . . ,On) and an atomic
concept membership axiom A(a), the problem of deciding if O `lex

cons A(a) is data
complete for ∆p

2.

Proof. The ∆p
2 membership has been proved by our proposed method. We now

show the ∆p
2 hardness by a polynomial time reduction from the following ∆p

2-
complete problem [17]: “given a satisfiable clause set C = {C1, . . . , Cm} on X =
{x1, . . . , xn}, decide whether the lexicographically minimum truth assignment
φm

X satisfying C fulfills φm
X(xn) = 1”. W.l.o.g., we assume that each Ci consists

of three literals. Under such assumption the hardness remains [32].
Given any instance I of the above problem, we transform it to an instance

I ′ = (O, A(an)) of the given problem: We set Oi = {A(ai)} for each i = 1, . . . , n
and O0 = {A v ∀R.L1, A v ∀R.L2, A v ∀R.L3, > v At∀S.L1, > v At∀S.L2,
> v A t ∀S.L3, L1 u L2 u L3 v ⊥}. Then, for each clause Ci = li,1 ∨ li,2 ∨ li,3
in C and each j ∈ {1, 2, 3}, if li,j = xk for some k, we append R(ak, ci) to
O0; otherwise if li,j = ¬xk for some k, we append S(ak, ci) to O0. Let O =
{O0,O1, . . . ,On}, and r(O, φX) denote O \ {A(ai) | 1 ≤ i ≤ n, φX(xi) = 1} for
an truth assignment φX on X.

We show that for any truth assignment φX on X satisfying C, r(O, φX)
is consistent. For any truth assignment φX on X, there must be an interpre-
tation satisfying all axioms in r(O, φX) except L1 u L2 u L3 v ⊥. Let φX be
a truth assignment that satisfies C and M a minimal interpretation that sat-
isfies all axioms in r(O, φX) except L1 u L2 u L3 v ⊥. Suppose M does not
satisfy L1 u L2 u L3 v ⊥. Then there exists some i ∈ {1, . . . , m} such that
{L1(ci), L2(ci), L3(ci)} ⊆ M . Consider each j = 1, 2, 3. In case li,j = xk for some
k, since {R(ak, ci), Lj(ci)} ⊆ M , we have A(ak) ∈ M , otherwise M \ {Lj(ci)}
satisfies all axioms in r(O, φX) except L1uL2uL3 v ⊥, contradicting that M is
minimal. Thus A(ak) ∈ r(O, φX), i.e., φX(xk) = 0. In case li,j = ¬xk for some k,
since {S(ak, ci), Lj(ci)} ⊆ M , we have A(ak) 6∈ M , otherwise M \{A(ak)} satis-
fies all axioms in r(O, φX) except L1uL2uL3 v ⊥, contradicting that M is min-
imal. Thus A(ak) 6∈ r(O, φX), i.e., φX(xk) = 1. It follows that Ci = li,1∨ li,2∨ li,3
is not satisfied by φX , contradicting that C is satisfied by φX . So r(O, φX) is
satisfiable by M and thus is consistent.

We show that for any consistent subontology O′ of O such that O0 ⊆ O′,
the truth assignment φX on X such that φX(xi) = 0 iff A(ai) ∈ O′ satisfies
C. Let M be a model of O′. Then for each i ∈ {1, . . . ,m}, there exists some j
such that Lj(ci) 6∈ M . In case li,j = xk for some k, since R(ak, ci) ∈ M and
M |= A v ∀R.Lj , we have A(ak) 6∈ M and thus A(ak) 6∈ O′, i.e., φX(xk) = 1.
In case li,j = ¬xk for some k, since S(ak, ci) ∈ M and M |= > v A t ∀S.Lj ,
we have A(ak) ∈ M and thus A(ak) ∈ O′, i.e., φX(xk) = 0. It follows that Ci is
satisfied by φX and thus C is satisfied by φX .

As a result, φm
X is the lexicographically minimum truth assignment satisfying

C iff r(O, φm
X) is the unique lex-maximal consistent subontology of O. It follows
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that φm
X(xn) = 0 iff O `lex

cons A(an), i.e., I is false iff I ′ is true. In addition, I ′ is
constructed in polynomial time in n and m; the number of terminological axioms
in O is fixed; the number of assertional axioms in O is polynomial in n and m.
So the given problem is ∆p

2-hard in data complexity. ut

5.3 Partition-Based Optimizations

To make the above method more scalable, we adapt the partitioning technique
in [6] to decompose GR(O) into disjoint subprograms before checking if O `lex

cons

A(a). By that means, the satisfiability test in Corollary 1 can be performed over
a small relevant part of GR(O).

Let atoms(P ) denote the set of ground atoms in a propositional program
P . Given GR(O) and the set X of decision atoms occurring in GR(O), the
partitioning algorithm in [6] (i.e. Algorithm 1) decomposes GR(O) into a set
of disjoint subprograms {GRi(O)}1≤i≤p. The decomposition is through sequen-
tially accessing GR(O) at most min(|GR(O)|, |atoms(GR(O))|) times, where
|GR(O)| denotes the number of rules in GR(O) and |atoms(GR(O))| denotes
the number of atoms in GR(O). The resulting subprograms have the following
properties: (1) GRj(O) and GRk(O) have no common ground atoms for any
j 6= k (by lines 12,13); (2) each GRi(O) is a connected component (by lines
3–13), i.e., for any two ground atoms α1 and α2 occurring in GRi(O), there
exists a sequence of ground atoms β1 = α1, . . . , βn = α2 such that βk and βk+1

occur together in some rule in GRi(O) for k = 1, . . . , n − 1; (3) each GRi(O)
is a certain rule closure (by lines 3–11), i.e., for each rule r ∈ GR(O) such
that ∅ ⊂ head(r) \ X ⊆ atoms(GRi(O) \ {r}), r ∈ GRi(O); and (4) for each
rule r ∈ GR(O) \ ⋃p

i=1 GRi(O), there exists some ground atom α ∈ head(r)
such that α 6∈ atoms(

⋃p
i=1 GRi(O)) ∪ X (by lines 3–11). Such partitioning on

rules also divides X into disjoint subsets. Let X†
i denote the subset of decision

atoms that occur in GRi(O). X†
i can be written as (X†

i,1, . . . , X
†
i,n) based on the

stratification of O, i.e., X†
i,j = X†

i ∩ {h̄ax | ax ∈ Oj} for j = 1, . . . , n.
By using the partitioning results, we develop a novel algorithm for checking

if O `lex
cons A(a), which is shown in Algorithm 2. GR0(O) is defined as in the

previous paragraph (line 1). X ′ is the set of decision atoms not occurring in⋃p
i=1 GRi(O) (line 2). GR′0(O) is obtained from GR0(O) by deleting all decision

atoms in X ′ (line 3). MM0(O) is the unique minimal model of the definite
fragment of GR′0(O) (line 4). GRr

0(O) is obtained from GR′0(O) by deleting
each rule that has at least one head atom in MM0(O), and by removing all
atoms in MM0(O) from the remaining rules (line 5). Then, the satisfiability test
in Corollary 1 can be performed over a subprogram of GR(O), extracted from
GRi(O)1≤i≤p, GRr

0(O) or MM0(O), as shown in the following cases (lines 6–18),
where lmwi(GRk(O), X†

k) can be computed over GRk(O) in the same way as
computing lmwi(R(O), X), cf. Formula (1).

In case A(a) ∈ MM0(O) (line 6), we consider MM0(O) only. Let M0 =⋃
r∈GR0(O) head(r) \ (atoms(

⋃p
i=1 GRi(O)) ∪X). Then by Property (4) of the

partitioning results, M0 ∩ head(r) 6= ∅ for all rules r ∈ GR0(O). For every X-
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Algorithm 1 ([6]). Partition(GR(O), X)

Input: The grounded repair program GR(O) and the set X of decision atoms.

Output: A set of disjoint subprograms of GR(O).

1. Set map(α) as 0 for all ground atoms α occurring in GR(O); k := 0;

2. Move all rules r ∈ GR(O) s.t. head(r) ⊆ X in front of other rules in GR(O);

3. repeat

4. merged := false;

5. for each rule r sequentially retrieved from GR(O) s.t. head(r) = ∅ or ∀α ∈
head(r) \X : map(α) > 0 do

6. for each α ∈ head(r) ∪ body(r) s.t. map(α) = 0 do

7. k := k + 1; map(α) := k;

8. if |map(r)| > 1 then

9. merged := true; minid := min(map(r));

10. for each α ∈ head(r) ∪ body(r) do map(α) := minid;

11. until not merged;

12. for i = 1, . . . , k do

13. Πi := {r ∈ GR(O) | ∀α ∈ head(r) ∪ body(r) : map(α) = i};
14. return {Πi 6= ∅ | 1 ≤ i ≤ k};

Algorithm 2. AtomicCheck({GRi(O)}1≤i≤p, X, A(a))

Input: The set of subprograms {GRi(O)}1≤i≤p returned by Partition(GR(O), X),
the set X of decision atoms and an atomic concept membership axiom A(a) to be
checked.

Output: true if O `lex
cons A(a), false otherwise.

1. GR0(O) := GR(O) \⋃p

i=1
GRi(O);

2. X ′ := X \ atoms(
⋃p

i=1
GRi(O));

3. GR′0(O) = {∨ head(r) \X ′ ← ∧
body(r) | r ∈ GR0(O)};

4. MM0(O) := the unique minimal model of {r ∈ GR′0(O) | |head(r)| = 1};
5. GRr

0(O) := {∨ head(r) ← ∧
body(r) \ MM0(O) | r ∈ GR′0(O), head(r) ∩

MM0(O) = ∅};
6. if A(a) ∈ MM0(O) then return true;

7. if A(a) ∈ atoms(GRk(O)) for some k > 0 then

8. Π := GRk(O) ∪ {∑
h̄ax∈X

†
k,i

assign(h̄ax) ≤ lmwi(GRk(O), X†
k) | 1 ≤ i ≤ n};

9. if Π ∪ {← A(a)} is unsatisfiable then return true else return false;

10. if A(a) ∈ head(r) \ atoms(
⋃p

i=1
GRi(O)) for some rule r ∈ GRr

0(O) then

11. Πpre := ∅; Π := {r ∈ GRr
0(O) | head(r) ⊆ X ∪ {A(a)}};

12. while Π 6= Πpre do

13. Πpre := Π;

14. Π := Πpre ∪ {r ∈ GRr
0(O) | head(r) ⊆ atoms(Πpre ∪

⋃p

i=1
GRi(O))};

15. SN := {1 ≤ i ≤ p | atoms(Π) ∩ atoms(GRi(O)) 6= ∅};
16. Π ′ := Π ∪ ⋃

k∈SN
(GRk(O) ∪ {∑

h̄ax∈X
†
k,i

assign(h̄ax) ≤ lmwi(GRk(O), X†
k) |

1 ≤ i ≤ n});
17. if Π ′ ∪ {← A(a)} is unsatisfiable then return true else return false;

18. return false;
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lex-minimal model M of GR(O), M does not contain any decision atom in X ′,
otherwise M ′ = (M ∩atoms(

⋃p
i=1 GRi(O)))∪M0 will be a model of GR(O) such

that (M ′ ∩X1, . . . ,M
′ ∩Xn) <lex (M ∩X1, . . . , M ∩Xn), contracting that M

is an X-lex-minimal model of GR(O). Hence, M ∩ atoms(GR′0(O)) is a model
of GR′0(O). It follows that MM0(O) ⊆ M and thus A(a) ∈ M . By Corollary 1,
we have O `lex

cons A(a).
In case A(a) ∈ atoms(GRk(O)) for some k > 0 (lines 7–9), we consider

GRk(O) only. In addition, we encode the criterion for X†
k-lex-minimal mod-

els as PB-constraints, obtaining Π (line 8). (a) If Π ∪ {← A(a)} is satisfi-
able, there must be an X†

k-lex-minimal model Mk of GRk(O) such that Mk ⊆
atoms(GRk(O)) and A(a) 6∈ Mk. Let Mj denote an arbitrary X†

j -lex-minimal
model of GRj(O) such that Mj ⊆ atoms(GRj(O)) for each j > 0 and j 6= k.
Let M0 =

⋃
r∈GRr

0(O) head(r) \ atoms(
⋃p

j=1 GRj(O)). Then M0 ∩ X = ∅ and
M0∩head(r) 6= ∅ for each rule r ∈ GRr

0(O). Furthermore, for any 0 ≤ i < j ≤ p,
Mi ∩Mj = ∅; for any 0 ≤ j ≤ p, MM0(O)∩Mj = ∅ and A(a) 6∈ Mj ; A(a) 6∈ M0

and A(a) 6∈ MM0(O). So M = MM0(O)∪M0∪
⋃p

j=1 Mj is a model of GR(O) such
that A(a) 6∈ M . M must be an X-lex-minimal model of GR(O), otherwise by
Theorem 3, there must exist some j > 0 such that Mj is not an X†

j -lex-minimal
model of GRj(O). So by Corollary 1, O 6`lex

cons A(a). (b) If Π ∪ {← A(a)} is
unsatisfiable, A(a) will be in every X†

k-lex-minimal model of GRk(O). For every
X-lex-minimal model M of GR(O), since M ∩ atoms(GRk(O)) is an X†

k-lex-
minimal model of GRk(O), we have A(a) ∈ M , so O `lex

cons A(a).
In case A(a) ∈ head(r) \ atoms(

⋃p
i=1 GRi(O)) for some rule r ∈ GRr

0(O)
(lines 10–17), we consider the union of a subprogram Π iteratively extracted
from GRr

0(O) (lines 11–14) and every GRk(O) that has some atoms occurring in
Π (lines 15,16). In addition, we encode the criterion for X†

k-lex-minimal models
as PB-constraints, obtaining Π ′ (line 16). (a) If Π ′ ∪ {← A(a)} is satisfiable,
there must be a model M of Π ′ such that M ⊆ atoms(Π ′) and A(a) 6∈ M .
Obviously, M ∩ atoms(GRk(O)) is an X†

k-lex-minimal model of GRk(O) for
every k ∈ SN . Let M0 =

⋃
r∈GRr

0(O)\Π head(r)\atoms(Π∪⋃p
j=1 GRj(O)). Then

M0∩X = ∅ and M0∩head(r) 6= ∅ for each rule r ∈ GRr
0(O)\Π. Moreover, since

A(a) ∈ atoms(Π), we have A(a) 6∈ M0. So M ∪M0 is a model of Π ′ ∪GRr
0(O)

such that A(a) 6∈ M ∪M0. Let Mj denote an arbitrary X†
j -lex-minimal model

of GRj(O) such that Mj ⊆ atoms(GRj(O)) for each j ∈ {1, . . . , p} \ SN . Then
for any j ∈ {1, . . . , p} \ SN , Mj ∩ (MM0(O) ∪ M ∪ M0) = ∅ and A(a) 6∈ Mj .
Furthermore, (M ∪M0) ∩MM0(O) = ∅, A(a) 6∈ M ∪M0 and A(a) 6∈ MM0(O).
So M ′ = M ∪ M0 ∪ MM0(O) ∪ ⋃

j∈{1,...,p}\SN
Mj is a model of GR(O) such

that A(a) 6∈ M ′. M ′ must be an X-lex-minimal model of GR(O), otherwise by
Theorem 3, there must exist some k ∈ SN such that M ∩ atoms(GRk(O)) is not
an X†

k-lex-minimal model of GRk(O), or some j ∈ {1, . . . , p} \ SN such that Mj

is not an X†
j -lex-minimal model of GRj(O). So by Corollary 1, O 6`lex

cons A(a).
(b) If Π ′ ∪ {← A(a)} is unsatisfiable, A(a) will be in every model of Π ′. For
every X-lex-minimal model M of GR(O), since M ∩ atoms(Π ′) is a model of
Π ′, we have A(a) ∈ M , so O `lex

cons A(a).
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In other cases (line 18), we can directly get the answer. Let Mi denote an
arbitrary X†

i -lex-minimal model of GRi(O) such that Mi ⊆ atoms(GRi(O))
for each i > 0. Let M0 =

⋃
r∈GRr

0(O) head(r) \ atoms(
⋃p

i=1 GRi(O)). It can be
shown analogously as in the second case that, M = MM0(O) ∪ M0 ∪

⋃p
i=1 Mi

is an X-lex-minimal model of GR(O) such that A(a) 6∈ M . So by Corollary 1,
O 6`lex

cons A(a).
According to the above analyses, we have the following conclusion.

Theorem 7. The above algorithm for checking if O `lex
cons A(a) is correct. ut

Example 6 (Example 5 continued). By applying Algorithm 1, GR(O) is decom-
posed into GR1(O) = {r1, r8, r9, r10, r11, r12} and GR2(O) = {r3, r4, r5,
r6, r7, r13, r14}. Afterwards, the decomposition is continued to yield in turn
GR0(O) = {r2, r15, r16}, MM0(O) = {B(b)} and GRr

0(O) = {B(c) ← b ≈ c}.
The decomposition also divides X into X†

1 = ({h̄ax1}, ∅, {h̄ax7 , h̄ax8}, {h̄ax9})
and X†

2 = ({h̄ax3}, {h̄ax4 , h̄ax5 , h̄ax6}, ∅, ∅). It can be computed by Formula
(1), where R(O) and X are replaced with GRi(O) and X†

i respectively, that
lmw(GR1(O), X†

1) = (0, 0, 0, 1) and lmw(GR2(O), X†
2) = (0, 1, 0, 0).

Consider deciding if O `lex
cons A(a). Since A(a) ∈ atoms(GR1(O)), the satis-

fiability of Π is tested, where Π = GR1(O) ∪ {assign(h̄ax1) ≤ 0, assign(h̄ax7) +
assign(h̄ax8) ≤ 0, assign(h̄ax9) ≤ 1}. Since Π ∪ {← A(a)} is unsatisfiable, we
have O `lex

cons A(a).
Consider deciding if O `lex

cons B(c). Since B(c) ∈ head(r) \ atoms(GR1(O) ∪
GR2(O)) for the unique rule r ∈ GRr

0(O), the satisfiability of Π ′ ∪ {← B(c)}
is tested, where Π ′ = GRr

0(O) ∪ GR1(O) ∪ {assign(h̄ax3) ≤ 0, assign(h̄ax4) +
assign(h̄ax5) + assign(h̄ax6) ≤ 1}. Since Π ′ ∪ {← B(c)} is satisfiable (e.g., the
set {Q1(a), T (a, b), h̄ax5} is a model), we have O 6`lex

cons B(c).
Consider deciding if O `lex

cons B(b). Since B(b) ∈ MM0(O), we have O `lex
cons

B(b). Consider deciding ifO `lex
cons B(a). Since B(a) 6∈ MM0(O)∪atoms(GRr

0(O)∪
GR1(O) ∪GR2(O)), we have O 6`lex

cons B(a). ut

5.4 Checking Other Consequences

First of all, we consider deciding if O `lex
cohe A v B for O = (O1, . . . ,On) and A

and B atomic concepts. We assume that the extension of O given in Theorem 1,
i.e. O′ = (A,O1, . . . ,On), has been fully compiled : GR(O′) has been constructed
and decomposed, yielding GRi(O′)1≤i≤p, MM0(O′) and GRr

0(O′); moreover, for
each i, lmw(GRi(O′), X†

i ) has been computed. Let A(a) be the axiom over A
in A. Then A(a) must be in every lex-maximal consistent subontology of O′. So
O′ `lex

cons A v B iff O′ `lex
cons B(a). By Theorem 1, we have O `lex

cohe A v B iff
O′ `lex

cons B(a), where the latter can be checked by one call to a SAT solver using
the method given in the previous subsection.

To decide if O `lex
cons C(a) for O = (O1, . . . ,On) and C a general concept,

we consider a new ontology O′ = ({C v Q},O1, . . . ,On), where Q is a new
concept name. Since the axiom C v Q must be in every lex-maximal consistent
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subontology of O′, we have O `lex
cons C(a) iff O′ `lex

cons Q(a), where the latter can
be checked using the proposed method, as Q(a) is an atomic concept membership
axiom.

To decide if O `lex
cons C v D for C and D general concepts, we consider

the axiom (¬C tD)(a) for a a new globally unique individual. Since C v D is
equivalent to > v ¬C tD and O `lex

cons (> v ¬C tD) iff O `lex
cons (¬C tD)(a),

we have O `lex
cons C v D iff O `lex

cons (¬CtD)(a), where the latter can be checked
using the method just given above.

To decide if O `lex
cohe C(a) or decide if O `lex

cohe C v D for C and D gen-
eral concepts, we first reduce the problem to checking the corresponding lex-
consistent consequence by Theorem 1, then solve it in the same way. Note that
the above problems are hard to be solved as efficiently as checking ifO `lex

cons A(a)
for A an atomic concept, in the sense that they necessitate computations from
scratch even when O is fully compiled.

6 Conclusion and Future Work

In this paper, we applied the lexicographic inference to reason over inconsis-
tent DL-based ontologies and addressed the problem of checking lex-consistent
(or lex-coherent) consequences of a SHIQ ontology. Basically, our proposed
method compiles the input SHIQ ontology to a propositional program, so that
the addressing problem is solved in polynomial calls to current powerful SAT
solvers. The method is the first worst-case optimal one (in data complexity)
for checking lex-consistent consequences of a SHIQ ontology. It performs the
checking without computing any lex-maximal consistent subontology. It can also
be applied to check lex-coherence consequences by first reducing the problem to
that of checking lex-consistent consequences. In order to make the method more
scalable, we also gave partition-based techniques to optimize the calling of SAT
solvers.

For future work, we plan to conduct a thorough evaluation for the proposed
method and extend the method to handle OWL DL ontologies. The extension for
datatypes is trivial because datatypes have been handled in the KAON2 trans-
formation. The extension for nominals is feasible in theory due to the existence
of a resolution-based decision procedure for SHOIQ [16], which can be extended
analogously by embedding decision atoms. Hence, the problem of checking a lex-
consistent consequence of an OWL DL ontology can also be treated as a set of
satisfiability problems, solved by the extended decision procedure after all PB-
constraints on decision atoms are translated to SAT clauses. However, the time
complexity of the decision procedure for SHOIQ is up to triply exponential
[16], so we still need to develop practical methods to handle nominals.
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