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Motivation

The model: Concurrent systems modeled as probabilistic automata.

The measure of the level of privacy: Differential privacy
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Motivation

The model: Concurrent systems modeled as probabilistic automata.

The measure of the level of privacy: Differential privacy

Goal:

How to verify differential privacy properties for concurrent systems?

Neighboring processes have neighboring behaviors.
For example: behavioural equivalences

A(u) ≃ A(u′) =⇒ Secrecy [Abadi and Gordon, the Spi-calculus]
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Motivation

The model: Concurrent systems modeled as probabilistic automata.

The measure of the level of privacy: Differential privacy

Goal:

How to verify differential privacy properties for concurrent systems?

Neighboring processes have neighboring behaviors.
For example: behavioural equivalences

A(u) ≃ A(u′) =⇒ Secrecy [Abadi and Gordon, the Spi-calculus]

Verification Technique

Behavioural approximation

Pseudometrics on states m(A(u),A(u′)) =⇒ Differential Privacy

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Our Model

A probabilistic automaton is a tuple (S, s,A,D)

S: a finite set of states;

s ∈ S: the start state;

A: a finite set of action labels;

D ⊆ S × A × Disc(S): a weak transition relation. We also write s a
=⇒ µ.

Definition (Concurrent Systems with Secret Information)

Let U be a set of secrets. A concurrent system with secret information A is a
mapping of secrets to probabilistic automata, where A(u), u ∈ U is the
automaton modelling the behavior of the system when running on u.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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How to Reason about Probabilistic Observations?

A scheduler ζ resolves the non-determinism based on the history of a
computation, inducing a probability measure over traces.
For each scheduler we get a fully probabilistic automaton where the
probability of events (sets of traces) is defined in a standard way:

Construction of a σ-algebra (for dealing with infinity). The basis is given by
the finite traces and their probabilities.
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How to Reason about Probabilistic Observations?

A scheduler ζ resolves the non-determinism based on the history of a
computation, inducing a probability measure over traces.
For each scheduler we get a fully probabilistic automaton where the
probability of events (sets of traces) is defined in a standard way:

Construction of a σ-algebra (for dealing with infinity). The basis is given by
the finite traces and their probabilities.

Probabilities of finite traces

Let α be the history up to the current state s. The probability of observing a
finite trace~t starting from α, denoted by Prζ[α ⊲~t ], is defined recursively as
follows.

Pr
ζ
[α ⊲~t ] =











1 if~t is empty,

0 if~t = aa~t ′, ζ(α) = s b
=⇒ µ and b 6= a,

∑

si
µ(si)Prζ[αasi ⊲~t ′] if~t = aa~t ′ and ζ(α) = s a

=⇒ µ.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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An example: A PIN-Checking System

s1 s2

A(u)

A(u1)

s3

u1

okno

a2a1

no

0.4 0.6 0.4 0.6

t1 t2

A(u)

A(u2)

t3

u2

okno

a2a1

no

0.6 0.4 0.6 0.4

Example: The scheduler executes the a1-branch.

Prζ[A(u1) ⊲ a1ok ] = 0.6

Prζ [A(u1) ⊲ a1no ] = 0.4

Prζ[A(u1) ⊲ a2ok ] = 0

Prζ [A(u1) ⊲ a2no ] = 0

Prζ [A(u2) ⊲ a1ok ] = 0.4

Prζ [A(u2) ⊲ a1no ] = 0.6

Prζ [A(u2) ⊲ a2ok ] = 0

Prζ [A(u2) ⊲ a2no ] = 0

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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How To Quantify the Amount of Privacy?

Definition (Standard Definition of Differential Privacy)

A query mechanism A is ǫ-differentially private if for any two adjacent
databases u1 and u2, i.e. which differ only for one individual, and any
property Z , the probability distributions of A(u1),A(u2) differ on Z at most by
eǫ, namely,

Pr[A(u1) ∈ Z ] ≤ eǫ · Pr[A(u2) ∈ Z ].

The lower the value ǫ is, the better the privacy is protected.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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How To Quantify the Amount of Privacy?

Definition (Standard Definition of Differential Privacy)

A query mechanism A is ǫ-differentially private if for any two adjacent
databases u1 and u2, i.e. which differ only for one individual, and any
property Z , the probability distributions of A(u1),A(u2) differ on Z at most by
eǫ, namely,

Pr[A(u1) ∈ Z ] ≤ eǫ · Pr[A(u2) ∈ Z ].

The lower the value ǫ is, the better the privacy is protected.

Some Merits of Differential Privacy

Strong notion of privacy.

Independence from side knowledge.

Robustness to attacks based on combining various sources of
information.

Looser restrictions between non-adjacent secrets.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Differential Privacy in the Context of Concurrent Systems

The scheduler can easily break many security and privacy properties.
We consider a restricted class of schedulers, called admissible
schedulers.

On related states, an admissible scheduler should choose the same
transition label.

Definition (Differential Privacy in Our Setting)

A concurrent system A satisfies ǫ-differential privacy (DP) iff for any two
adjacent secrets u, u′, all finite traces~t and all admissible schedulers ζ:

Pr
ζ
[A(u) ⊲~t ] ≤ eǫ · Pr

ζ
[A(u′) ⊲~t ]

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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The PIN-Checking System Revisited

Definition (Differential Privacy in Our Setting)

A concurrent system A satisfies ǫ-differential privacy (DP) iff for any two
adjacent secrets u, u′, all finite traces~t and all admissible schedulers ζ:

Pr
ζ
[A(u) ⊲~t ] ≤ eǫ · Pr

ζ
[A(u′) ⊲~t ]

Example

Prζ[A(u1) ⊲ a1ok ] = 0.6

Prζ [A(u1) ⊲ a1no ] = 0.4

Prζ[A(u1) ⊲ a2ok ] = 0

Prζ [A(u1) ⊲ a2no ] = 0

Prζ [A(u2) ⊲ a1ok ] = 0.4

Prζ [A(u2) ⊲ a1no ] = 0.6

Prζ [A(u2) ⊲ a2ok ] = 0

Prζ [A(u2) ⊲ a2no ] = 0

In this case, the level of differential privacy ǫ = ln 3
2 .

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Neighboring processes have neighboring behaviors.

The property of differential privacy requires that the observations generated
by two adjacent secrets are probabilistically close.

Behavioural approximation:Pseudometrics on processes.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Neighboring processes have neighboring behaviors.

The property of differential privacy requires that the observations generated
by two adjacent secrets are probabilistically close.

Behavioural approximation:Pseudometrics on processes.

Verification Technique

Find a pseudometric m on states of a concurrent system for two adjacent
secrets u, u′, such that:

m(A(u),A(u′)) ≤ ǫ =⇒ A(u) and A(u′) are ǫ-differentially private.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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The Accumulative Bijection Pseudometric

It stems from the work of

Michael C. Tschantz, Dilsun Kaynar, and Anupam Datta.
Formal verification of differential privacy for interactive systems. 2011.

We reformulate the notion of approximate similarity proposed in the above
work in terms of a pseudometric, and we study the properties of the distance
relation.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems



Introduction
Three Pseudometrics

Comparison of the Three Pseudometrics
Summary

The Accumulative Bijection Pseudometric
The Amortized Bijection Pseudometric
A Multiplicative Variant of the Kantorovich Pseudometric

Definitions

We define an approximate bisimulation relation:

Definition (Accumulative Bisimulation)

A relation R ⊆ S × S × [0, ǫ] is an ǫ-accumulative bisimulation iff for all
(s, t , c) ∈ R:

s a
=⇒ µ implies t a

=⇒ µ′ with µLD(R, c)µ′

t a
=⇒ µ′ implies s a

=⇒ µ with µLD(R, c)µ′

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Definitions

First, lift a relation over states to a relation over distributions.

Definition (D-Approximate Lifting)

Let ǫ > 0, c ∈ [0, ǫ], R ⊆ S × S × [0, ǫ]. The D-approximate lifting of R up to
c, denoted by LD(R, c), is the relation on distributions defined as:

µLD(R, c)µ′ iff ∃ bijection β : supp(µ) → supp(µ′) such that

∀s ∈ supp(µ) : (s, β(s), c + σ) ∈ R where σ = max
s∈supp(µ)

| ln
µ(s)

µ′(β(s))
|

We define an approximate bisimulation relation:

Definition (Accumulative Bisimulation)

A relation R ⊆ S × S × [0, ǫ] is an ǫ-accumulative bisimulation iff for all
(s, t , c) ∈ R:

s a
=⇒ µ implies t a

=⇒ µ′ with µLD(R, c)µ′

t a
=⇒ µ′ implies s a

=⇒ µ with µLD(R, c)µ′

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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We can now define a pseudometric based on accumulative bisimulation as:

mD(s, t) = min{ǫ | (s, t , 0) ∈ R for some ǫ-accumulative bisimulation R}

Proposition

mD is a pseudometric, that is:

(reflexivity) mD(s, s) = 0

(symmetry) mD(s1, s2) = mD(s2, s1)

(triangle inequality) mD(s1, s3) ≤ mD(s1, s2) + mD(s2, s3)

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Verification of differential privacy using mD

Theorem

A concurrent system A is ǫ-differentially private if mD(A(u),A(u′)) ≤ ǫ for
any two adjacent secrets u and u′.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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The PIN-Checking System Revisited

s1 s2

A(u)

A(u1)

s3

u1

okno

a2a1

no

0.4 0.6 0.4 0.6

t1 t2

A(u)

A(u2)

t3

u2

okno

a2a1

no

0.6 0.4 0.6 0.4

Example

The following relation is a ln 3
2 -accumulative bisimulation between A(u1) and

A(u2).
R = { (A(u1),A(u2), 0), (s1, t1, ln 3

2 )

(s2, t2, ln 3
2 ), (s3, t3, ln 3

2 ) }

Thus mD(A(u1),A(u2)) = ln 3
2 , system A is ln 3

2 -differentially private.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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The Use of the Privacy Budget May Be a bit Wasteful?

mD is useful for verifying differential privacy. However,

the amount of leakage is only accumulated.

the accumulation is the same for all branches, and equal to the worst
branch.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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The Use of the Privacy Budget May Be a bit Wasteful?

s4 s5

s3

s2 s5

A(u)

A(u1)

s6

s7

s5 s8

u1

ok

ok

ok

a2

no

no

a2a1

no

a1

no

0.6 0.4

0.4 0.6 0.4 0.6

0.6 0.4

t4 t5

t3

t2 t5

A(u)

A(u2)

t6

t7

t5 t8

u2

ok

ok

ok

a2

no

no

a2a1

no

a1

no

0.4 0.6

0.6 0.4 0.6 0.4

0.4 0.6

Consider the above example. mD gives ∞ for the distance between A(u1)
and A(u2).

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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The Use of the Privacy Budget May Be a bit Wasteful?

s4 s5

s3

s2 s5

A(u)

A(u1)

s6

s7

s5 s8

u1

ok

ok

ok

a2

no

a1

no

a1

no

a2

no

0.4

0.6 0.4

0.6 0.4 0.6

0.6 0.4

t4 t5

t3

t2 t5

A(u)

A(u2)

t6

t7

t5 t8

u2

ok

ok

ok

a2

no

a1

no

a1

no

a2

no

0.6

0.4 0.6

0.4 0.6 0.4

0.4 0.6

Assume that the scheduler executes the a1-branch. The ratios of probabilities
for A(u1) and A(u2) producing the same finite sequences:

(a1no a2no)∗ : = 0.4×0.6
0.6×0.4 = 1

(a1no a2no)∗a1ok : = 3
2

(a1no a2no)∗a1no a2ok : = 9
4

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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The Amortized Bijection Pseudometric

We employ the amortised bisimulation relation from:

Astrid Kiehn and S. Arun-Kumar.
Amortised bisimulations. In FORTE, 2005.

Gerald Lüttgen and Walter Vogler.
Bisimulation on speed: A unified approach. Theor. Comuput. Sci., 2006.

Intuition

The privacy budget in each simulation step may be either reduced due to a
negative difference of probabilities, or increased due to a positive difference.
Hence, the long-term budget might get amortised.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Definitions

We define amortised bisimulation:

Definition (Amortised bisimulation)

A relation R ⊆ S × S × [−ǫ, ǫ] is an ǫ-amortised bisimulation iff for all
(s, t , c) ∈ R:

s a
=⇒ µ implies t a

=⇒ µ′ with µLA(R, c)µ′

t a
=⇒ µ′ implies s a

=⇒ µ with µLA(R, c)µ′

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Definitions

First, define the corresponding lifting:

Definition (A-Approximate Lifting)

Let ǫ > 0, c ∈ [−ǫ, ǫ], R ⊆ S × S × [−ǫ, ǫ]. The A-approximate lifting of R up
to c, denoted by LA(R, c), is a relation on Disc(S) defined as:

µLA(R, c)µ′ iff ∃ bijection β : supp(µ) → supp(µ′) such that

∀s ∈ supp(µ) : (s, β(s), c + ln
µ(s)

µ′(β(s))
) ∈ R

We define amortised bisimulation:

Definition (Amortised bisimulation)

A relation R ⊆ S × S × [−ǫ, ǫ] is an ǫ-amortised bisimulation iff for all
(s, t , c) ∈ R:

s a
=⇒ µ implies t a

=⇒ µ′ with µLA(R, c)µ′

t a
=⇒ µ′ implies s a

=⇒ µ with µLA(R, c)µ′

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Verification of differential privacy using mA

Similarly to the previous section, we can finally define a pseudometric on
states as:

mA(s, t) = min{ǫ | (s, t , 0) ∈ R for some ǫ-amortised bisimulation R}

Proposition

mA is a pseudometric.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Verification of differential privacy using mA

Similarly to the previous section, we can finally define a pseudometric on
states as:

mA(s, t) = min{ǫ | (s, t , 0) ∈ R for some ǫ-amortised bisimulation R}

Proposition

mA is a pseudometric.

Theorem

A concurrent system A is ǫ-differentially private if mA(A(u),A(u′)) ≤ ǫ for
any two adjacent secrets u and u′.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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Indeed, a Thriftier Use of the Privacy Leakage Budget

s4 s5

s3

s2 s5

A(u)

A(u1)

s6

s7

s5 s8

u1

ok

ok

ok

a2

no

a1

no

a1

no

a2

no

0.4

0.6 0.4

0.6 0.4 0.6

0.6 0.4

t4 t5

t3

t2 t5

A(u)

A(u2)

t6

t7

t5 t8

u2

ok

ok

ok

a2

no

a1

no

a1

no

a2

no

0.6

0.4 0.6

0.4 0.6 0.4

0.4 0.6

The following relation is an amortised bisimulation between A(u1) and A(u2).

R = { (A(u1),A(u2), 0), (s2, t2, ln 2
3 ), (s5, t5, ln 3

2 ), (s3, t3, ln 2
3 ),

(s4, t4, 0), (s5, t5, ln 4
9 ), (s6, t6, ln 3

2 ), (s5, t5, ln 2
3 ),

(s7, t7, ln 3
2 ), (s8, t8, 0), (s5, t5, ln 9

4 ) }

Thus mA(A(u1),A(u2)) = ln 9
4 , system A is ln 9

4 -differentially private.

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems
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How can we get rid of the bijection requirement?

The second pseudometric is an improvement of the first pseudometric.

But, both of them are too restrictive! (Bijections between states.)
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How can we get rid of the bijection requirement?

The second pseudometric is an improvement of the first pseudometric.

But, both of them are too restrictive! (Bijections between states.)

Try to use:

A conventional bisimulation metric: based on the Kantorovich metric.

Josee Desharnais, Radha Jagadeesan, Vineet Gupta, and Prakash
Panangaden.
The metric analogue of weak bisimulation for probabilistic processes.
2002.

The Kantorovich metric is a measure of the distance between two
probabilistic distributions.
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The Standard Definition of Kantorovich Metric.

Consider a metric m on states, also referred to as the ground distance.
We lift metric on states to metric on probabilistic distributions, using the
Kantorovich metric.

Let µ, µ′ be distributions on states, the metric m(µ, µ′) is given by the
optimal value of the following primal (dual) program.

Kantorovich Metric: m(µ, µ′)

maximize
∑

i(µ(si)− µ′(si))xi

Primal subject to ∀i . 0 ≤ xi ≤ 1

∀i , j . xi − xj ≤ m(si , sj)

minimize
∑

i,j lijm(si , sj)

Dual subject to ∀i .
∑

j lij = µ(si)

∀j .
∑

i lij = µ′(sj)

∀i , j . lij ≥ 0
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The Standard Definition of Kantorovich Metric.

Consider a metric m on states, also referred to as the ground distance.
We lift metric on states to metric on probabilistic distributions, using the
Kantorovich metric.

Let µ, µ′ be distributions on states, the metric m(µ, µ′) is given by the
optimal value of the following primal (dual) program.

Kantorovich Metric: m(µ, µ′)

maximize
∑

i(µ(si)− µ′(si))xi

Primal subject to ∀i . 0 ≤ xi ≤ 1

∀i , j . xi − xj ≤ m(si , sj)

minimize
∑

i,j lijm(si , sj)

Dual subject to ∀i .
∑

j lij = µ(si)

∀j .
∑

i lij = µ′(sj)

∀i , j . lij ≥ 0

Intuition

Transportation Problem

lij : the amount of mass
moved from location i of µ
to location j of µ′.

m(si , sj): the cost of
moving one unit of mass
from location i to location j .

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems



Introduction
Three Pseudometrics

Comparison of the Three Pseudometrics
Summary

The Accumulative Bijection Pseudometric
The Amortized Bijection Pseudometric
A Multiplicative Variant of the Kantorovich Pseudometric

The Standard Kantorovich Metric does not imply differential privacy.

Consider the following example, the value given by the standard Kantorovich
metric will be:

Example

s1 s2

s

nook

a

0.9 0.1

t1 t2

t

nook

a

0.999 0.001

(g) 0.1 − 0.001 = 0.099, while
ǫ = ln 0.1

0.001 = ln 100.

s
′

1
s
′

2

s
′

nook

a

0.8 0.2

t
′

1
t
′

2

t
′

nook

a

0.3 0.7

(h) 0.7 − 0.2 = 0.5, while
ǫ
′ = ln 0.7

0.2 = ln 3.5.
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The Standard Kantorovich Metric does not imply differential privacy.

Consider the following example, the value given by the standard Kantorovich
metric will be:

Example

s1 s2

s

nook

a

0.9 0.1

t1 t2

t

nook

a

0.999 0.001

(i) 0.1 − 0.001 = 0.099, while
ǫ = ln 0.1

0.001 = ln 100.

s
′

1
s
′

2

s
′

nook

a

0.8 0.2

t
′

1
t
′

2

t
′

nook

a

0.3 0.7

(j) 0.7 − 0.2 = 0.5, while
ǫ
′ = ln 0.7

0.2 = ln 3.5.

The standard Kantorovich metric exhibits an additive nature.

That is inadequate for verifying a multiplicative property such as
differential privacy.
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The Multiplicative Variant of Kantorovich Metric

Adapting the Kantorovich Metric

Kantorovich metric The multiplicative variant

maximize
∑

i(µ(si)− µ′(si))xi maximize ln

∑

i µ(si)xi

∑

i µ
′(si)xi

Primal subject to ∀i . 0 ≤ xi ≤ 1 subject to ∀i . 0 ≤ xi ≤ 1

∀i , j . xi − xj ≤ m(si , sj) ∀i , j . xi ≤ em(si ,sj )xj

minimize
∑

i,j lijm(si , sj) minimize ln z

Dual subject to ∀i .
∑

j lij = µ(si) subject to ∀i .
∑

j lij = µ(si)

∀j .
∑

i lij = µ′(sj) ∀j .
∑

i lijem(si ,sj ) = z · µ′(sj)

∀i , j . lij ≥ 0 ∀i , j . lij , z ≥ 0
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The Multiplicative Variant of Kantorovich Metric

Adapting the Kantorovich Metric

Kantorovich metric The multiplicative variant

maximize
∑

i(µ(si)− µ′(si))xi maximize ln

∑

i µ(si)xi

∑

i µ
′(si)xi

Primal subject to ∀i . 0 ≤ xi ≤ 1 subject to ∀i . 0 ≤ xi ≤ 1

∀i , j . xi − xj ≤ m(si , sj) ∀i , j . xi ≤ em(si ,sj )xj

minimize
∑

i,j lijm(si , sj) minimize ln z

Dual subject to ∀i .
∑

j lij = µ(si) subject to ∀i .
∑

j lij = µ(si)

∀j .
∑

i lij = µ′(sj) ∀j .
∑

i lijem(si ,sj ) = z · µ′(sj)

∀i , j . lij ≥ 0 ∀i , j . lij , z ≥ 0
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This Multiplicative Variant is Well Defined.

Definition (K-State-Metric)

A metric m is a K-state-metric if, for any ǫ, m(s, t) ≤ ǫ implies that if s a
=⇒ µ

then there exists some µ′ such that t a
=⇒ µ′ and m(µ, µ′) ≤ ǫ.

We define mK as the greatest K -state-metric:

mK (s, t) = min{m(s, t) |m is a K -state-metric}.
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This Multiplicative Variant is Well Defined.

Definition (K-State-Metric)

A metric m is a K-state-metric if, for any ǫ, m(s, t) ≤ ǫ implies that if s a
=⇒ µ

then there exists some µ′ such that t a
=⇒ µ′ and m(µ, µ′) ≤ ǫ.

We define mK as the greatest K -state-metric:

mK (s, t) = min{m(s, t) |m is a K -state-metric}.

This multiplicative variant inherits good merits of the standard one:

Proposition

mK is a pseudometric.

mK has a fixed-point characterization.

mK extends weak bimilarity.
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Verification of differential privacy using mK

Similarly to the previous two pseudometrics, we can show that

Theorem

A concurrent system A is ǫ-differentially private if mK (A(u),A(u′)) ≤ ǫ for
any two adjacent secrets u and u′.
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Comparison of the Three Pseudometrics

The latter two pseudometrics are more liberal than the first one.

Proposition

mD � mA

mD � mK

Although they are incomparable to each other. Consider the following toy
example in which mK (s, t) > mA(s, t):

s1 s4

s

s2
s3

s5

cb

a

ok
no

0.6

0.2 0.7

0.4

0.1

t1 t4

t

t2
t3

s5

cb

a

ok
no

0.9

0.2 0.2

0.1

0.6
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Relations with weak probabilistic bisimilarity ≈

Moreover,

Proposition

The following hold:

mK (s, t) = 0 ⇔ s ≈ t

mD(s, t) = 0 ⇒ s ≈ t

mA(s, t) = 0 ⇒ s ≈ t
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Summary

We have investigated three pseudometrics on states:

The second pseudometric is designed so that the total privacy leakage
bound gets amortised.

The third one is built on a multiplicative variant of the Kantorovich metric.

Each of the three pseudometrics establishs a framework for the formal
verification of differential privacy for concurrent systems.

Outlook
Whether and how can we define a new pseudometric that unifies the merits
of the amortised pseudometric and the multiplicative variant of the
Kantorovich metric

Xu, Chatzikokolakis, Lin, Palamidessi Metrics for Differential Privacy in Concurrent Systems



Introduction
Three Pseudometrics

Comparison of the Three Pseudometrics
Summary

Related Work

Other formal methods on reasoning about differential privacy with
programming languages

type systems: linear types
Jason Reed and Benjamin C. Pierce.
Distance makes the types grow stronger: a calculus for differential privacy.
2010.
Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and
Benjamin C. Pierce.
Linear dependent types for differential privacy. In POPL, 2013.

logic formulations: a relational Hoare logic
Gilles Barthe and Boris Köpf and Federico Olmedo and Santiago Z.
Béguelin.
Probabilistic relational reasoning for differential privacy. In POPL. 2012.
Gilles Barthe, George Danezis, Benjamin Grégoire, César Kunz, and
Santiago Zanella Béguelin.
Verified computational differential privacy with applications to smart
metering. In CSF, 2013.
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The End

Thank you very much for your attention!

Questions?
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