
The MODV Manual

1 Introduction

MODV is a Memory Order Dynamic Verifier which is used to verify
whether an execution complies with a certain memory model. MODV gen-
erates a pseudo-random multi-processor test program without conditional
branches first. Then the user runs the test program on the system that im-
plements a certain memory consistency model and gathers scan information
about the test program. As this module is architecture dependent, MODV
doesn’t provide it. At last, the test program and the gathered information
will be input in MODV to verify if this program complies with the model.
The types of the memory models that can be verified by MODV now are Se-
quential Consistency (SC), Processor Consistency/x86/TSO (PC), Release
Consistency (RC) and Scope Consistency (ScC). In this version, ScC refers
to Godson-T which is a variation of ScC. MODV has only been tested in
Linux RHEL 5.4 64bit, and this version is special for verifying the memory
model of Godson-T. The next version of MODV will be developed soon.

2 Installation

MODV is an open source software. You can install MODV by the fol-
lowing steps and you can make any change if you need on the source code.

Step 1 Download the zipped source file or executable file of MODV. The
latest versions are MODV-0.2.2-src.tgz and MODV-0.2.2-bin-x86 64.tgz
respectively. If you choose the executable file, step 2 can be omitted.

Step 2 If you download the source file, save the file to one directory and de-
compress the archive. Assume the directory where you put the archive
is /home/workspace.

$ cd /home/workspace
$ tar −xvzf MODV−0.2.2−src.tgz
$ cd modv/src
$ make
$ make install

1



After decompressing, there are 3 folders in MODV. The folder bin
contains the executable file. The folder src contains the source files.
The folder test contains some examples.

Step 3 To run MODV, the test program files and the information files for
test program should be put in the same directory with the executable
file modv. Then you can simply run MODV with the command shown
below which is used to verify whether an execution complies with Pro-
cessor Consistency.

$ ./modv −p 4 −n 500 −m PC

3 Usage

The bash shell script generator can be used to generate pseudo-random
multi-processor test programs with the command ./generator. There are two
options for this command: -n is used to denote the number of processors
and -p is used to denote the number of operations in each processor.

The bash shell script modv can be used to verify the test programs.
There are several options for this command shown below:

-h, - -help
Output the help information, which is a
simplified version of manual.

-p NUM, - -processor NUM Denote the number of processors.

-n NUM, - -noplist NUM
Denote the number of operation in each
processor.

-m NAME, - -model NAME
Denote the name of the memory model to
be verified. This version of MODV can
verify SC, PC, RC and ScC.

-b, - -baseline
If -b option is used, then MODV will use
the baseline algorithm which doesn’t use
the time order information.

-i DIR, - -input DIR
Denote the directory of the test program
files and the scan information files.

4 Notes

There are several notes about MODV when using it to verify memory
models which arc shown below:

1) The default processor number is 2. The default operation number is
500. The default memory model to be verified is ScC, i.e. Scope Consistency
(This version is Godsont-T, a variant of Scope Consistency). Thus if one of

2



the three arguments is not the default value, the argument can’t be omitted,
otherwise errors will be reported.

2) The result files which record the program execution and scan informa-
tion should be put in the same directory with modv, just like the examples
shown in the test directory. Otherwise you should use -b option to change
the directory.

3) The way to name and log the results should also be the same as the
files of examples stored in the test directory.

5 Examples

We use MODV to verify whether an execution complies with memory
consistency model. We use the command ./modv -p 2 -n 2 -m SC to verify
whether the execution complies with Sequential Consistency.

A cycle is detected. Then we can draw the conclusion that this execution
doesn’t comply with Sequential Consistency.

3


