
The PaMC Manual

1 Introduction

PaMC is a model checker specialized for verifying safety properties of
parameterized systems which consists of an indefinite number of identical
processes running in parallel. It implements a very powerful abstraction
technique known as parameter abstraction and guard strengthening, us-
ing a heuristics-based automatic procedure to compute auxiliary invariants.
PaMC is constructed on the top of the TLV model checker. Its syntax parser
and BDD library operation procedure are adapted directly from TLV. How-
ever, PaMC implements the whole procedure of the parameter abstraction,
invariants computing and guard strengthening procedure by itself. PaMC
is not a stand-alone model checker. It uses TLV as its default model check-
ing engine. It can also use any model checker which accepts SMV input
language, such as Cadence SMV and NuSMV, as its model checking engine.

2 Installation

Please check the following libraries installed in your system before getting
PaMC to compile:

• flex

• bison

If you choose the -m32 option in Makefile for 64 bit linux system, the
gcc-multilib library is needed.

You can also use the executable files directly. We have tested them in
Debian, Ubuntu, Fedora and CentOS Linux environment.

Step 1 Download the zipped executable or source files of PaMC. The latest
versions are PaMC-0.3.1-bin.tgz and PaMC-0.3.1-src.tgz respectively.
You can use the archive to compile PaMC on Linux systems as a Bash
Shell user. If you choose the executable files, the make procedure in
step 2 is omitted.

1

Step 2 Save the file to one directory and uncompress the archive. We’ll
assume this directory is /home/yourname, but you can uncompress it
wherever you want.

$ tar −xvzf PaMC−0.3.1−src.tgz
$ cd /home/yourname/PaMC−0.3.1/src
$ make
$ make install

Step 3 Put /home/yourname/PaMC-0.3.1/bin in your PATH variable. In
bash use something like the following:

$ export PATH=$PATH:/home/yourname/PaMC−0.3.1/bin

Step 4 To run PaMC on a file file.pam simply do

$ PaMC −f file.pam

3 Input language

The input language pam of PAMC can be seen as a parameterized ex-
tension of SMV language. Here we only describe the new parameterized
features of pam. For more details on SMV language we refer the users to
the SMV Manual.

For the sake of describing parameterized systems, it uses the reserved
word Proc to denote the parameter of the system. The parameterized system
variables ranging over Proc can be declared as follows:

VAR

CurPtr : Proc;

InvSet : array Proc of boolean;

MSG[Proc] : array Proc of Proc;

There are two types of array of modules which are indexed by the param-
eter Proc. The structure modules describe the system’s variables hierarchi-
cally, while the transition modules define the transitions of the system with
the reserved word transition prefixed to their declarations. For instance,

VAR

array Node[Proc] : node_module(Proc);

Transitions are given in the usual guarded command form in transition
module. The reserved word transition guarantees that all transition modules
can be nondeterministically asynchronously interleaving executed.

VAR

array Request[Proc] : transition request(Node[Proc].State, x);

array Enter[Proc] : transition enter(Node[Proc].State, x);

The parameterized properties to be verified are denoted with prefix
FORALL reversed word, and appear after the reserved word SPEC.

2

SPEC

FORALL(i,j)(i!=j -> !(Node[i].State=crit & Node[j].State=crit))

Only part of pam input language has been implemented in PaMC. Other
parts will be implemented in the future.

PaMC can accept input model written by SMV language directly. How-
ever, there are some restrictions on SMV language for describing parame-
terized systems. The word N is reserved in SMV model to determine the
number of processes in reference model, and we need to assign the value of
N in the smv file beforehand. The value of N is set to 3 by default. How-
ever, it is set to 4 for German-2004 protocol. The words array of 1..N of
types are also reserved which be used to define indexed array parameterized
variables. All array indexed modules in SMV model must be expanded and
instantiated according to the number N.

4 Options

PaMC is a bash shell script, and can be run with different options that
are shown below:

ProcNum(-p val)

Denote the process number of reference model
needed by parameter abstraction. It is just the
number of preserved process in abstract model
plus one. This value is set to 3 by default.

MCEngine(-m val)
Set the model checking engine. Cadence SMV is
used while value is set to 1, and NuSMV is used
while value is set to 2. TLV is used by default.

Scale(-s val)
-v denote all intermediate file will be reserved,
which can be used in the procedure of analyzing
the counterexample.

Verbose(-v)
Denote the size of BDD’s cache and key table
with respect to the system’s scale. 2 for large
scale, 1 for middle scale, 0 for small scale by
default.

File(-f file)
Denote the file need to be verified. Either pam
file or smv file can be accepted by PaMC.

5 Examples

We use the MUX-SEM mutual exclusion algorithm as an example to
illustrate the modeling language of PaMC.

1 MODULE main

3

2 VAR

3 x : boolean;

4 array Node[Proc] : node_module;

5 array Request[Proc] : transition request(Node[Proc].State, x);

6 array Enter[Proc] : transition enter(Node[Proc].State, x);

7 array Release[Proc] : transition release(Node[Proc].State, x);

8 array Idling[Proc] : transition idling(Node[Proc].State, x);

9 ASSIGN

10 init(x) := 1;

11 SPEC

12 FORALL(i,j)(i!=j -> !(Node[i].State = crit & Node[j].State = crit))

13 MODULE node_module

14 VAR

15 State : {idle,try,crit,exiting};

16 ASSIGN

17 init(State) := idle;

18
19 MODULE request(state, semaphore)

20 ASSIGN

21 next(state) :=

22 case

23 state = idle : try;

24 1 : state;

25 esac;

26 MODULE enter(state, semaphore)

27 ASSIGN

28 next(state) :=

29 case

30 state = try & semaphore : crit;

31 1 : state;

32 esac;

33 next(semaphore) :=

34 case

35 state = try & semaphore : 0;

36 1 : semaphore;

37 esac;

38 MODULE release(state, semaphore)

39 ASSIGN

40 next(state) :=

41 case

42 state = crit : exiting;

43 1 : state;

44 esac;

45 MODULE idling(state, semaphore)

46 ASSIGN

47 next(state) :=

48 case

49 state = exiting : idle;

50 1 : state;

4

51 esac;

52 next(semaphore) :=

53 case

54 state = exiting : 1;

55 1 : semaphore;

56 esac;

5

