
Efficiently and Completely Verifying

Synchronized Consistency Models�

Yi Lv1, Luming Sun1, Xiaochun Ye2, Dongrui Fan2, and Peng Wu1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, China

2 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, China

Abstract. The physical time order information can help verifying the
memory model of a multiprocessor system rather efficiently. But we find
that this time order based approach is limited to the sequential consis-
tency model. For most relaxed memory models, an incompatible time
order may possibly result in a false negative verdict. In this paper, we
extend the original time order based approach to synchronized consis-
tency models, and propose an active frontier approach to rule out such
false verdicts based on a reasonably relaxed time order. Our approach
can be applied to most known memory models, especially to those with
non-atomic write operations, while nevertheless retaining the efficiency
of the original time order based approach. We implement our approach in
a Memory Order Dynamic Verifier (MODV). A case study with an indus-
trial Godson-T many-core processor demonstrates the effectiveness and
efficiency of our approach. Several bugs of the design of this processor
are also found by MODV.

1 Introduction

With the increasingly aggressive development of hardware optimization tech-
nologies, most multi-core processors support relaxed memory models for the sake
of high performance. Synchronized consistency models, such as release consis-
tency [1] and scope consistency [2], were usually deployed in software Distributed
Shared Memory (DSM) systems. Recently, these models have been implemented
at the hardware level by many-core systems [3] and network-on-chip based multi-
core systems [4,5]. These systems allow out-of-order executions of the memory
access operations within lock protected code sections. Such relaxation would
trigger more nondeterministic executions dramatically, hence making it more
difficult to verify these relaxed memory models. The verification problem of
synchronized consistency models has been rarely studied so far due to its high
complexity.

� This work is partially supported by the National Natural Science Foundation of
China under Grants No.61272135, No.61100015, No.61204047, No.61100069, and
No.61161130530.

F. Cassez and J.-F. Raskin (Eds.): ATVA 2014, LNCS 8837, pp. 264–280, 2014.
c© Springer International Publishing Switzerland 2014

Efficiently and Completely Verifying Synchronized Consistency Models 265

A common way to verify the memory model of a multiprocessor system is
by running concurrent test programs on the system and then checking whether
their executions comply with the memory model under concern. Test programs
can be pre-specified or generated randomly. A directed constraint graph can be
constructed on the memory access operations in an execution. The edges of the
graph represent the order between these operations as permitted by the memory
model under concern. In this way, a cycle in the graph would mean a violation
of the memory model under concern.

The problem of verifying an execution against a memory model is NP-complete
in general [6]. It has been shown that for a constant number of processors, it
can take just linear time (in the number of operations) to solve this problem
with the aid of the pending period information of operations [7,8]. The pending
period of an operation is the interval between the time when the operation is
issued and the time when the operation is committed. Intuitively, two operations
in an execution can be ordered in the physical time if one of them is committed
before the other one is issued.

w11 : st A,1

r12 : ld B,0

w21 : st B,1

r22 : ld A,0

P1 P2(Initially A=B=0)

Fig. 1. A False Cycle

However, we find that this time order based
approach does not even apply to the total
store order (TSO) memory model [9] because
it implicitly assumes that the time order along
an execution is compatible with the memory
model under concern. This underlying assump-
tion does not apply to the TSO/x86 memory
model. Fig. 1 shows a typical execution on an
x86 microprocessor [10]. In this execution, the
write operation w11 (respectively, w21) writes
the value 1 to the memory address A (respec-
tively, B) on processor P1 (respectively, P2). But the read operation r12 (respec-
tively, r22) still reads the initial value 0 at the memory address B (respectively,
A). In Fig. 1, the solid edges represent the TSO edges, while the dashed boxes
indicates the pending periods of the operations. These dashed boxes are not over-
lapped, hence inducing the time order edges (represented by the dashed edges
in Fig. 1). The original time order based approach in [7,8] would treat the cycle
of edges in Fig. 1 as a violation of the TSO/x86 memory model. This would
also happen to synchronized consistency models, which neither guarantee write
operations to be atomic. Therefore, the original time order based approach is
limited to the sequential consistency (SC) memory model.

In this paper, we extend the original time order based approach to synchro-
nized consistency models. Given an execution, the synchronization operations
accessing the same locks are mutually exclusive to each other under synchro-
nized consistency models. Therefore, these operations need to be executed in a
sequentially consistent way. This also applies to the write operations accessing
the same addresses. Our approach aims to find total orders between these syn-
chronization operations and between these write operations, in order to justify
the execution against the synchronized consistency model under concern. To

266 Y. Lv et al.

avoid the above false negative results by the original time order based approach,
we relax the notion of time order so that the write operations in an execution
can be ordered approximately in the time when these operations are globally
visible to all processors. In this way, the relaxed time order along the execu-
tion is compatible with the relaxed memory models that do not guarantee write
operations to be atomic.

We then propose an active frontier approach to deal with synchronized consis-
tency models based on the notion of relaxed time order. Those operations that
should be executed sequentially are identified in separate and composed into ac-
tive frontiers based on their relaxed pending period information. Our approach
is proved to be sound and complete, in the sense that it can indeed find the
necessary total orders as a witness if the given execution complies with the syn-
chronized consistency model under concern, and vice versa. As far as we know,
our approach provides the first efficient solution for the verification problem of
synchronized consistency models.

A precise implementation of our approach would require extra dedicated hard-
ware support for retrieving the time information of executions. For the sake of
generality and cost-effectiveness, we implement an over-approximation of our ap-
proach in a Memory Order Dynamic Verifier (MODV). As the main case study,
we use this tool to verify the memory model of Godson-T, a many-core archi-
tecture of industrial size. Memory accesses inside any region were assumed to be
coherent for Godson-T. MODV finds that such coherence is actually not guar-
anteed for regions with multiple locks. This ambiguity has been confirmed by
the designers of Godson-T and corrected in its programming manual based on
the results of our work. This case study shows that MODV can handle hundreds
of thousands of operations on 16 cores in minutes.

2 Related Work

We refer to [11] and [12] for a survey on memory consistency models. Synchro-
nized consistency models such as release consistency [1], entry consistency [13],
scope consistency [2] and location consistency [14] have also been uniformly de-
fined in [12] in an axiomatic style.

An empirical approach was presented in [15] to generate litmus tests automat-
ically for multi-core processors. Formal verification techniques have been applied
to verify concurrent programs for memory models. To name a few, [16] used the
explicit model checker Murϕ for operational memory models; while [17] used a
SAT solver for axiomatic memory models. [18] presented a verification approach
for store buffer safety by non-intrusively monitoring the sequential consistent
executions of concurrent programs. However, these techniques still suffer from
the scalability issue.

Dynamic analysis has gained more attention for the verification problem of
memory consistency models. It can be broadly classified into two categories:
hardware-assisted and software-based methods. In hardware-assisted methods,
the runtime information such as read mapping and write order can be directly

Efficiently and Completely Verifying Synchronized Consistency Models 267

collected through auxiliary hardware. Consequently, efficient verification algo-
rithms can be developed with the time complexity of O(n), where n is the num-
ber of the operations in the given execution [19,20,21]. However, this advantage
is often offset by extra design effort and silicon area consumption, as well as
performance loss, on the hardware level.

On the contrary, software-based methods avoid such nontrivial hardware sup-
port by deriving the runtime information from the given execution. The first
software-based method was the frontier graph method presented in [6] for the
SC memory model. Its time complexity is O(np), where p is the number of pro-
cessors. A sound but incomplete algorithm for the TSO memory model was first
proposed in [22] with the time complexity of O(n5). This algorithm was extended
in [23] based on the concept of vector clocks, with the time complexity reduced
to O(pn3). The vector clocks in [23] is computed out by splitting the given exe-
cution into virtual SC processors. Another more efficient implementation of [22]
was presented in [24] with the time complexity of O(n4). Furthermore, a back-
tracking algorithm was proposed in [25] to make the software-based methods
complete. The time complexity of this backtracking algorithm is O(np/pp×pn3).

The most closely related work to ours are [7,8], where the additional pending
period information was exploited for the sake of efficiency. But their approaches
are sound only for the SC memory model and may report false negative results
for the memory models that do not guarantee write operations to be atomic.

3 Synchronized Consistency Models

In this section, we introduce the memory orders of synchronized consistency
models [12]. Herein, we consider four types of operations: read, write, acquire
and release. Suppose a multiprocessor system consists of p ≥ 1 processors with
a shared memory. Let A,B denote a memory address, and l denote a lock.

A read operation r in the form of “ld A, i” reads the value i from the memory
address A, while a write operation w in the form of “st B, i” writes the value i
to the memory address B.1 Let add(r) and val(r) be the memory address that
r accesses and the value that r reads, respectively. Similarly, let addr(w) and
val(w) be the memory address that w accesses and the value that w writes,
respectively. Read and write operations are referred to as memory operations in
this paper.

An acquire operation sa in the form of “acq l” acquires the lock l, while a
release operation sr in the form of “rel l” releases it. Let lock(sa) and lock(sr)
be the locks that sa and sr access, respectively. Acquire and release operations
are referred to as synchronization operations, denoted s, in this paper. These
operations can be used together to implement other atomic synchronization op-
erations, such as barrier operations.

Let u, v denote an operation in general, and O be the set of all operations.
An execution of the system is a tuple σ = (σ1, . . . , σp), where σi = ui,1 . . . ui,ni

is a finite sequence of operations on the i-th processor with 1 ≤ i ≤ p, ni ≥ 1.

1 Without loss of generality, we assume that all written values are different.

268 Y. Lv et al.

On each σi, acquire and release operations should appear in pairs for the same
locks. A fragment of σi from an acquire operation sa to its accompanying release
operation sr constitutes a synchronization session, denoted S = (sa, sr). Sim-
ilarly, let lock(S) be the lock that protects the synchronization session S, i.e.,
lock(S) = lock(sa) = lock(sr).

An execution of the system is obtained typically by running a concurrent
test program on the system. In an execution σ, two operations u and v of the

same processor constitute a program order pair, denoted u
P−→ v, if u is executed

before v as dictated by the program. We use the notion of constraint function
[24] to specify the program order that must be abided under a memory model.
A constraint function cf : O×O→ Boolean of a memory model is defined such
that cf (u, v) = true if u must be executed before v under the memory model.
In weak consistency, two write operations w1 and w2 with addr(w1) = addr(w2)
must be executed in their program order. In release consistency, an acquire

operation sa must be executed before any read operation r such that sa
P−→ r;

while in scope consistency, this only happens when sa and r belong to the same
synchronization session.

With the above notations, we now define the axioms of memory orders of
synchronized consistency models. A synchronized consistency model with its
constraint function cf requires the following partial orders to be satisfied by any
execution σ of the system:

Writes-to Order. A write operation w and a read operation r of two different

processors constitute a writes-to order pair, denoted w
Wt−−→ r, if r reads the

value that w writes, i.e., val(r) = val(w).
Local Order. Two operations u and v of the same processor constitute a local

order pair, denoted u
L−→ v, if u

P−→ v and one of the following two conditions
holds:
– cf (u, v) = true if either u or v is a memory operation;
– u and v are both synchronization operations with lock(u) = lock(v).

Synchronization Order. Given two synchronization sessions S = (sa, sr) and
S′ = (s′a, s′r) with lock(S) = lock(S′), S and S′ must be mutually exclusive

to each other. This can be formally defined as (sr
Syn−−→ s′a)⊕ (s′r

Syn−−→ sa),
where ⊕ is the exclusive disjunction operator. Consequently, the synchro-
nized sessions protected by the same lock should be able to be serialized in
a total synchronization order.

Coherence Order. Given two write operations w1 and w2 with addr(w1) =
addr(w2), w1 and w2 should be able to be serialized. This can be formally

defined as (w1
Co−−→ w2)⊕ (w2

Co−−→ w1). Then, a read operation r and a write
operation w with addr(r) = addr(w) constitute an inferred coherence order

pair, denoted r
Co−−→ w, if there is a write operation w′ such that w′ Co−−→ w

and val(w′) = val(r).
This axiom of coherence order was referred to as write atomicity in [11],

coherence in [12,26,27] and store atomicity in [7]. Similarly, a total coher-
ence order should exist between the write operations that access the same

Efficiently and Completely Verifying Synchronized Consistency Models 269

memory address. In this paper, we include this axiom for the generality of
our approach. It is not supported by all synchronized consistency models.

Whenever this axiom is included, a local order pair w
L−→ w′ should hold for

any write operations w and w′ such that w
P−→ w′ and addr(w) = addr(w′).

Global Order. The transitive closure of the above orders is referred to as global
order in this paper. Two operations u and v constitute a global order pair,

denoted u
G−→ v, if (u

Wt−−→ v), or (u
L−→ v), or (u

Syn−−→ v), or (u
Co−−→ v),

or there exists an operation u′ along the execution such that u
G−→ u′ and

u′ G−→ v.

Herein, the axiomatic definitions of Local Order and Synchronization Order
are similar to those in [12]. Alternatively, synchronized consistency models can
be defined by a “view” method, where each processor has its own view of memory
orders of operations [12]. This method has been applied to characterize POWER
processors [27]. The memory orders defined in this section can be easily trans-
formed as a linear view order for each processor over all of its operations, together
with all the write and synchronization operations of the other processors. In this
case, all the processors would share the same view of inter-processor writes-to,
synchronization and coherence orders.

4 Baseline Algorithm

Given an execution of a multiprocessor system and a synchronized consistency
model with its constraint function, we aim to develop an algorithm that can
decide whether the execution complies with the synchronized consistency model.
In this section we propose a baseline algorithm for this purpose with an extended
notion of frontier.

As in [22,23,24,25], we model the given execution as a constraint graph (V,E),
where V is a finite set of nodes representing the operations in the given execution,
and E ⊆ V × V is a finite set of edges representing the ordered pairs of these
operations. For brevity, we refer to the operations and the corresponding nodes

by the same notation. Then, for two operations u and v, (u, v) ∈ E if u
G−→ v.

For the orders defined in Section 3, the corresponding edges can be catego-
rized into two classes: static and dynamic edges. The writes-to and local order
edges are static in the sense that these edges are fixed in the constraint graph
and can be determined directly by the given execution. On the contrary, the
synchronization and coherence order edges have to be constructed tentatively in
order to establish the necessary total synchronization and coherence orders.

We extend the notion of frontier [6] to present the search routine for the
dynamic edges that can fit in certain total synchronization and coherence orders.
For an execution σ = (σ1, . . . , σp), let addr(σ) and lock(σ) be the set of the
addresses and locks accessed in σ, respectively. Let σi|A be the projection of
σi on the write operations accessing the address A ∈ addr(σ), and σi|l be the
projection of σi on the synchronization operations accessing the lock l ∈ lock(σ).

270 Y. Lv et al.

Without loss of generality, let Aj and lk range over the addresses in addr(σ) and
the locks in lock(σ), respectively, with 1 ≤ j ≤ |addr(σ)| and 1 ≤ k ≤ |lock(σ)|.
Then, a frontier is a tuple f = (w11, . . . , wp|addr(σ)|, s11, . . . , sp|lock(σ)|), where
wij is a write operation on the i-th processor with addr(wij) = Aj and sik
is a synchronization operation on the i-th processor with lock(sik) = lk for
1 ≤ i ≤ p, 1 ≤ j ≤ |addr(σ)|, 1 ≤ k ≤ |lock(σ)|.

Intuitively, in a frontier f , there is one and only one write operation on each
processor that accesses each memory address, as well as one and only one syn-
chronization operation on each processor that accesses each lock. A next frontier
f ′ = f{u′/u} results from f by replacing u in f with u′ such that u and u′ belong
to the same i-th processor (for some 1 ≤ i ≤ p) and u′ is the follow-up operation
of u on σi|addr(u) (if u is a write operation) or σi|lock(u) (if u is a synchronization
operation). Then, u′ is referred to as the active operation of f ′. Especially, we
attach the beginning operation ⊥ before the first operation of each σi|Aj and
σi|lk , and the ending operation 	 after the last operation of each σi|Aj and σi|lk .
The beginning frontier (denoted f⊥) and the ending frontier (denoted f�) are
the ones consisting of p(|addr(σ)|+ |lock(σ)|) beginning and ending operations,
respectively.

The baseline algorithm is shown in Algorithm 1. In this algorithm, the static
edges are added first and then checked for a possible cycle (Lines 1-2). It can
be seen that the constraint graph is acyclic at Line 4. Then, dynamic edges are
searched for through a recursive function ExploreFrontier (Line 5).

Algorithm 1. Baseline Algorithm

Input: an execution and the constraint function of a memory model
Output: true if no cycle has been detected, and false otherwise

1 Add writes-to and local order edges;
2 if the above static edges result in a cycle then
3 return false;
4 f0 ← the beginning frontier;
5 sat← ExploreFrontier(f0);
6 return sat;

The function ExploreFrontier, shown in Function 2, explores all the possi-
ble frontiers in a depth-first manner. At Line 8, a synchronization order edge
is added tentatively between the two latest visited synchronization sessions ac-
cessing lock(u′); while at Line 12, a coherence order edge is added tentatively
between the two latest visited write operations accessing addr(u′), together with
the coherence order edges inferred from it. Then, the newly added dynamic edges
are checked for a possible cycle in the current constraint graph (Line 13). Such
a cycle would invalidate the newly added dynamic edges. Hence, if a cycle is
detected, the newly added dynamic edges are then removed (Line 14). If all the
next frontiers of f have been explored without achieving an acyclic constraint
graph, then the function ExploreFrontier returns back to its caller with the
negative result at Line 19. If this means to return to Algorithm 1, then there

Efficiently and Completely Verifying Synchronized Consistency Models 271

is no way to establish a total synchronization order and a total coherence order
over the given execution.

Function 2. ExploreFrontier(f)

Input: a frontier f
Output: true if no cycle has been detected, and false otherwise

1 if f is the ending frontier then
2 return true;
3 res← false;
4 for each next frontier f ′ of f do
5 u′ ← the active operation of f ′;
6 switch (u′) do
7 case u′ is an acquire operation

8 Add the edge sr
Syn−−→ u′, where sr is the last active release

operation with lock(sr) = lock(u′);
9 case u′ is a write operation

10 w ← the last active write operation with addr(w) = addr(u′);
11 for each r such that val(r) = val(w) do

12 Add the edges w
Co−−→ u′ and r

Co−−→ u′;
13 if FindPath(u′, u′) then
14 Remove the newly added edge(s);
15 else
16 res← ExploreFrontier(f ′);
17 if res then
18 break;

19 return res;

If the ending frontier is eventually reached, then the function ExploreFrontier
returns directly the positive result (Line 2), which will be carried over to Algo-
rithm 1 through Line 18. In this case, the necessary total synchronization and
coherence orders have just been established for the given execution.

As shown in Function 3, we implement the cycle checking function
FindPath(u, v) in a straightforward way for the baseline algorithm. It is meant to
find a path from u to v in the current constraint graph. A cycle passing through
an operation u′ can then be detected by calling this function with (u′, u′).

Function 3. FindPath(u, v)

Input: operations u and v
Output: true if there is a path from u to v, and false otherwise

1 for each v′ such that u
G−→ v′ do

2 if v′ = v or FindPath(v′, v) then
3 return true;

4 return false;

It can be seen that the baseline algorithm is sound and complete for syn-
chronized consistency models, in the sense that it returns false if and only if

272 Y. Lv et al.

the given execution does not satisfy the memory model under concern. This can
be proved in the similar way as in [25]. But the baseline algorithm would scale
poorly because of the combinatorial explosion of the number of frontiers to be
explored. Suppose the given execution σ contains n operations on p processors.
Then, the baseline algorithm needs to explore at most O(np(|addr(σ)|+|lock(σ)|))
frontiers. Each time a frontier is confronted, it takes at most O(n) time to check
if the newly added dynamic edge(s) would cause a cycle. Moreover, it takes at
most O(n2) time to check whether static edges may result in a cycle. Hence, the
worst time complexity is O(n2 + np(|addr(σ)|+|lock(σ)|)+1) in total.

5 Exploiting Time Order Information

Apparently the baseline algorithm can not deal with large executions efficiently.
In this section we first recall and relax the definition of time order for syn-
chronized consistency models. Then, we present an improvement of the baseline
algorithm by taking into account the relaxed time order of the given execution.

In a multiprocessor system with a unique global physical clock, an operation
can neither affect others before being issued (namely, entering the instruction
window of a processor); nor can be affected after having been committed (namely,
having retired from the instruction window of the processor). For an operation u,
let te(u) and tc(u) denote the enter time when u is issued and the commit time
when u is committed, respectively. Obviously, te(u) < tc(u) for any operation u.
The pending period of the operation u is the time interval [te(u), tc(u)]. Then,
two operations with disjoint pending periods can be ordered in physical time.

This can be formalized as the time order T such that u
T−→ v if tc(u) ≤ te(v),

otherwise u � T−→ v.
The notion of time order defines a natural order between the operations along

the given execution. The time order edges can be determined implicitly by check-
ing the enter and commit time of the related operations.

However, as shown in Fig. 1, the time order is not naturally compatible with
the global order in general. According to the definitions in Section 3, the two
solid edges in Fig. 1 are actually coherence order edges, which are inferred from
the fact that r22 and r12 read the initial value 0 of A and B, respectively. Then,
w11 (respectively, w21) is committed when it writes to the internal write buffer
of the processor P1 (respectively, P2). At this moment, w11 (respectively w21)
has not been performed globally. Hence, the values written by w11 and w21 are
not yet visible to all the processors.

Let tp(u) denote the performed time when the operation u is performed glob-
ally and is visible to all processors. A read operation is performed globally when
it fetches a value from the specified memory address, while a write operation is
performed globally when it stores the specified value to the main memory (or the
L2 cache for a multi-core processor). A synchronization operation is performed
globally when it gets the access to the specified lock. Hence, it can be seen that
all but non-atomic write operations would take effect before being committed.
Obviously, te(u) < tp(u) for any operation u.

Efficiently and Completely Verifying Synchronized Consistency Models 273

w11 : st A,1

r12 : ld B,0

w21 : st B,1

r22 : ld A,0

P1 P2(Initially A=B=0)

Co Co

Fig. 2. False Cycle is Eliminated

If the time order can be rectified by replac-
ing the commit time of an operation with its
performed time, the cycle in Fig. 1 can then
be eliminated, as shown in Fig. 2 (where the
dashed boxes surrounding the write operations
are enlarged to indicate their expanded pending
periods).

However, the performed time of a write op-
eration can not be observed directly from the
given execution. We choose to approximate it
based on the pending period information of
the related read operations and its follow-up
operations.

Definition 1 (Relaxed Time Order). The relaxed commit time of an oper-
ation u, denoted trc(u), is defined as follows:

– if u is a read or synchronization operation, trc(u) = tc(u);
– if u is a write operation, trc(u) = minv∈N(u) trc(v) if N(u) �= ∅, where

N(u) = {v | u Wt−−→ v, or u
L−→ v}; otherwise, trc(u) = t∞, where t∞ is a

sufficiently large time constant such that any operation in the given execution
will be performed by then.

Accordingly, the relaxed pending period of the operation u is the time interval
[te(u), trc(u)]. Any operations u and v constitute a relaxed time order pair,

denoted u
RT−−→ v, if trc(u) ≤ te(v); otherwise, u �

RT−−→ v.

The following lemma shows that the relaxed pending period of an operation u
covers its performed time, i.e., te(u) < tp(u) ≤ trc(u). The details of its proof
can be found in the technical report [28].

Lemma 1. tp(u) ≤ trc(u) for any operation u.

Moreover, it is generally accepted that a multiprocessor system should be de-
signed to be able to guarantee certain physical time constraints under its memory
model [7,8]. Definition 2 summarizes the time constraints for the implementation
mechanisms of multiprocessor systems.

Definition 2 (Preconditions of Time Order). For any operations u and v:

1. If u
P−→ v, then u is issued no later than v, i.e., te(u) ≤ te(v).

2. If u
G−→ v, then u is performed no later than v, i.e., tp(u) ≤ tp(v).

These preconditions are defined following the same principles as in the original
time order based approach [7,8]. For a read operations r and a write operation

w, if w
Wt−−→ r , then r can only fetch the value val(w) after w stores it into

the main memory. Hence, tp(w) ≤ tp(r). Similarly, synchronization operations
accessing the same locks, as well as write operations accessing the same memory

274 Y. Lv et al.

addresses, should also be managed in a serializable manner. If a multiproces-
sor system supports a synchronized consistency model, then any execution of
the system should satisfy the synchronized consistency model without violating
these preconditions. The following theorem shows that the relaxed time order is
compatible with the global order under the preconditions in Definition 2.

Theorem 1. For any operations u and v, u
G−→ v implies v �

RT−−→ u.

Proof. If u
G−→ v, then tp(u) ≤ tp(v) by Definition 2. Since tp(v) ≤ trc(v) (by

Lemma 1) and te(u) < tp(u), we have te(u) < trc(v), i.e., v �

RT−−→ u.
�
We now present the final algorithm that can take advantages of the relaxed

time order. In addition to the given execution and the constraint function of
the memory model under concern, the time information of the execution is re-
quired as part of the input to the final algorithm. This time information will
be preprocessed by the final algorithm to compute the relaxed pending periods
of the operations. Then, the final algorithm proceeds as the baseline algorithm,
except replacing the function ExploreFrontier of the baseline algorithm with
the function ExploreActiveFrontier, shown in Function 4.

Function 4. ExploreActiveFrontier(f)

Input: a frontier f
Output: true if no cycle has been detected, and false otherwise

1 if f is the ending frontier then
2 return true;
3 res← false;
4 for each next active frontier f ′ of f do
5 u′ ← the active operation of f ′;
6 switch (u′) do
7 case u′ is an acquire operation

8 Add the edge sr
Syn−−→ u′, where sr is the last active release

operation with lock(sr) = lock(u′);
9 case u′ is a write operation

10 w ← the last active write operation with addr(w) = addr(u′);
11 for each r such that val(r) = val(w) do

12 if u′ RT−−→ r then
13 return res;

14 for each r such that val(r) = val(w) and u′
�

RT−−→ r do

15 Add the edges w
Co−−→ u′ and r

Co−−→ u′;
16 if FindTimedPath(u′, u′) then
17 Remove the newly added edges;
18 else
19 res← ExploreActiveFrontier(f ′);
20 if res then
21 break;

22 return res;

Efficiently and Completely Verifying Synchronized Consistency Models 275

At Line 4 of Function 4, only active frontiers need to be explored. Given
an execution σ, the active period of a write operation w on the i-th processor
is the time interval [te(w), trc(w

′)], where w′ is the follow-up write operation
of w in σi|addr(w); while the active period of a synchronization operation s on
the i-th processor is the time interval [te(s), trc(s

′)], where s′ is the follow-up
synchronization operation of s in σi|lock(s). Then, a frontier f is active if each
operation in f is in the active period of each other operation in f . The notion of
active frontier is inspired by the notion of feasible frontier in [8]. But [8] concerns
only the SC memory model and assumes the pending periods of two consecutive
operations on the same processor are always overlapped.

In this way, the frontiers that are not active under the physical time can be
ignored without missing any chance to establish the correctness of the given

execution. At Line 13 of Function 4, a cycle is detected with r
Co−−→ u′ and

u′ RT−−→ r. This is contrary to Theorem 1, which directly means a violation of
the given memory model under the preconditions in Definition 2. At Line 16 of
Function 4, a new cycle checking function FindTimedPath is called to check for
a possible cycle in the current constraint graph under the relaxed time order.

The function FindTimedPath (u, v), shown in Function 5, only needs to ex-
amine the operations within the relaxed pending period of the operation v. For

any operation v′ such that u
G−→ v′, if it is committed before the relaxed pending

period of the operation v, then there exists a relaxed time order edge from v′ to
v, i.e., v′ RT−−→ v. Thus, a timed path u

G−→ v′ RT−−→ v is resulting from the current
constraint graph (at Line 3 of Function 5). If u = v, this path constitutes a cycle
that invalidates the newly added dynamic edges. In this way, the subsequent
global order edges from v′ need not to be further checked. For an operation v′

issued after the relaxed pending period of the operation v, the global order edge

u
G−→ v′ would be considered as a time order edge for later cycle checking.

Function 5. FindTimedPath(u, v)

Input: operations u and v
Output: true if there is a path backing to u from v, and false otherwise

1 for each v′ such that u
G−→ v′ and v �

RT−−→ v′ do
2 if v′ = v or v′ RT−−→ v or FindTimedPath(v′, v) then
3 return true;

4 return false;

Since the relaxed time order is compatible with the global order, it can be
seen that the final algorithm is sound and complete, as stated in the following
theorem. The details of its proof can be found in the technical report [28].

Theorem 2 (Soundness and Completeness of the Final Algorithm).
The final algorithm presented in this section returns false if and only if the given
execution does not satisfy the given synchronized consistency model under the
preconditions in Definition 2.

276 Y. Lv et al.

Time Complexity. Suppose in the relaxed pending period of an operation,
there are C operations running on each processor. C is usually a hardware-
dependant constant [7]. Then, at most O(nCp(|addr(σ)|+|lock(σ)|)−1) active fron-
tiers need to be explored. Similarly, when an active frontier is confronted, it
would only take O(pC) time to check for a possible cycle within the relaxed pend-
ing period of the latest active operation. So the upper bound of the time com-
plexity of active frontier traversal is O(npCp(|addr(σ)|+|lock(σ)|)). Furthermore, it
would take at most O(n2) time to relax the pending periods of write operations.
Recall that it would also take at most O(n2) time to check whether static edges
may cause a cycle. Hence, the worst time complexity of this final algorithm is
O(2n2 + npCp(|addr(σ)|+|lock(σ)|)) in total. Obviously, the final algorithm would
scale much better with large executions than the baseline algorithm.

6 Experimental Results

It can be seen that a precise implementation of the final algorithm would closely
depend on the time information of executions. However, it requires extra hard-
ware support with specific internal registers to retrieve the enter time and com-
mit time of each operation. Similar to [8], we uses the general performance
counter sampling mechanism to over-approximate the pending period informa-
tion of operations. Hence, the soundness of the final algorithm is preserved un-
der this approximation. We have developed a Memory Order Dynamic Verifier
(MODV) to implement our algorithms.2 Through combining different constraint
functions and axiomatic rules of memory orders, MODV can support various
memory models, including SC, TSO/x86 and typical synchronized consistency
models.

Performance counters have been supported by most industrial processors. In
a multiprocessor system, the values of performance counters can be scanned
out from its internal registers through certain debug interface. The pending
period information of each operation can be computed out through scanning
performance counters periodically, though the actual time order information
may be lost partially during the consecutive scans. The tighter the performance
counter scan period is, the more precise the pending period information obtained
can be. But, a tight scan period would exert too much pressure on the system
performance. The performance counter scan period is set to be 600 cycles per
scan in the following experiments.

As the main case study, we use MODV to verify the memory model of the
Godson-T many-core architecture [3]. Godson-T is a many-core processor with
64 homogeneous processing cores, each of which has a 16KB private instruction
cache and a 32KB local memory. Moreover, a dedicated synchronization manager
provides architectural support for mutual exclusion and barrier synchronization.
The memory model of Godson-T is a variant of scope consistency. Godson-
T uses a region-based cache coherence (RCC) protocol to support large-scale
parallelism. A region is exactly a synchronization session defined in this paper.

2 MODV is available at http://lcs.ios.ac.cn/~lvyi/MODV/index.html

http://lcs.ios.ac.cn/~lvyi/MODV/index.html

Efficiently and Completely Verifying Synchronized Consistency Models 277

MODV has found several bugs in the design of Godson-T. One of them is
related to Godson-T’s memory model. Memory accesses inside any region were
assumed to be coherent for Godson-T. But actually this is not guaranteed for
regions with multiple locks. MODV finds this bug through an execution shown

in Fig. 3 (with simplification for clarity). In this execution, w13
Wt−−→ r22 because

r22 reads the value of w13; Similarly, w12
Wt−−→ r33. Then, since w12

L−→ w13,

an inferred coherence order edge exists between r33 and w13, i.e., r33
Co−−→ w13.

Moreover, r22
RT−−→ r33 because trc(r22) < te(r33). Hence, the cycle w13

Wt−−→
r22

RT−−→ r33
Co−−→ w13 is detected.

P1 P2

Co

sa
11 : acq l1

w12 : st A,1

w13 : st A,2

sr
14 : rel l1

L

P3

sa
21 : acq l1

r22 : ld A,2

sr
23 : rel l1

sa
31 : acq l2

r32 : ld A,1

sr
34 : rel l2

r33 : ld A,1 RT
Wt

Wt

Wt

Fig. 3. A Bug of Godson-T

The reason of this cycle is as follows.
When a processor writes a value into
a memory address in a region, it first
stores the value into its internal cache,
and then writes through into the mem-
ory (L2 cache) immediately. If a pro-
cessor reads a memory address for the
first time in a region, it first invalidates
its cache, and then reads the value from
the memory directly. For the subsequent
read operations to the same memory ad-
dress in the same region, it will read the value from its cache. Therefore, r32 and
r33 reads the value 1 from the memory and from P3’s cache, respectively. In the
meanwhile, the values of the same memory address at the memory and at P2’s
cache are both 2. Hence, the memory system of Godson-T is not cache coherent
for regions with multiple locks.

We then illustrate the performance of our algorithms with large scale test
programs. All the experiments have been carried out on a Linux server with four
8-core 2.4GHz Intel Xeon processors and 48GB memory. To validate synchro-
nization and coherence orders together, we randomly generate concurrent test
programs with 60% load instructions and 30% store instructions for 2 different
addresses, and 10% synchronization instructions for one lock. Branch instruc-
tions are not used in these programs.

Fig. 4 shows the average performance of the baseline and final algorithms
for up to 100K operations on 2 cores. It can be seen that the final algorithm
performs much better than the baseline algorithmwhen the number of operations
increases. As a matter of fact, for no less than 4K operations on no less than 4
cores, the baseline algorithm often cannot return within 8 hours. Fig. 5 shows
the average performance of the final algorithm on 2, 4, 8 and 16 cores. It can be
seen that with the aid of the relaxed time order, the final algorithm also scales
well with the increasing numbers of cores.

The fluctuations in Fig. 5 are because the information derived from consec-
utive scans is an over-approximation of the pending periods of the operations.
The lost time order information would result in extra backtracking during the

278 Y. Lv et al.

0

50

100

150

200

250

300

350

400

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Ti
m

e
(s

ec
s)

Number of Operations

final algorithm
baseline algorithm

Fig. 4. Comparison of Results

0

25

50

75

100

125

150

175

200

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Ti
m

e
(s

ec
s)

Number of Operations

2 cores
4 cores
8 cores
16 cores

Fig. 5. Performance Test

exploration of active frontiers. This makes the time consumption of MODV fluc-
tuate, especially for more than 4 cores.

7 Conclusion

We present in this paper a relaxed time order based active frontier approach
for verifying synchronized consistency models. The original notion of frontier is
expanded with the memory addresses and the locks accessed along an execution.
Then, we integrate this extended frontier approach with the pending period
information of operations. The notion of active frontier is introduced to reduce
the number of frontiers to be explored and the number of operations to be
examined for cycle checking. In literature, the notion of time order has not yet
been widely appreciated due to its incompatibility issue. Our approach addresses
this issue by relaxing the time order of the given execution in a conservative way.
On one hand, our approach is sound in the sense that it would not produce false
negative results for memory models with non-atomic write operations. On the
other hand, our approach is also complete in the sense that it can guarantee to
detect a cycle if the given execution does not comply with the memory model
under concern.

Without loss of generality and cost-effectiveness, we have implemented an
over-approximation of our approach in a verification tool MODV. The tool pre-
serves the soundness of our approach, and can be easily customized to support
various memory models with user-defined constraint functions and user-selected
memory orders. We have used MODV to verify the memory model of the Godson-
T many-core processor, and found that Godson-T does not support the coherence
order for regions with multiple locks. This bug has been confirmed by the de-
signers of Godson-T. Its programming manual has been revised based on the
results of our work. This case study shows that our approach is very efficient in
practice for detecting subtle bugs in multiprocessor systems.

Our approach exploits the advantages of time order for verifying a wider range
of memory models. As the future work, we will investigate the memory models

Efficiently and Completely Verifying Synchronized Consistency Models 279

of the POWER and ARM architectures, where write operations are also not
guaranteed to be atomic.

References

1. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In: Baer, J., Snyder, L., Goodman, J.R. (eds.) ISCA 1990, pp. 15–26. ACM
(1990)

2. Iftode, L., Singh, J.P., Li, K.: Scope consistency: A bridge between release consis-
tency and entry consistency. Theory of Computing Systems 31(4), 451–473 (1998)

3. Fan, D., Zhang, H., Wang, D., Ye, X., Song, F., Li, G., Sun, N.: Godson-T: An
efficient many-core processor exploring thread-level parallelism. IEEE Micro 32(2),
38–47 (2012)

4. Naeem, A., Jantsch, A., Lu, Z.: Scalability analysis of memory consistency models
in NoC-based distributed shared memory SoCs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems 32(5), 760–773 (2013)

5. Hansson, A., Goossens, K., Bekooij, M., Huisken, J.: CoMPSoC: A template for
composable and predictable multi-processor system on chips. ACM Trans. Des.
Autom. Electron. Syst. 14(1), 2:1–2:24 (2009)

6. Gibbons, P.B., Korach, E.: On testing cache-coherent shared memories. In: SPAA
1994, pp. 177–188. ACM (1994)

7. Chen, Y., Lv, Y., Hu, W., Chen, T., Shen, H., Wang, P., Pan, H.: Fast complete
memory consistency verification. In: HPCA 2009, pp. 381–392. IEEE Computer
Society (2009)

8. Hu, W., Chen, Y., Chen, T., Qian, C., Li, L.: Linear time memory consistency
verification. IEEE Transactions on Computers 61(4), 502–516 (2012)

9. Sindhu, P., Frailong, J.M., Cekleov, M.: Formal specification of memory models.
In: Dubois, M., Thakkar, S. (eds.) Scalable Shared Memory Multiprocessors, US,
pp. 25–41. Springer, Heidelberg (1992)

10. Sorin, D.J., Hill, M.D., Wood, D.A.: A primer on memory consistency and cache
coherence. Synthesis Lectures on Computer Architecture 6(3), 1–212 (2011)

11. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Computer 29, 66–76 (1996)

12. Robert, C.S., Gary, J.N.: A unified theory of shared memory consistency. J.
ACM 51(5), 800–849 (2004)

13. Bershad, B., Zekauskas, M., Sawdon, W.: The Midway distributed shared memory
system. In: COMPCON 1993. Digest of Papers, pp. 528–537 (1993)

14. Gao, G., Sarkar, V.: Location consistency: a new memory model and cache consis-
tency protocol. IEEE Transactions on Computers 49(8), 798–813 (2000)

15. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: Running tests against
hardware. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605,
pp. 41–44. Springer, Heidelberg (2011)

16. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO
(relaxed memory order). In: SPAA 1995, pp. 34–41. ACM (1995)

17. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: a framework for
axiomatic and executable specifications of memory consistency models. In: IPDPS
2004, pp. 31–40. IEEE Computer Society (2004)

280 Y. Lv et al.

18. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 107–120.
Springer, Heidelberg (2008)

19. Meixner, A., Sorin, D.: Dynamic verification of memory consistency in cache-
coherent multithreaded computer architectures. IEEE Transactions on Dependable
and Secure Computing 6(1), 18–31 (2009)

20. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: Detecting atomicity violations via
access-interleaving invariants. IEEE Micro 27(1), 26–35 (2007)

21. DeOrio, A., Wagner, I., Bertacco, V.: Dacota: Post-silicon validation of the memory
subsystem in multi-core designs. In: HPCA 2009, pp. 405–416. IEEE Computer
Society (2009)

22. Hangal, S., Vahia, D., Manovit, C., Lu, J.Y.J.: TSOtool: A program for verifying
memory systems using the memory consistency model. In: ISCA 2004, pp. 114–123.
IEEE Computer Society (2004)

23. Manovit, C., Hangal, S.: Efficient algorithms for verifying memory consistency. In:
SPAA 2005, pp. 245–252. ACM (2005)

24. Roy, A., Zeisset, S., Fleckenstein, C., Huang, J.: Fast and generalized polynomial
time memory consistency verification. In: Ball, T., Jones, R.B. (eds.) CAV 2006.
LNCS, vol. 4144, pp. 503–516. Springer, Heidelberg (2006)

25. Manovit, C., Hangal, S.: Completely verifying memory consistency of test program
executions. In: HPCA 2006, pp. 166–175. IEEE Computer Society (2006)

26. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.:
The semantics of POWER and ARM multiprocessor machine code. In: Proceedings
of the 4th Workshop on Declarative Aspects of Multicore Programming, DAMP
2009, pp. 13–24. ACM (2009)

27. Mador-Haim, S., et al.: An axiomatic memory model for POWER multiprocessors.
In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 495–512.
Springer, Heidelberg (2012)

28. Lv, Y., Sun, L., Ye, X., Fan, D., Wu, P.: Efficiently and completely verifying
synchronized consistency models. Technical Report ISCAS-SKLCS-14-07, State
Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences (2014),
http://lcs.ios.ac.cn/~lvyi/MODV/files/ISCAS-SKLCS-14-07.pdf

http://lcs.ios.ac.cn/~lvyi/MODV/files/ISCAS-SKLCS-14-07.pdf

	Efficiently and Completely Verifying Synchronized Consistency Models
	Introduction
	Related Work
	Synchronized Consistency Models
	Baseline Algorithm
	Exploiting Time Order Information
	Experimental Results
	Conclusion

