
ISCAS-SKLCS-14-07 May, 2014

中国科学院软件研究所

计算机科学国家重点实验室

技术报告

Efficiently and Completely Verifying

Synchronized Consistency Models

by

 Yi Lv, Luming Sun, Xiaochun Ye, Dongrui Fan,

and Peng Wu

State key Laboratory of Computer Science

Institute of Software

Chinese Academy of Sciences
Beijing 100190. China

Copyright2014, State key Laboratory of Computer Science, Institute of Soft-

ware. All rights reserved. Reproduction of all or part of this work is permitted

for educational or research use on condition that this copyright notice is included

in any copy.

Efficiently and Completely Verifying
Synchronized Consistency Models

Yi Lv1, Luming Sun1, Xiaochun Ye2, Dongrui Fan2, and Peng Wu1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, China

2 State Key Laboratory of Computer Architecture,
Institute of Computing Technology, Chinese Academy of Sciences, China

Abstract. The physical time order information can help verifying the
memory model of a multiprocessor system rather efficiently. But we find
that this time order based approach is limited to the sequential consis-
tency model. For most relaxed memory models, an incompatible time
order may possibly result in a false negative verdict. In this paper, we
extend the original time order based approach to synchronized consis-
tency models, and propose an active frontier approach to rule out such
false verdicts based on a reasonably relaxed time order. Our approach
can be applied to most known memory models, especially to those with
non-atomic write operations, while nevertheless retaining the efficiency
of the original time order based approach. We implement our approach in
a Memory Order Dynamic Verifier (MODV). A case study with an indus-
trial Godson-T many-core processor demonstrates the effectiveness and
efficiency of our approach. Several bugs of the design of this processor
are also found by MODV.

1 Introduction

With the increasingly aggressive development of hardware optimization tech-
nologies, most multi-core processors support relaxed memory models for the sake
of high performance. Synchronized consistency models, such as release consis-
tency [1] and scope consistency [2], were usually deployed in software Distributed
Shared Memory (DSM) systems. Recently, these models have been implemented
at the hardware level by many-core systems [3] and network-on-chip based multi-
core systems [4,5]. These systems allow out-of-order executions of the memory
access operations within lock protected code sections. Such relaxation would
trigger more nondeterministic executions dramatically, hence making it more
difficult to verify these relaxed memory models. The verification problem of
synchronized consistency models has been rarely studied so far due to its high
complexity.

A common way to verify the memory model of a multiprocessor system is
by running concurrent test programs on the system and then checking whether
their executions comply with the memory model under concern. Test programs
can be pre-specified or generated randomly. A directed constraint graph can be

constructed on the memory access operations in an execution. The edges of the
graph represent the order between these operations as permitted by the memory
model under concern. In this way, a cycle in the graph would mean a violation
of the memory model under concern.

The problem of verifying an execution against a memory model is NP-
complete in general [6]. It has been shown that for a constant number of pro-
cessors, it can take just linear time (in the number of operations) to solve this
problem with the aid of the pending period information of operations [7,8]. The
pending period of an operation is the interval between the time when the oper-
ation is issued and the time when the operation is committed. Intuitively, two
operations in an execution can be ordered in the physical time if one of them is
committed before the other one is issued.

w11 : st A,1

r12 : ld B,0

w21 : st B,1

r22 : ld A,0

P1 P2(Initially A=B=0)

Fig. 1. A False Cycle

However, we find that this time or-
der based approach does not even apply
to the total store order (TSO) memory
model [9] because it implicitly assumes
that the time order along an execution is
compatible with the memory model un-
der concern. This underlying assumption
does not apply to the TSO/x86 memory
model. Fig. 1 shows a typical execution
on an x86 microprocessor [10]. In this ex-
ecution, the write operation w11 (respec-
tively, w21) writes the value 1 to the mem-
ory address A (respectively, B) on proces-
sor P1 (respectively, P2). But the read operation r12 (respectively, r22) still reads
the initial value 0 at the memory address B (respectively, A). In Fig. 1, the solid
edges represent the TSO edges, while the dashed boxes indicates the pending
periods of the operations. These dashed boxes are not overlapped, hence in-
ducing the time order edges (represented by the dashed edges in Fig. 1). The
original time order based approach in [7,8] would treat the cycle of edges in
Fig. 1 as a violation of the TSO/x86 memory model. This would also happen to
synchronized consistency models, which neither guarantee write operations to
be atomic. Therefore, the original time order based approach is limited to the
sequential consistency (SC) memory model.

In this paper, we extend the original time order based approach to synchro-
nized consistency models. Given an execution, the synchronization operations
accessing the same locks are mutually exclusive to each other under synchro-
nized consistency models. Therefore, these operations need to be executed in a
sequentially consistent way. This also applies to the write operations accessing
the same addresses. Our approach aims to find total orders between these syn-
chronization operations and between these write operations, in order to justify
the execution against the synchronized consistency model under concern. To
avoid the above false negative results by the original time order based approach,
we relax the notion of time order so that the write operations in an execution

can be ordered approximately in the time when these operations are globally
visible to all processors. In this way, the relaxed time order along the execu-
tion is compatible with the relaxed memory models that do not guarantee write
operations to be atomic.

We then propose an active frontier approach to deal with synchronized con-
sistency models based on the notion of relaxed time order. Those operations that
should be executed sequentially are identified in separate and composed into ac-
tive frontiers based on their relaxed pending period information. Our approach
is proved to be sound and complete, in the sense that it can indeed find the
necessary total orders as a witness if the given execution complies with the syn-
chronized consistency model under concern, and vice versa. As far as we know,
our approach provides the first efficient solution for the verification problem of
synchronized consistency models.

A precise implementation of our approach would require extra dedicated
hardware support for retrieving the time information of executions. For the sake
of generality and cost-effectiveness, we implement an over-approximation of our
approach in a Memory Order Dynamic Verifier (MODV). As the main case
study, we use this tool to verify the memory model of Godson-T, a many-core
architecture of industrial size. Memory accesses inside any region were assumed
to be coherent for Godson-T. MODV finds that such coherence is actually not
guaranteed for regions with multiple locks. This ambiguity has been confirmed
by the designers of Godson-T and corrected in its programming manual based on
the results of our work. This case study shows that MODV can handle hundreds
of thousands of operations on 16 cores in minutes.

2 Related Work

We refer to [11] and [12] for a survey on memory consistency models. Recently,
the memory models of the mainstream multiprocessors have been defined in an
axiomatic or operational style, such as [13] for x86/TSO, [14,15] for POWER,
and [14] for ARM. Synchronized consistency models such as release consistency
[1], entry consistency [16], scope consistency [2] and location consistency [17]
have also been uniformly defined in [12] in an axiomatic style.

An empirical approach was presented in [18] to generate litmus tests auto-
matically for multi-core processors.

Formal verification techniques have been applied to verify concurrent pro-
grams for memory models. To name a few, [19] used the explicit model checker
Murϕ for operational memory models; while [20] used a SAT solver for axiomatic
memory models. [21] presented a verification approach for store buffer safety by
non-intrusively monitoring the sequential consistent executions of concurrent
programs. However, these techniques still suffer from the scalability issue.

Dynamic analysis has gained more attention for the verification problem of
memory consistency models. It can be broadly classified into two categories:
hardware-assisted and software-based methods. In hardware-assisted methods,
the runtime information such as read mapping and write order can be directly

collected through auxiliary hardware. Consequently, efficient verification algo-
rithms can be developed with the time complexity of O(n), where n is the num-
ber of the operations in the given execution [22,23,24]. However, this advantage
is often offset by extra design effort and silicon area consumption, as well as
performance loss, on the hardware level.

On the contrary, software-based methods avoid such nontrivial hardware sup-
port by deriving the runtime information from the given execution. The first
software-based method was the frontier graph method presented in [6] for the
SC memory model. Its time complexity is O(np), where p is the number of pro-
cessors. A sound but incomplete algorithm for the TSO memory model was first
proposed in [25] with the time complexity of O(n5). This algorithm was extended
in [26] based on the concept of vector clocks, with the time complexity reduced
to O(pn3). The vector clocks in [26] is computed out by splitting the given exe-
cution into virtual SC processors. Another more efficient implementation of [25]
was presented in [27] with the time complexity of O(n4). Furthermore, a back-
tracking algorithm was proposed in [28] to make the software-based methods
complete. The time complexity of this backtracking algorithm is O(np/pp×pn3).

The most closely related work to ours are [7,8], where the additional pending
period information was exploited for the sake of efficiency. But their approaches
are sound only for the SC memory model and may report false negative results
for the memory models that do not guarantee write operations to be atomic.

3 Synchronized Consistency Models

In this section, we introduce the memory orders of synchronized consistency
models [12]. Herein, we consider four types of operations: read, write, acquire
and release. Suppose a multiprocessor system consists of p ≥ 1 processors with
a shared memory. Let A,B denote a memory address, and l denote a lock.

A read operation r in the form of “ld A, i” reads the value i from the memory
address A, while a write operation w in the form of “st B, i” writes the value i
to the memory address B.† Let add(r) and val(r) be the memory address that
r accesses and the value that r reads, respectively. Similarly, let addr(w) and
val(w) be the memory address that w accesses and the value that w writes,
respectively. Read and write operations are referred to as memory operations in
this paper.

An acquire operation sa in the form of “acq l” acquires the lock l, while a
release operation sr in the form of “rel l” releases it. Let lock(sa) and lock(sr)
be the locks that sa and sr access, respectively. Acquire and release operations
are referred to as synchronization operations, denoted s, in this paper. These
operations can be used together to implement other atomic synchronization op-
erations, such as barrier operations.

Let u, v denote an operation in general, and O be the set of all operations.
An execution of the system is a tuple σ = (σ1, . . . , σp), where σi = ui,1 . . . ui,ni

† Without loss of generality, we assume that different write operations write different
values.

is a finite sequence of operations on the i-th processor with 1 ≤ i ≤ p, ni ≥
1. On each σi, acquire and release operations should appear in pairs for the
same locks. A fragment of σi from an acquire operation sa to its accompanying
release operation sr constitutes a synchronization session, denoted S = (sa, sr).
Similarly, let lock(S) be the lock that protects the synchronization session S,
i.e., lock(S) = lock(sa) = lock(sr).

An execution of the system is obtained typically by running a concurrent
test program on the system. In an execution σ, two operations u and v of the
same processor constitute a program order pair, denoted u P−→ v, if u is executed
before v as dictated by the program. We use the notion of constraint function
[27] to specify the program order that must be abided under a memory model.
A constraint function cf : O×O→ Boolean of a memory model is defined such
that cf (u, v) = true if u must be executed before v under the memory model.
In weak consistency, two write operations w1 and w2 with addr(w1) = addr(w2)
must be executed in their program order. In release consistency, an acquire
operation sa must be executed before any read operation r such that sa P−→ r;
while in scope consistency, this only happens when sa and r belong to the same
synchronization session.

With the above notations, we now define the axioms of memory orders of
synchronized consistency models. A synchronized consistency model with its
constraint function cf requires the following partial orders to be satisfied by any
execution σ of the system:

Writes-to Order A write operation w and a read operation r of two different
processors constitute a writes-to order pair, denoted w Wt−−→ r, if r reads the
value that w writes, i.e., val(r) = val(w).

Local Order Two operations u and v of the same processor constitute a local
order pair, denoted u L−→ v, if u P−→ v and one of the following two conditions
holds:
– cf (u, v) = true if either u or v is a memory operation;
– u and v are both synchronization operations with lock(u) = lock(v).

Synchronization Order Given two synchronization sessions S = (sa, sr) and
S′ = (s′a, s′r) with lock(S) = lock(S′), S and S′ must be mutually exclusive

to each other. This can be formally defined as (sr
Syn−−→ s′a)⊕ (s′r

Syn−−→ sa),
where ⊕ is the exclusive disjunction operator. Consequently, the synchro-
nized sessions protected by the same lock should be able to be serialized in
a total synchronization order.

Coherence Order Given two write operations w1 and w2 with addr(w1) =
addr(w2), w1 and w2 should be able to be serialized. This can be formally
defined as (w1

Co−−→ w2)⊕ (w2
Co−−→ w1). Then, a read operation r and a write

operation w with addr(r) = addr(w) constitute an inferred coherence order
pair, denoted r

Co−−→ w, if there is a write operation w′ such that w′ Co−−→ w
and val(w′) = val(r).
This axiom of coherence order was referred to as write atomicity in [11],
coherence in [12,14,15] and store atomicity in [7]. Similarly, a total coher-

ence order should exist between the write operations that access the same
memory address. In this paper, we include this axiom for the generality of
our approach. It is not supported by all synchronized consistency models.
Whenever this axiom is included, a local order pair w L−→ w′ should hold for
any write operations w and w′ such that w P−→ w′ and addr(w) = addr(w′).

Global Order The transitive closure of the above orders is referred to as global
order in this paper. Two operations u and v constitute a global order pair,
denoted u

G−→ v, if (u Wt−−→ v), or (u L−→ v), or (u
Syn−−→ v), or (u Co−−→ v),

or there exists an operation u′ along the execution such that u G−→ u′ and
u′

G−→ v.

Herein, the axiomatic definitions of Local Order and Synchronization Or-
der are similar to those in [12]. Alternatively, synchronized consistency models
can be defined by a “view” method, where each processor has its own view of
memory orders of operations [12]. This method has been applied to characterize
POWER processors [15]. The memory orders defined in this section can be easily
transformed as a linear view order for each processor over all of its operations,
together with all the write and synchronization operations of the other proces-
sors. In this case, all the processors would share the same view of inter-processor
writes-to, synchronization and coherence orders.

4 Baseline Algorithm

Given an execution of a multiprocessor system and a synchronized consistency
model with its constraint function, we aim to develop an algorithm that can
decide whether the execution complies with the synchronized consistency model.
In this section we propose a baseline algorithm for this purpose with an extended
notion of frontier.

As in [25,26,27,28], we model the given execution as a constraint graph (V,E),
where V is a finite set of nodes representing the operations in the given execution,
and E ⊆ V × V is a finite set of edges representing the ordered pairs of these
operations. For brevity, we refer to the operations and the corresponding nodes
by the same notation. Then, for two operations u and v, (u, v) ∈ E if u G−→ v.

For the orders defined in Section 3, the corresponding edges can be catego-
rized into two classes: static and dynamic edges. The writes-to and local order
edges are static in the sense that these edges are fixed in the constraint graph
and can be determined directly by the given execution. On the contrary, the
synchronization and coherence order edges have to be constructed tentatively in
order to establish the necessary total synchronization and coherence orders.

We extend the notion of frontier [6] to present the search routine for the
dynamic edges that can fit in certain total synchronization and coherence orders.
For an execution σ = (σ1, . . . , σp), let addr(σ) and lock(σ) be the set of the
addresses and locks accessed in σ, respectively. Let σi|A be the projection of
σi on the write operations accessing the address A ∈ addr(σ), and σi|l be the

projection of σi on the synchronization operations accessing the lock l ∈ lock(σ).
Without loss of generality, let Aj and lk range over the addresses in addr(σ) and
the locks in lock(σ), respectively, with 1 ≤ j ≤ |addr(σ)| and 1 ≤ k ≤ |lock(σ)|.
Then, a frontier is a tuple f = (w11, . . . , wp|addr(σ)|, s11, . . . , sp|lock(σ)|), where
wij is a write operation on the i-th processor with addr(wij) = Aj and sik
is a synchronization operation on the i-th processor with lock(sik) = lk for
1 ≤ i ≤ p, 1 ≤ j ≤ |addr(σ)|, 1 ≤ k ≤ |lock(σ)|.

Intuitively, in a frontier f , there is one and only one write operation on
each processor that accesses each memory address, as well as one and only one
synchronization operation on each processor that accesses each lock. A next
frontier f ′ = f{u′/u} results from f by replacing u in f with u′ such that u
and u′ belong to the same i-th processor (for some 1 ≤ i ≤ p) and u′ is the
follow-up operation of u on σi|addr(u) (if u is a write operation) or σi|lock(u) (if
u is a synchronization operation). Then, u′ is referred to as the active operation
of f ′. Especially, we attach the beginning operation ⊥ before the first operation
of each σi|Aj

and σi|lk , and the ending operation > after the last operation of
each σi|Aj

and σi|lk . The beginning frontier (denoted f⊥) and the ending frontier
(denoted f>) are the ones consisting of p(|addr(σ)| + |lock(σ)|) beginning and
ending operations, respectively. A frontier path f0f1 · · · fm (m > 0) is a sequence
of frontiers such that f0 = f⊥ and fi+1 is a next frontier of fi for 0 ≤ i < m. A
successful frontier path is a frontier path with the ending frontier f> as its last
frontier. A frontier subpath f1 · · · fk (k > 1) is a sequence of frontiers such that
fi+1 is a next frontier of fi for 1 ≤ i < k.

The baseline algorithm is shown in Algorithm 1. In this algorithm, the static
edges are added first and then checked for a possible cycle (Lines 1-2). It can
be seen that the constraint graph is acyclic at Line 4. Then, dynamic edges are
searched for through a recursive function ExploreFrontier (Line 5).

Algorithm 1: Baseline Algorithm
Input: an execution and the constraint function of a memory model
Output: true if no cycle has been detected, and false otherwise

1 Add writes-to and local order edges;
2 if the above static edges result in a cycle then
3 return false;
4 f0 ← the beginning frontier;
5 sat← ExploreFrontier(f0);
6 return sat;

The function ExploreFrontier, shown in Function 2, explores all the pos-
sible frontiers in a depth-first manner. At Line 8, a synchronization order edge
is added tentatively between the two latest visited synchronization sessions ac-
cessing lock(u′); while at Line 12, a coherence order edge is added tentatively
between the two latest visited write operations accessing addr(u′), together with
the coherence order edges inferred from it. Then, the newly added dynamic edges
are checked for a possible cycle in the current constraint graph (Line 13). Such
a cycle would invalidate the newly added dynamic edges. Hence, if a cycle is

detected, the newly added dynamic edges are then removed (Line 14). If all the
next frontiers of f have been explored without achieving an acyclic constraint
graph, then the function ExploreFrontier returns back to its caller with the
negative result at Line 19. If this means to return to Algorithm 1, then there
is no way to establish a total synchronization order and a total coherence order
over the given execution.

If the ending frontier is eventually reached, then a successful frontier path is
found. Along this frontier path, the necessary total synchronization and coher-
ence orders have just been established for the given execution. In this case, the
function ExploreFrontier returns directly the positive result (Line 2), which
will be carried over to Algorithm 1 through Line 18.

Function 2: ExploreFrontier(f)
Input: a frontier f
Output: true if no cycle has been detected, and false otherwise

1 if f is the ending frontier then
2 return true;
3 res← false;
4 for each next frontier f ′ of f do
5 u′ ← the active operation of f ′;
6 switch (u′) do
7 case u′ is an acquire operation

8 Add the edge sr
Syn−−→ u′, where sr is the last active release

operation with lock(sr) = lock(u′);
9 case u′ is a write operation

10 Add the edge w Co−−→ u′, where w is the last active write
operation with addr(w) = addr(u′);

11 for each r such that val(r) = val(w) do

12 Add the edge r Co−−→ u′;
13 if FindPath(u′, u′) then
14 Remove the newly added edge(s);
15 else
16 res← ExploreFrontier(f ′);
17 if res then
18 break;
19 return res;

Function 3: FindPath(u, v)
Input: operations u and v
Output: true if there is a path from u to v, and false otherwise

1 for each v′ such that u G−→ v′ do
2 if v′ = v or FindPath(v′, v) then
3 return true;
4 return false;

As shown in Function 3, we implement the cycle checking function FindPath(u, v)
in a straightforward way for the baseline algorithm. It is meant to find a path
from u to v in the current constraint graph. A cycle passing through an operation
u′ can then be detected by calling this function with (u′, u′).

It can be seen that the baseline algorithm is sound and complete for syn-
chronized consistency models, in the sense that it returns false if and only if
the given execution does not satisfy the memory model under concern. This can
be proved in the similar way as in [28]. But the baseline algorithm would scale
poorly because of the combinatorial explosion of the number of frontiers to be
explored. Suppose the given execution σ contains n operations on p processors.
Then, the baseline algorithm needs to explore at most O(np(|addr(σ)|+|lock(σ)|))
frontiers. Each time a frontier is confronted, it takes at most O(n) time to check
if the newly added dynamic edge(s) would cause a cycle. Moreover, it takes at
most O(n2) time to check whether static edges may result in a cycle. Hence, the
worst time complexity is O(n2 + np(|addr(σ)|+|lock(σ)|)+1) in total.

5 Exploiting Time Order Information

Apparently the baseline algorithm can not deal with large executions efficiently.
In this section we first recall and relax the definition of time order for syn-
chronized consistency models. Then, we present an improvement of the baseline
algorithm by taking into account the relaxed time order of the given execution.

In a multiprocessor system with a unique global physical clock, an operation
can neither affect others before being issued (namely, entering the instruction
window of a processor); nor can be affected after having been committed (namely,
having retired from the instruction window of the processor). For an operation u,
let te(u) and tc(u) denote the enter time when u is issued and the commit time
when u is committed, respectively. Obviously, te(u) < tc(u) for any operation u.
The pending period of the operation u is the time interval [te(u), tc(u)]. Then,
two operations with disjoint pending periods can be ordered in physical time.
This can be formalized as the time order T such that u T−→ v if tc(u) ≤ te(v),
otherwise u 6 T−→ v.

The notion of time order defines a natural order between the operations
along the given execution. The time order edges can be determined implicitly
by checking the enter and commit time of the related operations.

However, as shown in Fig. 1, the time order is not naturally compatible with
the global order in general. According to the definitions in Section 3, the two
solid edges in Fig. 1 are actually coherence order edges, which are inferred from
the fact that r22 and r12 read the initial value 0 of A and B, respectively. Then,
w11 (respectively, w21) is committed when it writes to the internal write buffer
of the processor P1 (respectively, P2). At this moment, w11 (respectively w21)
has not been performed globally. Hence, the values written by w11 and w21 are
not yet visible to all the processors.

Let tp(u) denote the performed time when the operation u is performed glob-
ally and is visible to all processors. A read operation is performed globally when

it fetches a value from the specified memory address, while a write operation is
performed globally when it stores the specified value to the main memory (or the
L2 cache for a multi-core processor). A synchronization operation is performed
globally when it gets the access to the specified lock. Hence, it can be seen that
all but non-atomic write operations would take effect before being committed.
Obviously, te(u) < tp(u) for any operation u.

w11 : st A,1

r12 : ld B,0

w21 : st B,1

r22 : ld A,0

P1 P2(Initially A=B=0)

Co Co

Fig. 2. False Cycle is Eliminated

If the time order can be rectified by
replacing the commit time of an operation
with its performed time, the cycle in Fig. 1
can then be eliminated, as shown in Fig. 2
(where the dashed boxes surrounding the
write operations are enlarged to indicate
their expanded pending periods).

However, the performed time of a
write operation can not be observed
directly from the given execution. We
choose to approximate it based on the
pending period information of the related
read operations and its follow-up opera-
tions.

Definition 1 (Relaxed Time Order). The relaxed commit time of an oper-
ation u, denoted trc(u), is defined as follows:

– if u is a read or synchronization operation, trc(u) = tc(u);
– if u is a write operation, trc(u) = minv∈N(u) trc(v) if N(u) 6= ∅, where

N(u) = {v | u Wt−−→ v, or u L−→ v}; otherwise, trc(u) = t∞, where t∞ is a
sufficiently large time constant such that any operation in the given execution
will be performed by then.

Accordingly, the relaxed pending period of the operation u is the time interval
[te(u), trc(u)]. Any operations u and v constitute a relaxed time order pair,
denoted u RT−−→ v, if trc(u) ≤ te(v); otherwise, u XRT−−→ v.

It can be seen that the relaxed pending period of an operation u covers its
performed time, that is, te(u) < tp(u) ≤ trc(u). This is shown by Lemma 1 in
Appendix A.

Moreover, it is generally accepted that a multiprocessor system should be de-
signed to be able to guarantee certain physical time constraints under its memory
model [7,8]. Definition 2 summarizes the time constraints for the implementation
mechanisms of multiprocessor systems.

Definition 2 (Preconditions of Time Order). For any operations u and v:

1. If u P−→ v, then u is issued no later than v, i.e., te(u) ≤ te(v).
2. If u G−→ v, then u is performed no later than v, i.e., tp(u) ≤ tp(v).

These preconditions are defined following the same principles as in the origi-
nal time order based approach [7,8]. For a read operations r and a write operation
w, if w Wt−−→ r , then r can only fetch the value val(w) after w stores it into the
main memory. Hence, tp(w) ≤ tp(r). Similarly, synchronization operations ac-
cessing the same locks, as well as write operations accessing the same memory
addresses, should also be managed in a serializable manner. If a multiproces-
sor system supports a synchronized consistency model, then any execution of
the system should satisfy the synchronized consistency model without violating
these preconditions. The following theorem shows that the relaxed time order is
compatible with the global order under the preconditions in Definition 2.

Theorem 1. For any operations u and v, u G−→ v implies v XRT−−→ u.

Proof. If u G−→ v, then tp(u) ≤ tp(v) by Definition 2. Since tp(v) ≤ trc(v) (by

Lemma 1 in Appendix A) and te(u) < tp(u), we have te(u) < trc(v), i.e., v XRT−−→ u.
ut

We now present the final algorithm that can take advantages of the relaxed
time order. In addition to the given execution and the constraint function of
the memory model under concern, the time information of the execution is re-
quired as part of the input to the final algorithm. This time information will be
preprocessed by the final algorithm to compute the relaxed pending periods of
the write operations in the execution. Then, the final algorithm proceeds as the
baseline algorithm, except replacing the function ExploreFrontier of the base-
line algorithm with the function ExploreActiveFrontier, shown in Function
4.

At Line 4 of Function 4, only active frontiers need to be explored. Given
an execution σ, the active period of a write operation w on the i-th processor
is the time interval [te(w), trc(w′)], where w′ is the follow-up write operation
of w in σi|addr(w); while the active period of a synchronization operation s on
the i-th processor is the time interval [te(s), trc(s′)], where s′ is the follow-up
synchronization operation of s in σi|lock(s). Then, a frontier f is active if each
operation in f is in the active period of each other operation in f . The notion of
active frontier is inspired by the notion of feasible frontier in [8]. But [8] concerns
only the SC memory model and assumes the pending periods of two consecutive
operations on the same processor are always overlapped.

In this way, the frontiers that are not active under the physical time can
be ignored without missing any chance to establish the correctness of the given
execution. At Line 13 of Function 4, a cycle is detected with r

Co−−→ u′ and
u′

RT−−→ r. This is contrary to Theorem 1, which directly means a violation of
the given memory model under the preconditions in Definition 2. At Line 16 of

Function 4, a new cycle checking function FindTimedPath is called to check for
a possible cycle in the current constraint graph under the relaxed time order.

Function 4: ExploreActiveFrontier(f)
Input: a frontier f
Output: true if no cycle has been detected, and false otherwise

1 if f is the ending frontier then
2 return true;
3 res← false;
4 for each next active frontier f ′ of f do
5 u′ ← the active operation of f ′;
6 switch (u′) do
7 case u′ is an acquire operation

8 Add the edge sr
Syn−−→ u′, where sr is the last active release

operation with lock(sr) = lock(u′);
9 case u′ is a write operation

10 w ← the last active write operation with addr(w) = addr(u′);
11 for each r such that val(r) = val(w) do

12 if u′ RT−−→ r then
13 return res;

14 for each r such that val(r) = val(w) and u′ XRT−−→ r do

15 Add the edges w Co−−→ u′ and r
Co−−→ u′;

16 if FindTimedPath(u′, u′) then
17 Remove the newly added edges;
18 else
19 res← ExploreActiveFrontier(f ′);
20 if res then
21 break;
22 return res;

Function 5: FindTimedPath(u, v)
Input: operations u and v
Output: true if there is a path backing to u from v, and false otherwise

1 for each v′ such that u G−→ v′ and v XRT−−→ v′ do

2 if v′ = v or v′ RT−−→ v or FindTimedPath(v′, v) then
3 return true;
4 return false;

The function FindTimedPath (u, v), shown in Function 5, only needs to ex-
amine the operations within the relaxed pending period of the operation v. For
any operation v′ such that u G−→ v′, if it is committed before the relaxed pending
period of the operation v, then there exists a relaxed time order edge from v′ to
v, i.e., v′ RT−−→ v. Thus, a timed path u G−→ v′

RT−−→ v is resulting from the current
constraint graph (at Line 3 of Function 5). If u = v, this path constitutes a cycle

that invalidates the newly added dynamic edges. In this way, the subsequent
global order edges from v′ need not to be further checked. For an operation v′

issued after the relaxed pending period of the operation v, the global order edge
u

G−→ v′ would be considered as a time order edge for later cycle checking.
Since the relaxed time order is compatible with the global order, it can be seen

that this final algorithm is also sound and complete, as stated in the following
theorem. The detailed proof of this theorem can be found in Appendix B.

Theorem 2 (Soundness and Completeness of the Final Algorithm).
The final algorithm presented in this section returns false if and only if the given
execution does not satisfy the given synchronized consistency model under the
preconditions in Definition 2.

Time Complexity Suppose in the relaxed pending period of an operation, there
are C operations running on each processor. C is usually a hardware-dependant
constant [7]. Then, at most O(nCp(|addr(σ)|+|lock(σ)|)−1) active frontiers need to
be explored. Similarly, when an active frontier is confronted, it would only take
O(pC) time to check for a possible cycle within the relaxed pending period of
the latest active operation. So the upper bound of the time complexity of active
frontier traversal is O(npCp(|addr(σ)|+|lock(σ)|)). Furthermore, it would take at
most O(n2) time to relax the pending periods of write operations. Recall that
it would also take at most O(n2) time to check whether static edges may cause
a cycle. Hence, the worst time complexity of this final algorithm is O(2n2 +
npCp(|addr(σ)|+|lock(σ)|)) in total. Obviously, the final algorithm would scale much
better with large executions than the baseline algorithm.

6 Experimental Results

It can be seen that a precise implementation of the final algorithm would closely
depend on the time information of executions. However, it requires extra hard-
ware support with specific internal registers to retrieve the enter time and com-
mit time of each operation. Similar to [8], we uses the general performance
counter sampling mechanism to over-approximate the pending period informa-
tion of operations. Hence, the soundness of the final algorithm is preserved un-
der this approximation. We have developed a Memory Order Dynamic Verifier
(MODV) to implement our algorithms.‡ Through combining different constraint
functions and axiomatic rules of memory orders, MODV can support various
memory models, including SC, TSO/x86 and typical synchronized consistency
models.

Performance counters have been supported by most industrial processors.
In a multiprocessor system, the values of performance counters can be scanned
out from its internal registers through certain debug interface. The pending
period information of each operation can be computed out through scanning
performance counters periodically, though the actual time order information
‡ MODV is available at http://lcs.ios.ac.cn/~lvyi/MODV/index.html

http://lcs.ios.ac.cn/~lvyi/MODV/index.html

may be lost partially during the consecutive scans. The tighter the performance
counter scan period is, the more precise the pending period information obtained
can be. But, a tight scan period would exert too much pressure on the system
performance. The performance counter scan period is set to be 600 cycles per
scan in the following experiments.

As the main case study, we use MODV to verify the memory model of the
Godson-T many-core architecture [3]. Godson-T is a many-core processor with
64 homogeneous processing cores. Each processing core has a 16KB private in-
struction cache and a 32KB local memory. There are 16 address-interleaved L2
cache banks (256KB each) distributed along four sides of the chip. The L2 cache
is shared by all processing cores and can serve up to 64 cache accessing requests
in total. Moreover, a dedicated synchronization manager provides architectural
support for mutual exclusion and barrier synchronization. The memory model of
Godson-T is a variant of scope consistency. Godson-T uses a region-based cache
coherence (RCC) protocol to support large-scale parallelism. A region is exactly
a synchronization session defined in this paper.

MODV has found several bugs in the design of Godson-T. One of them is
related to Godson-T’s memory model. Memory accesses inside any region were
assumed to be coherent for Godson-T. But actually this is not guaranteed for
regions with multiple locks. MODV finds this bug through an execution shown
in Fig. 3 (with simplification for clarity). In this execution, w13

Wt−−→ r22 because
r22 reads the value of w13; Similarly, w12

Wt−−→ r33. Then, since w12
L−→ w13,

an inferred coherence order edge exists between r33 and w13, i.e., r33
Co−−→ w13.

Moreover, r22
RT−−→ r33 because trc(r22) < te(r33). Hence, the cycle w13

Wt−−→
r22

RT−−→ r33
Co−−→ w13 is detected.

P1 P2

Co

sa
11 : acq l1

w12 : st A,1

w13 : st A,2

sr
14 : rel l1

L

P3

sa
21 : acq l1

r22 : ld A,2

sr
23 : rel l1

sa
31 : acq l2

r32 : ld A,1

sr
34 : rel l2

r33 : ld A,1 RT
Wt

Wt

Wt

Fig. 3. A Bug of Godson-T

The reason of this cycle is as fol-
lows. When a processor writes a value
into a memory address in a region, it
first stores the value into its internal
cache, and then writes through into
the memory (L2 cache) immediately.
If a processor reads a memory address
for the first time in a region, it first
invalidates its cache, and then reads
the value from the memory directly.
For the subsequent read operations to
the same memory address in the same
region, it will read the value from its
cache. Therefore, r32 and r33 reads the
value 1 from the memory and from P3’s cache, respectively. In the meanwhile,
the values of the same memory address at the memory and at P2’s cache are
both 2. Hence, the memory system of Godson-T is not cache coherent for regions
with multiple locks.

We then illustrate the performance of our algorithms with large scale test
programs. All the experiments have been carried out on a Linux server with four
8-core 2.4GHz Intel Xeon processors and 48GB memory. To validate synchro-
nization and coherence orders together, we randomly generate concurrent test
programs with 60% load instructions and 30% store instructions for 2 different
addresses, and 10% synchronization instructions for one lock. Branch instruc-
tions are not used in these programs.

0

50

100

150

200

250

300

350

400

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Ti
m

e
 (

se
cs

)

Number of Operations

final algorithm

baseline algorithm

Fig. 4. Comparison of Results

Fig. 4 shows the average performance of the baseline and final algorithms
for up to 100K operations on 2 cores. It can be seen that the final algorithm
performs much better than the baseline algorithm when the number of operations
increases. As a matter of fact, for no less than 4K operations on no less than 4
cores, the baseline algorithm often cannot return within 8 hours. Fig. 5 shows
the average performance of the final algorithm on 2, 4, 8 and 16 cores. It can be
seen that with the aid of the relaxed time order, the final algorithm also scales
well with the increasing numbers of cores.

The fluctuations in Fig. 5 are because the information derived from consecu-
tive scans is an over-approximation of the pending periods of the operations. The
lost time order information would result in extra backtracking during the explo-
ration of active frontiers. This makes the time consumption of MODV fluctuate,
especially for more than 4 cores.

0

25

50

75

100

125

150

175

200

10K 20K 30K 40K 50K 60K 70K 80K 90K 100K

Ti
m

e
 (

se
cs

)

Number of Operations

2 cores

4 cores

8 cores

16 cores

Fig. 5. Performance Test

7 Conclusion

We present in this paper a relaxed time order based active frontier approach
for verifying synchronized consistency models. The original notion of frontier is
expanded with the memory addresses and the locks accessed along an execution.
Then, we integrate this extended frontier approach with the pending period
information of operations. The notion of active frontier is introduced to reduce
the number of frontiers to be explored and the number of operations to be
examined for cycle checking. In literature, the notion of time order has not yet
been widely appreciated due to its incompatibility issue. Our approach addresses
this issue by relaxing the time order of the given execution in a conservative way.
On one hand, our approach is sound in the sense that it would not produce false
negative results for memory models with non-atomic write operations. On the
other hand, our approach is also complete in the sense that it can guarantee to
detect a cycle if the given execution does not comply with the memory model
under concern.

Without loss of generality and cost-effectiveness, we have implemented an
over-approximation of our approach in a verification tool MODV. The tool pre-
serves the soundness of our approach, and can be easily customized to support
various memory models with user-defined constraint functions and user-selected
memory orders. We have used MODV to verify the memory model of the Godson-
T many-core processor, and found that Godson-T does not support the coherence
order for regions with multiple locks. This bug has been confirmed by the de-
signers of Godson-T. Its programming manual has been revised based on the

results of our work. This case study shows that our approach is very efficient in
practice for detecting subtle bugs in multiprocessor systems.

Our approach exploits the advantages of time order for verifying a wider
range of memory models. As the future work, we will investigate the memory
models of the POWER and ARM architectures, where write operations are also
not guaranteed to be atomic.

References

1. Gharachorloo, K., Lenoski, D., Laudon, J., Gibbons, P., Gupta, A., Hennessy, J.:
Memory consistency and event ordering in scalable shared-memory multiproces-
sors. In: Baer, J., Snyder, L., Goodman, J.R.(eds.) In: ISCA 1990. pp.15–26. ACM
(1990)

2. Iftode, L., Singh, J.P., Li, K.: Scope consistency: A bridge between release consis-
tency and entry consistency. Theory of Computing Systems 31(4) 451–473 (1998)

3. Fan, D., Zhang, H., Wang, D., Ye, X., Song, F., Li, G., Sun, N.: Godson-T: An
efficient many-core processor exploring thread-level parallelism. IEEE Micro 32(2)
38–47 (2012)

4. Naeem, A., Jantsch, A., Lu, Z.: Scalability analysis of memory consistency models
in NoC-based distributed shared memory SoCs. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 32(5) 760–773 (2013)

5. Hansson, A., Goossens, K., Bekooij, M., Huisken, J.: CoMPSoC: A template for
composable and predictable multi-processor system on chips. ACM Trans. Des.
Autom. Electron. Syst. 14(1) 2:1–2:24 (2009)

6. Gibbons, P.B., Korach, E.: On testing cache-coherent shared memories. In: SPAA
1994. pp.177–188. ACM (1994)

7. Chen, Y., Lv, Y., Hu, W., Chen, T., Shen, H., Wang, P., Pan, H.: Fast complete
memory consistency verification. In: HPCA 2009. pp.381–392. IEEE Computer
Society (2009)

8. Hu, W., Chen, Y., Chen, T., Qian, C., Li, L.: Linear time memory consistency
verification. IEEE Transactions on Computers 61(4) 502–516 (2012)

9. Sindhu, P., Frailong, J.M., Cekleov, M.: Formal specification of memory models. In:
Dubois, M., Thakkar, S., (eds.) Scalable Shared Memory Multiprocessors. pp.25–
41. Springer US (1992)

10. Sorin, D.J., Hill, M.D., Wood, D.A.: A primer on memory consistency and cache
coherence. Synthesis Lectures on Computer Architecture 6(3) 1–212 (2011)

11. Adve, S.V., Gharachorloo, K.: Shared memory consistency models: A tutorial.
IEEE Computer 29 66–76 (1996)

12. Robert, C.S., Gary, J.N.: A unified theory of shared memory consistency. J. ACM
51(5) 800–849 (2004)

13. Sewell, P., Sarkar, S., Owens, S., Nardelli, F.Z., Myreen, M.O.: x86-TSO: a rigorous
and usable programmer’s model for x86 multiprocessors. Commun. ACM 53(7)
89–97 (2010)

14. Alglave, J., Fox, A., Ishtiaq, S., Myreen, M.O., Sarkar, S., Sewell, P., Nardelli, F.Z.:
The semantics of POWER and ARM multiprocessor machine code. In: Proceedings
of the 4th Workshop on Declarative Aspects of Multicore Programming. DAMP
2009. pp.13–24. ACM (2009)

15. Mador-Haim, S., Maranget, L., Sarkar, S., Memarian, K., Alglave, J., Owens, S.,
Alur, R., Martin, M., Sewell, P., Williams, D.: An axiomatic memory model for
POWER multiprocessors. In: Madhusudan, P., Seshia, S. (eds.) CAV 2012. LNCS,
vol.7358, pp.495–512. Springer, Heidelberg (2012)

16. Bershad, B., Zekauskas, M., Sawdon, W.: The Midway distributed shared memory
system. In: COMPCON 1993, Digest of Papers. pp.528–537. (1993)

17. Gao, G., Sarkar, V.: Location consistency: a new memory model and cache con-
sistency protocol. IEEE Transactions on Computers 49(8) 798–813 (2000)

18. Alglave, J., Maranget, L., Sarkar, S., Sewell, P.: Litmus: Running tests against
hardware. In: Abdulla, P., Leino, K. (eds.) TACAS 2011. LNCS, vol.6605, pp.
41–44. Springer, Heidelberg (2011)

19. Park, S., Dill, D.L.: An executable specification, analyzer and verifier for RMO
(relaxed memory order). In: SPAA 1995. pp.34–41. ACM (1995)

20. Yang, Y., Gopalakrishnan, G., Lindstrom, G., Slind, K.: Nemos: a framework for
axiomatic and executable specifications of memory consistency models. In: IPDPS
2004. pp.31–40. IEEE Computer Society (2004)

21. Burckhardt, S., Musuvathi, M.: Effective program verification for relaxed memory
models. In: Gupta, A., Malik, S. (eds.): CAV 2008. LNCS, vol.5123, pp.107–120.
Springer, Heidelberg (2008)

22. Meixner, A., Sorin, D.: Dynamic verification of memory consistency in cache-
coherent multithreaded computer architectures. IEEE Transactions on Dependable
and Secure Computing 6(1) 18–31 (2009)

23. Lu, S., Tucek, J., Qin, F., Zhou, Y.: AVIO: Detecting atomicity violations via
access-interleaving invariants. IEEE Micro 27(1) 26–35 (2007)

24. DeOrio, A., Wagner, I., Bertacco, V.: Dacota: Post-silicon validation of the memory
subsystem in multi-core designs. In: HPCA 2009. pp.405–416. IEEE Computer
Society (2009)

25. Hangal, S., Vahia, D., Manovit, C., Lu, J.Y.J.: TSOtool: A program for verifying
memory systems using the memory consistency model. In: ISCA 2004. pp.114–123.
IEEE Computer Society (2004)

26. Manovit, C., Hangal, S.: Efficient algorithms for verifying memory consistency. In:
SPAA 2005. pp.245–252. ACM (2005)

27. Roy, A., Zeisset, S., Fleckenstein, C., Huang, J.: Fast and generalized polynomial
time memory consistency verification. In: Ball, T., Jones, R. (eds.) CAV 2006.
LNCS, vol.4144, pp.503–516. Springer, Heidelberg (2006)

28. Manovit, C., Hangal, S.: Completely verifying memory consistency of test program
executions. In: HPCA 2006. pp.166–175. IEEE Computer Society (2006)

A Compatibility of the Relaxed Time Order

Lemma 1. tp(u) ≤ trc(u) for any operation u.

Proof. For any read or synchronization operation u, tp(u) ≤ tc(u) = trc(u)
follows from the nature of the operation itself. Then, it amounts to prove that
tp(w) ≤ trc(w) for any write operation w. This can be done by induction on the

structure of the global order. Recall that N(w) = {u | w Wt−−→ u, or w L−→ u}.

Base case: When N(w) = ∅, then trc(w) = t∞, where t∞ is a large enough time
constant such that any operation in the given execution will be performed by
then. Hence tp(w) ≤ trc(w).

Induction step: Suppose N(w) 6= ∅. By Definition 2, tp(w) ≤ tp(u) for any
u ∈ N(w).

– If u is a read or synchronization operation, tp(u) ≤ trc(u) as shown above.
So, tp(w) ≤ trc(u);

– If u is a write operation, then tp(u) ≤ trc(u) by induction. So, tp(w) ≤ trc(u);

Therefore, tp(w) ≤ trc(u) for any u ∈ N(w). Hence, tp(w) ≤ minu∈N(w) trc(u),
i.e., tp(w) ≤ trc(w). ut

B Soundness and Completeness of the Final Algorithm

The definitions of active period and active frontier are recalled below.

Definition 3 (Active Period). The active period of a write or synchronization
operation u is the time interval [ts(u), tf (u)] with ts(u) = te(u) and tf (u) =
trc(u′), where u′ is the follow-up operation of u accessing the same memory
address or lock on the same processor.

For the operations u and u′ in Definition 3, their pending periods are either
overlapped or disjoint. For example, in Fig. 6, the operations u1, u2, u3, u4 ac-
cess the memory address A on the i-th processor and the operations v1, v2, v3
access the memory address B on the j-th processor. The pending periods of the
operation u1 and its follow-up operation u2 are overlapped; while the pending
periods of the operation v1 and its follow-up operation v2 are disjoint.

Definition 4 (Active Frontier). For two operations u and v, u and v are in
each other’s active period if ts(u) < tf (v) and tf (u) > ts(v). A frontier f is
active if each operation in f is in the active period of each other operation in f .
We assume that the beginning and ending frontiers are active.

An active frontier constitutes a snapshot at certain period of the given exe-
cution. When an active frontier f ′ = f{u′/u} is visited at Line 4 of the function
ExploreActiveFrontier, the operation u′ has just been globally performed, and

u2

u1

u3

v2

v3

v1
active
period
of u1

active
period
of v3

┴u

┬u

┴v

┬v

u4

active
period
of u3

active
period
of ┬v

active
period
of v1

active
period
of ┴v

Time

0

t

si|A sj|B

Fig. 6. Active Period

all the operations in f ′ are the latest globally performed operations accessing
the corresponding address or lock on each processor. Due to the unobservability
of the performed time of an operation, we use its active period to slice the given
execution.

Lemma 2. For any active frontier f , there exists an active frontier f ′, an op-
eration u in f and an operation u′ in f ′ such that f = f ′{u/u′}.

Proof. Let u be the last issued operation in f , that is, for any operation v in f ,
ts(u) ≥ ts(v). Let u′ be the precedent operation of u accessing the same address
or lock on the same processor. Hence, ts(u′) ≤ ts(u) and tf (u′) = trc(u) >
ts(u) ≥ ts(v). Since f is active, ts(u) < tf (v) for any other operation v in f .
Then, for any operation v in f except u, ts(u′) < tf (v). Therefore, for the frontier
f ′ = f{u′/u}, u′ and any other operation in f ′ are in each other’s active period.
Hence, f ′ is active, too. ut

Lemma 3. In the final algorithm, all and only the active frontiers will be visited
from the beginning frontier.

Proof. Obviously, the final algorithm traverses only the active frontiers in a
depth-first manner. By the proof of Lemma 2, any active frontier can be visited
from the beginning frontier, which the only initial active frontier. Therefore,
all the active frontier will be visited from the beginning frontier in the final
algorithm. ut

Then, we show that the final algorithm can always detect a cycle if the given
execution does not satisfy the memory model under concern.

Lemma 4. Given an active frontier f ′ = f{u′/u}. For any operation v in f ′,
u′ XRT−−→ v.

Proof. By Definition 4, ts(v) < tf (u) for any operation v in f except u. Then,
by Definition 3, te(v) = ts(v) < tf (u) = trc(u′) for any operation v in f ′. ut

Lemma 5. If a cycle C consisting of only global order edges passes through an
operation u with all the other operations v in C satisfying u XRT−−→ v, then the
function call FindTimedPath (u, u) will be able to detect a cycle.

Proof. It can be seen that the function call FindTimedPath (u, u) would traverse
the operations along the cycle C. Since u XRT−−→ v for any other operation v in C, any
operation v′ such that u RT−−→ v′ will be ignored in the function FindTimedPath.
Then, there are two cases for analysis:

1. All the other operations v in C are in the relaxed pending period of u, as
shown in Fig. 7. In this case, the cycle C can actually be detected by the
function FindTimedPath when it meets u along the cycle itself.

2. There exists an operation v along the cycle C such that v RT−−→ u, as shown in
Fig. 8. In this case, suppose v5 is the first such operation that the function
FindTimedPath would meet. Then, a cycle is immediately detected with
v5

RT−−→ u.
ut

G

G

G
G

Time

u

v1

v2

v3

v4

Fig. 7. Case 1 of Cycle Checking

G

G

G
G

RT

Time

u

v1

v2

v3

v4

v5

G

Fig. 8. Case 2 of Cycle Checking

Lemma 6. If a cycle C is resulted by adding some dynamic edge(s) in the func-
tion ExploreActiveFrontier, then a cycle will be detected.

Proof. In the case of synchronized order, only one edge sr
Syn−−→ u′ is added at

Line 8 of the function ExploreActiveFrontier, where u′ is chosen the active

operation of the current active frontier f . By Lemma 4, u′ XRT−−→ v for any other
operation v in f . If a cycle C is resulted by adding this dynamic edge, and all
nodes of C are the operations which have been explored before along the ac-
tive frontier path, including the inferred read operations. Then the cycle C will
pass through u′ with any other operation v in this cycle satisfying u′ XRT−−→ v.
This is because that the current active frontier f captures all the latest opera-
tions accessing each memory address and each lock on each processor. Then, by
Lemma 5, a related cycle will be detected by the function FindTimedPath. Oth-
erwise, there exists at least one operation v in C satisfying u′ RT−−→ v. However,
the cycle C will be eventually detected by the function FindTimedPath when
u′′ becomes the active operation for a later active frontier f ′, where the cycle C
passes through u′′ and any other operation v in this cycle satisfy u′′ XRT−−→ v.

In the case of coherence order, the cycle resulted by adding w Co−−→ u′ at Line
15 of the function ExploreActiveFrontier can be dealt with in the similar way.
Then, there are two cases left for analyzing the cycles resulted by adding edges
r
Co−−→ u′ for the read operations r such that val(r) = val(w).

1. r RT−−→ u′ or r is in the relaxed pending period of u′. In this case, by Lemma 5,
a function call FindTimedPath will detect a related cycle.

2. u′ RT−−→ r. In this case, since r Co−−→ u′, a cycle between r and u′ is then resulted
and directly detected at Line 13 of the function ExploreActiveFrontier.

ut

Finally, Theorem 2 can be proved as follows.

Theorem 2 (Soundness and Completeness of the Final Algorithm).
The final algorithm presented in this section returns false if and only if the given
execution does not satisfy the given synchronized consistency model under the
preconditions in Definition 2.

Proof. Recall that the final algorithm is the same as Algorithm 1, except that
the function call to ExploreFrontier in Algorithm 1 is replaced with the one
to ExploreActiveFrontier.

Soundness (“only if” part) Apparently the final algorithm can only return false
at Line 3 or 6 in Algorithm 1.

– If the final algorithm returns false at Line 3 in Algorithm 1, then a cycle
is detected with only the static edges. This means that the given execution
does not even comply with the static orders.

– If the final algorithm returns false at Line 6 in Algorithm 1, this negative
result comes directly from the function call to ExploreActiveFrontier at
Line 5 in Algorithm 1. This means that a series of recursive function calls to
ExploreActiveFrontier cannot make its way to the ending frontier f>. All
the active frontiers explored together cannot result in an acyclic constraint
graph on the given execution. By Lemma 6, two kinds of cycles can be
detected during the exploration:

• A cycle with only the global order edges. This means that the dynamic
order edges been added tentatively and the static order edges do not
comply with the axiom of memory orders.

• A cycle with the global order edges and exactly one relaxed time order
edge. Let u1

G−→ u2
G−→ . . .

G−→ ui
RT−−→ u1 be such a cycle detected.

Then, according to Definition 2 and Theorem 1, tp(u1) ≤ tp(u2) ≤ · · · ≤
tp(ui). Hence, te(u1) < tp(u1) ≤ trc(ui), i.e., ui XRT−−→ u1. This results in
contradiction with the preconditions in Definition 2.

As shown by Lemma 3, only the active frontiers are explored for the dynamic
orders. Hence, it comes down to the inactive frontiers to show the soundness of
the final algorithm. Since the ending frontier is active by default, any inactive
frontier can always evolve into an active frontier. Therefore, an active frontier
may evolve into another active frontier via a sequence of inactive frontiers. With-
out loss of generality, let f1f2 · · · fk−1fk (k > 1) be such a frontier subpath, where
f1 and fk are active and the other frontiers fi (1 < i < k) are inactive. Then,
each fi (1 < i < k) contains at least two operations that are not in each other’s
active period. There are two cases for analyzing these inactive frontiers.

– One of the inactive frontiers fi (1 < i < k) contains at least two operations u
and v that are not in each other’s active period but access the same memory
address or lock. Without loss of generality, assume u RT−−→ v. Suppose u is
an operation at the i − th processor and u′ is the follow-up operation of
u on σi|addr(u) or σi|lock(u). Since the active periods of u and v are not

overlapped, we have u′ RT−−→ v by Definition 3. When u′ is chosen later as an
active operation of some frontier after fi, a cycle v G−→ u′

RT−−→ v would be
expected.

– All the inactive frontiers fi (1 < i < k) contain operations that are not
in each other’s active period and all access different memory addresses or
locks. Suppose ui is the active operation of fi+1 for 1 ≤ i < k, that is,
fi+1 = fi{u′i/ui} where u′i is the follow-up operation of ui accessing the
same memory address or lock on the same processor. Then, we can get a
corresponding frontier subpath f1f

′
2 · · · f ′k−1fk such that

• v1 · · · vk−1 is a permutation of u1 · · ·uk−1, where vi is the active operation
of f ′i+1 for 1 ≤ i < k;

• te(v1) ≤ · · · ≤ te(vk−1).
It can be shown that each f ′i (1 < i < k) is also active, following a similar
proof to Lemma 2. Moreover, since these active operations all access the
different memory addresses or locks independently, both frontier subpaths
f1f2 · · · fk−1fk and f1f

′
2 · · · f ′k−1fk would induce the same ordered pairs of

operations, while the only difference is when the corresponding dynamic or-
der edges are added into the constraint graph. According to Lemma 3, the
frontier subpath f1f

′
2 · · · f ′k−1fk would be examined by the final algorithm.

Hence, the inactive frontiers considered in this case can be safely ignored

without missing any chance to establish the correctness of the given exe-
cution. Example 1 illustrates how the above transformation can be accom-
plished.

Therefore, the active frontiers are all the frontiers that need to be explored along
the given execution under the relaxed time order. It is enough to explore only
the active frontiers to show that the given execution does not comply with the
given synchronized consistency model under the preconditions in Definition 2.

Completeness (“if” part) The completeness of the final algorithm can be
proved by showing that if the final algorithm returns true, then the given exe-
cution trace complies with the synchronized consistency model under concern.

If the final algorithm returns true, the constraint graph with only static edges
is acyclic (otherwise, the final algorithm will return false at Line 3 in Algorithm
1). Then, a successful frontier path is established from the beginning frontier f⊥
to the ending frontier f>. In the function ExploreActiveFrontier, all the pos-
sible dynamic edges are added based on the total orders implied by this frontier
path. By Lemma 6, these edges cannot cause a cycle in the constraint graph (oth-
erwise, it will be detected by the final algorithm according to Lemma 6). Hence,
when the ending frontier is reached, the global order edges define a partial order
between the operations under the given synchronized consistency model. There-
fore, the given execution trace complies with the given synchronized consistency
model.

ut

Example 1. In Fig. 9, the operations u1, u2, u3 access the memory address A
on the i-th processor; the operations v1, v2, v3 access the memory address B on
the j-th processor; and the operations w1, w2, w3 access the memory address
C on the k-th processor. The intervals marked with bi-directional arrows in
Fig. 9 indicates the active periods of the corresponding operations. It can be
seen that the frontier subpath f1f2f3f4 contains only two active frontiers f1, f4.
By Definition 3, f2 = f1{w2/w1} and f3 = f2{v2/v1} are inactive. When f2 is
visited, a global order edge w G−→ w2 would be added into the constraint graph
for the latest active write operation w with addr(w) = addr(w2)(the case of read
operations is omitted for simplification). Then, when f3 is visited, a global order
edge v G−→ v2 would be added into the constraint graph for the latest active write
operation v with addr(v) = addr(v2). Finally, when f4 is visited, a global order
edge u G−→ u2 would be added into the constraint graph for the latest active write
operation u with addr(u) = addr(u2).

We can construct the corresponding active frontier subpath f1f ′2f
′
3f4, where

f ′2 and f ′3 are also active. Since te(u2) < te(v2) < te(w2), we choose u2 as the next
active operation and get f ′2 = f1{u2/u1}. At this moment, the global order edge
u

G−→ u2 would be added into the constraint graph. Then, similarly, we choose v2
as the next active operation and get f ′3 = f ′2{v2/v1}. At this moment, the global
order edge v G−→ v2 would be added into the constraint graph. Finally, we choose

u2

u1

u3

si|A

v2

v3

v1
u1

Time

w1

w2

w3

u2

v1

v2

w1

w2

f1 = (…,u1,v1,w1,…) f1 = (…,u1,v1,w1,…)
f2 = (…,u1,v1,w2,…)

f3 = (…,u1,v2,w2,…)

f4 = (…,u2,v2,w2,…)

f2' = (…,u2,v1,w1,…)

f3' = (…,u2,v2,w1,…)

f4 = (…,u2,v2,w2,…)

sj|B sk|C

Fig. 9. Transforming From Inactive Frontiers to Active Frontiers

w2 as the next active operation and regain f4 = f ′3{w2/w1}. At this moment,
the global order edge w G−→ w2 would be added into the constraint graph. Herein,
exactly the same global order edges u G−→ u2, v G−→ v2 and w

G−→ w2 would be
added into the constraint graph, but in an order different from the one with
the original frontier subpath. Thus, the constraint graph resulted by the original
frontier subpath is identical to the one resulted by the corresponding active
frontier subpath.

	SKLCS-REPORT
	MODV-report
	Efficiently and Completely Verifying Synchronized Consistency Models

