
ISCAS-SKLCS-15-11 July, 2015

中国科学院软件研究所

计算机科学国家重点实验室

技术报告

Bounded TSO-to-SC Linearizability

is Decidable

by

 Chao Wang, Yi Lv, and Peng Wu

State key Laboratory of Computer Science

Institute of Software

Chinese Academy of Sciences
Beijing 100190. China

Copyright2015, State key Laboratory of Computer Science, Institute of Software.

 All rights reserved. Reproduction of all or part of this work is

 permitted for educational or research use on condition that this

 copyright notice is included in any copy.

Bounded TSO-to-SC Linearizability is Decidable

Chao Wang, Yi Lv, and Peng Wu

State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences

Abstract. TSO-to-SC linearizability is a variant of linearizability for concurrent
libraries on the Total Store Order (TSO) memory model. In this paper we propose
the notion of k-bounded TSO-to-SC linearizability, a subclass of TSO-to-SC lin-
earizability that concerns only bounded histories. This subclass is non-trivial in
that it does not restrict the number of write, flush and cas (compare-and-swap)
actions, nor the size of a store buffer, to be bounded. We prove that the deci-
sion problem of k-bounded TSO-to-SC linearizability is decidable for a bounded
number of processes. We first reduce this decision problem to a marked violation
problem of k-bounded TSO-to-SC linearizability, where specific cas actions are
introduced to mark call and return actions. Then, we further reduce the marked
violation problem to a control state reachability problem of a lossy channel ma-
chine, which is already known to be decidable. Moreover, we prove that the deci-
sion problem of k-bounded TSO-to-SC linearizability has non-primitive recursive
complexity.

1 Introduction

Linearizability [9] has been accepted as a de facto correctness condition for a concurrent
library with respect to its sequential specification on the sequential consistency (SC)
memory model [10]. However, modern multiprocessors (e.g., x86 [12], POWER [13])
and programming languages (e.g., Java [11], C11/C++11 [3]) do not comply with the
SC memory model. Instead, they provide relaxed memory models that allow non-SC
behaviors due to hardware or compiler optimization. For instance, in a multiprocessor
system implementing the TSO memory model [12], each processor is equipped with a
FIFO store buffer. Any written action performed by a processor will append an item into
its store buffer before the item is eventually flushed into the memory. The TSO memory
model requires that all processes in a concurrent system observe the same order of write
and cas actions, which is referred to as a total store order.

Accordingly, linearizability has been extended for relaxed memory models, e.g.,
TSO-to-TSO linearizability [7] and TSO-to-SC linearizability [8] for the TSO memory
model and two variants of linearizability [3] for the C++ memory model. TSO-to-SC
linearizability has been proposed for reasoning about the correctness of a concurrent
library, which is native to the TSO memory model but is used with a concurrent program
that needs to be protected from the relaxed semantics [8].

It is well known that the linearizability of a concurrent library on the SC memo-
ry model is decidable for a bounded number of processes [1], but undecidable for an
unbounded number of processes [4]. However, to our knowledge, there are only a few

decidability results about linearizability on relaxed memory models. We have recent-
ly proved that the decision problem of TSO-to-TSO linearizability is undecidable for
a bounded number of processes [15,16]. But the decision problem of TSO-to-SC lin-
earizability still remains open for a bounded number of processes.

We propose a decidable subclass of TSO-to-SC linearizability for a bounded num-
ber of processes, which is referred to as k-bounded TSO-to-SC linearizability. It con-
cerns only k-traces, which are traces with at most k call and return actions, and hence it
defined over k-bounded histories of TSO libraries. Note that k-traces may still contain
arbitrarily many write, flush and cas actions, and store buffers may still contain arbi-
trarily many items along k-traces. Hence, the k-boundedness on the number of call and
return actions does not necessarily restrict the behaviors of a concurrent program to be
finite-state. As we prove in this paper, the decision problem of this non-trivial subclass
of TSO-to-SC linearizability is decidable for a bounded number of processes.

As in [6,15,16], we first show that history inclusion is an equivalent characterization
of k-bounded TSO-to-SC linearizability. Then, as inspired by [2], we consider to reduce
the history inclusion problem to a control state reachability problem of a lossy channel
machine. Thus, the decidability of k-bounded TSO-to-SC linearizability follows from
the fact that a control state reachability problem of a lossy channel machine is decid-
able [2]. However, the reduction method in [2] does not directly apply to linearizability
of concurrent libraries. This is because that the call and return actions concerned by
linearizability are beyond the scope of the TSO memory model, while the reduction
method in [2] ensures only the total store orders among write/cas actions.

We extend the reduction method in [2] to effectively handle call and return actions.
Suppose a concurrent system that contains n client processes running independently
and interacting with a shared library. We introduce a new process that keeps launching
the specific cas actions nondeterministically. These specific cas actions are used to mark
the possible occurrences of the call and return actions along a trace of the concurrent
system. Then, a correctly marked trace of this new process replicates the history of
the trace of the concurrent system with only specific cas actions. Correspondingly, a
counterexample trace of TSO-to-SC linearizability in the original concurrent system
(of n processes) can be witnessed by a marked trace of the extended concurrent system
(of n+1 processes) with the call and return actions bypassed. This marked trace is called
a marked violation of TSO-to-SC linearizability. In this way, the complement problem
of TSO-to-SC linearizability on the original concurrent system can be characterized
by checking whether there exists a marked violation of TSO-to-SC linearizability (a
marked violation problem), to which the reduction method in [2] can be applied.

A lossy channel machine Mk
i (1≤ i≤ n+1) is then constructed such that its traces

contain at most k call and return actions and can simulate the k-bounded behaviors
of the extended concurrent system from the perspective of each process Pi. Each Mk

i

contains only one channel to store the pending written items according to the total s-
tore orders under the original concurrent system. Thus, a marked violation problem
of k-bounded TSO-to-SC linearizability can be reduced to a control state reachability
problem between a pair of specific configurations of the product of M k-w

1 , . . . ,M k-w
n+1.

Each M k-w
i is resulted from Mk

i by replacing its all but write and cas transitions with
internal transitions. The reduction is achieved by requiring that each written item in a

channel contains a run-time snapshot of the memory, while always keeping bounded the
amount of information that needs to be stored as in a perfect channel. With these spe-
cialized lossy channels, missing some intermediate channel contents would not break
the reachability between control states under perfect channels.

Furthermore, we can show that the decision problem of k-bounded TSO-to-SC lin-
earizability has non-primitive recursive complexity. This can be proved by a reduction
from a reachability problem of a lossy single-channel machine, which is known to have
non-primitive recursive complexity [14]. Besides, the decision problem of TSO-to-SC
linearizability can be reduced to a control state reachability problem of a perfect channel
machine in a similar way. This opens a potential way towards determining the decid-
ability of TSO-to-SC linearizability itself.

Related work Efforts have been devoted on verification of linearizability on the SC
memory model [1,4,5,6]. A similar reduction method was applied to verify the lineariz-
ability of certain concurrent data structures for an unbounded number of processes on
the SC memory model [5]. However, relaxed memory models remain a great challenge
for linearizability verification. Our previous work [15,16] revealed the first undecidabil-
ity result on TSO-to-TSO linearizability for a bounded number of processes. In [15,16],
the trace inclusion problem of a classic-lossy single-channel system, which has been
known to be undecidable, was reduced to the TSO-to-TSO linearizability problem. The
closest work to ours is [2] by Atig et al., where a state reachability problem of a con-
current system is reduced to a control state reachability problem of a lossy channel
machine.

2 Concurrent Systems

In this section, we first present the notations of libraries, client programs, most general
clients and concurrent systems. We then introduce their operational semantics on the
TSO and SC memory models.

2.1 Notations

In general, a finite sequence on an alphabet Σ is denoted l = α1 · α2 · . . . · αk, where ·
is the concatenation symbol and αi ∈ Σ for each 1≤ i≤ k. Let |l| and l(i) denote the
length and the i-th element of l, respectively, i.e., |l| = k and l(i) = αi for 1≤ i≤ k.
Let l ↑Σ denote the projection of l to Σ. Given a function f , let f [x : y] be the function
that is the same as f everywhere, except for x, where it has the value y. Let denote an
item, of which the value is irrelevant, and ε the empty word.

A labelled transition system (LTS) is a tuple A = (Q,Σ,→, q0), where Q is a set
of states (a.k.a. configurations),Σ is an alphabet of transition labels,→⊆ Q×Σ×Q is
a transition relation and q0 is the initial state. A path of A is a finite transition sequence

q0
β1−→ q1

β2−→ . . .
βk−→ qk with k≥0. A trace ofA is a finite sequence t = β1 ·β2 ·. . .·βk

with k≥0 if there exists a path q0
β1−→ q1

β2−→ . . .
βk−→ qk of A.

2.2 Libraries and Client Programs

A library implementing a concurrent data structure provides a number of methods for
accessing the data structure. A client program is a program that interacts with libraries.
Libraries and client programs may contain private memory locations for their own uses.
For simplicity of notations, we assume that a method has just one argument and one
return value (if it returns).

Given a finite set X of memory locations, a finite set M of method names and a
finite data domain D, the set PCom of primitive commands has the forms below:

PCom ::= τ | read(x, a) | write(x, a) | cas suc(x, a, b) | cas fail(x, a, b) | call(m, a)

where a, b ∈ D, x ∈ X and m ∈ M. Herein, τ is the internal command. A cas
(compare-and-swap) command compresses a read and a write commands into a single
one, which is meant to be executed atomically. A successful cas command cas suc(x, a,
b) changes the value of x from a to b, while a failed cas command cas fail(x, a, b) does
nothing and happens only when the value of x is not a.

A library L can then be defined as a tuple L = (XL,ML,DL, QL,→L), where XL,
ML and DL are a finite memory location set, a finite method name set and a finite data
domain of L respectively;QL =

⋃
m∈ML

Qm is a finite set of program positions, and it
is the union of disjoint sets Qm of program positions of each method m ∈ ML;→L=⋃
m∈ML

→m is the union of disjoint transition relations of each methodm ∈ML. Let
PComL be the set of primitive commands (except call commands) upon XL,ML and
DL. Then, for each m ∈ ML, →m⊆ Qm × PComL × Qm; while for each a ∈ DL
there exists an initial state is(m,a) and a final state fs(m,a) inQm such that there are neither
incoming transitions to is(m,a) nor outgoing transitions from fs(m,a) in→m. Similarly, a
client program C can then be defined as a tuple C = (XC ,MC ,DC , QC ,→C) where XC ,
MC , DC and QC are a finite memory location set, a finite method name set and a final
data domain of C and a finite program position set, respectively. Let PComC be the set
of primitive commands upon XC ,MC and DC . Then, →C⊆ QC × PComC × QC is a
transition relation of C.

A most general client is a special client program that is designed to exhibit al-
l the possible behaviors of a library. A most general client MGC can be formally
defined as a client (XC ,MC ,DC , {qc},→mgc), where qc is a program position and
→mgc= {(qc, call(m, a), qc)|m ∈ MC , a ∈ DC} is a transition relation. Intuitively,
a most general client simply repeatedly calls an arbitrary method with an arbitrary ar-
gument for arbitrarily many times. It does not access any memory location in XC , so
XC does not influence the behavior of a most general client.

2.3 Operational Semantics

Suppose a concurrent system C(L) that consists of n processes, each of which runs a
client program Ci = (XC ,M,DC , QCi ,→Ci) on a separate processor for 1≤ i≤n, and
all the client programs interact with the same library L = (XL,M,DL, QL,→L). The
library and client programs have disjoint memory locations, i.e.,XL∩XC = ∅. The oper-
ational semantics of the concurrent system C(L) on the TSO memory model is defined

as an LTS JC(L), nKtso= (Conftso, Σtso, →tso, InitConftso), where Conftso, Σtso,→tso,
InitConftso are defined as follows.

Each configuration of Conftso is a tuple (p, d, u), where

- p : {1, . . . , n} → QCi ∪ (QL × QCi) represents control states of each process.
p(i) = qc ∈ QCi represents that process i is executing client position qc, while
p(i) = (ql, qc) represents that process i is executing library position ql and after
this method returns it will turn to execute client position qc;

- d : (XL → DL) ∪ (XC → DC) is the valuation of library and client memory
locations;

- u represents contents of store buffers for each process. It takes a process id i ∈
{1, . . . , n} and returns a sequence in {(x, a)|(x ∈ XL ∧ a ∈ DL)∨ (x ∈ XC ∧ a ∈
DC)}∗.
Σtso is a set of actions in the following forms:

Σtso ::= τ(i) | read(i, x, a) | write(i, x, a) | cas(i, x, a, b) |
flush(i, x, a) | call(i,m, a) | return(i,m, a)

where 1≤ i≤n,m ∈M and either x ∈ XL and a, b ∈ DL, or x ∈ XC and a, b ∈ DC .
The relation T is used to define the transitions occur from library or client programs

and is defined as T = {((ql1, qcl), α, (ql2, qcl))|ql1
α−→Lql2} ∪ {(qc1, α, qc2)|∃1 ≤ i ≤ n,

qc1
α−→Ciqc2}. The transition relation →tso is the least relation satisfying the transition

rules shown in Fig. 1 for each 1 ≤ i ≤ n.

- Tau rule: A τ transition only influences control state of one process.
- Read rule: A function lookup(u, d, i, x) is used to search for the latest value of x

from its processor-local store buffer or the main memory, i.e.,

lookup(u,d,i,x) =
{
a if u(i) ↑Σx

= (x, a) · l, for some l ∈ Σ∗x
d(x) otherwise

where Σx = {(x, a)|x ∈ XL ∧ a ∈ DL)∨ (x ∈ XC ∧ a ∈ DC} is the set of pending
write actions for x.
Read action will takes the latest value of x from processor-local store buffer if
possible, otherwise, it looks up the value in memory.

- Write rule: A write action will insert a pair of location and value to the tail of its
processor-local store buffer.

- Cas-Suc and Cas-Fail rules: A cas command can only be executed when the pro-
cessor-local store buffer is empty and thus forces current process to clear its store
buffer in advance. A successful cas command will change the value of memory
location x immediately while a failed cas command does not change memory.

- Flush rule: The memory system may decide to flush the entry at the head of pro-
cessor-local store buffer to memory at any time.

- Call and Return rules: To deal with call(,m, a) command, current process starts to
execute the initial position of method m and parameter a. When the process comes
to final position of methodm and parameter a, it can launch a return(,m, a) action
and start to execute the most general client.

T (p(i), c, q′i,), c = (τ)

(p, d, u)
τ(i)−−→tso(p[i : q

′
i], d, u)

Tau

T (p(i), c, q′i,), c = (read(x, a)), lookup(u, d, i, x) = a

(p, d, u)
read(i,x,a)−−−−−−→tso(p[i : q

′
i], d, u])

Read

T (p(i), c, q′i,), c = (write(x, a)), u(i) = l

(p, d, u)
write(i,x,a)−−−−−−→tso(p[i : q

′
i], d, u[i : (x, a) · l])

Write

T (p(i), c, q′i,), c = (cas suc(x, a, b)), d(x) = a, u(i) = ε

(p, d, u)
cas(i,x,a,b)−−−−−−−→tso(p[i : q

′
i], d[x : b], u)

Cas-Suc

T (p(i), c, q′i,), c = (cas fail(x, a, b)), d(x) 6= a, u(i) = ε

(p, d, u)
cas(i,x,a,b)−−−−−−−→tso(p[i : q

′
i], d, u)

Cas-Fail

u(i) = l · (x, a), (x ∈ XL ∧ a ∈ DL) ∨ (x ∈ XC ∧ a ∈ DC)

(p, d, u)
flush(i,x,a)−−−−−−→tso(p, d[x : a], u[i : l])

Flush

p(i) = qc1, qc1
call(m,a)−−−−−→Ciqc2

(p, d, u)
call(i,m,a)−−−−−−→tso(p[i : (is(m,a), qc2)], d, u)

Call

p(i) = (fs(m,a), qcl)

(p, d, u)
return(i,m,a)−−−−−−−→tso(p[i : qcl], d, u)

Return

Fig. 1. Transition Relation→tso

The initial configuration InitConftso ∈ Conftso is a tuple (pinit, dinit, ε
n), where εn

initializes each process with an empty buffer. If each client programCi is a most general
client, JC(L), nKtso can be abbreviated as JL, nKtso.

According to [8], to give the semantics on SC, we do not need to define another
abstract machine; instead, we identify the SC executions of a concurrent system with
those of the TSO operational semantics that flush all write actions immediately. For-
mally, the operational semantics of the concurrent system C(L) for n processes on SC
memory model is defined as an LTS JC(L), nKsc = (Confsc, Σsc,→sc, InitConfsc), where
InitConfsc = InitConftso and Confsc, Σsc and→sc are defined as follows.

- Confsc contains all the configurations of Conftso that has a empty buffer for each
process.

- Σsc is generated from Σtso by discarding the flush actions.
- →sc is generated from →tso by discarding the Flush rule and changing the Write

rule to Write-SC rule as follows:

T (p(i), c, q′i), c = write(x, a)

(p, d, u)
write(i,x,a)−−−−−−→sc(p[i : q

′
i], d[x : a], u)

Write-SC

WhenC maps each process id to a most general client, JC(L), nKsc can be shortened
as JL, nKsc.

3 Correctness Conditions and Equivalent Characterization

The behavior of a library is typically represented by histories of interactions between
the library and the client programs calling it (through call and return actions). Let
Σcal and Σret represent the sets of all call and return actions, respectively. A finite se-
quence h ∈ (Σcal∪Σret)

∗ is a history of an LTS A if there exists a trace t of A such
that t ↑(Σcal∪Σret)= h. Let history(t) be the history along trace t, i.e., history(t) =
t ↑(Σcal∪Σret), and history(A) the set of all histories of A. Moreover, let h|i denote the
projection of history h to the call and return actions of process Pi.

TSO-to-SC linearizability is a variant of linearizability on the TSO memory model.
It is used to reason about the interoperability between a high-level data race free client
and a low-level library native to the TSO memory model. Hence, it concerns only call
and return actions.

Definition 1 (TSO-to-SC linearizability [8]). For histories h1, h2 ∈ (Σcal ∪Σret)
∗, h1

is linearizable to h2, if

- for each process Pi, h1|i = h2|i.
- there is a bijection π : {1, . . . , |h1|} → {1, . . . , |h2|} such that for any 1≤ i≤|h1|,
h1(i) = h2(π(i)) and for any 1≤ i<j≤|h1|, if h1(i) ∈ Σret ∧ h1(j) ∈ Σcal, then
π(i)<π(j).

For two libraries L and L′, L′ TSO-to-SC linearizes L for n processes, if for any
history h1 ∈ history(JL, nKtso), there exists history h2 ∈ history(JL′, nKsc), such that
h1 is linearizable to h2.

The following lemma shows that history inclusion is an equivalent characterization
of TSO-to-SC linearizability.

Lemma 1. Library L′ TSO-to-SC linearizes library L for n processes if and only if
history(JL, nKtso) ⊆ history(JL′, nKsc).

For an LTS A, a k-trace t ∈ trace(A) is a trace that contains at most k call and
return actions. Let k-trace(A) denote all the k-traces of A.

Definition 2 (k-bounded TSO-to-SC linearizability). LibraryL′ k-bounded TSO-to-SC
linearizes library L for n processes, if for each k-trace t ∈ k-trace(JL, nKtso), there ex-
ists a history h ∈ history(JL′, nKsc), such that history(t) is linearizable to h.

For two libraries L, L′ and n, k ≥ 1, the decision problem of (k-bounded) TSO-to-
SC linearizability is to determine whether L′ (k-bounded) TSO-to-SC linearizes L for
n processes.

4 Perfect/Lossy Channel Machines

A classical channel machine is a finite control machine equipped with channels of un-
bounded sizes. It can perform send and receive operations on its channels. A lossy chan-
nel machine is a channel machine where arbitrary many items in its channels may be
lost nondeterministically at any time without any notification. In this section we sketch
our definition of (S,K)-channel machines, which slightly differs from the definition of
channel machines in [2].

The channel machines defined in [2] extend classical channel machines in the fol-
lowing aspects:

- Each transition is guarded by a condition about whether the content of a channel is
in a regular language.

- A substitution to the content of a channel may be performed before a send operation
on the channel.

- A set of specific symbols, called “strong symbols”, are introduced that are not al-
lowed to be lost, but the number of strong symbols in a channel is always bounded.

In this paper, we extend the channel machines defined in [2] with multiple sets of
strong symbols, while the number of strong symbols in a channel from the same strong
symbol set is separately bounded.

Let CH be the finite set of channel names and ΣCH be a finite alphabet of channel
contents. The content of a channel is a finite sequence over ΣCH. For a given channel
c ∈ CH, a regular guard on channel c is a constraint of the form c ∈ L, where L ⊆ Σ∗CH
is a regular set of sequences. For a sequence u ∈ Σ∗CH we write u |= c ∈ L if l ∈ L.
For notational convenience, we write a ∈ c instead of c ∈ Σ∗CH · a · Σ∗CH, c = ε
instead of c ∈ {ε} and c : Σ′ instead of c ∈ Σ′∗ for any subset Σ′ of ΣCH. A regular
guard over CH associates a regular guard for each channel of CH. Let Guard(CH) be
the set of regular guards over CH. The definition of |= can be extended as follows: for
g ∈ Guard(CH) and u ∈ CH → Σ∗CH, we write u |= g, if u(c) |= g(c) for each
c ∈ CH.

Given a channel c ∈ CH, a channel operation on c is either a nop (no operation), or
an c?a operation for some a ∈ ΣCH (receive operation), or an c[σ]!a operation (send
operation) where σ is a substitution over ΣCH and a is a element of ΣCH. We write c!a
instead of c[σ]!a when σ is the identity substitution. For every u, u′ ∈ Σ∗CH, we have
JnopK(u, u′) if u = u′, Jc[σ]!aK(u, u′) if u′ = a · u[σ], Jc?aK(u, u′) if u = u′ · a. A
channel operation over CH is a mapping that associates with each channel c a channel
operation on c. Let Op(CH) be the set of channel operations over CH. The definition of
JopK can be extended as follows: for op ∈ Op(CH) and u, u′ ∈ CH → Σ∗CH, we have
JopK(u, u′), if Jop(c)K(u(c), u′(c)) holds for each c ∈ CH.

A channel machine is formally defined as a tupleM = (Q, CH, ΣCH, Λ,∆), where
(1) Q is a finite set of states, (2) CH is a finite set of channel names, (3) ΣCH is an
alphabet for channel contents, (4) Λ is a finite set of transition labels, and (5) ∆ ⊆
Q× (Λ ∪ {ε})× Guard(CH)× Op(CH)×Q is a finite set of transitions.

We say a sequence l1 = a1 ·. . .·au is a subword of another sequence l2 = b1 ·. . .·bv ,
if there exists i1 < . . . < iu, such that aj = bij for each j. Let S = 〈s1, . . . , sm〉 be

a vector of sets with si ⊆ ΣCH for 1≤ i≤m, and K = 〈k1, . . . , km〉 be a vector of
nature numbers or ∞. S is the sets of strong symbols that must be kept in transition,
and K is the bounds for each set of strong symbols in S. For sequences u, v ∈ Σ∗CH,
u �KS v holds if (1) u is a subword of v, (2) for each i, u ↑si= v ↑si and (3) for each j,
|u ↑ sj | ≤ kj . This relation can be extended as follows: For every u, v ∈ CH → Σ∗CH,
u �KS v holds, if u(c) �KS v(c) holds for each c ∈ CH.

A (S,K)-channel machine (abbreviated as (S,K)-CM) is a channel machine M =
(Q, CH, ΣCH, Λ,∆) with the strong symbol restriction (S,K). Its semantics is de-
fined as an LTS (ConfM , Λ,→M , initConfM). A configuration of ConfM is a pair (q, u)
where q ∈ Q, u : CH → Σ∗CH, and it satisfies the strong symbol restriction(S,K),
i.e., for each c and i, |u(c) ↑ si| ≤ ki. The transition relation →M is defined as
follows: given q, q′ ∈ Q and u, u′ ∈ CH → Σ∗CH, (q, u) α−→M (q′, u′), if there
exists g and op, such that (q, α, g, op, q′) ∈ ∆, u |= g and JopK(u, u′). Similarly, a
(S,K)-lossy channel machine (abbreviated as (S,K)-LCM) is a channel machine M with
lossy channels and the strong symbol restriction (S,K). Its semantics is defined as an
LTS (ConfM , Λ,→(M,S,K), initConfM). The transition relation→(M,S,K) is defined as fol-
lows: (q, u) α−→(M,S,K) (q

′, u′), if there exists v, v′ ∈ CH → Σ∗CH, such that v �KS u,
(q, v)

α−→M (q′, v′) and u′ �KS v′. Let→∗M and→∗(M,S,K) be the transition closure of
→M and→(M,S,K).

Given a channel machine M , we say that (q0, u0) ·α1 · (q1, u1) · . . . ·αw · (qw, uw)
is a finite run of M from (q, u) to (q′, u′), if (1) (q0, u0) = (q, u), (2) (qi, ui)

αi+1−→M

(qi+1, ui+1) for each i and (3) (qw, uw) = (q′, u′). We say that l is a trace of a finite
run ρ if l = ρ ↑Λ. Given q, q′ ∈ Q, let TS,Kq,q′ (M) denote the set of traces of all finite
runs of a (S,K)-CM M from the configuration (q, ε|n|) to the configuration (q′, ε|n|).
For (S,K)− LCM M , the notations of finite run and its trace are defined as in the non-
lossy case by replacing →M with →(M,S,K). Let LTS,Kq,q′ (M) denote the set of traces
of all finite runs of (S,K)-LCM M from the configuration (q, ε|n|) to the configuration
(q′, ε|n|).

For channel machinesM1 = (Q1, CH1, ΣCH, Λ,∆1) andM2 = (Q2, CH2, ΣCH, Λ,
∆2) such that CH1 ∩ CH2 = ∅, the product of M1 and M2 is also a channel machine
M1 ⊗M2 = (Q1 ×Q2, CH1 ∪ CH2, ΣCH, Λ,∆12), where ∆12 is defined by synchro-
nizing transitions sharing the same label in Λ under the conjunction of their guards, and
letting other transitions asynchronous. The following lemma holds as in [2].

Lemma 2. Given channel machines M1 = (Q1, CH1, ΣCH, Λ,∆1) and M2 = (Q2,
CH2, ΣCH, Λ,∆2), let q1, q′1 ∈ Q1, q2, q′2 ∈ Q2, q = (q1, q2), q′ = (q′1, q

′
2), then

LTS,Kq,q′ (M1⊗M2) = LTS,Kq1,q′1(M1)∩LTS,Kq2,q′2(M2) and TS,Kq,q′ (M1⊗M2) = TS,Kq1,q′1
(M1)∩

TS,Kq2,q′2
(M2).

Given a (S,K)-CM (respectively, (S,K)-LCM) M and two states q, q′ ∈ Q, a
control state reachability problem ofM is to determine whether TS,Kq,q′ (M) 6= ∅ (respec-
tively, LTS,Kq,q′ (M) 6= ∅). As in [2], it can be shown that the control state reachability
problem is decidable for (S,K)-LCM.

5 Verification of k-Bounded TSO-to-SC Linearizability

In this section we show the proof idea about the decidability of k-bounded TSO-to-
SC linearizability for a bounded number of processes. The main theme is to reduce its
complement problem to a control state reachability problem of a (S,K)-lossy channel
machine. In the same way, we can reduce the decision problem of TSO-to-SC lineariz-
ability to a control state reachability problem of a (S,K)-channel machine.

5.1 Marked Violation Problem of (k-Bounded) TSO-to-SC Linearizability

Recall that call and return actions cannot be handled directly by the reduction method
in [2]. We introduce a fresh new process to captures the call and return actions, which
occur along the traces (or k-traces) of JL, nKtso by the specific cas actions. In this way,
the behaviors of a concurrent system JL, nKtso can be characterized exactly by the ex-
tended concurrent system JClt(L), n+1Ktso (defined below), with the benefit that the call
and return actions need not be involved for reduction later.

Let markedVal(M,DL, n) = {call(i,m,a), return(i,m,a)|1 ≤ i ≤ n,m ∈ M, a ∈
DL} denote the set of values that are used by the specific cas actions to mark the cal-
l and return actions in JL, nKtso. Then, the concurrent system Clt(L) consists of n+1
processes Pi (1 ≤ i ≤ n+1). For each 1 ≤ i ≤ n, process Pi runs the most gener-
al client program ({xwit},M,DL, {qc},→mgc). The process Pn+1 runs the client pro-
gram Cmarked = ({xwit},M,markedVal(M,DL, n), {qwit},→wit), where xwit /∈ XL is
the memory location used by the specific cas actions;→wit= {(qwit, cas suc(xwit, , a),
qwit)| a ∈ markedVal(M,DL, n)} is the transition relation of Cmarked.

A marked violation is a trace of JClt(L), n+1Ktso that can witness the violation of
TSO-to-SC linearizability. It correctly captures the corresponding call and return ac-
tions, stops immediately when a non-linearizable action takes place and flushes all the
stored items so far. Formally, a trace t ∈ trace(JClt(L), n+1Ktso) is a marked violation
of TSO-to-SC linearizability between libraries L and L′ for n processes, if

- The specific cas actions mark correctly the call and return actions, i.e., for each
1≤ i≤|t|−1, m ∈M and a ∈ DL, the following conditions hold:
1. t(i) = cas(n+1, xwit, call(i,m, a)) if and only if t(i+1) = call(i,m, a).
2. t(i) = cas(n+1, xwit, return(i,m, a)) if and only if t(i+1) = return(i,m, a).

- history(t) /∈ history(JL′, nKsc), and for each prefix t′ of t such that history(t) 6=
history(t′), history(t′) ∈ history(JL′, nKsc).

- t = t1 · t2 such that t1 ends with a call or return action, and t2 is a sequence of flush
actions. Moreover, all the write actions in t have been flushed.

Furthermore, the trace t is a marked violation of k-bounded TSO-to-SC lineariz-
ability between libraries L and L′ for n processes, if t is a k-trace. For two libraries L,
L′, and n, k≥ 1, a (k-bounded) TSO-to-SC marked violation problem is to determine
whether there is a marked violation of (k-bounded) TSO-to-SC linearizability between
libraries L and L′ for n processes. The following lemma relates a (k-bounded) TSO-to-
SC marked violation problem with the complement problem of (k-bounded) TSO-to-SC
linearizability.

Lemma 3. L′ does not (k-bounded) TSO-to-SC linearizes L for n processes, if and
only if there is a marked violation of (k-bounded) TSO-to-SC linearizability between
libraries L and L′ for n processes.

The specific cas actions are launched nondeterministically in JClt(L), n+1Ktso and
hence may result in many incorrectly guessed traces that do not occur in JL, nKtso.
However, the channel machines Mk

i we constructed can guarantee that the incorrectly
guessed traces will be safely excluded during the verification procedure.

5.2 Simulating JClt(L), n+1Ktso with A Channel Machine

In the rest of this section, we show that for libraries L and L′, how the k-bounded
behaviors of the concurrent system JClt(L), n+1Ktso can be further characterized by a
(S,K)-channel machine. As in [2], this amounts to construct a channel machines Mk

i

corresponding to each process Pi in JClt(L), n+1Ktso.
Each Mk

i (1≤ i≤n+1) launches actions of process Pi according to the control state
of this process, and nondeterministically guesses the write, call or return actions of the
other processes. It contains only one channel ci that is used to store the pending written
items according to the total store orders in JClt(L), n+1Ktso. Each item sent to each
channel ci contains the current valuation of all the memory locations, i.e., the current
snapshot of the memory.

We first use the example shown in Fig. 2 to illustrate the main idea of our con-
struction method. Fig. 2 (a) presents a k-trace t of a concurrent system JClt(L), 3Ktso

with k = 4, while Fig. 2 (b),(c),(d) present the corresponding traces of Mk
1 , Mk

2 , Mk
3 ,

respectively. Each pair of a call and its accompanying return action is associated with
a (dashed) line interval. In Fig. 2, r(x)0 is an action that reads 0 from x; w(x)1 is an
action that writes 1 to x; f(x)1 is a flush action that changes the value of x to 1; c(y)1
is a cas action that changes the value of y to 1 successfully; c1, . . . , c4 are the specific
cas actions for marking the corresponding call and return actions; g(x)1 and f(x)1 are
the guessed write action and its accompanying flush action for w(x)1; g(y)1 and f(y)1
are the guessed write action and its accompanying flush actions for c(y)1; gi and fi are
the guessed write action and its accompanying flush actions for the action ci (1≤ i≤4);
Noted that the actions in Fig. 2 (a) contain only values, while the actions in Fig. 2
(b),(c),(d) contain the snapshots of the memory.

In this example, Mk
1 first guesses a marked write action g1, performs the accompa-

nying flush action f1 and the call action of process P1 and then reads 0 from x. Before
Mk

1 performs the w(x)1 action, it need to guess the write and cas actions of processes
P2 and P3. These actions need to occur later than w(x)1 but their accompanying flush
actions need to occur earlier than f(x)1 in t. Therefore, it guesses g2, g3 and g(y)1 ac-
cordingly. Then, Mk

1 flushes g2 (with f2), guesses the call action of process P2, flushes
g3 (with f3), performs the return action of process P1, and flushes g(y)1 (with f(y)1). At
last, Mk

1 flushes w(x)1 (with f(x)1), guesses the marked write action g4, performs the
accompanying flush action f4 and guesses the return action of process P2.

P1:

P2:

P3:
c1

(a) a trace t of JClt(L), 3Kt

c4c2

w(x)1

f2g1 f1 g2 g3

g(y)1

g4 f4

(c) trace t2 of Mk
2 for t

g1 f1 g2 f2 g3 f3

c3

w(x)1

f3

f(y)1

f(x)1

c(y)1

f(x)1

c(y)1

g(x)1 f(x)1

g4 f4

(d) trace t3 of Mk
3 for t

(b) trace t1 of Mk
1 for t

c1 c2 c3

g(y)1 f(y)1

g(x)1 f(x)1

c4

r(x)0 r(x)0

P1:

P2:

P3:

P1:

P2:

P3:

P1:

P2:

P3:

Fig. 2. traces of Mk
1 , Mk

2 and Mk
3 for a trace t of JClt(L), 3Ktso

5.3 Construction of Mk
i and M ts

i

Note that history(JL′, nKsc) is a regular language, because the LTS JL′, nKsc contains
a finite number of states. Let ASpec = (Qs, Σs,→s, qis) be a deterministic finite state
automaton that accepts history(JL′, nKsc), whereQs is a set of states,Σs is a set of tran-
sition labels,→s⊆ Qs×Σs×Qs is a transition relation and qis is the initial state. It can
be seen that each state in Qs can be assumed as a final state because history(JL′, nKsc)
is prefix-closed. Let qerror /∈ Qs be a trap state. A new transition relation →s′ can be
derived from→s such that q1

α−→s′q2 if either q1
α−→sq2, or q1 ∈ Qs, q2 = qerror and there

is no outgoing transitions from q1 in α−→s.
Let Val be the set of valuation functions that map a memory location inXL to a value

in DL and xwit to a value in markedVal(M,DL, n). Channel machine Mk
i (1 ≤ i ≤ n)

is a tuple (Qki , {ci}, Σ, Λ,∆k
i), where ci is name of the single channel of Mk

i . Qi, ci,
Σ, Λ and ∆k

i are defined as follows:
Qki = ({qc}∪(QL×{qc}))×Val×Val×(Qs∪{qerror})×(markedVal(M,DL, n)∪

{ε})×{0, . . . , k} is the state set. A configuration (q, dc, dg, qs,mak, cnt) ∈ Q1 consists
of a control state q, a valuation dc of the memory, a valuation dg of the memory with all
the stored items in ci applied, a state qs for monitoring the violation of the linearizability
condition, a marker mak indicating that each marked cas action is immediately followed
by a corresponding call or return action, and the number cnt of the call and return actions
already occurred in the whole trace.

Σ = Σs1∪Σs2∪Σs3 is the alphabet of channel contents withΣs1 = {(n+1, xwit, d)|d
∈ Val}, Σs2 = {((i, x, d),])|1≤ i≤n, x ∈ XL, d ∈ Val} and Σs3 = {a|(a,]) ∈ Σs2}.
Σs1 contains the items appended by guessing the marked cas actions.Σs2 are the newest
item in ci or the newest one for a memory location. Σs3 is similar to Σs2 except the
symbols] are removed. In case that Mk

i is interpreted with a lossy channel, Σs1 and
Σs2 are the sets of strong symbols of Mk

i .
Λ is the set of transition labels and is union of the following sets:

- {write(i, x, d), cas(i, x, d)|(1 ≤ i ≤ n∧x ∈ XL)∨(i = n+1∧x = xwit), d ∈ Val}.

- {flush(i, x, d), flush(n+1, xr, d)|1 ≤ i ≤ n,XL, d ∈ Val}.
- {call(i,m, a), return(i,m, a)|1 ≤ i ≤ n,m ∈M, a ∈ DL}.

Λ does not contain read or τ actions, which are seen as ε transition in Mk
i .

∆k
i is the transition relation of Mk

i , it is the smallest set of transitions such that
∀q ∈ {qc} ∪ (QL × {qc}), q1, q2 ∈ QL, dc, dg ∈ Val, qs ∈ Qs and cnt < k,

- Nop: if q1
τ−→Lq2, then

((q1, qc), dc, dg, qs, ε, cnt)
ε,ci:Σ,nop−−−−−−→∆k

i
((q2, qc), dc, dg, qs, ε, cnt).

- Library write: if q1
write(x,a)−−−−−−→Lq2, then for each d1, d2 ∈ Ass

((q1, qc), dc, dg, qs, ε, cnt)
op,(β1,])∈ci∧(β2,])∈ci,ci[β1/(β1,]),β2/(β2,])]!β3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∆k

i
((q2, qc), dc, d

′
g, qs, ε, cnt)

((q1, qc), dc, dg, qs, ε, cnt)
op,(β1,])∈ci∧ci:Θ2,ci[β1/(β1,])]!β3−−−−−−−−−−−−−−−−−−−−−−→∆k

i
((q2, qc), dc, d

′
g, qs, ε, cnt)

((q1, qc), dc, dg, qs, ε, cnt)
op,ci:Θ1∧(β2,]),ci[β2/(β2,])]!β3−−−−−−−−−−−−−−−−−−−−→∆k

i
((q2, qc), dc, d

′
g, qs, ε, cnt)

((q1, qc), dc, dg, qs, ε, cnt)
op,ci:Θ1∧ci:Θ2,ci!β3−−−−−−−−−−−−−→∆k

i
((q2, qc), dc, d

′
g, qs, ε, cnt)

where β1 = (i, x, d1), Θ1 = Σ\{((i, x, d′),])|d′ ∈ Val}, β2 = (j, x, d2) with
1 ≤ j ≤ n ∧ j 6= i, Θ2 = Σ\{((j, , d′),])|j 6= i, d′ ∈ Val}, d′g = dg[x : a],
β3 = ((i, x, d′g),]) and op = write(i, x, d′g).

- Guess write: if 1 ≤ j ≤ n ∧ j 6= i ∧ x ∈ XL ∧ a ∈ DL, then

(q, dc, dg, qs, ε, cnt)
op,(β,])∈ci,ci[β/(β,])]!β′

−−−−−−−−−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

(q, dc, dg, qs, ε, cnt)
op,ci:Θ,ci!β′

−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

where β = (j′, ,) with j′ 6= i, d′g = dg[x : a], β′ = ((j, x, d′g),]), Θ =
Σ\{((j1, ,),])|j1 6= i} and op = write(j, x, d′g).
If j = n+1 ∧ x = xwit ∧ a ∈ markedVal(M,DL, n), then

(q, dc, dg, qs, ε, cnt)
op,(β,])∈ci,ci[β/(β,])]!β′

−−−−−−−−−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

(q, dc, dg, qs, ε, cnt)
op,ci:Θ,ci!β′

−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

where β = (j′, ,) with j′ 6= i, d′g = dg[xwit : a], β′ = (n+1, xwit, d
′
g), Θ =

Σ\{((j′, ,),])|j′ 6= i} and op = write(n+1, xwit, d
′
g).

- Library read: if q1
read(x,a)−−−−−→Lq2, then for each d ∈ Val with d(x) = a,

((q1, qc), dc, dg, qs, ε, cnt)
ε,(β,])∈ci,nop−−−−−−−−→∆k

i
((q2, qc), dc, dg, qs, ε, cnt)

((q1, qc), d, dg, qs, ε, cnt)
ε,ci:Θ,nop−−−−−−→∆k

i
((q2, qc), d, dg, qs, ε, cnt)

where β = (i, x, d) and Θ = Σ\{((i, x, d′),])|d′ ∈ Ass}.

- Library cas: if q1
cas suc(x,a,b)−−−−−−−−→Lq2 , then for each d ∈ Val with d(x) = a,

((q1, qc), d, d, qs, ε, cnt)
cas(i,x,d[x:b]),ci=ε,nop−−−−−−−−−−−−−−→∆k

i
((q2, qc), d[x : b], d[x : b], qs, ε, cnt)

If q1
cas fail(x,a,b)−−−−−−−−→Lq2 , then for each d ∈ Val with d(x) 6= a,

((q3, qc), d, d, qs, ε, cnt)
cas(i,x,d),ci=ε,nop−−−−−−−−−−−→∆k

i
((q4, qc), d, d, qs, ε, cnt)

- Flush items of process 1 to n: if 1 ≤ j ≤ n, then for each x ∈ DL, d ∈ Val,

(q, dc, dg, q
′
s, ε, cnt′)

op,ci:Σ,ci?(j,x,d)−−−−−−−−−−−→∆k
i
(q, d, dg, q

′
s, ε, cnt′)

(q, dc, dg, q
′
s, ε, cnt′)

op,ci:Σ,ci?((j,x,d),])−−−−−−−−−−−−−→∆k
i
(q, d, dg, q

′
s, ε, cnt′)

where cnt′ ≤ k, q′s ∈ Qs ∪ {qerror} and op = flush(j, x, d).
- Flush marked item of call:

(q, dc, dg, qs, ε, cnt)
op,ci:Σ,ci?(n+1,xwit,d)−−−−−−−−−−−−−−→∆k

i
(q, d, dg, qs, call(j,m, c), cnt)

where d(xwit) = call(j,m, c) and op = flush(n+1, xwit, d).
- Flush marked item of return:

(q, dc, dg, qs, ε, cnt)
op,ci:Σ,ci?(n+1,xwit,d)−−−−−−−−−−−−−−→∆k

i
(q, d, dg, qs, return(j,m, c), cnt)

where d(xwit) = return(j,m, c) and op = flush(n+1, xwit, d).

- Call: if qs
call(i,m,a)−−−−−−→s′q

′
s, then

(qc, dc, dg, qs, call(i,m, a), cnt)
call(i,m,a),ci:Σ,nop−−−−−−−−−−−−→∆k

i
((is(m,a), qc), dc, dg, q

′
s, ε, cnt+1)

- Guess call: if qs
call(j,m,a)−−−−−−→s′q

′
s, 1 ≤ j ≤ n and j 6= i, then

(q, dc, dg, qs, call(j,m, a), cnt)
call(j,m,a),ci:Σ,nop−−−−−−−−−−−−→∆k

i
(q, dc, dg, q

′
s, ε, cnt+1)

- Return: if qs
return(i,m,a)−−−−−−−→s′q

′
s, then

((fs(m,a), qc), dc, dg, qs, return(i,m, a), cnt)
return(i,m,a),ci:Σ,nop−−−−−−−−−−−−−→∆k

i
(qc, dc, dg, q

′
s, ε, cnt+1)

- Guess return: if qs
return(j,m,a)−−−−−−−−→s′q

′
s, 1 ≤ j ≤ n and j 6= i, then

(q, dc, dg, qs, return(j,m, a), cnt)
return(j,m,a),ci:Σ,nop−−−−−−−−−−−−−→∆k

i
(q, dc, dg, q

′
s, ε, cnt+1)

Channel machineM ts
i is a tuple (Qts

i , {ci}, Σ, Λ,∆ts
i).Q

ts
i = ({qc}∪(QL×{qc}))×

Val×Val×(Qs∪{qerror})×(markedVal(M,DL, n)∪{ε})) is the state set ofM ts
i . Each

configuration (q, dc, dg, qs,mak) of M ts
i does not contain counters. ∆ts

i is generated

from ∆k
i by ignoring the counter element, i.e., (q, dc, dg, qs,mak)

l,g,op−−−→∆ts
i
(q′, d′c, d

′
g,

q′s,mak′) holds, if there exists cnt, cnt′, such that (q, dc, dg, qs,mak, cnt)
l,g,op−−−→∆k

i
(q′, d′c,

d′g, q
′
s,mak′, cnt′).

5.4 Construction of Mk
n+1 and M ts

n+1

Channel machine Mk
n+1 is a tuple (Qkn+1, {cn+1}, Σ, Λ,∆k

n+1), where Qn+1, cn+1 and
∆k

n+1 are defined as follows:
Qkn+1 = {qr} × Val × Val × (Qs ∪ {qerror}) × (markedVal(M,DL, n) ∪ {ε}) ×

{1, . . . , k-1}) is the state set of Mk
n+1.

cn+1 is name of the single channel of Mk
n+1.

∆k
n+1 is the transition relation of Mk

n+1, it is the smallest set of transitions such that
∀dc, dg ∈ Val, qs ∈ Qs and cnt < k,

- Client cas: if b ∈ markedVal(M,DL, n) and d ∈ Val, then

(qwit, d, d, qs, ε, cnt)
cas(i,x,d[xwit:b]),ci=ε,nop−−−−−−−−−−−−−−−→∆ts

i
(qwit, d[xwit : b], d[xwit : b], qs, b, cnt)

- Guess write: if 1 ≤ j ≤ n ∧ x ∈ XL ∧ a ∈ DL, then

(qr, dc, dg, qs, ε, cnt)
op,(β,])∈ci,ci[β/(β,])]!β′

−−−−−−−−−−−−−−−−→∆ts
i
(qr, dc, d

′
g, qs, ε, cnt)

(qr, dc, dg, qs, ε, cnt)
op,ci:Θ,ci!β′

−−−−−−−−→∆ts
i
(qr, dc, d

′
g, qs, ε, cnt)

where β = (j′, ,), d′g = dg[x : a], β′ = ((j, x, d′g),]),Θ = Σ\{((j1, ,),])|1 ≤
j1 ≤ n} and op = write(j, x, d′g).

- Flush items of process 1 to n: if 1 ≤ j ≤ n, then for each x ∈ DL, d ∈ Val,

(qr, dc, dg, q
′
s, ε, cnt′)

op,ci:Σ,ci?(j,x,d)−−−−−−−−−−−→∆ts
i
(qr, d, dg, q

′
s, ε, cnt′)

(qr, dc, dg, q
′
s, ε, cnt′)

op,ci:Σ,ci?((j,x,d),])−−−−−−−−−−−−−→∆ts
i
(qr, d, dg, q

′
s, ε, cnt′)

where cnt′ ≤ k, q′s ∈ Qs ∪ {qerror} and op = flush(j, x, d).

- Guess call: if qs
call(j,m,a)−−−−−−→s′q

′
s and 1 ≤ j ≤ n, then

(qwit, dc, dg, qs, call(j,m, a), cnt)
call(j,m,a),ci:Σ,nop−−−−−−−−−−−−→∆ts

i
(qwit, dc, dg, q

′
s, ε, cnt+1)

- Guess return: if qs
return(j,m,a)−−−−−−−−→s′q

′
s and 1 ≤ j ≤ n, then

(qwit, dc, dg, qs, return(j,m, a), cnt)
return(j,m,a),ci:Σ,nop−−−−−−−−−−−−−→∆ts

i
(qwit, dc, dg, q

′
s, ε, cnt+1)

Channel machineM ts
n+1 is a tuple (Qts

n+1, {cn+1}, Σ, Λ,∆ts
n+1).Q

ts
n+1 = {qwit}×Val×

Val× (Qs ∪{qerror})× (markedVal(M,DL, n)∪{ε})) is the state set of M ts
n+1. ∆ts

n+1 is

generated from∆k
n+1 by ignoring the counter element, i.e., (q, dc, dg, qs,mak)

l,g,op−−−→∆ts
n+1
(q′,

d′c, d
′
g, q
′
s,mak′) holds, if there exists cnt, cnt′, such that (q, dc, dg, qs,mak, cnt)

l,g,op−−−→∆k
n+1

(q′, d′c, d
′
g, q
′
s,mak′, cnt′).

5.5 Reducing to A Control State Reachability Problem

Let M k-w
i (M k-f

i) be a channel machine that is resulted from Mk
i by replacing its all

but write (flush) and cas transitions with internal transitions and the remaining cas
actions can be regarded as write (flush) actions. Let M k-(f,c,r)

i be a channel machine
that is resulted from Mk

i by replacing its all but flush, cas, call and return transitions
with internal transitions and the remaining cas actions can be regarded as flush actions.
Channel machines M ts-w

i , M ts-f
i and Mts-(f,c,r)

i are similarly built from Mts
i .

Since a k-trace contains at most k call and return actions, and the first marked
item can be guessed and flushed as in t1 of Fig. 2 (b) without influence subsequent
executions, the number of marked items in a k-trace can be always less than k at any
time. Let S = 〈Σs1, Σs2〉, K1 = 〈k-1, |XL|+1〉, the following lemma states that a
control state reachability problem of a (S,K1)-channel machine is enough to capture
the complement problem of k-bounded TSO-to-SC linearizability.

Lemma 4. There exists a marked violation t of k-bounded TSO-to-SC linearizabili-
ty between libraries L and L′ for n processes from (pinit, dinit, ε

n) to (pw, dw, ε
n) in

JClt(L), n+1Ktso, if and only if
⋂n+1
i=1 T

(S,K1)
(qi,q′i)

Mk-w
i 6= ∅, where for each 1 ≤ i ≤ n+1,

qi = (pinit(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qerror, ε, |t ↑(Σcal∪Σret) |).

Proof. (Sketch)
This lemma is a direct consequence of the following three claims:

- The first claim states that we can reduce the complement problem of k-bounded
TSO-to-SC linearizability to a control state reachability problem of a channel ma-
chine which is the production ofM k-(f,c,r)

1 toM k-(f,c,r)
n+1 . The if direction of this claim is

proved by constructing a weak simulation relation betweenM k-(f,c,r)
1 ⊗. . .⊗M k-(f,c,r)

n+1
and JClt(L), n+1Ktso. To prove the only if direction, an new LTS JClt(L), n+1Kgtso
is generated from JClt(L), n+1Ktso. Configurations of JClt(L), n+1Kgtso extend con-
figuration of JClt(L), n+1Ktso by additionally containing the information about the
total store order of the trace. We prove that for each trace t1 of JClt(L), n+1Ktso, we
can generate a trace t2 of JClt(L), n+1Kgtso, and from t2 we can generate a trace of
M k-(f,c,r)

1 ⊗ . . .⊗M k-(f,c,r)
n+1 from (pinit, dinit, ε

n) to (pw, dw, ε
n).

- The second claim shows that there is a trace t1 of M k-(f,c,r)
i from (qi, ε

n) to (q′i, ε
n),

if and only if there is a trace t2 ofM k-f
i from (qi, ε

n) to (q′i, ε
n), where the projection

of t1 to flush actions is equivalent to t2.
- The third claim shows that there is a trace t1 of M k-f

i from (qi, ε
n) to (q′i, ε

n),
if and only if there is a trace t2 of M k-w

i from (qi, ε
n) to (q′i, ε

n), where t1 can be
generated from t2 by substitution each write action write(i, x, d) to a corresponding
flush action flush(i, x, d).

The detailed proof of this lemma can be found in Appendix A. ut

The following lemma shows that, the complement problem of k-bounded TSO-to-
SC linearizability can be further reduced to the control state reachability problem of a
(S,K1)-lossy channel machine, which is the production of M k-w

1 to M k-w
n+1 (interpreted

with lossy channel).

Lemma 5. There exists a marked violation t of k-bounded TSO-to-SC linearizabili-
ty between libraries L and L′ for n processes from (pinit, dinit, ε

n) to (pw, dw, ε
n) in

JClt(L), n+1Ktso, if and only if
⋂n+1
i=1 LT(S,K1)

(qi,q′i)
Mk-w
i 6= ∅, where for each 1≤ i≤ n+1,

qi = (pinit(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qerror, ε, |t ↑(Σcal∪Σret) |).

Proof. (Sketch)
This lemma follows directly from Lemma 4 and a claim: T (S′,K′)

(qi,q′i)
M k-w
i = LT(S′,K′)

(qi,q′i)

M k-w
i . The⊆ direction of this claim is obvious, the⊇ direction is proved by constructing

a weak simulation between configurations of lossy channel machine M k-w
i and lossy

channel machine M k-w
i .

The detailed proof of this proposition can be found in Appendix B. ut

Since there is only one (pinit, dinit, ε
n) and a finite number of (pw, dw, εn) in JClt(L),

n+1Ktso, thus to decide k-bounded TSO-to-SC linearizability we only need to apply
Lemma 5 for a finite number of times and only a finite number of (pw, dw, εn) config-
urations are concerned. By Lemma 3 and Lemma 5, it is obvious that the k-bounded
TSO-to-SC linearizability problem is decidable.

Theorem 1. The decision problem of k-bounded TSO-to-SC linearizability is decid-
able.

The following proposition shows that the k-bounded TSO-to-SC linearizability prob-
lem has non-primitive recursive complexity.

Proposition 1. The decision problem of k-bound TSO-to-SC linearizability has non-
primitive recursive complexity.

Proof. (sketch)
According to [14], it is obvious that the reachability problem of a lossy simple

channel system (a subclass of channel machine which has only one channel, uses only ε
transitions and empty guards, and does not uses substitution before send operation) has
non-primitive recursive complexity. The reachability problem of a lossy simple channel
system M and configurations s1, s2 is to decide whether s2 is reachable from s1 in
lossy semantics of M .

To prove this proposition, we reduce the reachability problem of a lossy simple
channel system to a 3-bounded TSO-to-SC linearizability problem for 2 processes.

The implementation library is presented as a library template that can be instantiated
as a specific library for a begin and a end configuration of a lossy simple channel ma-
chine. This library has two methods:M1 andM2. Given a lossy simple channel machine
M and configurations s1, s2, the implementation library LM(s1,s2) uses two processes P1

and P2, calling methods M1 and M2, respectively, to simulate the behavior of M start-
ing from s1. If the behavior under simulation reaches s2, M1 will stop the simulation
and return. Otherwise, M1 and M2 will not return.

The abstract library Lpend is a library where all its methods (M1 and M2) are pend-
ing in any case.

Similarly to [15,16], we can prove that s2 is reachable from s1 in lossy semantics
of M , if and only if there exists a history h ∈ JLM(s1,s2), 2Ktso which has three call and

return actions, and one of them is a return action. It is easy to see that each history of
the abstract library Lpend contains at most two call actions and can not contain return
action. Therefore, the existence of such history h represents that Lpend does not 3-bound
TSO-to-SC linearize LM(s1,s2) for 2 processes.

The detailed definition of the libraries and the detailed proof of this proposition can
be found in Appendix C. ut

Let K2 = 〈∞, |XL|+1〉. Similar to Lemma 4, the complement problem of TSO-
to-SC linearizability can be reduced to a finite number of control state reachability
problems of a channel machine where the amount of marked items in a channel is
unbounded, or specifically, a (S,K2)-channel machine that is the product ofM ts-w

1 , . . . ,
M ts-w

n+1 . Since the number of strong symbol is unbounded, we still do not know whether
this problem is decidable or undecidable.

Theorem 2. The TSO-to-SC standard violation problem can be reduced to a control
state reachability problem of a (S,K2)-lossy channel machine, where the number of
strong symbol is unbounded.

6 Conclusion and Future Work

We have shown in this paper that the decision problem of k-bounded TSO-to-SC lin-
earizability is decidable for a concurrent system with n≥1 processes. The proof method
is essentially by a reduction to a control state reachability problem of a lossy channel
machine, which is already known to be decidable. To facilitate the reduction, a new pro-
cess is introduced to use the specific cas actions to capture the call and return actions
of the original concurrent system. In this way, the complement problem of TSO-to-SC
linearizability on the n processes can be transformed to a marked violation problem on
the n+1 processes. Then, a channel machine M k

i (1≤ i≤ n+1) is constructed to sim-
ulate the k-bounded behaviors of the extended concurrent system from the perspective
of each process Pi. We then demonstrate that the product of M k-w

1 , . . . ,M k-w
n+1, when

interpreted with lossy channels, can characterize the TSO behaviors of the original con-
current system. Furthermore, we show that the k-bounded TSO-to-SC linearizability
problem has non-primitive recursive complexity.

Since the notion of k-bounded TSO-to-SC linearizability does not require the size
of a store buffer or the length of a trace of a concurrent system to be bounded, it still
allows infinite-state behaviors. Hence, our decidability result is non-trivial. It sheds light
on developing algorithms for automatically verifying concurrent libraries on relaxed
memory models.

We have successfully reduced the decision problem of TSO-to-SC linearizability to
a control state reachability problem of a lossy-channel machine with unbounded num-
ber of strong symbols. However, the decidability of this problem still remains open. As
future work, we would like to pursue this problem further with other possible heuris-
tics. Also we would like to continue investigating the decidability of other correctness
conditions of concurrent libraries and programs.

References

1. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for concurrent
objects. In: LICS 1996, pp. 219–228. IEEE Computer Society (1996)

2. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: Hermenegildo, M. et al. (eds.) POPL 2010, pp. 7–18. ACM (2010)

3. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for C/C++ concurrency. In: Gia-
cobazzi, R., Cousot, R. (eds.) POPL 2013, pp. 235–248. ACM (2013)

4. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs against
sequential specifications. In: Felleisen, M., Gardner, P. (eds.) ESOP 2013, pp. 290–309.
Springer (2013)

5. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state reacha-
bility. In: Halldórsson, M.M. et al. (eds.) ICALP 2015, Part II, pp. 95–107. Springer (2015)

6. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable Refinement Checking for Concur-
rent Objects. In: Rajamani, S. K. et al. (eds.) POPL 2015, pp. 651–662. ACM (2015)

7. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correctness on
the TSO memory model. In: Seidl, H. (eds.) ESOP 2012, pp. 87–107. Springer (2012)

8. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consistent specifi-
cations of TSO libraries. In: Aguilera, M. K. (eds.) DISC 2012, pp. 31–45. Springer (2012)

9. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12(3), 463–492 (1990)

10. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
program. IEEE Transactions on Computers 28(9), 690–691 (1979)

11. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: Palsberg, J., Abadi, M. (eds.)
POPL 2005, pp. 378–391. ACM (2005)

12. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-TSO. In: Berghofer, S.,
Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009, pp. 391–407. Springer (2009)

13. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding POWER mul-
tiprocessors. In: Hall, M. W., Padua, D. A. (eds.) PLDI 2011, pp. 175–186. ACM (2011)

14. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity.
Information Processing Letters 83(5), 251–261 (2002)

15. Wang, C., Lv, Y., Wu, P.: TSO-to-TSO Linearizability is Undecidable. Technical Report
ISCAS-SKLCS-15-03, State Key Laboratory of Computer Science, ISCAS, CAS (2015),
http://lcs.ios.ac.cn/˜lvyi/files/ISCAS-SKLCS-15-03.pdf

16. Wang, C., Lv, Y., Wu, P.: TSO-to-TSO linearizability is undecidable. In: Finkbeiner, B., Pu,
G., Zhang, L. (eds.) ATVA 2015. Springer (2015) (to appear)

http://lcs.ios.ac.cn/~lvyi/files/ISCAS-SKLCS-15-03.pdf

A Proof of Lemma 4

A.1 Proof Sketch of Lemma 4

Given a finite sequence l = α1 · α2 · . . . · αk, we say that the element αi is left (right)
to element αj , if i < j (i > j). We say that αi is left most element in l if i = 1, and αi
is right most element in l if i = |l|.

Given a finite sequence l of flush and cas actions, let Rf→w(l) be a finite sequence
that is generated from l by transforming each flush(i, x, d) action to write(i, x, d) action.

To prove Lemma 4, we present the following four lemmas. The proof of Lemma 6
and Lemma 7 are given in Appendix A.3 and A.4 respectively.

Lemma 6. If there exists a marked violation t of k-bounded TSO-to-SC linearizabil-
ity between libraries L and L′ for n processes from (pinit, dinit, ε

n) to (pw, dw, ε
n)

in JClt(L), n+1Ktso, then ∩n+1
i=1T

(S,K1)
(qi,q′i)

Mk-(f,c,r)
i 6= ∅, where for each 1 ≤ i ≤ n+1,

qi = (pinit(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qerror, ε, |t ↑(Σcal∪Σret) |).

Lemma 7. If∩n+1
i=1T

(S,K1)
(qi,q′i)

Mk-w
i 6= ∅, where for each 1≤ i≤n+1, qi = (pinit(i), dinit, dinit,

qis, ε, 0), q′i = (pw(i), dw, dw, qerror, ε, a), then there exists a marked violation t of k-
bounded TSO-to-SC linearizability between libraries L and L′ for n processes from
(pinit, dinit, ε

n) to (pw, dw, ε
n) in JClt(L), n+1Ktso, and |t ↑(Σcal∪Σret) | = a.

Lemma 8. l ∈ T
(S,K1)
(q,q′) M k-(f,c,r)

i if and only if l ↑Σf
∈ T

(S,K1)
(q,q′) M k-f

i , where (q =

(qc, dinit, dinit, qis, ε, 0) ∧ 1 ≤ i ≤ n) ∨ (q = (qwit, dinit, dinit, qis, ε, 0) ∧ i = n+1) and
q′ = (, d, d, qerror, ε, |l ↑(Σcal∪Σret) |) for some d ∈ Val.

Proof. This lemma holds because inMk
i , each marked cas actions coincides with a call

or return action. So it is safe to ignore call and return actions. ut

Lemma 9. l ∈ T
(S,K1)
(q,q′) M k-f

i if and only if Rf→w(l) ∈ T
(S,K1)
(q,q′) M k-w

i , where (q =

(qc, dinit, dinit, qis, ε, 0) ∧ 1 ≤ i ≤ n) ∨ (q = (qwit, dinit, dinit, qis, ε, 0) ∧ i = n+1) and
q′ = (, d, d, qerror, ε, a) for some d ∈ Val, and a is the number of internal actions
derived from call or return transition in l.

Proof. This lemma holds because for a perfect channel machine, the sequences of input
(write actions) is always equal to the sequences of output (flush actions). ut

With these lemmas, we can now prove Lemma 4.

Lemma 4. There exists a marked violation t of k-bounded TSO-to-SC linearizabili-
ty between libraries L and L′ for n processes from (pinit, dinit, ε

n) to (pw, dw, ε
n) in

JClt(L), n+1Ktso, if and only if
⋂n+1
i=1 T

(S,K1)
(qi,q′i)

Mk-w
i 6= ∅, where for each 1 ≤ i ≤ n+1,

qi = (pinit(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qerror, ε, |t ↑(Σcal∪Σret) |).

Proof. Lemma 4 is a direct consequence of Lemma 6, Lemma 7, Lemma 8 and Lemma
9. ut

A.2 Construction of JClt(L), n+1Kgtso

It is quite hard to build a weak simulation relation between configurations of JClt(L),
n+1Ktso and configurations of∩n+1

i=1Mk-(f,c,r)
i . This is because that for a configuration (p, d,

u) of JClt(L), n+1Ktso, more than one process may be possible to do a flush action.
Therefore, the total store orders of traces from a configuration is not fixed in this case.
While for a configuration of ∩n+1

i=1Mk-(f,c,r)
i , the process id of the next flush action is

nearly fixed because the channel already contains items which reflect total store order,
and such items must be flush in a fixed FIFO order.

To deal with this problem, a intermediate transition system is introduced, whose
configuration extends configurations of JClt(L), n+1Ktso and contains the total store
order of one trace. Formally, given

- library L = (XL,M,DL, QL,→L), positive integer n,
- a deterministic finite state automatonASpec = (Qs, Σs,→s, qis) that accepts history
(JL′, nKsc) and transition relation→′s as in section 5.3.

The extended semantics of JClt(L), n+1Ktso is defined as an LTS JClt(L), n+1Kgtso =
(Confe, Σe,→e, InitConfe), where Σe = Σtso, and Confe,→e, InitConfe are defined as
follows.

Each configuration of Confe is a tuple (p, d, u, qs,mak, flag, g), where,

- (p, d, u) is a configuration of JClt(L), n+1Ktso,
- qs ∈ Qs, mak ∈ markedVal(M,DL, n),
- g ∈ (Σe0 ∪ Σe1 ∪ Σe2 ∪ Σe3)

∗, where Σe0, Σe1, Σe2 and Σe3 are defined below. g
should satisfies some requirements shown below. flag ∈ {T, F} is used to denote
whether g has been initialized.

The four alphabets of Σe0, Σe1, Σe2, Σe3 is defined as follows:

- Σe0 = {(i, x, d)|1 ≤ i ≤ n+1, x ∈ XL ∪xwit, d ∈ Val} represents the items in total
store order of a trace that are not used now and will be flushed later than any item
in current buffer.

- Σe1 = {(i, x, d)′|(i, x, d) ∈ Σe0} represents items in the total store order of a trace
that are not used now and will be flushed earlier than some item in buffer.

- Σe2 = {(i, x, d)′′|(i, x, d) ∈ Σe0} represents items in the total store order of a trace
that are already inserted into buffer and not flushed yet.

- Σe3 = {(i, x, d)′′′|(i, x, d) ∈ Σe0} represents items in the total store order of a
trace that have already been flushed out from buffer.

g stores the total store order of a trace. It is a concatenation of sequences lg1, lg2

and lg3. lg1 ∈ Σ∗e0 represents the sequences of items that have not been used and will be
flushed later than any item in current buffer. lg2 ∈ (Σe1∪Σe2)

∗ represents the sequences
of items that either in concurrent buffer, or items not in current buffer but will be flushed
earlier than some item in concurrent buffer. lg3 ∈ Σ∗e3 represents the sequences of items
that have already been flushed.

Moreover, let Σi be the items of process i, Σ(i,x) be the items of process i and
memory location x,

- If lg2 6= ε, then lg2(1) ∈ Σe2 . For each i, lg2 ↑Σi
∈ Σ∗e1 ·Σ∗e2.

- For each i, j, if g ↑(Σi∪Σe2) (j) = (i, x, d)′′ with d(x) = a, then u(i)(j) =
(i, x, a), and vice versa.

- Let g′ be the sequence generated from g by discarding all the ′ symbols of each
item in g. If g′(|g′|) = (i1, x1, d1), then d1 = d[x1 : d1(x1)]. For each i, if g′(i) =
(i2, x2, d2), g′(i+1) = (i3, x3, d3), then d2 = d3[x2 : d2(x2)].

The initial configuration InitConfe is a tuple (pinit, dinit, ε
n+1, qis, ε, F, ε).

The transition relation→e is defined as follows:

- Initial transition: the first transition from InitConfe is to guess the tuple g: (pinit, dinit,

εn+1, qis, ε, F, ε)
ε−→e (pinit, dinit, ε

n+1, qis, ε, T, g) for g being a sequence defined above.
- τ and read transitions: (p, d, u, qs, ε, T, g)

α−→e (p
′, d′, u′, qs, ε, T, g) with τ or read

action α, if (p, d, u) α−→tso(p
′, d′, u′) ∧ qs 6= qerror.

- Write transitions: (p, d, u, qs, ε, T, g)
write(i,x,a)−−−−−−−→e (p

′, d′, u′, qs, ε, T, g
′), if (p, d, u)

write(i,x,a)−−−−−−−→tso (p
′, d′, u′), qs 6= qerror, and one of the following conditions holds: (1)

lg2 ↑Σ(i,x) contains at least one item in Σe1, and g′ is generated from g by transform-
ing the right most item of lg2 ↑(Σe1∩Σ(i,x)), (i, x, d1)

′ for some d1 with d1(x) = a,
to (i, x, d1)

′′ , (2) lg2 ↑ Σ(i,x) does not contain any item of Σe1, and g′ is generated
from g by translate the right most item of lg1 ↑(Σe0∩Σ(i,x)), (i, x, d1) for some d1 with
d1(x) = a, to (i, x, d1)

′′, and mark all the items which are right to this item in lg1

with ′ symbol.

- Cas transitions: (p, d, u, qs, ε, T, g)
cas(i,x,a,b)−−−−−−−→e (p

′, d′, u′, qs, ε, T, g
′), if (p, d, u)

cas(i,x,a,b)−−−−−−−→tso (p′, d′, u′), qs 6= qerror, and one of the following conditions holds:
(1) lg2 6= ε, lg2 ends with (i, x, d′)′, and g′ is generated from g by changing this
(i, x, d′)′ item to (i, x, d′)′′′, (2) lg2 = ε, lg1 ends with (i, x, d′), and g′ is generated
from g by changing this (i, x, d′) item to (i, x, d′)′′′.

- Flush transitions: (p, d, u, qs, ε, T, g)
flush(i,x,a)−−−−−−→e(p

′, d′, u′, qs,mak, T, g′), if lg2 end-
s with (i, x, d′)′′, and g′ is generated from g by transforming this (i, x, d′)′′ item to
(i, x, d′)′′′. Moreover, if i = n+1∧x = xwit∧d′(xwit) = α ∈ markedVal(M,DL, n),
then mak′ = α. Otherwise, if 1 ≤ i ≤ n, then mak′ = ε.

- Call and return transitions: (p, d, u, qs, call(i,m, a), T, g)
call(i,m,a)−−−−−−→e (p

′, d′, u′, q′s,

ε, T, g), if (p, d, u)
call(i,m,a)−−−−−−→tso (p

′, d′, u′) and qs
call(i,m,a)−−−−−−→s′q

′
s. Similarly, (p, d, u,

qs, return(i,m, a), T, g)
return(i,m,a)−−−−−−−→e (p

′, d′, u′, q′s, ε, T, g), if (p, d, u)
return(i,m,a)−−−−−−−→tso

(p′, d′, u′) and qs
return(i,m,a)−−−−−−−→s′q

′
s.

A.3 Proof of Lemma 6

Given a trace t and a sequence g which satisfies requirement in Appendix A.2, we
say that g contains the total store order of t, if: let t′ be the projection of t to write
and cas actions. If t′(1) = write(j, x, b) or cas(j, x, a, b), then g(|t′|) = (j, x, d)′′′,
where d = dinit[x : b]. For each i > 1, if t′(i) = write(j, x, b) or cas(j, x, a, b), and
g(|t′| − i+ 2) = (j′, y, d′)′′′, then g′(|t′| − i+ 1) = (i, x, d)′′′, where d = d′[x : b].

The following lemma states that if JClt(L), n+1Ktso contains a witness violation of
k-bounded TSO-to-SC linearizability, then LTS JClt(L), n+1Kgtso also contains a witness
violation of k-bounded TSO-to-SC linearizability.

Lemma 10. If trace t is a witness violation of k-bounded TSO-to-SC linearizabili-
ty from (pinit, dinit, ε

n+1) to (pw, dw, ε
n+1) in JClt(L), n+1Ktso, then t is also a witness

violation of k-bounded TSO-to-SC linearizability from (pinit, dinit, ε
n+1, qis, ε, F, ε) to

(pw, dw, ε
n+1, qerror, ε, T, g) in JClt(L), n+1Kgtso, where g contains the total store order

of t.

Proof. The if direction is obvious, since it is obvious that trace(JClt(L), n+1Kgtso) ⊆
trace(JClt(L), n+1Ktso).

To prove the only if direction, for each path of JClt(L), n+1Ktso, we generate a path
of JClt(L), n+1Kgtso step by step.

Assume (pinit, dinit, ε
n+1)

α1−→t (p1, d1, u1) . . .
αw−→t (pw, dw, uw) is the path of

standard violation t in JClt(L), n+1Ktso, where uw = εn+1. For each configuration
(pi, di, ui) we construct another configuration (pi, di, ui, q

i
s,maki, T, gi), where

- qis is generated from qis by call and return actions in α1 · . . . · αi.
- maki is β if αi+1 = β and β is a call or return action, otherwise, it is ε.
- Let g′i be generated from gi by discarding ′ symbols of each item of g. Then g′1 =
. . . = g′w. Let g0 = g′1.

- lgi3 contains all the items that has been flushed when reaching (pi, di, ui). Recal-
l that for each j1, j2, if gi ↑(Σj1∪Σe2) (j2) = (j1, x, d)

′′ with d(x) = a, then
u(j1)(j2) = (j1, x, a), and vice versa. Let ind1 be the minimal index of Σe2 item
in gi and ind2 be the minimal index of Σe3 item in gi. Each not mentioned item
gi(j), where ind1 < j < ind2, belongs to Σe1. The remaining items of gi belong to
lgi1.

It is not hard to prove that (pinit, dinit, ε
n+1, qis, ε, F, ε)

ε−→e (pinit, dinit, ε
n+1, qis, ε,

T, g0), and for each i, (pi, di, ui, qis,maki, T, gi)
αi+1−→e (pi+1, di+1, ui+1, q

i+1
s ,maki+1, T,

gi+1). Therefore, α1 · . . . · αw is also a trace of JClt(L), n+1Kgtso. ut

Given a sequence l of flush, call and return actions and a sequence g as defined in
Appendix A.2, we say that l is consistent with g, if: let lf be the projection of l to flush
actions and g′ be generated from g by discarding ′ symbol of each item in g, then for
each i, lf (i) = flush(i, x, d), if and only if g(|g| − i+ 1) = (i, x, d).

The following lemma states that LTS JClt(L), n+1Kgtso has a witness violation of
k-bounded TSO-to-SC linearizability implies a control state reachability problem of
(S,K1)-channel machine M k-(f,c,r)

1 ⊗ . . .⊗M k-(f,c,r)
n+1 .

Lemma 11. If trace t is a witness violation of k-bounded TSO-to-SC linearizability
from (pinit, dinit, ε

n+1, qis, ε, F, ε) to (pw, dw, ε
n+1, qerror, ε, T, g) in JClt(L), n+1Kgtso with

sequence g which contains the total store order of t, then there exists a sequence
l, such that for each process id 1 ≤ i ≤ n+1, l ∈ T

(S,K1)
(qi,q′i)

Mk-(f,c,r)
i , where qi =

(pinit(i), dinit, dinit, qis, ε), q′i = (pw(i), dw, dw, qerror, ε), and l is consistent with g.

Proof. This lemma is proved by constructing a weak simulation between configurations
of JClt(L), n+1Kgtso in t and configurations of (S,K1)-channel machineM k-(f,c,r)

1 ⊗ . . .⊗
M k-(f,c,r)

n+1 .
Assume (pinit, dinit, ε

n+1, qis, ε, F, ε)
α1−→e . . .

αw−→e (pw, dw, uw, qerror, ε, T, g) is the
path of standard violation t in JClt(L), n+1Kgtso and uw = εn+1. Let (p, d, u, r, qs,mak, T,
g) be the (v+1)-th configuration of the path. Let ((cs1, . . . , csn+1), (c1, . . . , cn+1)) be a
configuration ofM k-(f,c,r)

1 ⊗. . .⊗M k-(f,c,r)
n+1 , and for each i, csi = (qi, dci, dgi, q

i
s,maki, cnti).

A relation∼ is defined as follows: (p, d, u, r, qs,mak, T, g) ∼ ((cs1, . . . , csn+1), (c1, . . . ,
cn+1)), if for each process id i,

- p(i) = qi, d = dci, qs = qis, mak = maki, and dgi is generated from dci by doing all
the updates in ci(|ci|), . . . , ci(1).

- cnt1 = . . . = cntn+1. And cnt1 is the number of call and return actions in α1 ·. . .·αv .
- If lg2 ↑(Σe2∩Σi) 6= ε, then let ind1, ind2 be the index of the leftmostΣe2∩Σi item on
g and the rightmost item on lg2 respectively, let g′ be generated from g by discarding
′ symbols of each item in g. Assume g′ = (i1, x1, d1)·(i2, x2, d2)·. . .. Then ci con-
tains ind2− ind1+1 items, and ∀1 ≤ j ≤ ind2− ind1+1, ci(ind2− ind1−j+2) =
(i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)) or ((i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)),]).

- If lg2 ↑(Σe2∩Σi)= ε and lg2 ↑(Σe1∩Σi) 6= ε, then let ind1, ind2 be the index of the
rightmost Σe1 ∩ Σi item on g and the rightmost item on lg2 respectively, let g′

be generated from g by discarding ′ symbols of each item in g. Assume g′ =
(i1, x1, d1) · (i2, x2, d2) · Then ci contains ind2 − ind1 items, and ∀1 ≤ j ≤
ind2 − ind1, ci(ind2 − ind1 − j + 1) = (i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)) or
((i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)),]).

- If lg2 ↑(Σe2∩Σi)= ε and lg2 ↑(Σe1∩Σi)= ε, then let ind1, ind2 be the index of the
leftmost item on lg2 and the rightmost item on lg2 respectively, let g′ be generat-
ed from g by discarding ′ symbols of each item in g. Assume g′ = (i1, x1, d1) ·
(i2, x2, d2) · Then ci contains ind2 − ind1 + 1 items, and ∀1 ≤ j ≤ ind2 −
ind1 + 1, ci(ind2 − ind1 − j + 2) = (i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)) or
((i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)),]).

Given (p, d, u, r, qs,mak, T, g) ∼ ((cs1, . . . , csn+1), (c1, . . . , cn+1)) defined as above,
we say that a item ci(j) has index ind in g, if during above construction ci(j) is gener-
ated from g′(ind).

It remains to prove that, if (p, d, u, r, qs,mak, T, g) ∼ ((cs1, . . . , csn+1), (c1, . . . , cn+1

)) holds, (p, d, u, r, qs,mak, T, g) αv+1−→e (p′, d′, u′, r′, q′s,mak′, T, g′) and (p′, d′, u′, r′,
q′s,mak′, T, g′) is the v+2-th configuration of the path of t, then there exists cs′1, . . . ,

cs′n+1, c
′
1, . . . , c

′
n+1 and βv+1, such that ((cs1, . . . , csn+1), (c1, . . . , cn+1))

βv+1−→
∗

Mk-(f,c,r)
i

(cs′1,
. . . , cs′n+1), (c

′
1, . . . , c

′
n+1)), (p

′, d′, u′, r′, q′s,mak′, T, g′) ∼ ((cs′1, . . . , cs′n+1), (c
′
1, . . . ,

c′n+1)) holds, and the flush, call and return actions in αv+1 is same to that in βv+1.
Assume for each i, cs′i = (q′i, d

′
ci, d
′
gi, q

i′

s ,mak′i, cnt′i).

- When αv+1 is a τ or read action, it is obvious to see that βv+1 = ε and this holds
trivially.

- When αv+1 is a call or return action, it is obvious to see that βv+1 = αv+1 and this
holds trivially.

- When αv+1 is a write actions of process i, βv+1 = ε, and the channels are changed
as follows:

- If lg2 ↑(Σe1∩Σi) 6= ε, then let ind1 be the index of the right most Σe1 ∩ Σi item
on g, let ind2 be the index of ci(1) in g if ci 6= ε, or otherwise the index of
the left most item of lg3. c′i is generated from ci by putting updates of g(ind2 +
1), . . . , g(ind1) into ci. During this process a write and then several guess write
actions happen. For channel j 6= i, c′j = cj .

- If lg2 ↑(Σe1∩Σi)= ε,
- For channel i. Let ind1 be the index of the right most Σi item of lg1 in g,

let ind2 be the index of right most item of lg1 in g. c′i is generated from
ci by putting updates of g(ind2), . . . , g(ind1) into ci. During this process
several guess write and then a write actions happen.

- For channel j 6= i. If lg2 ↑Σj= ε holds. Let ind1 be the index of the right
most Σi item of lg1 in g. Let ind2 be the index of right most item of lg1 in
g. Let sequence g′ = g(ind1) · . . . · g(ind2).
If g′ ↑Σj

6= ε, let ind3 be the index of right most item of g′ ↑Σj
in g, and

c′j is generated from cj by putting updates of g(ind2), . . . , g(ind3). During
this process several guess write actions happen.
Otherwise, if g′ ↑Σj= ε, c′j is generated from cj by putting updates of
g(ind2), . . . , g(ind1). During this process several guess write actions hap-
pen.

- For channel j 6= i. If lg2 ↑Σj
6= ε holds, c′j = cj .

- When αv+1 is a flush action of process i, then βv+1 = αv+1. The channels are
changed as follows:

- For process j 6= i, c′j is generated from cj by discarding the right most item of
cj . During this process a flush action happen.

- For process i, the channel c′i is changed as follows:
- If |lg2 ↑(Σe2∩Σi) | ≥ 2, then c′i is generated from ci by discarding the right

most item. During this process a flush action happen.
- Otherwise, |lg2 ↑(Σe2∩Σi) | = 1.

If lg2 ↑(Σe1∩Σi) 6= ε, let ind1 be the index of the right most Σe1 ∩ Σi item
in g, otherwise, let ind1 be the index of the right most item of lg1 in g.
Let ind2 be the index of the Σe2 ∩ Σi item in g. c′i is generated from ci
be putting updates of g(ind2 − 1), . . . , g(ind + 1) and discarding the right
most item of ci. During this process several guess write actions and a flush
action happen.

- When αv+1 is a cas(i, x, val) action of process i, then βv+1 = flush(i, x, val). The
channels are changed as follows:

- If lg2 = ε. For process j 6= i, c′j = cj = ε, and during transition the update
(i, x, val) need to be inserted into c′j by a guess write action and then flushed
our of c′j using a flush action. For process i, c′i = ci = ε, and during this
process a cas action happen.

- If lg2 6= ε. For process j 6= i, c′j is generated from cj by discarding the right
most item using a flush action. For process i, the channel c′i is generated as
follows:

- If |lg2 ↑(Σe1∩Σi) | ≥ 2, let ind1 be the index of the second right most
Σe1∩Σi item in g, let ind2 be the index of the right mostΣe1∩Σi item in g.
c′i is generated from ci by putting the updates of g(ind2−1), . . . , g(ind+1)
into ci. During this process several guess write action happen.

- If lg2 ↑(Σe1∩Σi)= ε, let ind1 be the index of the right most item of lg1 in
g, let ind2 be the index of the Σe1 ∩ Σi item in g. c′i is generated from ci
by putting the updates of g(ind2 − 1), . . . , g(ind + 1) into ci. During this
process several guess write actions happen.

It is not hard to prove that at each time, a item is in a channel ci of some process
i, if at least this item is in lg2. Therefore, It can be seen that for each configuration
(p, d, u, r, qs,mak, T, g) of t, g contains at most k-1 marked items. Therefore, each c
satisfies strong symbol restriction (S,K1). ut

With above two lemmas we can now prove Lemma 6.

Lemma 6. If there exists a marked violation t of k-bounded TSO-to-SC linearizabil-
ity between libraries L and L′ for n processes from (pinit, dinit, ε

n) to (pw, dw, ε
n)

in JClt(L), n+1Ktso, then ∩n+1
i=1T

(S,K1)
(qi,q′i)

Mk-(f,c,r)
i 6= ∅, where for each 1 ≤ i ≤ n+1,

qi = (pinit(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qerror, ε, |t ↑(Σcal∪Σret) |).

Proof. Lemma 6 is a direct consequence of Lemma 10 and Lemma 11. ut

A.4 Proof of Lemma 7

Lemma 7. If∩n+1
i=1T

(S,K1)
(qi,q′i)

Mk-w
i 6= ∅, where for each 1≤ i≤n+1, qi = (pinit(i), dinit, dinit,

qis, ε, 0), q′i = (pw(i), dw, dw, qerror, ε, a), then there exists a marked violation t of k-
bounded TSO-to-SC linearizability between libraries L and L′ for n processes from
(pinit, dinit, ε

n) to (pw, dw, ε
n) in JClt(L), n+1Ktso, and |t ↑(Σcal∪Σret) | = a.

Proof. Since ∩n+1
i=1T

(S,K1)
(qi,q′i)

Mk-(f,c,r)
i 6= ∅, there is a path (cs01, . . . , cs0n+1), (c

0
1, . . . , c

0
n+1))

α1−→ . . .
αw−→ (csw1 , . . . , cswn+1), (c

w
1 , . . . , c

w
n+1)) of Mk-(f,c,r)

1 ⊗ . . .⊗Mk-(f,c,r)
n+1 , such that for

each process id i, cs0i = (pinit(i), dinit, dinit, qis, ε), c0i = ε, cswi = (pw(i), dw, dw, qerror, ε)

and cswi = ε. Let csji = (qji , d
j
ci, d

j
gi, q

j
si,makji , cntji) for each process id i.

We prove this lemma by constructing a weak simulation between configuration of
Mk-(f,c,r)

1 ⊗ . . .⊗Mk-(f,c,r)
n+1 and configuration of JClt(L), n+1Ktso.

A relation ∼ is defined as follows: given configuration ((csv1, . . . , csvn+1), (c
v
1, . . . ,

cvn+1)) for the v+1-th configuration of the path, and a configuration (p, d, u) of JClt(L),
n+1Ktso, ((csv1, . . . , csvn+1), (c

v
1, . . . , c

v
n+1)) ∼ (p, d, u), if,

- For each process id i, qvi = p(i), dvci = d.
- For each process id i1, i2, qvsi1 = qvsi2 , makvi1 = makvi1 , cntvi1 = cntvi2 .
- Let cv’

i be generated from cvi by discarding items of all but process i. Then for each
ind, u(ind) = (x, a), if and only if cv’

i (ind) = (i, x, val) or ((i, x, val),]) for some
val where val(x) = a.

It remains to prove that if ((csv1, . . . , csvn+1), (c
v
1, . . . , c

v
n+1)) ∼ (p, d, u) and ((csv1, . . . ,

csvn+1), (c
v
1, . . . , c

v
n+1))

αv+1−→ ((csv+1
1 , . . . , csv+1

n+1), (c
v+1
1 , . . . , cv+1

n+1)), then one of the fol-
lowing two cases holds:

- Case 1: there exists configuration (p′, d′, u′), such that ((csv+1
1 , . . . , csn+1

v+1), (c
v+1
1 ,

. . . , cv+1
n+1)) ∼ (p′, d′, u′), (p, d, u)

βv+1−→tso (p′, d′, u′), the flush, call and return ac-
tion in αv+1 are same to that in βv+1,

- Case 2: ((csv+1
1 , . . . , csv+1

n+1), (c
v+1
1 , . . . , cv+1

n+1)) ∼ (p, d, u).

We prove this by considering all kinds of transition label αv+1,

- If αv+1 is a internal action derived from a τ or read action of some process, then
βv+1 = ε and case 1 holds trivially.

- When αv+1 is a call or return action, case 1 holds trivially.
- If αv+1 is a internal action derived from a write(i, x, val) transition ofM k-(f,c,r)

i , then
βv+1 = ε, case 1 holds, (p′, d′, u′) is generated from (p, d, u) by a write transition
and u′(i) = (x, val(x)) · u(i).

- If αv+1 is a internal action derived from a guessing write transition of M k-(f,c,r)
i , then

it is obvious that case 2 holds.
- When αv+1 is a flush action derived from a flush(i, x, val) transition of M k-(f,c,r)

i ,
then βv+1 = αv+1, case 1 holds, (p′, d′, u′) is generated from (p, d, u) by a flush
transition and u(i) = u′(i) · (x, val(x)).

- When αv+1 is a flush action from a cas(i, x, val) transition of M k-(f,c,r)
i , then βv+1 =

αv+1, case 1 holds and (p′, d′, u′) is generated from (p, d, u) by a cas transition.

Moreover, the counter tuples (cntji) in csji guarantee that number of call and flush
actions in this path is less or equal than k. Therefore, β1 · . . . · βw is a marked violation
of k-bounded TSO-to-SC linearizability. ut

B Proof of Lemma 5

A configuration ((q, dc, dg, qs,mak, cnt), c) of M k-w
i is called standard, if either c =

ε∧ dc = dg , or c 6= ε, c(1) is a strong symbol and c(1) = (, , dg) or ((, , dg),]). It is
obvious if a path of (S,K1)-(lossy) channel machine starts from a standard configura-
tion, then each configuration on this path is standard.

The following lemma shows that there is a weak simulation between configurations
of (S,K1)-channel machineM k-w

i and configurations of (S,K1)-lossy channel machine
M k-w
i .

Lemma 12. Given standard configuration ((p1, dc1, dg1, q
1
s ,mak1, cnt1), c1), if c1 �K1

S

c′1 and ((p1, dc1, dg1, q
1
s ,mak1, cnt1), c1)

α−→(M k-w
i ,S,K1) ((p2, dc2, dg2, q

2
s ,mak2, cnt2), c2),

then there exists c′2 and β, such that c2 �K1

S c′2, ((p1, dc1, dg1, q
1
s ,mak1, cnt1), c′1)

β−→
∗

M k-w
i

((p2, dc2, dg2, q
2
s ,mak2, cnt2), c′2), and the write actions in α equals that in β.

Proof. This is proved by considering all kinds of transitions.

- If α is a internal action derived from a τ or read action, then c′2 = c′1 and this holds
trivially.

- If α is a internal action derived from a call or return action, then c′2 = c′1 and this
holds trivially.

- If α is a write action derived from a cas action, then c′2 = ε and this holds trivially.
- If α is a write action derived from a write(ind, x, d) action, then c′2 is generated

from c′1 by a write action that puts an item of memory location x and valuation d,
and this holds trivially.

- If α is a internal action derived from a flush action, assume c1 = α1 · . . . · αl,
c′1 = β1 · . . . · βw, since c1 �K1

S c′1, there exists i1, . . . , il, such that for each ind,
αj = βiind .
Assume during the transition ((p1, dc1, dg1, q1s ,mak1, cnt1), c1)

α−→(M k-w
i ,S,K1) ((p2,

dc2, dg2, q2s ,mak2, cnt2), c2), the item which is flushed into memory is the j-th el-
ement in c1. Then β = ε, and ((p2, dc2, dg2, q2s ,mak2, cnt2), c′2) is generated from
((p1, dc1, dg1, q1s ,mak1, cnt1), c′1) by first flushing items βw, . . . , βij+1, and then
flush item βij .

ut

With Lemma 12 we can now prove Lemma 5.

Lemma 5. There exists a marked violation t of k-bounded TSO-to-SC linearizabili-
ty between libraries L and L′ for n processes from (pinit, dinit, ε

n) to (pw, dw, ε
n) in

JClt(L), n+1Ktso, if and only if
⋂n+1
i=1 LT(S,K1)

(qi,q′i)
Mk-w
i 6= ∅, where for each 1≤ i≤ n+1,

qi = (pinit(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qerror, ε, |t ↑(Σcal∪Σret) |).

Proof. Lemma 5 is a direct consequence of Lemma 6 and Lemma 12. ut

C Library For Simulating Single-Channel Machines

C.1 Simple channel machine

A simple channel machine is a channel machine that has only one channel and has a
simpler definition than channel machine. Formally, a simple channel machine is a tuple
M = (Q, CH, ΣCH, Λ,∆), where

- M is a channel machine,
- M bas only one channel,
- each transition of M uses a ε transition label,
- each transition of M uses an empty guard,
- each transition of M does not uses substitution,
- each item in channel is not a strong symbol,

For simplicity, a simple channel machine M can be redefined as M = (Q, {c}, Σc,
∆M), where Q is a finite set of states; c is the name of the only channel of M ; Σc is
the alphabet for channel contents; ∆M ⊆ Q× (ΣCH ∪ {ε})× (ΣCH ∪ {ε})×Q is the
transition relation. A rule (q1, u, v, q2) is in ∆M , if one of the following cases holds:

- there exists (q1, ε, ε, c?a, q2) ∈ ∆, u = a and v = ε,
- there exists (q1, ε, ε, c!a, q2) ∈ ∆, u = ε and v = a,
- there exists (q1, ε, ε, nop, q2) ∈ ∆, u = ε and v = ε

Intuitively, a transition rule (q1, u, v, q2) represents a transition from q1 to q2, which
gets u from channel c and puts v into channel c.

The semantics of a simple channel machine M is given by an LTS (ConfM , ∅,→M

, initConfM). A configuration of ConfM is a pair (q, u) where q ∈ Q and u : {c} → Σ∗c .
The transition relation→M is defined as follows: given q, q′ ∈ Q and u, u′ ∈ {c} →
Σ∗c , (q, u) α−→M (q′, u′), if there exists transition rule (q, a, b, q′) ∈ ∆M , such that
b · u = u′ · a.

A lossy simple channel machine M is a simple channel machine M with lossy
channel, and its semantics is given by an LTS (ConfM , ∅,→l, initConfM). The transition
relation→l is defined as follows: given q, q′ ∈ Q and u, u′ ∈ {c} → Σ∗c , (q, u) α−→l

(q′, u′), if there exists transition rule (q, a, b, q′) ∈ ∆M and v, v′ ∈ {c} → Σ∗c , such
that b · v = v′ · a, v is a subword of u and u′ is a subword of v′.

Given a lossy simple channel machine M , we say that (q0, u0) · α1(q1, u1) · . . . ·
αw · (qw, uw) is a finite run of M from (q, u) to (q′, u′), if (1) (q0, u0) = (q, u), (2)
(qi, ui)

αi+1−→l (qi+1, ui+1) for each i and (3) (qw, uw) = (q′, u′). Given a lossy simple
channel machineM and two configurations s1, s2 ofM , the reachability problem ofM
is to determine whether there is a finite run from s1 to s2 in lossy semantics of M .

According to [14], it is obvious that the reachability problem of lossy simple channel
machine has nonprimitive recursive complexity.

C.2 Definition of Implementation Library

On the TSO memory model flush operations are launched nondeterministically by the
memory system. Therefore, between two consecutive read actions, more than one flush
actions may happen. The next read action can only read the latest flush action to x,
while missing the intermediate ones. These missing flush actions are similar to the
missing messages that may happen in a lossy channel machine. This makes it possible
to simulate a lossy simple channel machine with a concurrent program running on the
TSO memory model. We implement such simulation through a most general client and
a library LM(s1,s2) specifically constructed based on a lossy simple channel machine M
and configurations s1 and s2.

For a simple channel machine M = (Q, {c}, Σc, ∆M) and configurations s1 =
(q1,W1), s2 = (q2,W2), the finite data domain of the library is DL = Q ∪ Σc ∪
{start, end,],⊥, 0, . . . , |W2|+1}. The library LM(s1,s2) is constructed with two methods
M1 and M2, and the following memory locations:

- a memory location x that is used to transmit the channel contents from M1 to M2,
- a memory location y that is used to transmit the channel contents from M2 to M1,
- a memory location cnt that is used inM1 to count that, in each round, whether |W2|

items has been read,
- an array W2Seq which is of length |W2| and stores W2 as initial value,

- an array RecvSeq which is of length |W2| and is used to store the first |W2| items
read in each round,

The symbol] is used as the delimiter to ensure that one element will not be read
twice. The symbols start and end represent the start and the end of the channel contents,
respectively. ⊥ is the initial value of elements in RecvSeq in each round.

We now present the three methods in the pseudo-code, shown in Methods 1 and 2.
For the sake of brevity, the following macro notations are used:

- For sequence l = a1 · . . . · am, we use writeSeq(x,l) to represent the commands of
writing a1,], . . . , am,] to x in sequence,

- We use v := readOne(x) to represent the commands of reading e,] from x in
sequence for some e 6=] and then assigning e to v. We use readOne(x, v) to
represent the commands of reading a,] from x in sequence where a is the value
of v. If readOne(x) or readOne(x, v) fails to read the specified content, then the
calling process will no long proceed.

- We use writeOne(x, v) to represent the commands of writing a,] to x in sequence
where a is the current value of v.

- We use initRecvSeq() to represent the commands that assigns 1 to cnt and assigns
⊥ to RecvSeq(1), . . . ,RecvSeq(|W2|).

- We use det(tempQ,cnt,ele) to represent the macro which will either nondeterminis-
tically return false, or update the cnt-th element of RecvSeq to ele and then deter-
mine whether contents of RecvSeq equals W2. It works as follows:

- It may nondeterministically decide to do noting and return false;
- If tmpQ 6= q2 ∨ cnt = 0 ∨ cnt > |W2|, then it assigns min{|W2|+ 1, cnt + 1}

to cnt and returns false.
- Else, if 1 ≤ cnt < W2|, then it assigns ele to RecvSeq(cnt), assigns min{|W2|+
1, cnt + 1} to cnt and returns false,

- Otherwise, cnt = |W2| in this case, then it assigns ele to RecvSeq(|W2|), as-
signs min{|W2| + 1, cnt + 1} to cnt, and checks whether contents of RecvSeq
equals W2. If it holds, returns true, else, returns false.

There are two kinds of losing in our implementation library LM(s1,s2). The first kind
of losing comes from that between two consecutive read actions, more than one flush
actions may happen and the intermediate flush may be lost. The second kind of losing
comes from that det, which is designed to check whether (q2,W2) has been reached,
may loses some information nondeterministically.

The pseudo-code of method M1 is shown in Method 1. M1 first puts q1 · start ·W1 ·
end into the processor-local store buffer by writing them to x (Line 1). Then, it begins
an infinite loop that never returns unless (q2,W2) is reached (Lines 2 − 24). At each
round of the loop, it reads the current state tmpQ (Line 3) and guesses a transition rule
rul = (tmpQ, u, v) ∈ ∆M (Line 4). M1 initializes RecvSeq (Line 5), check whether it
is the case that tempQ = q2∧W2 = ε (Lines 6−7). If so, it returns as soon as possible.
It not, it reads u from y (Lines 8) if u 6= ε. Then, it reads the remaining contents of
method M1’s processor-local store buffer (intermediate values of y may be lost) and
writes them and v to x (Lines 13-22). In each round of the while loop of Lines 2− 24,

when a item is read from y (Lines 11−12, 18−19), or when write v to x (Lines 13−24),
it uses det to check whether (q2,W2) is reached. If so, M1 return as soon as possible. It
should be noted that det may nondeterministically loses items.

The pseudo-code of method M2 is shown in Method 2.M2 contains an infinite loop
that never returns (Lines 1-3). At each round of the loop, it reads a new update from x
and writes it to y.

Method 1: M1

Input: an arbitrary argument
Output: an arbitrary argument

1 writeSeq(x, q1 · start ·W1 · end);
2 while true do
3 tmpQ := readOne(y) for some state tmpQ ∈ Q;
4 guess a transition rule rul = (tmpQ, u, v) ∈ ∆M ;
5 initRecvSeq();
6 if tempQ = q2 ∧W2 = ε then
7 return;
8 readOne(y, start);
9 if u 6= ε then

10 readOne(y, u);
11 if det(tempQ, cnt, u) = true then
12 return;
13 while true do
14 tmp = readOne(y);
15 if temp = end then
16 break;
17 writeOne(x, tmp);
18 if det(tempQ, cnt, u) = true then
19 return;
20 if v 6= ε then
21 writeOne(x, v);
22 writeOne(x, end);
23 if det(tempQ, cnt, u) = true then
24 return;

Method 2: M2

Input: an arbitrary argument
1 while true do
2 tmp := readOne(x);
3 writeOne(y, tmp);

C.3 Definition of Abstraction Library

The library Lpend is constructed with two methods M1 and M2 and it does contain
private memory locations. M1 and M2 are pending in any cases. They only contains a
while(true); loop. It is obvious that in each trace of Lpend, no method can return.

C.4 Proof of Proposition 1

Similarly to [15,16], we can prove the following lemma, which states that a history of
JLM(s1,s2), 2Ktso contains a return action, if and only if s2 is reachable from s1 in lossy
semantics of M .

Lemma 13. There exists a history h ∈ history(JLM(s1,s2), 2Ktso) such that h ↑Σreturn 6= ε,
if and only if s2 is reachable from s1 in lossy semantics of M .

With above lemma, we can prove Proposition 1.

Proposition 1. The decision problem of k-bound TSO-to-SC linearizability has non-
primitive recursive complexity.

Proof. From Lemma 13 and the following facts:

- Each history in history(JLpend, 2Ktso) does not contain return action.
- If a history h in history(JLM(s1,s2), 2Ktso) contains a return action, then it must con-

tains a call action of M1, its accompanying flush action, a call action of M2. If h
also contains one or two additional pending call actions, we can discarding these
additional pending actions and generate a history h′ of just three actions with a
return action.

It is obvious that s2 is reachable from s1 in lossy semantics of M , if and only if
JLpendKtso does not 3-bound TSO-to-SC linearizes JLM(s1,s2)Ktso for 2 processes. This
proposition then holds because that the reachability problem of lossy simple channel
machine has nonprimitive recursive complexity.

