
ISCAS-SKLCS-21-01

July, 2021

中国科学院软件研究所

计算机科学国家重点实验室

技术报告

Bounded Linearizability on TSO Memory

Model is Decidable

by

Chao Wang, Yi Lv,

Peng Wu, Qiaowen Jia

State key Laboratory of Computer Science

Institute of Software

Chinese Academy of Sciences

Beijing

100190.

China

Copyright2021, State key Laboratory of Computer Science, Institute of Software.

 All rights reserved. Reproduction of all or part of this work is

 permitted for educational or research use on condition that this

 copyright notice is included in any copy.

Bounded Linearizability on TSO Memory Model is
Decidable

Chao Wang1, Yi Lv2, Peng Wu2, and Qiaowen Jia2

1 Southwest University, China
2 State Key Laboratory of Computer Science,

Institute of Software, Chinese Academy of Sciences

Abstract. TSO-to-TSO linearizability is a typical variants of linearizability for
concurrent data structures on the Total Store Order (TSO) memory model. In this
paper we propose the notion of k-bounded TSO-to-TSO linearizability, a subclass
of TSO-to-TSO linearizability that concerns only extended histories of bounded
length. These subclasses are non-trivial in that they does not restrict the number
of write, flush and cas (compare-and-swap) actions, nor the size of a store buffer,
to be bounded.
We prove that the decision problem of k-bounded TSO-to-TSO linearizability is
decidable for a bounded number of processes. In the semantics of (k-bounded)
TSO-to-TSO linearizability, a call or return action influences control state and
store buffer at the same time. We divide a “composed” call action into a “pure”
call action and an action for store buffer. Then, a “pure” call action is marked with
a specific cas action by introduce a observer process and modify the memory
model to make sure a specific cas action is “bind” to call action. The role for
store buffer of a “composed” call action is transformed into a write action. Then,
we need only to concentrate on actions of memory models (read, write, flush,
cas) and we reduce the k-bounded TSO-to-TSO linearizability problem to several
control state reachability problems of lossy channel machines, which is already
known to be decidable.
In a similar manner, we can conclude that the decision problems of k-bounded
TSO-to-SC linearizability and TSO linearizability are also decidable for a bounded
number of processes. Thus, all bounded linearizability on TSO are decidable.

1 Introduction

High performance libraries of concurrent data structures, such as java.util.concurrent
for Java and std::thread for C++11, have been widely used in concurrent programs to
take advantage of multi-core architectures. It is important but notoriously difficult to en-
sure that concurrent data structures are designed and implemented correctly. Linearizability
[1] is accepted as a de facto correctness condition for a concurrent data structure with
respect to its sequential specification on the sequential consistency (SC) memory model
[2].

However, modern multiprocessors (e.g., x86 [3], POWER [4]) and programming
languages (e.g., C/C++ [5], Java [6]) do not comply with the SC memory model. As
a matter of fact, they provide relaxed memory models, which allow subtle behaviors

due to hardware or compiler optimization. For instance, in a multiprocessor system
implementing the total store order (TSO) memory model [3], each processor is equipped
with an FIFO store buffer. Any write action performed by a processor is put into its local
store buffer first and can then be flushed into the main memory at any time. The TSO
memory model requires that all processes in a concurrent system observe the same order
of update actions (flush and cas actions), which is referred to as a total store order.

The notion of linearizability has been extended for relaxed memory models, e.g.,
TSO-to-TSO linearizability [7] and TSO-to-SC linearizability [8] for the TSO memory
model and two variants of linearizability [5] for the C++ memory model. These notions
generalize the original one by relating concurrent data structures with their abstract
implementations, in the way as shown in [9] for the SC memory model.

It is well known that the linearizability of a concurrent library on the SC mem-
ory model is decidable for a bounded number of processes [10], but undecidable for
an unbounded number of processes [11]. However, to our knowledge, there are only a
few decidability results about linearizability on relaxed memory models. We have re-
cently proved that the decision problem of TSO-to-TSO linearizability is undecidable
for a bounded number of processes [12,13]. But the decision problem of TSO-to-SC
linearizability still remains open for a bounded number of processes.

TSO-to-TSO linearizability relates a concurrent data structure running on the TSO
memory model to its abstract implementation running also on the TSO memory model.
When method invocation (call) or responses (return) happen, a marker is put into local
store buffer first, and its flushing will launches a flushCall or flushReturn action. TSO-
to-TSO linearizability use extended histories to represent the behaviors of concurrent
data structures, which are sequences of call, return, flushCall and flushReturn actions.
We propose a decidable subclass of TSO-to-TSO linearizability, which is referred to
as k-bounded TSO-to-TSO linearizability. It concerns only k-extended histories, which
are extended histories with less or equal than k actions. Note that the k-boundedness
on the number of call, return, flushCall and flushReturn actions does not necessarily
restrict the behaviors of a concurrent program to be finite-state.

Since the set of all k-extended histories is bounded, if we can effectively obtain the
set of k-extended histories of a concurrent data structure for bounded number of pro-
cesses, then we can decide k-bounded TSO-to-TSO linearizability. Inspired by [14], we
consider to reduce the the problem of whether a concurrent data structure has a specific
k-extended history to several control state reachability problem of a lossy channel ma-
chine, which is known decidable [14]. However, the reduction method in [14] does not
directly apply to k-bounded TSO-to-TSO linearizability. This is because that method
in [14] only consider internal actions or actions of memory model, such as read, write
or cas (compare-and-swap) actions. As contrast, call and return actions in TSO-to-TSO
linearizability are much different. A call action in TSO-to-TSO linearizability has two
roles that are taken simultaneously: The first role is to change the control state of the
calling process, and the second role is to insert a call marker into store buffer of the
calling process. The central idea of our work is to “transform” the two roles of a call
actions into a write action and a cas action, which belongs to the memory model (the
case of return action is similar).

It is hard to investigate decidability of k-bounded TSO-to-TSO linearizability with
such “composed” call and return actions. Therefore, we separate a “composed” call
action into a “pure” call action that only change the control state of the calling process,
and a immediately followed write action that inserts a call marker into buffer. To make
this, we introduces a new memory location zf and modify the operational semantics of
TSO-to-TSO linearizability as follows: (1) Call and return actions are “pure” now, or we
can say, they do not put anything into buffer. (2) We additionally add a write action of
zf just after each call and return actions, and write call or return markers, respectively.
(3) When the item of zf is flushed out of buffer, we launch a flushCall or flushReturn
action. In this way, the second role of a “composed” call is mimicked by the insertion
of zf and the “TSO mechanism”.

It is also hard to deal with “pure” call and return action, since they are to some
extend “beyond” TSO memory model and seems not compatible with TSO memory
model. Let us explain this. A call action takes effect as soon as it happens. As contrast,
on TSO, write actions can be seen by other process only when they are flushed. This
implies that, if a process want to notice another process by writing something into
buffer, then this message can be seen by other process only when it is flushed. To make it
worse, the order of call and return action may be different from the order of how items in
buffer are flushed. Since the content of buffer may influence future execution, a process
may not be able to notice other process of call or return actions by using cas actions,
since a cas action will clear the buffer. Therefore, it is hard to make a concurrent system
to know the order of call and return actions without influence its future execution on
TSO. To solve this problem, we modify TSO memory model and make call and return
actions visible to concurrent system by “bind” each call or return action with a specific
cas action. To be exact, we introduces a new memory location zw, a new “observer”
process, which keeps launching the specific cas actions of zw nondeterministically, and
modify the TSO memory model, in a way where each call or return action must be bind
(immediately before) to a specific cas action of the observer process. Or we can say, the
concurrent system can not proceed as soon as a cas action of observer process is not
immediately followed by the corresponding call or return action. For each execution
of this modified operational semantics, the order of call and return actions are same
as the order of cas actions in observer process. In this way, we mimic the “pure” call
and return actions with cas actions of observer process. For extended history eh in TSO
memory model, there is a trace t in the modified TSO model, where t has extended
history eh and all items putted into buffer in t has been flushed. Such a trace is called
a marked witness of the extended history. The existence of extended history in TSO
memory model is equivalent to the existence of marked witness of the extended history
in the modified TSO model. Since we have “transformed” the “composed” call and
return actions with write and cas actions with memory model modified, the method in
[14] can be applied to investigate the existence of marked witness.

A lossy channel machine Mk
i (1≤ i≤ n+1) is then constructed, which simulates

the k-bounded behaviors of the concurrent system from the perspective of each process
Pi, and ensure that each specific cas of the observer process is immediately followed by
a corresponding call or return action. Mk

i also nondeterministically guesses actions of
other process, and contains only one channel to store the pending written items accord-

ing to the total store orders under the original concurrent system. Thus, the existence of
a marked witness of an extended history can be reduced to a control state reachability
problem between one pair of specific states of the product of M k-w

1 , . . . ,M k-w
n+1. Each

M k-w
i is resulted from Mk

i by replacing its all but write, cas, flushCall and flushReturn
(flush of zf) transitions with internal transitions. The reduction is achieved by requiring
that each written item in a channel contains a run-time snapshot of the memory, while
always keeping bounded the amount of information that needs to be stored as in a per-
fect channel. With these specialized lossy channels, missing some intermediate channel
contents would not break the reachability between control states under perfect chan-
nels. Since the number of pairs of specific states is finite, we can reduce the existence
of a marked witness of an extended history to a finite number times of control state
reachability problem of lossy channel machines.

Further, we can show that the decision problem of k-bounded TSO-to-TSO lineariz-
ability has at least non-primitive recursive complexity. This can be proved by a reduc-
tion from a reachability problem of a lossy simple channel machine, which is known
to have non-primitive recursive complexity [15]. Inspired by our previous work [13],
we generate a template LM(s1,s2) for simulating transitions from s1 to s2, which are two
states of lossy simple channel machine M . This concurrent data structure contains two
methods M1 and M2. We use two buffers of two processes to simulate one channel,
where processes P1 runs M1 and process P2 runs M2. Process P1 read updates of pro-
cess P2, change them according to transition rules of M , and write them into buffer,
while process P2 read updates of process P1 and write them into buffer. On TSO, be-
tween two consecutive read actions, more than one flush actions may happen, but only
the latest flush action can be read while the intermediate flush actions can not. Such fact
of missing flush actions are used to simulate lossy of channel. Each transition of the
lossy simple channel machine is reproduced through the interactions between M1 and
M2. M2 never return, while M1 returns as soon as s2 is reached. Therefore, the prob-
lem of whether s2 is reachable from s1 is reduced to checking whether some extended
history of this concurrent data structure has a return action of M1, which can be easily
reduced to a 5-bounded TSO-to-TSO linearizability problem.

TSO-to-SC linearizability has been proposed for reasoning about the correctness of
a concurrent data structure, which is native to the TSO memory model but is used with
a concurrent program that needs to be protected from the relaxed semantics. It relates a
concurrent data structure running on the TSO memory model to its abstract implementa-
tion running on SC memory model. TSO-to-SC linearizability uses histories, which are
sequences of call and return actions, to represent the behaviors of concurrent data struc-
tures. We propose a decidable subclass of TSO-to-TSO linearizability, which is referred
to as k-bounded TSO-to-SC linearizability. It concerns only k-histories, which are his-
tories with less or equal than k actions. Here, the k-boundedness on the number of call
and return actions does not necessarily restrict the behaviors of a concurrent program
to be finite-state. We prove that k-bounded TSO-to-SC linearizability is also decidable
for a bounded number of processes similarly as the proof for k-bounded TSO-to-TSO
linearizability.

Apart from TSO-to-TSO linearizability and TSO-to-SC linearizabiltiy, there is an-
other variant of linearizability on TSO called TSO linearizability [16,17], which does

not have corresponding abstraction theorem. Essentially, TSO linearizability considers
a method to start at its call action and end at its flushReturn action. Or we can say, TSO
linearizability use sequences of call and flushReturn actions to represent behaviors of
concurrent data structures. To accommodate with TSO linearizability, we generalize
history into fifteen variants, where history, extended history and the sequence for TSO
linearizability are three variants among them. Then, we prove that we can effectively
obtain the set of sequences with bounded length of a concurrent data structure for all fif-
teen variants of histories. We propose a bounded variants of TSO linearizability called
k-bounded TSO linearizability, and prove that k-bounded TSO linearizability is also
decidable and has at least nonprimitive recursive complexity.

Related work Efforts have been devoted on verification of linearizability on the SC
memory model [10,11,18,19]. Alur et al. proved that linearizability is decidable for a
bounded number of processes [10], and Bouajjani et al. proved that linearizability is
undecidable for a unbounded number of processes [11] by a reduction from the reach-
ability problem of a counter machine (which is known to be undecidable).

Atig surveys the verification problem of safety and liveness properties of finite-state
programs running under the TSO memory model [20]. However, Relaxed memory mod-
els remain a great challenge for linearizability verification. Our previous work [13] re-
vealed the first undecidability result on TSO-to-TSO linearizability for a bounded num-
ber of processes. In [13], the trace inclusion problem of a classic-lossy single-channel
system, which has been known to be undecidable, was reduced to the TSO-to-TSO
linearizability problem. Our work is partly inspired by Atig et al. [14], where a state
reachability problem of a concurrent system is reduced to a control state reachability
problem of a lossy channel machine.

The most closest work to ours is our previous work [12]. However, [12] only con-
sider (k-bounded) TSO-to-SC linearizability, and the lossy channel machine of [12] is
used to check whether a concurrent data structure has a history (of bounded length) that
violate a regular language. In this paper, we consider the more generalized situation
which cover all the variants of linearizability on TSO. We use lossy channel machine to
check whether a concurrent data structure has a specific extended history (of bounded
length). We further establish the decidability result and complexity of k-bounded TSO-
to-TSO linearizability, shows that we can effectively obtain the set of sequences with
bounded length of a concurrent data structure for all fifteen kinds of variants of histo-
ries. Thus, the result of [12] now is a corollary of our paper.
Paper Outline. Section 2 presents the definitions of concurrent data structures, concur-
rent systems, and its operational semantics of concurrent systems on TSO and SC mem-
ory models. In Section 3, we introduce the definition of TSO-to-TSO linearizability and
TSO-to-SC linearizability, and propose the definition of k-bounded TSO-to-TSO lin-
earizability and k-bounded TSO-to-SC linearizability. In Section 4, we give a modified
operational semantics that transform the second role of a call (resp., return) actions into
a write action. In Section 5, we introduce the definition of perfect/lossy channel ma-
chines. In Section 6, we modify the operational semantics and bind each call or return
action with a specific cas action, and propose the notion of marked witness. In Section
7, we propose the detailed definitions of channel machines for simulating each process
while checking existence of a specific extended history. We prove in Section 8 that

k-bounded TSO-to-TSO linearizability is decidable for bounded number of processes.
In Section 9, we prove that k-bounded TSO-to-TSO linearizability has non-primitive
recursive complexity. In Section 10, we show the related results for (k-bounded) TSO-
to-SC linearizability. In Section 10.2, we show that we can effectively obtain the set
of sequences with bounded length of a concurrent data structure for all fifteen kinds
of variants of histories, and sketch definition and decidability proof of k-bounded TSO
linearizability. The article is concluded in Section 11 with future work.

2 Concurrent Systems

In this section, we present the notations of concurrent data structures, client programs,
most general clients and concurrent systems. Then, we introduce their operational se-
mantics on the TSO and SC memory model.

2.1 Notations

In general, a finite sequence on an alphabet Σ is denoted l = α1 · α2 · . . . · αk, where ·
is the concatenation symbol and αi ∈ Σ for each 1≤ i≤ k. Let |l| and l(i) denote the
length and the i-th element of l, respectively, i.e., |l| = k and l(i) = αi for 1≤ i≤ k.
Let l ↑Σ denote the projection of l to Σ. Given a function f , let f [x : y] be the function
that is the same as f everywhere, except for x, where it has the value y. Let denote an
item, of which the value is irrelevant, and ε the empty word.

A labelled transition system (LTS) is a tuple A = (Q,Σ,→, q0), where Q is a set
of states (a.k.a. configurations),Σ is an alphabet of transition labels,→⊆ Q×Σ×Q is
a transition relation and q0 is the initial state. A path of A is a finite transition sequence

q0
β1−→ q1

β2−→ . . .
βk−→ qk with k≥0. A trace ofA is a finite sequence t = β1 ·β2 ·. . .·βk

with k≥0 if there exists a path q0
β1−→ q1

β2−→ . . .
βk−→ qk of A.

2.2 Concurrent Data Structures and Client Programs

A concurrent data structure provides a number of methods for accessing the data struc-
ture. A client program is a program that interacts with concurrent data structures. Con-
current data structures and client programs may contain private memory locations for
their own uses. For simplicity of notations, we assume that a method has just one argu-
ment and one return value (if it returns).

Given a finite set X of memory locations, a finite set M of method names and a
finite data domain D, the set PCom of primitive commands has the forms below:

textitPCom ::= τ | read(x, a) | write(x, a) | cas suc(x, a, b) |
cas fail(x, a, b) | call(m, a) |return(m, a)

where a, b ∈ D, x ∈ X and m ∈ M. Herein, τ is the internal command. A cas
(compare-and-swap) command compresses a read and a write commands into a single
one, which is meant to be executed atomically. A successful cas command cas suc(x, a,

b) changes the value of x from a to b, while a failed cas command cas fail(x, a, b) does
nothing and happens only when the value of x is not a.

A concurrent data structure L can then be defined as a tuple L = (XL,ML,DL, QL,
→L), whereXL,ML andDL are a finite memory location set, a finite method name set
and a finite data domain of L respectively; QL =

⋃
m∈ML

Qm is the union of disjoint
finite sets Qm of program positions of each method m ∈ ML; →L=

⋃
m∈ML

→m

is the union of disjoint transition relations of each method m ∈ ML. Let PComL be
the set of primitive commands (except call and return commands) upon XL,ML and
DL. Then, for each m ∈ ML, →m⊆ Qm × PComL × Qm; while for each a ∈ DL
there exists an initial state is(m,a) and a final state fs(m,a) in Qm such that there are
neither incoming transitions to is(m,a) nor outgoing transitions from fs(m,a) in→m. is(m,a)
represents that concurrent data structure begins to execute method m with argument a,
and fs(m,a) represents that method m has finished its execution and then a return action
with return value a can occur.

A client program C can then be defined as a tuple C = (XC ,MC ,DC , QC ,→C) where
XC ,MC , DC and QC are a finite memory location set, a finite method name set and a
final data domain of C and a finite program position set, respectively. Let PComC be the
set of primitive commands upon XC ,MC and DC . Then,→C⊆ QC × PComC ×QC is
a transition relation of C.

A most general client is a special client program that is designed to exhibit all the
possible behaviors of a concurrent data structure. A most general clientMGC can be
formally defined as a client ({},MC ,DC , {qc, q′c},→mgc). Here→mgc= {(qc, call(m, a),
q′c), (q

′
c, return(m, a), qc, |m ∈MC , a ∈ DC} is a transition relation. Intuitively, a most

general client simply repeatedly calls an arbitrary method with an arbitrary argument
for arbitrarily many times.

2.3 TSO Operational Semantics

Let us introduce the operational semantics of concurrent system on TSO memory model,
which are used to define TSO-to-TSO linearizability. This operational semantics ex-
tends traditional operational semantics of TSO (shown later in this subsection) by intro-
ducing flushCall and flushReturn actions, which are used to record time point of when
write actions in a method begins to become visible to client, and when this process is
complete.

Suppose a concurrent system C(L) that consists of n processes, each of which
runs a client program Ci = (XC ,M,D, QCi ,→Ci) on a separate processor for 1≤ i≤
n, and all the client programs interact with the same concurrent data structure L =
(XL,M,D, QL,→L). The operational semantics of the concurrent systemC(L) on the
TSO memory model is defined as an LTS JC(L), nKtt

3 = (Conftt, Σtt, →tt, InitConftt),
where Conftt, Σtt,→tt, InitConftt are defined as follows.

Each configuration of Conftt is a tuple (p, d, u), where

- p : {1, . . . , n} → QCi ∪ (QL × QCi) represents control states of each process.
p(i) = qc ∈ QCi represents that process i is executing client position qc, while

3 tt represents TSO-to-TSO linearizability.

p(i) = (ql, qc) represents that process i is executing position ql of concurrent data
structure, and qc is the program position of the client program of process i.

- d : XL∪XC → D is the valuation of memory locations of concurrent data structure
and client programs;

- u : {1, . . . , n} → ({(x, a)|x ∈ XL ∪ XC ∧ a ∈ D} ∪ {call, ret})∗ represents
contents of each processor-local store buffer; each processor-local store buffer may
contain a finite sequence of pending write, pending call or pending return actions.

Σtt is a set of actions in the following forms:

Σtt ::= τ(i) | read(i, x, a) | write(i, x, a) | cas(i, x, a, b) |
flush(i, x, a) | call(i,m, a) | return(i,m, a) |

flushCall(i) | flushReturn(i)

where 1≤ i≤n,m ∈M, x ∈ XL ∪ XC and a, b ∈ D.
The relation T is used to define the transitions occur from concurrent data structures

or client programs and is defined as T = {((ql1, qc), α, (ql2, qc))|ql1, ql2 ∈ QL, qc ∈ QCi

for some 1 ≤ i ≤ n, ql1
α−→Lql2} ∪ {(qc1, α, qc2)|qc1, qc2 ∈ QCi

for some 1 ≤ i ≤
n, qc1

α−→Ciqc2, and α is not a call or return action }. The transition relation →tt is the
least relation satisfying the transition rules shown in Fig. 1 for each 1 ≤ i ≤ n.

- Tau rule: A τ transition only influences control state of one process.
- Read rule: A function lookup(u, d, i, x) is used to search for the latest value of x

from its processor-local store buffer or the main memory, i.e.,

lookup(u,d,i,x) =
{
a if u(i) ↑Σx= (x, a) · l, for some l ∈ Σ∗x
d(x) otherwise

where Σx = {(x, a)|x ∈ XL ∪XC , a ∈ D} is the set of pending write actions for x.
Read action will takes the latest value of x from processor-local store buffer if
possible, otherwise, it looks up the value in memory.

- Write rule: A write action will insert a pair of location and value to the tail of its
processor-local store buffer.

- Cas-Suc and Cas-Fail rules: A cas command can only be executed when the pro-
cessor-local store buffer is empty and thus forces current process to clear its store
buffer in advance. A successful cas command will change the value of memory
location x immediately while a failed cas command does not change memory.

- Flush rule: The memory system may decide to flush the entry at the head of pro-
cessor-local store buffer to memory at any time.

- Call and Return rules: To deal with call command, a call marker is added into the
tail of processor-local store buffer and current process starts to execute the initial
position of method m and parameter a. When the process comes to the final posi-
tion of method m it can launch a return action, add a return marker to the tail of
processor-local store buffer and start to execute the client program.

- Flush-Call and Flush-Return rules: A call or return marker can be discarded when
it is at the head of a processor-local store buffer. Such actions are used to define
TSO-to-TSO linearizability only.

T (p(i), c, q′i,), c = τ

(p, d, u)
τ(i)−−→tt(p[i : q

′
i], d, u)

Tau

T (p(i), c, q′i,), c = read(x, a), lookup(u, d, i, x) = a

(p, d, u)
read(i,x,a)−−−−−−→tt(p[i : q

′
i], d, u])

Read

T (p(i), c, q′i,), c = write(x, a), u(i) = l

(p, d, u)
write(i,x,a)−−−−−−→tt(p[i : q

′
i], d, u[i : (x, a) · l])

Write

T (p(i), c, q′i,), c = cas suc(x, a, b), d(x) = a, u(i) = ε

(p, d, u)
cas(i,x,a,b)−−−−−−−→tt(p[i : q

′
i], d[x : b], u)

Cas-Suc

T (p(i), c, q′i,), c = cas fail(x, a, b), d(x) 6= a, u(i) = ε

(p, d, u)
cas(i,x,a,b)−−−−−−−→tt(p[i : q

′
i], d, u)

Cas-Fail

u(i) = l · (x, a)

(p, d, u)
flush(i,x,a)−−−−−−→tt(p, d[x : a], u[i : l])

Flush

p(i) = qc1, qc1
call(m,a)−−−−−→Ciqc2, u(i) = l

(p, d, u)
call(i,m,a)−−−−−−→tt(p[i : (is(m,a), qc2)], d, u[i : call · l])

Call

p(i) = (fs(m,a), qcl), qc1
return(m,a)−−−−−−→Ciqc2, u(i) = l

(p, d, u)
return(i,m,a)−−−−−−−→tt(p[i : qc2], d, u[i : ret · l])

Return

u(i) = l · call

(p, d, u)
flushCall(i)−−−−−−→tt(p, d, u[i : l])

FlushCall

u(i) = l · ret

(p, d, u)
flushReturn(i)−−−−−−−→tt(p, d, u[i : l])

FlushReturn

Fig. 1. Transition Relation→tt

The initial configuration InitConftt ∈ Conftt is a tuple (pinit, dinit, ε
n). Here pinit map

each process id to a specific state, dinit is a valuation for memory locations in XL ∪XC ,
and εn initializes each process with an empty buffer. If each client program Ci is a most
general client, JC(L), nKtt can be abbreviated as JL, nKtt.

3 Correctness Conditions

The behavior of a concurrent data structure is typically represented by histories of in-
teractions between the concurrent data structure and the clients calling it (through call
and return actions). Let Σcal and Σret represent the sets of call and return actions, re-
spectively. A finite sequence h ∈ (Σcal ∪Σret)

∗ is a history of an LTS A, if there exists
a trace t of A such that t ↑(Σcal∪Σret)= h. Let history(A) denote all the histories of A.

TSO-to-TSO linearizability [7] is a variant of linearizability on the TSO memory
model, which relates a concurrent data structure running on the TSO memory model
to its abstract implementation running also on the TSO memory model. The notion of
history is not enough to describe all interactions between concurrent data structures and
client programs, since one of them can exhibit a side effect on the other via a store
buffer. Therefore, it introduces flushCall and flushReturn actions, which are used to
record time point of when write actions in a method begins to become visible to client,
and when this process is complete. Let Σfcal and Σfret represent the sets of flushCall
and flushReturn actions, respectively. A finite sequence eh ∈ (Σcal ∪ Σret ∪ Σfcal ∪
Σfret)

∗ is an extended history of an LTS A, if there exists a trace t of A such that
t ↑(Σcal∪Σret∪Σfcal∪Σfret)= eh. Let ehistory(A) denote all the extended histories ofA, and
eh|i the projection of eh to the actions of the i-th process. Two extended history eh1 and
eh2 are equivalent, if for each 1 ≤ i ≤ n, eh1|i = eh2|i.

Given two extended histories eh1 and eh2, eh1 is TSO-to-TSO linearizable to eh2, if

- eh1 and eh2 are equivalent;
- there is a bijection π : {1, . . . , |eh1|} → {1, . . . , |eh2|} such that for any 1 ≤ i ≤
|eh1|, eh1(i) = eh2(π(i));

- for any 1 ≤ i < j ≤ |eh1|, if (eh1(i) ∈ Σret ∪Σfret)∧ (eh1(j) ∈ Σcal ∪Σfcal), then
π(i) < π(j).

Given two concurrent data structures L1 and L2, we say that L2 TSO-to-TSO linearizes
L1, if for any eh1 ∈ ehistory(JL1, nKtt), there exists eh2 ∈ ehistory(JL2, nKtt), such
that eh1 is TSO-to-TSO linearizable to eh2.

k-bounded TSO-to-TSO linearizability is a bounded variant of TSO-to-TSO lin-
earizability, where only k-extended histories are considered. Its definition is as follows:

Definition 1 (k-bounded TSO-to-TSO linearizability). Given concurrent data struc-
tures L and L′, L′ k-bounded TSO-to-TSOlinearizes L for n processes, if for each
k-extended history eh ∈ k-ehistory(JL, nKtt), there exists a k-extended history eh′ ∈
ehistory(JL′, nKtt), such that eh is TSO-to-TSO linearizable to eh′.

The following lemma states that, if if both k-ehistory(JL, nKtt) and k-ehistory(JL′, nKtt)
are finite, then k-bounded TSO-to-TSO linearizability is decidable. This lemma is ob-
vious from Definition 1.

Lemma 1. Given k-ehistory(JL, nKtt) and k-ehistory(JL′, nKtt). It is decidable whether
L′ k-bounded TSO-to-TSO linearizes L for n processes.

Proof. (Sketch)
Given a k-extended history eh ∈ k-ehistory(JL, nKtt) and a k-extended history eh′ ∈

k-ehistory(JL′, nKtt), we can decide whether eh is TSO-to-TSO linearizable to eh′ as
follows:

- If they are not equivalent, then obviously eh is not TSO-to-TSO linearizable to eh′.
- Otherwise, we can enumerate all bijection between {1, . . . , |eh|} and {1, . . . , |eh′|},

and check whether this bijection fit the requirement in definition of TSO-to-TSO
linearizability. If there is no bijection fits, then eh is not TSO-to-TSO linearizable
to eh′. Otherwise, eh is TSO-to-TSO linearizable to eh′.

Since k-ehistory(JL, nKtt) and k-ehistory(JL′, nKtt) are both finite sets, and the num-
ber of their elements is bounded by L, n, D and k, we can enumerate all such pairs
(eh, eh′) of extended histories above and decide them for k-bounded TSO-to-TSO lin-
earizability. If there exists eh ∈ k-ehistory(JL, nKtt), such that for each eh′ ∈ k-ehistory(JL′, nKtt),
we decide that eh is not TSO-to-TSO linearizable to eh′, then L′ is not k-bounded TSO-
to-TSO linearizes L for n processes. Otherwise, L′ k-bounded TSO-to-TSO linearizes
L for n processes. ut

4 A Modified Operational Semantics For FlushCall and
FLushReturn Actions

A call action in JL, nKtt has two roles that must be taken simultaneously. The first role
is to change the control state of the calling process, and the second role is to insert a
call marker into buffer. The case of return actions is similar. It seems hard to investi-
gate decidability of k-bounded TSO-to-TSO linearizability with such “composed” call
and return actions.Therefore, we separate a “composed” call action into a “pure” call
action that only change the control state of the calling process, and a immediately fol-
lowed write action that inserts a call marker into buffer. When the call marker is flushed
by the TSO mechanism, we also launch a flushCall action. In this way, we mimic a
“composed” call action with a “pure” call action and a write action.

According to this idea, we propose a modified operational semantics JCf (Mod(L)), nKf .
Let zf be a new memory location. JCf (Mod(L)), nKf mimics a “composed” call ac-
tion with a “pure” call action and a write action to zf , and when item of zf is flushed,
it launches a flushCall action. The case for return action is similar. Assume that L =
(XL,M,DL, QL,→L), then, Cf and Mod(L) are defined as follows:

- The function Cf maps each 1 ≤ i ≤ n to a modified most general client pro-
gram ModMGC = ({zf},M,DL ∪ {call, ret}, {qc, q′c, q′′c },→). The transition re-
lation → is defined as follows: →= {(qc, call(m, a), q′c), (q

′
c, return(m, a), q′′c),

(q′′c ,write(zf , ret), qc)| m ∈ M, a ∈ DL}. Here we add a write(zf , ret) transition
to the most general client after a return transition, and this write(zf , ret) transition
is used to simulate the insertion of return marker in JL, nKtt.

- The concurrent data structure Mod(L) = (XL ∪ {zf},M,DL ∪ {call, ret}, QL ∪
{qL},→′L) slightly change the concurrent data structure L.→′L is generated from
→L as follows: For each a ∈ DL, m ∈ M and state q ∈ QL, if is(m,a)

act−→Lq,

then →′L replaces this transition with the transitions is(m,a)
write(zf ,call)−−−−−−−→

′

Lq
L and

qL
act−→
′
Lq. Here we add write(zf , call) transitions as the first transition of a method,

which are used to simulate the insertion of call marker in JL, nKtt.

The modified operational semantics JCf (Mod(L)), nKf 4 = (Conff, Σf,→f, InitConff).
Here Conff is generated from Conftt by introducing memory location zf and control
state q′′c of client program, Σf are generated from Σtt by introducing operation to zf ,

4 f represents that this operational semantics is proposed for flushCall and flushReturn actions.

InitConff is generated from InitConftt by introducing valuation to zf . The transition re-
lation→f is generated from→t (Recall that→t is generated from→tt in Section 3) by
discarding the Flush rule and adding the following rules:

u(i) = l · (x, a), x 6= zf

(p, d, u)
flush(i,x,a)−−−−−−→f(p, d[x : a], u[i : l])

Flush’

u(i) = l · (zf , call)

(p, d, u)
flushCall(i)−−−−−−→f(p, d, u[i : l])

FlushCall’

u(i) = l · (zf , ret)

(p, d, u)
flushReturn(i)−−−−−−−→f(p, d, u[i : l])

FlushReturn’

The following lemma states that the extended histories of JCf (Mod(L)), nKf equals
the extended histories of JL, nKtt. Thus, the modified operational semantics JCf (Mod(L)), nKf
can be used to investigate the decidability of TSO-to-TSO linearizability.

Lemma 2. ehistory(JCf (Mod(L)), nKf) = ehistory(JL, nKtt).

Proof. (Sketch)
Let JCf (Mod(L)), nK′f be an LTS that is generated from JCf (Mod(L)), nKf by

transforming all write actions of zf into τ action. We prove this lemma by constructing
a weak bisimulation relation between states of JCf (Mod(L)), nK′f and JL, nKtt.

A relation≈ is defined as follows: given configuration (pf , df , uf) of JCf (Mod(L)), nK′f
and configuration (ptt, dtt, utt) of JL, nKtt, (pf , df , uf) ≈ (pe, de, ue), if

- For pf and ptt, for each 1 ≤ i ≤ n, one of the following case holds:
- pf (i) = qc ∨ pf (i) = q′′c and ptt(i) = qc.
- pf (i) = (is(m,a), q

′
c) ∨ pf (i) = (qL, q′c) for m ∈ M and a ∈ DL and ptt(i) =

(is(m,a), q
′
c).

- If pf (i) /∈ {qc, q′′c , (qL, q′c), (is(m,a), q
′
c)|m ∈M, a ∈ DL} and ptt(i) /∈ {qc, (is(m,a), q

′
c)|

m ∈M, a ∈ DL}, then pf (i) = pe(i).
- For df and dtt, for each x ∈ XL, df (x) = dtt(x).
- Let ch(s) be a sequence that is generated from s by transforming every (zf , call)

into call, and transforming every (zf , ret) into ret. For uf and utt, for each 1 ≤ i ≤
n, one of the following case holds:

- If pf (i) = q′′c and ptt(i) = qc, then ret · ch(uf (i)) = utt(i).
- If pf (i) = (is(m,a), q

′
c) and ptt(i) = (is(m,a), q

′
c), then call · ch(uf (i)) = utt(i).

- Otherwise, ch(uf (i)) = utt(i).

It is not hard to see that ≈ is a weak bisimulation relation by consider all kinds of
transitions. Therefore, it is obvious that ehistory(JCf (Mod(L)), nKf) = ehistory(JL, nKtt).

ut

5 Perfect/Lossy Channel Machines

A classical channel machine is a finite control machine equipped with channels of un-
bounded sizes. It can perform send and receive operations on its channels. A lossy chan-
nel machine is a channel machine where arbitrary many items in its channels may be
lost nondeterministically at any time without any notification. In this section we sketch
our definition of (S,K)-channel machines, which slightly differs from the definition of
channel machines in [14].

The channel machines defined in [14] extend classical channel machines in the fol-
lowing aspects:

- Each transition is guarded by a condition about whether the content of a channel is
in a regular language.

- A substitution to the content of a channel may be performed before a send operation
on the channel.

- A set of specific symbols, called “strong symbols”, are introduced that are not al-
lowed to be lost, but the number of strong symbols in a channel is always bounded.

In this paper, we extend the channel machines defined in [14] with multiple sets of
strong symbols, while the number of strong symbols in a channel from the same strong
symbol set is separately bounded.

Let CH be the finite set of channel names and ΣCH be a finite alphabet of channel
contents. The content of a channel is a finite sequence over ΣCH. For a given channel
c ∈ CH, a regular guard on channel c is a constraint of the form c ∈ L, where L ⊆ Σ∗CH
is a regular set of sequences. For a sequence u ∈ Σ∗CH we write u |= c ∈ L if l ∈ L.
For notational convenience, we write a ∈ c instead of c ∈ Σ∗CH · a · Σ∗CH, c = ε
instead of c ∈ {ε} and c : Σ′ instead of c ∈ Σ′∗ for any subset Σ′ of ΣCH. A regular
guard over CH associates a regular guard for each channel of CH. Let Guard(CH) be
the set of regular guards over CH. The definition of |= can be extended as follows: for
g ∈ Guard(CH) and u ∈ CH → Σ∗CH, we write u |= g, if u(c) |= g(c) for each
c ∈ CH.

Given a channel c ∈ CH, a channel operation on c is either a nop (no operation), or
an c?a operation for some a ∈ ΣCH (receive operation), or an c[σ]!a operation (send
operation) where σ is a substitution over ΣCH and a is a element of ΣCH. We write c!a
instead of c[σ]!a when σ is the identity substitution. For every u, u′ ∈ Σ∗CH, we have
JnopK(u, u′) if u = u′, Jc[σ]!aK(u, u′) if u′ = a · u[σ], Jc?aK(u, u′) if u = u′ · a. A
channel operation over CH is a mapping that associates with each channel c a channel
operation on c. Let Op(CH) be the set of channel operations over CH. The definition of
JopK can be extended as follows: for op ∈ Op(CH) and u, u′ ∈ CH → Σ∗CH, we have
JopK(u, u′), if Jop(c)K(u(c), u′(c)) holds for each c ∈ CH.

A channel machine is formally defined as a tupleM = (Q, CH, ΣCH, Λ,∆), where
(1) Q is a finite set of states, (2) CH is a finite set of channel names, (3) ΣCH is an
alphabet for channel contents, (4) Λ is a finite set of transition labels, and (5) ∆ ⊆
Q× (Λ ∪ {ε})× Guard(CH)× Op(CH)×Q is a finite set of transitions.

We say a sequence l1 = a1 ·. . .·au is a subword of another sequence l2 = b1 ·. . .·bv ,
if there exists i1 < . . . < iu, such that aj = bij for each j. Let S = 〈s1, . . . , sm〉 be

a vector of sets with si ⊆ ΣCH for 1≤ i≤m, and K = 〈k1, . . . , km〉 be a vector of
nature numbers or ∞. S is the sets of strong symbols that must be kept in transition,
and K is the bounds for each set of strong symbols in S. For sequences u, v ∈ Σ∗CH,
u �KS v holds if (1) u is a subword of v, (2) for each i, u ↑si= v ↑si and (3) for each j,
|u ↑ sj | ≤ kj . This relation can be extended as follows: For every u, v ∈ CH → Σ∗CH,
u �KS v holds, if u(c) �KS v(c) holds for each c ∈ CH.

A (S,K)-channel machine (abbreviated as (S,K)-CM) is a channel machine M =
(Q, CH, ΣCH, Λ,∆) with the strong symbol restriction (S,K). Its semantics is de-
fined as an LTS (ConfM , Λ,→M , initConfM). A configuration of ConfM is a pair (q, u)
where q ∈ Q, u : CH → Σ∗CH, and it satisfies the strong symbol restriction(S,K),
i.e., for each c and i, |u(c) ↑ si| ≤ ki. The transition relation →M is defined as
follows: given q, q′ ∈ Q and u, u′ ∈ CH → Σ∗CH, (q, u) α−→M (q′, u′), if there
exists g and op, such that (q, α, g, op, q′) ∈ ∆, u |= g and JopK(u, u′). Similarly, a
(S,K)-lossy channel machine (abbreviated as (S,K)-LCM) is a channel machine M with
lossy channels and the strong symbol restriction (S,K). Its semantics is defined as an
LTS (ConfM , Λ,→(M,S,K), initConfM). The transition relation→(M,S,K) is defined as fol-
lows: (q, u) α−→(M,S,K) (q

′, u′), if there exists v, v′ ∈ CH → Σ∗CH, such that v �KS u,
(q, v)

α−→M (q′, v′) and u′ �KS v′. Let→∗M and→∗(M,S,K) be the transition closure of
→M and→(M,S,K).

Given a channel machine M , we say that (q0, u0) ·α1 · (q1, u1) · . . . ·αw · (qw, uw)
is a finite run of M from (q, u) to (q′, u′), if (1) (q0, u0) = (q, u), (2) (qi, ui)

αi+1−→M

(qi+1, ui+1) for each i and (3) (qw, uw) = (q′, u′). We say that l is a trace of a finite
run ρ if l = ρ ↑Λ. Given q, q′ ∈ Q, let TS,Kq,q′ (M) denote the set of traces of all finite
runs of a (S,K)-CM M from the configuration (q, ε|n|) to the configuration (q′, ε|n|).
For (S,K)− LCM M , the notations of finite run and its trace are defined as in the non-
lossy case by replacing →M with →(M,S,K). Let LTS,Kq,q′ (M) denote the set of traces
of all finite runs of (S,K)-LCM M from the configuration (q, ε|n|) to the configuration
(q′, ε|n|).

For channel machinesM1 = (Q1, CH1, ΣCH, Λ,∆1) andM2 = (Q2, CH2, ΣCH, Λ,
∆2) such that CH1 ∩ CH2 = ∅, the product of M1 and M2 is also a channel machine
M1 ⊗M2 = (Q1 ×Q2, CH1 ∪ CH2, ΣCH, Λ,∆12), where ∆12 is defined by synchro-
nizing transitions sharing the same label in Λ under the conjunction of their guards, and
letting other transitions asynchronous. The following lemma holds as in [14].

Lemma 3. Given channel machines M1 = (Q1, CH1, ΣCH, Λ,∆1) and M2 = (Q2,
CH2, ΣCH, Λ,∆2), let q1, q′1 ∈ Q1, q2, q′2 ∈ Q2, q = (q1, q2), q′ = (q′1, q

′
2), then

LTS,Kq,q′ (M1⊗M2) = LTS,Kq1,q′1(M1)∩LTS,Kq2,q′2(M2) and TS,Kq,q′ (M1⊗M2) = TS,Kq1,q′1
(M1)∩

TS,Kq2,q′2
(M2).

Given a (S,K)-CM (respectively, (S,K)-LCM) M and two states q, q′ ∈ Q, a
control state reachability problem ofM is to determine whether TS,Kq,q′ (M) 6= ∅ (respec-
tively, LTS,Kq,q′ (M) 6= ∅). As in [14], it can be shown that the control state reachability
problem is decidable for (S,K)-LCM.

6 A Modified Operational Semantics For Call and Return Actions

In Section 4, we have separated a “composed” call action in JL, nKtt into a call action
and a write action of zf . However, call and return actions are to some extend “beyond”
TSO memory model and are quite hard to be dealt with in TSO mechanism. To explain
this, it should be noted that on TSO, write actions can be seen by other process only
when they are flushed. This implies that, when a process want to notice another process
by writing something into buffer, then this message can be seen by other process only
when it is flushed. As contrast, a call or return action takes effect as soon as it happens.
To make it worse, the order of call and return action may be different from the order
how processes use buffer. Since the content of buffer may influence future execution,
a process can not notice other process of call or return actions by using cas actions,
which will clear the buffer. Therefore, it is hard to make a concurrent system to know
the order of call and return actions without influence its future execution on TSO.

To make a concurrent system be aware of call and return actions, we modify the
operational semantics JCf (Mod(L)), nKf as follows:

- We add a new process into the concurrent system, which is used as an “observer”
for call and return actions. This observer process nondeterministically guess call
and return actions by writing call and return information with cas actions to a new
memory location zw.

- We modify the operational semantics, and make specific cas actions of the observer
process be bound with call and return actions (we can also say that these cas ac-
tions mark the call and return actions). That is, a cas(zf , call(i,m, a)) action (resp.,
cas(zf , return(i,m, a)) action) of the observer process is bound with a call(i,m, a)
actions (resp., return(i,m, a)).

Formally, let markedVal(M,DL, n) = {call(i,m,a), return(i,m,a)|1 ≤ i ≤ n,m ∈
M, a ∈ DL} denote the set of values that are used by the specific cas actions to mark
the call and return actions in JCf (Mod(L)), nKf . Let zw be a new memory location,
which will be used by the specific cas actions. Assume thatL = (XL,M,DL, QL,→L).
Then, a functionCltf is defined as follows:

- For each 1 ≤ i ≤ n, Cltf maps process Pi into the client program ModMGC =
({zf},M,DL ∪ {call, ret}, {qc, q′c, q′′c },→), which has been defined in Section 4.

- Cltf maps processPn+1 into the client programCmarked = ({zw},M,markedVal(M,
DL, n), {qwit},→wit). Here→wit= {(qwit, cas suc(zw, , a), qwit)| a ∈ markedVal(
M,DL, n)} is the transition relation of Cmarked.

Assume that JCf (Mod(L)), nKf = (Conff, Σf,→f, InitConff). According to above
idea, we propose a operational semantics JCltf (Mod(L)), n+1Kb, which contains n+1
processes. JCltf (Mod(L)), n+1Kb

5 = (Confb, Σb,→b, InitConfb). A configuration of
Confb is a tuple (p, d, u,mak). Here (p, d, u) is a configuration generated from a config-
uration of Conff by introducing memory location zw and control of the observer process.
mak ∈ {ε} ∪markedVal(M,DL, n) is used to ensure that each specific cas action bind

5 b represents bind.

a corresponding call or return action. Σb are generated from Σf by introducing opera-
tion to zw, InitConfb is generated from InitConff by introducing valuation to zw. The
transition relation→b is generated from→f as follows:

- For all but cas, call and return transitions, if (p, d, u) act−→f(p
′, d′, u′), then we have

(p, d, u, ε)
act−→b(p

′, d′, u′, ε).
- We discard the Cas-Suc and Cas-Fail rules, and add the following rules:

T (p(i), c, q′i,), c = cas suc(x, a, b), 1 ≤ i ≤ n ∧ x 6= zw, d(x) = a, u(i) = ε

(p, d, u, ε)
cas(i,x,a,b)−−−−−−−→b(p[i : q

′
i], d[x : b], u, ε)

Cas-Suc-B

T (p(i), c, q′i,), c = cas fail(x, a, b), 1 ≤ i ≤ n ∧ x 6= zw, d(x) 6= a, u(i) = ε

(p, d, u, ε)
cas(i,x,a,b)−−−−−−−→b(p[i : q

′
i], d, u, ε)

Cas-Fail-B

T (p(n+1), c, q′n+1,), c = cas suc(zw, a, b), a, b ∈ markedVal(M,DL, n), d(x) = a, u(n+1) = ε

(p, d, u, ε)
cas(n+1,zw,a,b)−−−−−−−−−→b(p[n+1 : q′i], d[x : b], u, b)

Cas-MARK

Note that only the Cas-MARK can set the mak tuple.

- We discard the Call and Return rules, and add the following rules:

p(i) = qc1, qc1
call(m,a)−−−−−→Ciqc2

(p, d, u, call(i,m, a))
call(i,m,a)−−−−−−→b(p[i : (is(m,a), qc2)], d, u, ε)

Call-B

p(i) = (fs(m,a), qcl), qc1
return(m,a)−−−−−−−→Ciqc2

(p, d, u, return(i,m, a))
return(i,m,a)−−−−−−−→b(p[i : qc2], d, u, ε)

Return-B

Note that call or return action need the correct mak be set, and they will unset the
mak tuple.

The following lemma states that the extended histories of JCf (Mod(L)), nKf equals
the extended histories of JL, nKtt. Thus, the modified operational semantics JCf (Mod(L)), nKf
can be used to investigate the decidability of TSO-to-TSO linearizability.

Lemma 4. ehistory(JCltf (Mod(L)), n+1Kb) = ehistory(JCf (Mod(L)), nKf).

Proof. (Sketch)
It is obvious that ehistory(JCltf (Mod(L)), n+1Kb) ⊆ ehistory(JCf (Mod(L)), nKf),

since except for cas(n+1, zw, ,) transitions, each transition in JCltf (Mod(L)), n+1Kb

comes from a transition in JCf (Mod(L)), nKf).
For the opposite direction of this lemma, given a path pa = (p0, d0, u0)

act1−−→f(p1, d1, u1)

. . .
actw−−→f(pw, dw, uw) of JCf (Mod(L)), nKf , we can in w steps construct a path pa′ of

JCltf (Mod(L)), n+1Kb, such that the extended history of pa equals the extended history
of pa′.

Let pa′0 = (p0, d0, u0, ε). For each 1 ≤ i ≤ w, assume that pa′i-1 ends in (pi-1, di-1, ui-1,maki-1)

and (pi-1, di-1, ui-1)
acti−−→f(pi, di, ui). If acti is not call or return action, then pa′i is ob-

tained from pa′i-1 by adding (pi-1, di-1, ui-1,maki-1)
acti−−→b(pi, di, ui, ε) transition. Other-

wise, pa′i is obtained from pa′i-1 by adding (pi-1, di-1, ui-1,maki-1)
cas(n+1,zw, ,acti)−−−−−−−−−−→b(pi-1, di-1, ui-1, acti)

and (pi-1, di-1, ui-1, acti)
acti−−→b(pi, di, ui, ε) transitions. It is easy to see that pa′ = paw

holds as required. This completes the proof of this lemma. ut
Given an extended history eh, a marked witness of eh in JCltf (Mod(L)), n+1Kb is a

trace t of JCltf (Mod(L)), n+1Kb, such that
- t ↑(Σcal∪Σret∪Σfcal∪Σfret)= eh.
- t = t1 · t2 such that t1 ends with a call, return, flushCall or flushReturn action, t2 is

a sequence of flush actions, and all the items putted by write actions in t have been
flushed.
Similar to the proof of Lemma 4, we can see that, there exists a marked witness of

eh, if and only if eh ∈ ehistory(JCltf (Mod(L)), n+1Kb). By Lemma 4 and Lemma 2,
we know that there exists a marked witness of eh, if and only if eh ∈ ehistory(JL, nKtt).
Therefore, we can check whether a specific extended history is in ehistory(JL, nKtt) by
checking whether there is a marked witness for it in JCltf (Mod(L)), n+1Kb.

7 Channel Machines For Marked Witness

In this section, we use an example to explain how to use channel machine to simu-
late behavior of each process of JCltf (Mod(L)), n+1Kb. Then, we propose the detailed
definition of these channel machines.

7.1 Simulating JCltf(Mod(L)), n+1Kf with Channel Machines

In this subsection, we use an example to intuitively show how to simulate bounded
behaviors (that contains at most k call, return, flushCall and flushReturn actions) of
each process i (1≤ i≤n+1) of JCltf (Mod(L)), n+1Kb with a (S,K)-channel machine
Mk
i . Then, in later section we show that the bounded behavior of concurrent system can

be simulated by “production” of M1
i , . . .M

n+1
i .

EachMk
i (1≤ i≤n+1) contains control state of process i and launch actions accord-

ing to these control state. Mk
i also nondeterministically guesses the write, call or return

actions of other processes. Since write actions to zf of other process are guessed, Mk
i

essentially “guess” flushCall and flushReturn of other processes. Moreover,Mk
i ensures

that flush or cas action to zw is immediate followed by a corresponding call or return
action. That is, for 1 ≤ i ≤ n, each flush(n+1, zw, act) (note that cas(n+1, zw, ,) are
considered as guess write for Mk

i) is immediate followed by a call or return action act;
for M n+1

i , each cas(n+1, zw, , act) is immediately followed by a corresponding call or
return action. Mk

i contains only one channel ci that is used to store the pending written
items according to the total store orders (orders of actions that updates memory loca-
tions) in JCltf (Mod(L)), n+1Kb. To make it safe to become a lossy channel machine,

each item sent to ci contains the current valuation of all the memory locations, i.e., the
current snapshot of the memory. Mk

i also monitors whether a specific extended history
has already happens. (shown in the following subsection).

We use the example shown in Fig. 2 to illustrate the main idea of our construction
method. Fig. 2 (a) presents a trace of 8-extended history of JCltf (Mod(L)), 3Kb, while
Fig. 2 (b),(c),(d) present the corresponding traces of Mk

1 , Mk
2 , Mk

3 , respectively. Each
pair of a call and its accompanying return action is associated with a (dashed) line
interval that start and end with vertical lines. To emphasize the occurrence of flushCall
and flushReturn actions, we associate each pair of a flushCall and its accompanying
flushReturn action with a (dashed) line interval that start and end with circles. Here a
interval of dashed line means that actions of this interval are generated by guessing in
Mk
i , while a interval of ordinary line means that actions of this interval are generated

according to process i in Mk
i .

Let us begin to explain Fig. 2. w(x)1 is a action that write 1 to x; r(x)1 is an action
that reads 1 from x; f(x)1 is a flush action that changes the value of x to 1; ca(y)1
is a cas action that changes the value of y to 1. For simplicity, we use a1, . . . , a4 to
represent four call or return information written to zw, and use b1, . . . , b4 to represent
four call or return markers written to zf . b1 = b2 = call, and b3 = b4 = ret. Let
method M1 be called with argument arg1 and return value rv1 in process 1, and let
method M2 be called with argument arg2 and return value rv2 in process 2. In detail,
a1 = call(1,M1, arg1), a2 = call(2,M2, arg2), a3 = return(1,M1, rv1) and a4 =
return(2,M2, rv2). We write flushCall or flushReturn as f(zf)b to emphasize that they
are generated by flush zf items. Also note that the actions in Fig. 2 (a) use individual
values, while the the actions in Fig. 2 (b),(c),(d) use snapshots of the memory. In Fig. 2
(b),(c),(d) we use 1, ai and bi only for simplicity, which are essentially corresponding
snapshot of the memory.

The requirements for ti (1 ≤ i ≤ 3) are as follows:

- ti and t has the same extended history and same total store order (we do not distin-
guish flush(i, x, a) and cas(i, x, , a)).

- The flush or cas action of zw in ti must be immediately followed by a corresponding
call or return actions.

- The actions of process i in ti equals the actions of process i in t. When ti launch an
action of process i, the valuation of memory locations must equals to the valuation
of memory locations of the same action in t.

The total store order in t are ca(zw)a1, ca(zw)a2, f(zf)b2, ca(zw)a3, ca(y)1, ca(zw)a3,
f(zf)b1, f(zf)b4, f(x)1, f(zf)b3.

7.2 Construction of Mk
i (1 ≤ i ≤ n)

In this subsection, we present the formal definition of the channel machineMk
1 (1 ≤ i ≤

n), which simulates the behavior of process i of JCltf (Mod(L)), n+1Kb and monitors
whether a specific k-extended history happens.

Given a k-extended history eh = act1 · . . . · actl, where method is chosen from
M, data domain is D and process id of each acti is in {1, . . . , n}, we construct a

P2:

P1:

P3:

P2:

P1:

P3:

(b) trace t1 of Mk
1 for t

P2:

P1:

P3:

(c) trace t2 of Mk
2 for t

P2:

P1:

P3:

(d) trace t3 of Mk
3 for t

(a) a trace t of JCltf (Mod(L)), 3Kf

ca(zw)a1 ca(zw)a2

w(zf)b2

r(x)1

ca(y)1f(zf)b2

ca(zw)a3

f(zf)b1

f(zf)b4

f(zf)b3w(zf)b3

ca(zw)a4

w(zf)b4

w(zf)b1w(x)1 f(x)1

g(zw)a1

g(zf)b4

f(zw)a1g(zw)a2

g(zf)b2

g(zw)a3

g(y)1

g(zw)a4

w(zf)b1 w(x)1 r(x)1

f(zf)b2

f(zw)a2 f(zw)a3

f(y)1

f(zw)a4

f(zf)b1

f(zf)b4

f(x)1 f(zf)b3

g(zw)a1 f(zw)a1g(zw)a2 f(zw)a2

ca(y)1w(zf)b2 f(zf)b2

g(zw)a3 f(zw)a3 g(zw)a3 f(zw)a3

g(zf)b1f(zf)b1

g(zf)b4f(zf)b4

g(x)1

w(zf)b3

g(zf)b3 f(x)1f(zf)b3

g(zw)a1 f(zw)a1g(zw)a2 f(zw)a2

g(zf)b2f(zf)b2

g(zw)a3 f(zw)a3

g(y)1f(y)1

g(zw)a3 f(zw)a3

g(zf)b1f(zf)b1

g(zf)b4f(zf)b4

g(x)1f(x)1 g(zf)b3f(zf)b3

Fig. 2. traces of Mk
1 , Mk

2 and Mk
3 for a trace t of JCltf (Mod(L)), 3Kf

deterministic finite state automaton Aeh that accepts eh. Aeh = (Qs, Σs,→s, Fs, qis)
is constructed as follows: Qs = {qis, q

1
s , . . . , q

l-1
s , qends} is a finite set of states, Σs =

{call(i,m, a), return(i,m, a), flushCall(i,m, a), flushReturn(i,m, a)|1 ≤ i ≤ n,m ∈
M, a ∈ D} is a set of transition labels, qis is the initial state and Fs = {qends} is the
set of accepting states. The transition relation →s contains the following transitions:
qis

act1−−→sq
1
s , qis

acti+1−−−→sq
i+1
s (1 ≤ i ≤ l-2), and ql-1

s
actl−−→sqends.

We now present the formal definition of the channel machine Mk
i . Assume that

L = (XL,M,DL, QL,→L). Assume that the transition relation of Mod(L) is →′L.
Assume that the set of states in ModMGC is {qc, q′c, q′′c }. Let Val be the set of valuation
functions that maps a memory location in XL to a value in DL, maps zw to a value in
markedVal(M,DL, n) and maps zf to {call, ret}. Channel machine Mk

i (1 ≤ i ≤ n)
is a tuple (Qki , {ci}, Σ, Λ,∆k

i), where ci is name of the single channel of Mk
i . Qki , Σ,

Λ and ∆k
i are defined as follows:

Construction ofQki :Qki = (Qc∪(QL×Qc))×Val×Val×Qs×(markedVal(M,DL, n)∪
{ε})×{0, . . . , k} is the set of states. A configuration (q, dc, dg, qs,mak, cnt) ∈ Q1 con-
sists of a control state q, a valuation dc of the memory, a valuation dg of the memory
which is generated from dc by applying all the stored items in ci, a state qs for monitor-
ing whether the extended history eh happens, a marker mak which is used to ensure that
each specific cas(n+1, zw, ,) action is immediately followed by the corresponding
call or return action, and the number cnt of the call, return, flushCall and flushReturn
actions already occurred in the whole trace.
Construction of Σ: Σ = Σs1 ∪ Σs2 ∪ Σs3 is the alphabet of channel contents with
Σs1 = {(n+1, zw, d)|d ∈ Val}∪{(i, zf , d)|1≤ i≤n, d ∈ Val},Σs2 = {((i, x, d),])|1≤
i ≤ n, x ∈ XL, d ∈ Val} and Σs3 = {a|(a,]) ∈ Σs2}. Items in Σs1 are inserted by
guessing the specific cas actions of zw or guessing write actions of zf . Items in Σs2 are
either the newest item in ci or the newest item for some memory location of XL in ci.
Items in Σs3 are inserted by write or guess write actions. When Mk

i is considered as a
lossy channel machine, Σs1 and Σs2 are the sets of strong symbols.
Construction of Λ: Λ is the set of transition labels and is union of the following sets:

- {write(i, x, d), cas(i, x, d1, d2)|d, d1, d2 ∈ Val, (1 ≤ i ≤ n∧x ∈ XL∪{zf})∨(i =
n+1 ∧ x = zw)}.

- {flush(i, x, d), flush(n+1, zw, d)|1 ≤ i ≤ n, x ∈ XL ∪ {zf}, d ∈ Val}.
- {call(i,m, a), return(i,m, a), flushCall(i), flushReturn(i)|1 ≤ i ≤ n,m ∈M, a ∈
DL}.

Λ does not contain read or τ actions, which are seen as ε transition in Mk
i .

Construction of ∆k
i : ∆k

i is the transition relation of Mk
i . ∆k

i is the smallest set of
transitions such that ∀q ∈ Qc ∪ (QL × Qc), q1, q2 ∈ QL, dc, dg ∈ Val, qs ∈ Qs and
cnt < k,

- Nop: We only change the control state. Formally, if q1
τ−→′Lq2, then

((q1, q
′
c), dc, dg, qs, ε, cnt)

ε,ci:Σ,nop−−−−−−→∆k
i
((q2, q

′
c), dc, dg, qs, ε, cnt).

- Write by Library to x ∈ XL: if q1
write(x,a)−−−−−−→

′

Lq2 and x ∈ XL, then

((q1, q
′
c), dc, dg, qs, ε, cnt)

op,(β1,])∈ci∧(β2,])∈ci,ci[β1/(β1,]),β2/(β2,])]!β3−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→∆k
i
((q2, q

′
c), dc, d

′
g, qs, ε, cnt)

((q1, q
′
c), dc, dg, qs, ε, cnt)

op,(β1,])∈ci∧ci:Θ2,ci[β1/(β1,])]!β3−−−−−−−−−−−−−−−−−−−−−−→∆k
i
((q2, q

′
c), dc, d

′
g, qs, ε, cnt)

((q1, q
′
c), dc, dg, qs, ε, cnt)

op,ci:Θ1∧(β2,]),ci[β2/(β2,])]!β3−−−−−−−−−−−−−−−−−−−−→∆k
i
((q2, q

′
c), dc, d

′
g, qs, ε, cnt)

((q1, q
′
c), dc, dg, qs, ε, cnt)

op,ci:Θ1∧ci:Θ2,ci!β3−−−−−−−−−−−−−→∆k
i
((q2, q

′
c), dc, d

′
g, qs, ε, cnt)

where β1 = (i, x, d1)∧d1 ∈ Val,Θ1 = Σ\{((i, x, d′),])|d′ ∈ Val}, β2 = (j, , d2)
with 1 ≤ j ≤ n∧ j 6= i∧ d2 ∈ Val, Θ2 = Σ\{((j, , d′),])|1 ≤ j ≤ n, j 6= i, d′ ∈
Val}, d′g = dg[x : a], β3 = ((i, x, d′g),]) and op = write(i, x, d′g).

- Write by Library to zf : if is(m,a)
write(zf ,call)−−−−−−−→

′

Lq2 , then

((is(m,a), q
′
c), dc, dg, qs, ε, cnt)

op,(β1,])∈ci,ci[β1/(β1,])]!β2−−−−−−−−−−−−−−−−−−→∆k
i
((q2, q

′
c), dc, d

′
g, qs, ε, cnt)

((is(m,a), q
′
c), dc, dg, qs, ε, cnt)

op,ci:Θ1,ci!β2−−−−−−−−−→∆k
i
((q2, q

′
c), dc, d

′
g, qs, ε, cnt)

where β1 = (j, , d) with 1 ≤ j ≤ n∧ j 6= i∧d ∈ Val, Θ1 = Σ\{((j, , d′),])|1 ≤
j ≤ n, j 6= i, d′ ∈ Val}, d′g = dg[zf : call], β2 = (i, zf , d

′
g) and op =

write(i, zf , d′g).
- Write by Client to zf :

(q′′c , dc, dg, qs, ε, cnt)
op,(β1,])∈ci,ci[β1/(β1,])]!β2−−−−−−−−−−−−−−−−−−→∆k

i
(qc, dc, d

′
g, qs, ε, cnt)

(q′′c , dc, dg, qs, ε, cnt)
op,ci:Θ1,ci!β2−−−−−−−−−→∆k

i
(qc, dc, d

′
g, qs, ε, cnt)

where β1 = (j, , d) with 1 ≤ j ≤ n∧ j 6= i∧d ∈ Val, Θ1 = Σ\{((j, , d′),])|1 ≤
j ≤ n, j 6= i, d′ ∈ Val}, d′g = dg[zf : ret], β2 = (i, zf , d

′
g) and op = write(i, zf , d′g).

- Guess Write to x ∈ XL: if 1 ≤ j ≤ n ∧ j 6= i ∧ x ∈ XL ∧ a ∈ DL, then

(q, dc, dg, qs, ε, cnt)
op,(β,])∈ci,ci[β/(β,])]!β′

−−−−−−−−−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

(q, dc, dg, qs, ε, cnt)
op,ci:Θ,ci!β′

−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

where β = (j1, ,) with 1 ≤ j1 ≤ n ∧ j1 6= i, d′g = dg[x : a], β′ = ((j, x, d′g),]),
Θ = Σ\{((j2, ,),])|1 ≤ j2 ≤ n ∧ j2 6= i} and op = write(j, x, d′g).

- Guess Write to zw: if a ∈ markedVal(M,DL, n), then

(q, dc, dg, qs, ε, cnt)
op,(β,])∈ci,ci[β/(β,])]!β′

−−−−−−−−−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

(q, dc, dg, qs, ε, cnt)
op,ci:Θ,ci!β′

−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

where β = (j, ,) with 1 ≤ j ≤ n ∧ j 6= i, d′g = dg[zw : a], β′ = (n+1, zw, d′g),
Θ = Σ\{((j, ,),])|1 ≤ j ≤ n ∧ j 6= i} and op = write(n+1, zw, d′g).

- Guess Write to zf : if 1 ≤ j ≤ n ∧ j 6= i ∧ a ∈ {call, ret}, then

(q, dc, dg, qs, ε, cnt)
op,(β,])∈ci,ci[β/(β,])]!β′

−−−−−−−−−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

(q, dc, dg, qs, ε, cnt)
op,ci:Θ,ci!β′

−−−−−−−−→∆k
i
(q, dc, d

′
g, qs, ε, cnt)

where β = (j′, ,) with 1 ≤ j′ ≤ n ∧ j′ 6= i, d′g = dg[zf : a], β′ = (j, zf , d
′
g),

Θ = Σ\{((j′, ,),])|1 ≤ j′ ≤ n ∧ j′ 6= i} and op = write(j, zf , d′g).

- Library read: if q1
read(x,a)−−−−−→

′

Lq2, then for each d ∈ Val with d(x) = a,

((q1, q
′
c), dc, dg, qs, ε, cnt)

ε,(β,])∈ci,nop−−−−−−−−→∆k
i
((q2, q

′
c), dc, dg, qs, ε, cnt)

((q1, q
′
c), d, dg, qs, ε, cnt)

ε,ci:Θ,nop−−−−−−→∆k
i
((q2, q

′
c), d, dg, qs, ε, cnt)

where β = (i, x, d) and Θ = Σ\{((i, x, d′),])|d′ ∈ Val}.
- Library cas: if q1

cas suc(x,a,b)−−−−−−−−→
′

Lq2 , then for each d ∈ Val with d(x) = a,

((q1, q
′
c), d, d, qs, ε, cnt)

cas(i,x,d[x:b]),ci=ε,nop−−−−−−−−−−−−−−→∆k
i
((q2, q

′
c), d[x : b], d[x : b], qs, ε, cnt)

If q1
cas fail(x,a,b)−−−−−−−−→

′

Lq2 , then for each d ∈ Val with d(x) 6= a,

((q3, q
′
c), d, d, qs, ε, cnt)

cas(i,x,d),ci=ε,nop−−−−−−−−−−−→∆k
i
((q4, q

′
c), d, d, qs, ε, cnt)

- Flush items of x ∈ XL: for each 1 ≤ j ≤ n, x ∈ XL and d ∈ Val,

(q, dc, dg, qs, ε, cnt′)
op,ci:Σ,ci?(j,x,d)−−−−−−−−−−−→∆k

i
(q, d, dg, qs, ε, cnt′)

(q, dc, dg, qs, ε, cnt′)
op,ci:Σ,ci?((j,x,d),])−−−−−−−−−−−−−→∆k

i
(q, d, dg, qs, ε, cnt′)

where op = flush(j, x, d) and cnt′ ≤ k.
- Flush zw Item When It Is a Call Item:

(q, dc, dg, qs, ε, cnt)
op,ci:Σ,ci?(n+1,zw,d)−−−−−−−−−−−−−→∆k

i
(q, d, dg, qs, call(j,m, c), cnt)

where d(zw) = call(j,m, c) and op = flush(n+1, zw, d).
- Flush zw Item When It Is a Return Item:

(q, dc, dg, qs, ε, cnt)
op,ci:Σ,ci?(n+1,zw,d)−−−−−−−−−−−−−→∆k

i
(q, d, dg, qs, return(j,m, c), cnt)

where d(zw) = return(j,m, c) and op = flush(n+1, zw, d).
- Flush zf Item When it is a Call Marker (flushCall): for each 1 ≤ j ≤ n, if

qs
flushCall(j)−−−−−−→sq

′
s, then

(q, dc, dg, qs, ε, cnt)
op,ci:Σ,ci?(j,zf ,d)−−−−−−−−−−−→∆k

i
(q, d, dg, q

′
s, ε, cnt+1)

where d(zf) = call and op = flushCall(j).

- Flush zf Item When it is a Return Marker (flushReturn): for each 1 ≤ j ≤ n, if

qs
flushReturn(j)−−−−−−−→sq

′
s, then

(q, dc, dg, qs, ε, cnt)
op,ci:Σ,ci?(j,zf ,d)−−−−−−−−−−−→∆k

i
(q, d, dg, q

′
s, ε, cnt+1)

where d(zf) = ret and op = flushReturn(j).

- Call: if qs
call(i,m,a)−−−−−−→sq

′
s, then

(qc, dc, dg, qs, call(i,m, a), cnt)
call(i,m,a),ci:Σ,nop−−−−−−−−−−−−→∆k

i
((is(m,a), q

′
c), dc, dg, q

′
s, ε, cnt+1)

- Guess Call: if qs
call(j,m,a)−−−−−−→sq

′
s, 1 ≤ j ≤ n and j 6= i, then

(q, dc, dg, qs, call(j,m, a), cnt)
call(j,m,a),ci:Σ,nop−−−−−−−−−−−−→∆k

i
(q, dc, dg, q

′
s, ε, cnt+1)

- Return: if qs
return(i,m,a)−−−−−−−→sq

′
s, then

((fs(m,a), q
′
c), dc, dg, qs, return(i,m, a), cnt)

return(i,m,a),ci:Σ,nop−−−−−−−−−−−−−→∆k
i
(q′′c , dc, dg, q

′
s, ε, cnt+1)

- Guess Return: if qs
return(j,m,a)−−−−−−−−→sq

′
s, 1 ≤ j ≤ n and j 6= i, then

(q, dc, dg, qs, return(j,m, a), cnt)
return(j,m,a),ci:Σ,nop−−−−−−−−−−−−−→∆k

i
(q, dc, dg, q

′
s, ε, cnt+1)

We intuitively explain several typical transition relations of Mk
i . For writing zf by

library, we need to erase the] symbol in the original newest item of ci (if it is inserted
by guessing write of process j 6= i) if it exists. Then we insert a zf item of call into
ci. For guessing write actions of process n+1 to zw, we need to erase the] symbol in
the original newest item of ci (if it is inserted by guessing write of process j 6= i) if
it exists. Then we insert a zw item of markedVal(M,DL, n) into ci. If the mak tuple
is a call action of process j 6= i, then we can launch a same call action, change the qs
tuple, unset mak tuple to ε and increase the cnt tuple. If the mak tuple is a return action
of process i and the control state of process i can launch a return action, then we can
launch a same return action, change the qs tuple, change the control state of process i,
unset mak tuple to ε and increase the cnt tuple.

7.3 Construction of Mk
n+1

In this subsection, we present the formal definition of the channel machineMk
n+1, which

simulates the behavior of process n+1 of JCltf (Mod(L)), n+1Kb and monitors whether
a specific k-extended history happens.

Channel machine Mk
n+1 is a tuple (Qkn+1, {cn+1}, Σ, Λ,∆k

n+1), where Qn+1, cn+1 and
∆k

n+1 are defined as follows:

Qkn+1 = {qwit} × Val× Val×Qs × (markedVal(M,DL, n) ∪ {ε})× {0, . . . , k} is
the set of states. Recall that, as stated in Section 6, qwit is the control state of the client
program Cmarked, which is used by process n+1.

cn+1 is name of the single channel of Mk
n+1.

∆k
n+1 is the transition relation of Mk

n+1. Here we only explain the cas transitions,
and other transitions of∆k

n+1 is similar to∆k
i , and the main difference is that the control

state is fixed to be qwit. ∆k
n+1 is the smallest set of transitions such that ∀dc, dg ∈ Val,

qs ∈ Qs and cnt < k,

- Client cas: The cas actions in Cmarked are for zw. We need the channel to be cleared
and require dc = dg . Then we change dc and dg directly. Formally, for each b ∈
markedVal(M,DL, n) and d ∈ Val, then

(qwit, d, d, qs, ε, cnt)
cas(i,x,d[xwit:b]),ci=ε,nop−−−−−−−−−−−−−−−→∆ts

i
(qwit, d[xwit : b], d[xwit : b], qs, b, cnt)

- Guess write to x ∈ XL: if 1 ≤ j ≤ n ∧ x ∈ XL ∧ a ∈ DL, then

(qwit, dc, dg, qs, ε, cnt)
op,(β,])∈ci,ci[β/(β,])]!β′

−−−−−−−−−−−−−−−−→∆ts
i
(qwit, dc, d

′
g, qs, ε, cnt)

(qwit, dc, dg, qs, ε, cnt)
op,ci:Θ,ci!β′

−−−−−−−−→∆ts
i
(qwit, dc, d

′
g, qs, ε, cnt)

where β = (j1, ,) with 1 ≤ j1 ≤ n, d′g = dg[x : a], β′ = ((j, x, d′g),]),
Θ = Σ\{((j1, ,),])|1 ≤ j1 ≤ n} and op = write(j, x, d′g).

- Guess write to zf : for each a ∈ {call, ret} and d ∈ Val

(qwit, dc, dg, qs, ε, cnt)
op,(β1,])∈ci,ci[β1/(β1,])]!β2−−−−−−−−−−−−−−−−−−→∆k

i
(qwit, dc, d

′
g, qs, ε, cnt)

(qwit, dc, dg, qs, ε, cnt)
op,ci:Θ1,ci!β2−−−−−−−−−→∆k

i
(qwit, dc, d

′
g, qs, ε, cnt)

where β1 = (j, , d) with 1 ≤ j ≤ n, Θ1 = Σ\{((j, , d′),])|1 ≤ j ≤ n, d′ ∈
Val}, d′g = dg[zf : a], β2 = (i, zf , d

′
g) and op = write(i, zf , d′g).

- Flush items of x ∈ XL: if 1 ≤ j ≤ n, then for each x ∈ DL, d ∈ Val,

(qwit, dc, dg, qs, ε, cnt′)
op,ci:Σ,ci?(j,x,d)−−−−−−−−−−−→∆ts

i
(qwit, d, dg, qs, ε, cnt′)

(qwit, dc, dg, qs, ε, cnt′)
op,ci:Σ,ci?((j,x,d),])−−−−−−−−−−−−−→∆ts

i
(qwit, d, dg, qs, ε, cnt′)

where op = flush(j, x, d) and cnt′ ≤ k and .

- Guess call: if qs
call(j,m,a)−−−−−−→sq

′
s and 1 ≤ j ≤ n, then

(qwit, dc, dg, qs, call(j,m, a), cnt)
call(j,m,a),ci:Σ,nop−−−−−−−−−−−−→∆ts

i
(qwit, dc, dg, q

′
s, ε, cnt+1)

- Guess return: if qs
return(j,m,a)−−−−−−−−→sq

′
s and 1 ≤ j ≤ n, then

(qwit, dc, dg, qs, return(j,m, a), cnt)
return(j,m,a),ci:Σ,nop−−−−−−−−−−−−−→∆ts

i
(qwit, dc, dg, q

′
s, ε, cnt+1)

- Flush zf Item When it is a Call Marker (flushCall): if qs
flushCall(j)−−−−−−→sq

′
s and 1 ≤ j ≤

n, then

(qwit, dc, dg, qs, ε, cnt)
op,ci:Σ,ci?(j,zf ,d)−−−−−−−−−−−→∆k

i
(qwit, d, dg, q

′
s, ε, cnt+1)

where d(zf) = call and op = flushCall(j).

- Flush zf Item When it is a Return Marker (flushReturn): if qs
flushReturn(j)−−−−−−−→sq

′
s and

1 ≤ j ≤ n, then

(qwit, dc, dg, qs, ε, cnt)
op,ci:Σ,ci?(j,zf ,d)−−−−−−−−−−−→∆k

i
(qwit, d, dg, q

′
s, ε, cnt+1)

where d(zf) = return(m, c) and op = flushReturn(j).

8 Reducing k-Bounded TSO-to-TSO Linearizability to Channel
Machines

In this section, we prove that k-bounded TSO-to-TSO linearizability is decidable by
reducing it into several control state reachability problems of (S,K)-channel machines.

Let M k-(f,exth)
i (resp., M k-w

i) be a channel machine that is generated from Mk
i by re-

placing all but but flush, cas, call, return, flushCall and flushReturn transitions (resp., all
but write and cas transitions) with internal transitions, and replacing each cas(ind, x, d1, d2)
transition with flush(ind, x, d2) transition (resp., write(ind, x, d2) transition) for each
ind, x, d1, d2. Let M k-f

i be a channel machine that is generated from Mk
i by (1) re-

placing all but flush, cas, flushCall and flushReturn transitions with internal transi-
tions, (2) replacing each cas(ind, x, d1, d2) transition with flush(ind, x, d2) transition,
and (3) replacing each flushCall(ind) transition (resp., flushReturn(ind) transition) with
flush(ind, zf , d) transition where d is the valuation of the flushed item and d(zf) = call
(resp., d(zf) = ret).

To deal with k-extended histories, we need to consider only the paths which contains
at most k call, return, flushCall and flushReturn actions, and at every state of the path,
the number of strong symbol inΣs2 is always less or equal than |X |+1 (possibly one for
the newest item in channel, and the number for newest items of each memory location
is at most |X |). Therefore, Let S = 〈Σ1, Σ2〉 be the sets of strong symbols, and let
K1 = 〈k, |XL|+1〉 specify the maximal permitted number of strong symbols in each
set.

The following lemma states that the existence of a marked witness from a specific
begin state to a specific end state of JCltf (Mod(L)), n+1Kb implies a control state reach-
ability problem of a channel machine which is the production of M k-(f,exth)

1 to M k-(f,exth)
n+1

(generated with the specific begin state and end state for each process). We formally
prove this lemma in Appendix A.2. Here pin maps 1 ≤ i ≤ n into qc and maps n+1 into
qwit.

Lemma 5. Given a k-extended history eh. If there exists a marked witness t of eh from
(pin, dinit, ε

n+1, ε) to (pw, dw, ε
n+1, ε) in JCltf (Mod(L)), n+1Kb, then∩n+1

i=1T
(S,K1)
(qi,q′i)

Mk-(f,exth)
i 6=

∅, where for each 1≤ i≤n+1, qi = (pin(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qends, ε,
|t ↑(Σcal∪Σret∪Σfcal∪Σfret) |).

Proof. (Intuition and Sketch)
To prove this lemma, given a path pab of t in JCltf (Mod(L)), n+1Kb, we construct

a path pam of Mk-(f,exth)
1 ⊗Mk-(f,exth)

n+1 , where pab and pam has same extended history.
If we can find a weak simulation relation or something alike between states of

JCltf (Mod(L)), n+1Kb and states of Mk-(f,exth)
1 ⊗Mk-(f,exth)

n+1 , then this lemma can be proved.
However, this is hard, since in a state sb of JCltf (Mod(L)), n+1Kb, the content of buffers
can be flushed out in many orders, while in a state sm of Mk-(f,exth)

1 ⊗ Mk-(f,exth)
n+1 , each

Mk-(f,exth)
i see a same total store order, and thus, the content in channel can be flushed out

in an unique order. This implies that sb has “more possibility future behaviors” than sm
to some extent.

To solve this problem, we introduce an intermediate operational semantics JCltf (Mod(
L)), n+1Kg. A state sg of JCltf (Mod(L)), n+1Kg is generated from sb by adding a total
store order of some execution, and we force that the execution that contains sg must act
according to the total store. Since sg restrict behavior of sb with total store order, we
can now relate sg and sm with some weak simulation relation.

Given a path pab in JCltf (Mod(L)), n+1Kb, it is easy to construct a path pag in
JCltf (Mod(L)), n+1Kg by adding the total store order of pab into each state of pab. Then
we construct a weak simulation relation between states of JCltf (Mod(L)), n+1Kg and
states of Mk-(f,exth)

1 ⊗Mk-(f,exth)
n+1 , which implies that k-extended histories of JCltf (Mod(L)), n+1Kg

is a subset of extended histories of Mk-(f,exth)
1 ⊗Mk-(f,exth)

n+1 . This completes the proof of this
lemma. ut

The following lemma states that a control state reachability problem of a channel
machine which is the production of M k-(f,exth)

1 to M k-(f,exth)
n+1 (generated with the specific

begin state and end state for each process) implies the existence of a marked witness
from a specific begin state to a specific end state of JCltf (Mod(L)), n+1Kb. We formally
prove it in Appendix A.3.

Lemma 6. Given a k-extended history eh. If ∩n+1
i=1T

(S,K1)
(qi,q′i)

Mk-(f,exth)
i 6= ∅, where for each

1 ≤ i ≤ n+1, qi = (pin(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qends, ε, |eh|), then
there exists a marked witness t of eh from (pin, dinit, ε

n+1, ε) to (pw, dw, ε
n+1, ε) in JCltf (

Mod(L)), n+1Kb.

Proof. (Sketch)
We construct a ∼ relation between states of Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1 and states of

JCltf (Mod(L)), n+1Kb, such that if q1 ∼ q′1 and q1
act−→ q2, then one of the following

two cases holds:

- q′1 can launch act′1 . . . act′l transitions to a state q′2, such that q2 ∼ q′2, and the call,
return, flushCall and flushReturn actions in act are same to that in act′1 . . . act′l.

- q2 ∼ q′1.

Then it is obvious that from a path pam of Mk-(f,exth)
1 ⊗. . .⊗Mk-(f,exth)

n+1 , we can generate
a path pab of JCltf (Mod(L)), n+1Kb, such that pam and pab has the same call, return,
flushCall and flushReturn actions. ut

Let Σf be the set of flush actions. Given a sequence l of flush, call, return, flushCall
and flushReturn actions, let FcrToF(l) be a set of sequences, each of which is generated
from l by (1) erasing call and return actions, (2) for each i, transforming flushCall(i) and
flushReturn(i) actions into flush(i, zf , d1) and flush(i, zf , d2) actions for some d1, d2 ∈
Val, where d1(zf) = call and d2(zf) = ret. The following lemma states that a control
state reachability problem of the channel machine M k-(f,exth)

i is equivalent to a control
state reachability problem of the channel machine M k-f

i .

Lemma 7. Let l be a sequence of flush actions. Then, l ∈ T (S,K1)
(q,q′) M k-f

i , if and only if
there exists a sequence l′ of flush, call, return, flushCall and flushReturn actions, such
that l′ ∈ T (S,K1)

(q,q′) M k-(f,exth)
i and FcrToF(l′) = l. Here (q = (qc, dinit, dinit, qis, ε, 0)∧ 1 ≤

i ≤ n)∨(q = (qwit, dinit, dinit, qis, ε, 0)∧i = n+1), and q′ = (, d, d, qends, ε, |l′ ↑(Σcal∪Σret∪Σfcal∪Σfret)

|) for some d ∈ Val.

Proof. The if direction is obvious. To prove the only if direction, we generate a se-
quence l′′ from l′ as follows: Since M k-f

i ensures that each flush(, zw,) action is im-
mediately followed by a corresponding call or return action, we add the corresponding
call and return actions right after the flush(, zw,) actions. Then we transform each
flush(i, zf , d1) and flush(i, zf , d2) actions into flushCall(i) and flushReturn(i) actions,
where 1 ≤ i ≤ n, d1, d2 ∈ Val, d1(zf) = call and d2(zf) = ret. It is easy to see that
l′′ ∈ T (S,K1)

(q,q′) M k-(f,exth)
i . ut

Given a finite sequence l of flush actions, let Transf→w(l) be a finite sequence that is
generated from l by transforming each flush(i, x, d) action to write(i, x, d) action. The
following lemma states that a control state reachability problem of the channel machine
M k-f
i is equivalent to a control state reachability problem of the channel machine M k-w

i .

Lemma 8. Let l be a sequence of flush actions. l ∈ T (S,K1)
(q,q′) M k-f

i if and only if Transf→w(l) ∈
T

(S,K1)
(q,q′) M k-w

i , where (q = (qc, dinit, dinit, qis, ε, 0)∧1 ≤ i ≤ n)∨(q = (qwit, dinit, dinit, qis, ε, 0)∧
i = n+1) and q′ = (, d, d, qends, ε, a) for some d ∈ Val, and a is the number of flush
action of zw and zf in l.

Proof. This lemma holds because that, in a perfect channel machine, the sequences of
values put into the channels is always equal to the sequences of values take out from
the channels. ut

Based on Lemma 5, Lemma 6, Lemma 7 and Lemma 8, we can reduce the existence
of a marked witness from a specific begin state to a specific end state of JCltf (Mod(L)), n+1Kb

into a control state reachability problem of a channel machine which is the production
ofM k-w

1 toM k-w
n+1 (generated with the specific begin state and end state for each process).

Lemma 9. Given a k-extended history eh. There exists a marked witness t of eh from
(pin, dinit, ε

n+1, ε) to (pw, dw, ε
n+1, ε) in JCltf (Mod(L)), n+1Kb, if and only if∩n+1

i=1T
(S,K1)
(qi,q′i)

M k-w
i 6= ∅, where for each 1≤ i≤n+1, qi = (pin(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw,

dw, qends, ε, |t ↑(Σcal∪Σret∪Σfcal∪Σfret) |).

Proof. Obvious from Lemma 5, Lemma 6, Lemma 7 and Lemma 8. ut

The following lemma states that we can strengthen the result of Lemma 9 to the
situation whenM k-w

1 , . . . ,M k-w
n+1 are interpreted as lossy channel machines. We formally

prove this lemma in Appendix A.4.

Lemma 10. Given a k-extended history eh. There exists a marked witness t of eh from
(pin, dinit, ε

n+1, ε) to (pw, dw, ε
n+1, ε) in JCltf (Mod(L)), n+1Kb, if and only if∩n+1

i=1LT(S,K1)
(qi,q′i)

M k-w
i 6= ∅, where for each 1≤ i≤n+1, qi = (pin(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw,

dw, qends, ε, |t ↑(Σcal∪Σret∪Σfcal∪Σfret) |).

Proof. (Sketch)
We first prove the fact that if (s1, c1)

act−→(M k-w
i ,S,K1) (s2, c2) and c1 �K1

S c′1, then

there exists c′2 and β, such that c2 �K1

S c′2, (s1, c′1)
act′1−→M k-w

i
. . .

actl−→M k-w
i

(s1, c
′
2), and

write actions in act equals to write actions in act1 · . . . · actl.
According to Lemma 9, we reduce the existence of t into ∩n+1

i=1T
(S,K1)
(qi,q′i)

M k-w
i 6= ∅.

Then, we need to prove that,∩n+1
i=1T

(S,K1)
(qi,q′i)

M k-w
i 6= ∅, if and only if∩n+1

i=1LT(S,K1)
(qi,q′i)

M k-w
i 6=

∅. The only if direction is obvious, since a sequence l ∈ ∩n+1
i=1T

(S,K1)
(qi,q′i)

M k-w
i is also a se-

quence of ∩n+1
i=1LT(S,K1)

(qi,q′i)
M k-w
i . To prove the if direction, with the fact proved in this

lemma, we can construct a path of perfect channel from a path of lossy channel step by
step, where both path has same write actions. This completes the proof of this lemma.

ut

The following theorem states that k-bounded TSO-to-TSO linearizability is de-
cidable. By enumerating all possible start states and end states, and repeatedly apply
Lemma 10, we can check whether a specific k-extended history eh is in ehistory(JCltf (Mod(
L)), n+1Kb). Since the number of k-extended histories is finite, by repeatedly apply
above process, we can obtain k-ehistory(JCltf (Mod(L)), n+1Kb) and k-ehistory(JCltf (
Mod(L′)), n+1Kb). Then we can decide k-bounded TSO-to-TSO linearizability.

Theorem 1. Given concurrent data structure L and L′, the problem of whether L′ k-
bounded TSO-to-TSO linearizes L for n processes is decidable.

Proof. There are only finite number of (pin, dinit, ε
n+1, ε) and (pw, dw, ε

n+1, ε). By ap-
plying Lemma 10 with all possible (pin, dinit, ε

n+1, ε) and (pw, dw, ε
n+1, ε), we reduce

the problem of checking whether there exists a marked witness for eh into a finite num-
ber of problems of checking ∩n+1

i=1LT(S,K1)
(,) M k-w

i 6= ∅. By Lemma 3, this is reduced to
several control state reachability problem sof (S,K)-LCM, which is known decidable.

By Lemma 4 and Lemma 2, the existence of specific extended history eh in ehistory(JL, nKtt)
is equivalent to the existence of marked witness for eh in JCltf (Mod(L)), n+1Kb. There-
fore, we can now decide whether a specific extended history eh is in ehistory(JL, nKtt).

Since the number of k-extended histories is bounded by n,M and DL, we can ob-
tain k-ehistory(JL, nKtt) by first enumerating all possible k-extended histories, and then
use above process to check whether each k-extended history is in k-ehistory(JL, nKtt).

Similarly, we can obtain k-ehistory(JL′, nKtt). Consider k-ehistory(JL, nKtt) and k-ehistory(JL′, nKtt),
by Lemma 1, it is decidable whether L′ k-bounded TSO-to-TSO linearizes L for n pro-
cesses. ut

9 Complexity of k-Bounded TSO-to-TSO Linearizability

In this section, we prove that the TSO-to-TSO linearizability problem has non-primitive
recursive complexity.

9.1 (Lossy) Simple channel machine

A simple channel machine [15] is a kind of channel machine that has only one channel
and simple transition rules. Formally a channel machine M = (Q, CH, ΣCH, Λ,∆) is
called a simple channel machine, if

- CH contains only one channel,
- each transition in Delta uses a ε transition label, an empty guard, and does not use

substitution,
- there is no strong symbol,

For simplicity, a simple channel machine M can be redefined as M = (Q, {c}, Σc,
∆M), where Q is a finite set of states; c is the name of the only channel of M ; Σc is
the alphabet for channel contents; ∆M ⊆ Q× (ΣCH ∪ {ε})× (ΣCH ∪ {ε})×Q is the
transition relation. A rule (q1, u, v, q2) is in ∆M , if one of the following cases holds:

- there exists (q1, ε, ε, c?a, q2) ∈ ∆, u = a and v = ε,
- there exists (q1, ε, ε, c!a, q2) ∈ ∆, u = ε and v = a,
- there exists (q1, ε, ε, nop, q2) ∈ ∆, u = ε and v = ε

Intuitively, a transition rule (q1, u, v, q2) represents a transition from q1 to q2, which
gets u (if u 6= ε) from channel c and puts v (if v 6= ε) into channel c. Given a lossy sim-
ple channel machine M and two configurations s1, s2 of M , the reachability problem
ofM is to determine whether there is a finite run from s1 to s2 in lossy semantics ofM .
According to [15], it is obvious that the reachability problem of lossy simple channel
machine has nonprimitive recursive complexity.

9.2 Concurrent Data Structure LM
(s1,s2)

In this subsection, we construct concurrent data structure LM(s1,s2) to simulate the the
reachability problem of lossy simple channel machine M from s1 to s2. This idea is
inspired by our previous work in [13].

The buffer of TSO can contain unbounded number of items. A item can be putted
into buffer by a write action, and when a item of x is flushed out from buffer, it can be
detected by other processes by reading x. On TSO, flush actions are launched nondeter-
ministically by the memory system. Therefore, between two consecutive read actions,

more than one flush actions may happen. The next read action can only read the lat-
est flush action, while missing the intermediate ones. These missing flush actions are
similar to the missing messages that may happen in a lossy simple channel machine.
However, a (simple) channel machine accesses the content of a channel always in an
FIFO manner; while on the contrary, a process on the TSO memory model always
reads the latest updates in its local store buffer (whenever possible). Therefore, we use
two buffers of two processes to simulate one channel, where processes P1 runs M1 of
LM(s1,s2) and process P2 runs M2 of LM(s1,s2). Process P1 read updates of process P2,
change them according to transition rules of the lossy simple channel machine, and
write them into buffer, while process P2 read updates of process P1 and write them
into buffer. M2 never return. M1 does not return, until it finds that s2 has been reached.
In this way, each transition of the lossy simple channel machine can be reproduced
through a round of communication of two processes, and the reachability problem of
lossy simple channel machine is reduced into whether M1 returns.

Formally, given a lossy simple channel machine M = (Q, {c}, Σc, ∆M) and con-
figurations s1 = (q1,W1), s2 = (q2,W2) in the semantics of the lossy simple chan-
nel machine, LM(s1,s2) is constructed as follows: The finite data domain of LM(s1,s2) is
DL = Q ∪ Σc ∪ {start, end,],⊥, 0, . . . ,max({|W1| + 1, {|W2| + 1})}. LM(s1,s2) is
constructed with two methods M1 and M2, and the following memory locations:

- a memory location x that is used to transmit the channel contents from M1 to M2,
- a memory location y that is used to transmit the channel contents from M2 to M1,
- a memory location cnt that is used in M1 to count how many items has been read

(we use |W2|+1 to represent the numbers larger or equal than |W2|+1) in current
round.

- an array RecvSeq which is of length |W2| and is used to store the first |W2| items
read in each round,

The symbol] is used as the delimiter to ensure that one element will not be read
twice. The symbols start and end represent the start and the end of the channel contents,
respectively. ⊥ is used as the initial value of elements in RecvSeq in each round.

We now present the two methods in the pseudo-code, shown in Methods 1 and 2.
For the sake of brevity, the following macro notations are used:

- For sequence s = a1 · . . . · am, we use writeSeq(x,s) to represent the commands of
writing a1,], . . . , am,] to x in sequence,

- We use v := readOne(x) to represent the commands of reading e,] from x in
sequence for some e 6=] and then assigning e to v. We use readOneSpec(x, v) to
represent the commands of reading a,] from x in sequence where a is the value of
v. If readOne(x) reads],] from x, or readOneSpec(x, v) fails to read the required
value, then the calling process will no long proceed.

- We use writeOneSpec(x, v) to represent the commands of writing a,] to x in se-
quence where a is the current value of v.

- We use initRecvSeq() to represent the commands that assigns 0 to cnt and assigns
⊥ to RecvSeq(1), . . . ,RecvSeq(|W2|).

- We use det(q,cnt,ele) to represent the macro, which add ele into RecvSeq and then
determine whether RecvSeq equals W2. It works as follows:

- If q = q2 ∧W2 = ε, then it returns true.
- Else, if q 6= q2 ∨ cnt = |W2|, then it returns false.
- Else, if 0 ≤ cnt < |W2| − 1, then it assigns ele to RecvSeq(cnt), increases cnt

by 1 and returns false,
- Otherwise, cnt = |W2| − 1 in this case. It assigns ele to RecvSeq(|W2| − 1),

increases cnt by 1, and checks whether the contents of RecvSeq equals W2. If
the contents of RecvSeq equals W2, then it returns true, otherwise, it increases
cnt by 1 and returns false.

Method 1: M1

Input: an arbitrary argument
Output: an arbitrary argument

1 writeSeq(x, q1 · start ·W1 · end);
2 while true do
3 q′1 := readOne(y) for some state q′1 ∈ Q;
4 guess a transition rule rul = (q′1, u, v, q

′
2) ∈ ∆M ;

5 initRecvSeq();
6 if q′1 = q2 ∧W2 = ε then
7 return;
8 readOneSpec(y, start);
9 if u 6= ε then

10 readOneSpec(y, u);
11 if det(q′1, cnt, u) = true then
12 return;
13 writeSeq(x, q′2 · start);
14 while true do
15 tmp = readOne(y);
16 if temp = end then
17 break;
18 writeOneSpec(x, tmp);
19 if det(q′1, cnt, tmp) = true then
20 return;
21 if v 6= ε then
22 writeOneSpec(x, v);
23 writeOneSpec(x, end);

The pseudo-code of method M1 is shown in Method 1. M1 first puts q1 · start ·W1 ·
end into the processor-local store buffer by writing them to x (Line 1). Then, it begins
an infinite loop that never returns unless (q2,W2) is reached (Lines 2− 23). The round
of Lines 2 − 23 works as follows: It reads the current state q′1 (Line 3) and guesses a
transition rule rul = (q′1, u, v, q

′
2) ∈ ∆M (Line 4). M1 initializes RecvSeq (Line 5),

check whether it is the case that tempQ = q2 ∧W2 = ε (Lines 6 − 7). If so, it returns
as soon as possible. It not, it reads start from y (Line 8). If u 6= ε, it read u from y
(Lines 9-12). It writes q′2 · start into x (Line 13). Then, it reads the remaining contents
of “channel” (intermediate values of y may be lost) and writes them and v · end to x
(Lines 14-23). In each round of the while loop of Lines 2 − 23, when a item is read

from y (Lines 10− 12, 15− 20), it uses det to check whether (q2,W2) is reached. If so,
M1 return as soon as possible.

The pseudo-code of method M2 is shown in Method 2.M2 contains an infinite loop
that never returns (Lines 1-3). At each round of the loop, it reads a new update from x
and writes it to y.

Method 2: M2

Input: an arbitrary argument
1 while true do
2 tmp := readOne(x);
3 writeOne(y, tmp);

9.3 Complexity of k-Bounded TSO-to-TSO linearizability

According to the construction of LM(s1,s2), we can see that there is a close connection
between the paths of lossy simple channel machine and paths of JLM(s1,s2), 2Ktt. Fig. 3
shows an example of how to generate a path of JLM(s1,s2), 2Ktt from a path pa = (q1, a ·
b · c)−→(q2, b)−→(q2, d) of simple channel machine M , where s1 = (q1, c, ε, q3) and
s2 = (q2, d). Here the first transition of pa uses rule rule1 = (q1, c, ε, q3) and the second
transition of pa uses rule rule2 = (q3, ε, d, q2). A path of JLM(s1,s2), 2Ktt is generated as
follows:

- M1 writes q1 · start · c · b · a · end into x. M2 reads q1 · start · c · b · end from x and
write them into y. During this process, an item a is lost.

- In the first round of M1, M1 reads q1 · start · c · b · end from y, and according to
rule1, M1 writes q3 · start · b · end into x. Then M2 reads q3 · start · b · end from x
and writes them into y.

- In the second round of M1, M1 reads q3 · start · end from y (an item b is lost), and
according to rule2, M1 writes q2 · start ·d · end into x. Since s2 = (q2, d) is reached
now, M1 returns.

M1

M2

P1:

P2:
q1 · start · c · b · end

q1 · start · c · b · a · end q3 · start · b · end

q3 · start · b · end

q2 · start · d · end

pa = (q1, a · b · c)−→(q2, b)−→(q2, d)

Fig. 3. connection between paths of lossy simple channel machine and paths of JLM(s1,s2), 2Ktt

The following lemma states that, there exists an extended history of JLM(s1,s2), 2Ktt

that contains a return action, if and only if s2 is reachable from s1 in the semantics of
lossy simple channel machine M . The proof of this lemma is similar to the proof of
Lemma 2 in [13].

Lemma 11. There exists an extended history eh ∈ ehistory(JLM(s1,s2), 2Ktt), such that
eh ∩ Σret 6= ε, if and only if s2 is reachable from s1 in the semantics of lossy simple
channel machine M .

Proof. (Sketch) According to the above intuition, given a path pam of lossy simple
channel machine M , we can generate a path patt of JLM(s1,s2), 2Ktt, such that pam is a
path from s1 to s2, if and only if patt contains a return action.

Based on the construction of LM(s1,s2), it is not hard to see that given a path patt of
JLM(s1,s2), 2Ktt, we can generate a path pam of lossy simple channel machine M . Since
M1 changes “channel contents” according to transition rules of M and returns as soon
as reaches s2, we can see that patt contains a return action, if and only if pam is a path
from s1 to s2. This completes the proof of this lemma. ut

We construct another concurrent data structureLpend, such that ehistory(JLpend, 2Ktt)
covers all the extended histories that contains at most two call actions of M1 and M2,
and never return. Lpend contains two methods M1 and M2, and the only sentences in
M1 and M2 are while(true);. It is obvious that for any extended history of Lpend, there
is no return or flushReturn action in it.

We can now prove that k-bounded TSO-to-TSO linearizability has at least non-
primitive recursive complexity, as stated by the following theorem:

Theorem 2. The decision problem of k-bound TSO-to-TSO linearizability has at least
nonprimitive recursive complexity.

Proof. (sketch) It is not hard to prove that, ehistory(JLpend, 2Ktt) covers all the extended
histories that (1) contains at most four actions, while two of them are call actions of
M1 or M2, and two of them are flushCall actions, (2) on each process, there are at
most one call action call(i,m, a) and one flushCall action flushCall(i′,m′, a′), and
i = i′ ∧m = m′ ∧ a = a′. Therefore, it is easy to see that, ehistory(JLM(s1,s2), 2Ktt) ⊆
ehistory(JLpend, 2Ktt), if and only if no extended history of ehistory(JLM(s1,s2), 2Ktt) con-
tains a return action.

Note that if an extended history eh of ehistory(JLM(s1,s2), 2Ktt) has a return action,
then eh is not TSO-to-TSO linearizable to any extended history in ehistory(JLpend, 2Ktt).
Therefore, we can obtain that Lpend 5-bounded TSO-to-TSO linearizes LM(s1,s2) for 2
processes, if and only if no extended history of ehistory(JLM(s1,s2), 2Ktt) contains a return
action. By Lemma 11, we can see that Lpend 5-bounded TSO-to-TSO linearizes LM(s1,s2)
for 2 processes, if and only if s2 is reachable from s1 in the semantics of lossy simple
channel machine M . This completes the proof of this theorem. ut

10 Related Results of other Linearizability on TSO

10.1 k-Bounded TSO-to-SC Linearizability is decidable

Let us propose the notion of well-formed extended histories. A return action return(i1,
m1, a1) matches a call action call(i2,m2, a2), if i1 = i2 ∧m1 = m2. A flushReturn
action flushReturn(i1) matches a flushCall action flushCall(i2), if i1 = i2. Given an
extended history eh, let eh|i be the projection of eh to all and only the actions of process
i. An extended history eh is well-formed, if

- For each i, let eh(c,r,i) = eh|i ↑(Σcal∪Σret). eh(c,r,i) starts with a call action and each
call (respectively, return) action is immediately followed by a matching return (re-
spectively, a call) action unless it is the last action.

- For each i, let eh(fc,fr,i) = eh|i ↑(Σfcal∪Σfret). eh(fc,fr,i) starts with a flushCall action
and each flushCall (respectively, flushReturn) action is immediately followed by a
matching flushReturn (respectively, a flushCall) action unless it is the last action.

- For each i, the number of flushCall actions in eh|i is less or equal than the number
of call action in eh|i, and the number of flushReturn actions in eh|i is less or equal
than the number of call return in eh|i.

A history is well-formed, if it is a well-formed extended history (recall that each
history is also an extended history). Our notion of well-formed extended histories is
similar to the notion of well-formed histories in [1], and our notion of well-formed
histories is same as that in [1]. It is easy to see that, for each concurrent data structure
L, each extended history in ehistory(JL, nKtt) is well-formed.

Since each extended history in ehistory(JL, nKtt) is well-formed, given a k-history
h, we can see that for each extended history eh ∈ ehistory(JL, nKtt), if eh ↑(Σcal∪Σret)=
h, then eh contains at most 2k call, return, flushCall and flushReturn actions. According
to the proof of Theorem 1, we can obtain 2k-ehistory(JL, nKtt). Therefore, we can sim-
ilarly decide k-bounded TSO-to-SC linearizability, as stated by the following theorem.

Theorem 3. Given concurrent data structure L and L′, the problem of whether L′ k-
bounded TSO-to-SC linearizes L for n processes is decidable.

The following lemma states that k-bounded TSO-to-SC linearizability has non-
primitive recursive complexity.

Theorem 4. The decision problem of k-bound TSO-to-SC linearizability has at least
nonprimitive recursive complexity.

10.2 Result for Variants of Histories with Bounded Length

Apart from histories and extended histories, other forms of sequences have also been
used to represent behaviors of concurrent data structures. For instance, Derrick et. al.
[16,17] propose a variant of linearizability on TSO called TSO linearizability. Es-
sentially, TSO linearizability considers a method to start at its call action and end at
its flushReturn action. Or we can say, TSO linearizability use sequences of call and
flushReturn actions to represent behaviors of concurrent data structures. In this section,
we first generalize history and extended history into other forms of sequences, then we
prove that we can effectively obtain the set of sequences with bounded length of a con-
current data structure for all above kinds of sequences. At last, we sketch the definition

of TSO linearizability, propose a bounded version of TSO linearizability and sketch the
proof of its decidability and its at least nonprimitive recursive complexity.

Let us use cal, ret, fcal and fret to represent the name of call, return, flush call and
flush return actions, respectively. Given distinct x, y, z, w ∈ {cal, ret, fcal, fret}, a (x)-
history is a sequence of x actions, a (x, y)-history is a sequence of x and y actions,
a (x, y, z)-history is a sequence of x, y and z actions, and a (x, y, z, w)-history is a
sequence of x, y, z and w actions. For example, a history is a (call, ret)-history, while
an extended history is a (call, ret, fcal, fret)-history. As can be seen, there are in total 15
variants of histories.

A k-(x)-history is a (x)-history that contains at most k actions, and let k-(x)-history(A)
be the set of k-(x)-histories of A. We can similarly define k-(x, y)-history, k-(x, y, z)-
history and k-(x, y, z, w)-history, and we can similarly define k-(x,y)-history(A), k-(x,y,z)-history(A)
and k-(x,y,z,w)-history(A). The following lemma states that we can effectively obtain
k-(x)-history(JL, nKtt), k-(x,y)-history(JL, nKtt), k-(x,y,z)-history(JL, nKtt) and k-(x,y,z,w)-history(JL, nKtt).

Lemma 12. Given concurrent data structure L and distinct x, y, z, w ∈ {cal, ret, fcal,
fret}, there are algorithms to obtain the sets k-(x)-history(JL, nKtt), k-(x,y)-history(J
L, nKtt), k-(x,y,z)-history(JL, nKtt) and k-(x,y,z,w)-history(JL, nKtt).

Now let us sketch the definition of TSO linearizability. TSO linearizability relates a
set S1 of “(cal, fret)-histories” and a set S2 of sequential histories. Here we use quota-
tion mark in “(cal, fret)-histories” since the flushReturn actions in TSO linearizability
is of the form flushReturn(i,m, a) and needs to record the method name and the return
values. A sequential history is a history starts with a call action, and each call (respec-
tively, return) action is immediately followed by a matching return (respectively, a call)
action unless it is the last action. Given a “(cal, fret)-history” h1 and a sequential history
h2, and let h3 be generated from h1 by transforming each flushReturn(i,m, a) action
into return(i,m, a) for each i, m and a, h1 is TSO linearizable to h2, if h3 is lineariz-
able to h2. A concurrent data structure L is TSO linearizable with respect to a set Spec
of sequential histories for n processes, if for each h1 of “(cal, fret)-histories” of L for
n processes , there exists h2 ∈ Spec, such that h1 is TSO linearizable to h2.

Let us propose the notion of k-bounded TSO linearizability. A concurrent data struc-
ture L is k-bounded TSO linearizable with respect to a set Spec of sequential histories
(with length less or equal than k) for n processes, if for each h1 of “k-(cal, fret)-
histories” of L for n processes, there exists h2 ∈ Spec, such that h1 is 11TSO lin-
earizable” to h2 (where flushReturn actions are considered as return actions).

Let us sketch why k-bounded TSO linearizability is decidable. Here we require
Spec to be a regular set. Similarly to the proof of Lemma 12, we can obtain the set
S1 of “k-(cal, fret)-histories” of L for n processes. Since both S1 and Spec are finite
sets and the number of their elements are bounded, similarly as Lemma 1, we obtain
the decidability result. Similarly as the proof of Theorem 2, we can prove that, Lpend

3-bounded TSO linearizes LM(s1,s2) for 2 processes, if and only if s2 is reachable from
s1 in the semantics of lossy simple channel machine M . Therefore, it is easy to see that
the decision problem of k-bound TSO linearizability has at least nonprimitive recursive
complexity.

11 Conclusion and Future Work

We have shown in this paper that the decision problem of k-bounded TSO-to-TSO
linearizability is decidable for bounded number of processes. The proof method is es-
sentially by a reduction to several control state reachability problem of lossy channel
machines, which are already known to be decidable. The central idea of our work is
to “transform” the two roles of a “composed” call action into a write action and a cas
action, which belongs to the memory model. During this process we introduce an ob-
server process and bind specific cas actions of the observer process with call and return
actions. Then, given an extended history, a channel machine M k

i (1≤ i≤ n+1) is con-
structed to simulate the k-bounded behaviors of the extended concurrent system from
the perspective of each process Pi and check existence of the specific extended history.
We then demonstrate that the product of M k-w

1 , . . . ,M k-w
n+1, when interpreted with lossy

channels, can characterize the existence of the extended history from a specific begin
state to a specific end state (both with empty buffer for each process). Therefore, the
existence of a specific extended history can be obtained by repeatedly applying above
process with enumerating all possible start and end states, and the set of k-extended
histories can be obtained by enumerating all k-extended histories and use check their
existence one by one. The decidability result of k-bounded TSO-to-TSO linearizability
follows from that we can obtain the set of k-extended histories of a concurrent data
structure.

Since existence of a k-history is equivalent to existence of a 2k-extended history
with same history, we can obtain the set of k-histories of a concurrent data structure and
then decide k-bounded TSO-to-SC linearizability. Similarly we prove that k-bounded
TSO linearizability is also decidable. We prove that all above three bounded variants
of linearizability on TSO has at least nonprimitive recursive complexity by a reduction
from a reachability problem of a lossy simple channel machine, which is known to
have nonprimitive recursive complexity. Since these bounded variants do not require
the size of a store buffer or the length of a trace of a concurrent system to be bounded, it
still allows infinite-state behaviors. Hence, our decidability result is non-trivial. As by-
product of our work, we prove that we can effectively obtain the set of sequences with
bounded length of a concurrent data structure for all fifteen variants of histories. This
sheds light on developing algorithms for automatically verifying concurrent libraries on
relaxed memory models for (bounded) variants of linearizabilities.

References

1. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects.
ACM Trans. Program. Lang. Syst. 12 (1990) 463–492

2. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
progranm. IEEE Transactions on Computers 28 (1979) 690–691

3. Owens, S., Sarkar, S., Sewell, P.: A better x86 memory model: x86-tso. In: TPHOLs. (2009)
391–407

4. Sarkar, S., Sewell, P., Alglave, J., Maranget, L., Williams, D.: Understanding power mul-
tiprocessors. In: Proceedings of the 32Nd ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’11, New York, NY, USA, ACM (2011) 175–
186

5. Batty, M., Dodds, M., Gotsman, A.: Library abstraction for c/c++ concurrency. In: POPL.
(2013) 235–248

6. Manson, J., Pugh, W., Adve, S.V.: The java memory model. In: Proceedings of the 32Nd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. POPL
’05, New York, NY, USA, ACM (2005) 378–391

7. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent library correctness on
the tso memory model. In: ESOP. (2012) 87–107

8. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consistent specifi-
cations of TSO libraries. In: Distributed Computing - 26th International Symposium, DISC
2012, Salvador, Brazil, October 16-18, 2012. Proceedings. (2012) 31–45

9. Filipovic, I., O’Hearn, P.W., Rinetzky, N., Yang, H.: Abstraction for concurrent objects. In:
ESOP. (2009) 252–266

10. Alur, R., McMillan, K., Peled, D.: Model-checking of correctness conditions for concur-
rent objects. In: Proceedings of the 11th Annual IEEE Symposium on Logic in Computer
Science. LICS ’96, Washington, DC, USA, IEEE Computer Society (1996) 219–

11. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Verifying concurrent programs against se-
quential specifications. In: Proceedings of the 22Nd European Conference on Programming
Languages and Systems. ESOP’13, Berlin, Heidelberg, Springer-Verlag (2013) 290–309

12. Wang, C., Lv, Y., Wu, P.: Bounded tso-to-sc linearizability is decidable. Technical Report
ISCAS-SKLCS-15-11, State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences (2015)

13. Wang, C., Lv, Y., Wu, P.: Tso-to-tso linearizability is undecidable. In: Automated Technol-
ogy for Verification and Analysis - 13th International Symposium, ATVA 2015, Proceedings.
(2015) 264–280

14. Atig, M.F., Bouajjani, A., Burckhardt, S., Musuvathi, M.: On the verification problem for
weak memory models. In: Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’10, New York, NY, USA, ACM
(2010) 7–18

15. Schnoebelen, P.: Verifying lossy channel systems has nonprimitive recursive complexity.
Inf. Process. Lett. 83 (2002) 251–261

16. Derrick, J., Smith, G., Groves, L., Dongol, B.: Using coarse-grained abstractions to verify
linearizability on TSO architectures. In Yahav, E., ed.: Hardware and Software: Verification
and Testing - 10th International Haifa Verification Conference, HVC 2014, Haifa, Israel,
November 18-20, 2014. Proceedings. Volume 8855 of Lecture Notes in Computer Science.,
Springer (2014) 1–16

17. Derrick, J., Smith, G., Dongol, B.: Verifying linearizability on TSO architectures. In Albert,
E., Sekerinski, E., eds.: Integrated Formal Methods - 11th International Conference, IFM
2014, Bertinoro, Italy, September 9-11, 2014, Proceedings. Volume 8739 of Lecture Notes
in Computer Science., Springer (2014) 341–356

18. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: On reducing linearizability to state reach-
ability. In Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B., eds.: Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part II. (2015) 95–107

19. Bouajjani, A., Emmi, M., Enea, C., Hamza, J.: Tractable refinement checking for concur-
rent objects. In: Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015.
(2015) 651–662

20. Atig, M.F.: What is decidable under the TSO memory model? ACM SIGLOG News 7 (2020)
4–19

A Definitions and Proofs in Section 8

A.1 Construction of JCltf(Mod(L)), n+1Kg

It is quite hard to build a weak simulation relation or something alike between states of
JCltf (Mod(L)), n+1Kb and configurations of Mk-(f,exth)

1 ⊗Mk-(f,exth)
n+1 . This is because that

for a state of JCltf (Mod(L)), n+1Kb, more than one process may be possible to do a
flush action at any time. Therefore, the content of buffers can be flushed out in many
orders, and the total store orders of traces from this state is not fixed. While for a state of
Mk-(f,exth)

1 ⊗Mk-(f,exth)
n+1 , since the flush actions are launched according to a single channel,

items must be flush in a fixed FIFO order, and the total store orders of traces from this
state is to a large extent fixed.

To deal with this problem, a intermediate transition system is introduced, whose
configuration extends configurations of JCltf (Mod(L)), n+1Kb and contains the total
store order of some trace. Formally, given a concurrent data structureL = (XL,M,DL, QL,→L
), and a deterministic finite state automaton Aeh = (Qs, Σs,→s, Fs, qis) that is con-
structed for extended history eh, as in Subsection 7.2. We construct an LTS JCltf (Mod(L)), n+1Kg =
(Confg, Σg,→g, InitConfg). Here Σg = Σf , InitConfg = (pin, dinit, ε

n+1, qis, ε, F, ε).
Confg and→g are defined as follows.
Construction of Confg: Each configuration of Confg is a tuple (p, d, u, qs,mak, flag, g),
where,

- (p, d, u,mak) is a configuration of JCltf (Mod(L)), n+1Kb, Here mak ∈ markedVal(M,DL, n)
is used to ensure that each specific cas(n+1, zw,) action is immediately followed
by the corresponding call or return action.

- qs ∈ Qs is used to monitor whether the extended history eh happens,
- g ∈ (Σe0 ∪ Σe1 ∪ Σe2 ∪ Σe3)

∗, where Σe0, Σe1, Σe2 and Σe3 are defined below. g
is the total store order of some execution, and it should satisfies some requirements
shown below.

- flag ∈ {T, F} is used to denote whether the total store order g has been initialized.

The four alphabets of Σe0, Σe1, Σe2, Σe3 is defined as follows:

- Σe0 = {(i, x, d)|1 ≤ i ≤ n+1, x ∈ XL∪{zw, zf}, d ∈ Val} represents the items in
total store order of a trace that are not used now and will be flushed later than any
item in current buffer.

- Σe1 = {(i, x, d)′|(i, x, d) ∈ Σe0} represents items in the total store order of a trace
that are not used now and will be flushed earlier than some item in buffer.

- Σe2 = {(i, x, d)′′|(i, x, d) ∈ Σe0} represents items in the total store order of a trace
that are already inserted into buffer and not flushed yet.

- Σe3 = {(i, x, d)′′′|(i, x, d) ∈ Σe0} represents items in the total store order of a
trace that have already been flushed out from buffer.

Requirements of g: g stores the total store order of a trace. It is a concatenation of
sequences lg1, lg2 and lg3. lg1 ∈ Σ∗e0 represents the sequence of items that have not
been used and will be flushed later than any item in current buffer. lg2 ∈ (Σe1 ∪ Σe2)

∗

represents the sequence of items that either in current buffer, or items not in current

buffer but will be flushed earlier than some item in current buffer. lg3 ∈ Σ∗e3 represents
the sequence of items that have already been flushed.

Given a finite sequence l = α1 ·α2 · . . . ·αk, we say that the element αi is left (resp.,
right) to element αj , if i < j (resp., i > j). We say that αi is left most element in l if
i = 1, and αi is right most element in l if i = |l|.

Let Σi be the items of process i in Σe0 ∪ Σe1 ∪ Σe2 ∪ Σe3, Σ(i,x) be the items of
process i and memory location x in Σe0∪Σe1∪Σe2∪Σe3, g should additionally satisfy
the following requirements (we briefly explain each requirement):

- If lg2 6= ε, then lg2(1) ∈ Σe2. To explain this, assume that if lg2(1) = a ∈ Σe1, then
a will be flushed later than any item in buffer, and this violates our intuition of Σe1.

- For each i, lg2 ↑Σi
∈ Σ∗e1 ·Σ∗e2. This is obvious from our intuition of Σe1 and Σe2.

- For each i, j, if g ↑(Σi∪Σe2) (j) = (i, x, d)′′ and d(x) = a, then u(i)(j) = (i, x, a),
and vice versa. This is obvious from our intuition of Σe2.

- Let g′ be the sequence generated from g by discarding all the ′ symbols of each
item in g. If g′(|g′|) = (i1, x1, d1), then d1 = dinit[x1 : d1(x1)]. For each i, if
g′(i) = (i2, x2, d2), g′(i+1) = (i3, x3, d3), then d2 = d3[x2 : d2(x2)]. Or we
can say, the valuation tuple of gi is generated from dinit by applying updates in
g(|g′|), . . . , g(i+1).

Construction of→g: Recall that→b is the transition relation in JCltf (Mod(L)), n+1Kb.
The transition relation→g is defined as follows:

- Initial transition: the first transition from InitConfg is to guess the tuple of total
store order: (pin, dinit, ε

n+1, qis, ε, F, ε)
ε−→g (pinit, dinit, ε

n+1, qis, ε, T, g), where g is
a sequence that satisfy the requirements in previous several paragraphs. The flag
tuple ensure that this transition can be carried out only once.

- τ and read transitions: (p, d, u, qs, ε, T, g)
act−→g (p

′, d, u, qs, ε, T, g), and act is a τ
or read action, if (p, d, u, ε) act−→b(p

′, d, u, ε).

- Write transitions: (p, d, u, qs, ε, T, g)
write(i,x,a)−−−−−−−→g (p

′, d, u′, qs, ε, T, g
′), if (p, d, u, ε)

write(i,x,a)−−−−−−−→b(p
′, d, u′, ε), and one of the following conditions holds: (1) lg2 ↑Σ(i,x)

contains at least one item in Σe1, the right most item of lg2 ↑(Σe1∩Σ(i,x))= (i, x, d1)
′

and d1(x) = a, and g′ is generated from g by transforming this item into (i, x, d1)
′′,

(2) lg2 ↑ Σ(i,x) does not contain any item ofΣe1, the right most item of lg1 ↑(Σe0∩Σ(i,x))=
(i, x, d2) with d2(x) = a, g′ is generated from g by transforming this item into
(i, x, d1)

′′, and mark all the items which are right to this item in lg1 with ′ symbol.
Write transition will put a item itm into buffer, or we can say, mark itm with ′′ sym-
bol. In this first case, itm is already marked with ′ symbol before write transition,
and we only need to mark itm with ′′ symbol. In the second case, itm belongs to lg1

before write transition, and we mark itm with ′′ symbol; the items which are right
to itm in lg1 means the items that should be flushed earlier than itm, so we mark
them with ′ symbol.

- cas transitions: (p, d, u, qs,mak, T, g)
cas(i,x,a,b)−−−−−−−→g (p

′, d′, u, qs,mak′, T, g′), if (p, d, u,mak)
cas(i,x,a,b)−−−−−−−→b (p

′, d′, u,mak), and one of the following conditions holds: (1) lg2 ends

with (i, x, d′)′, d′(x) = b, and g′ is generated from g by transforming this item into
(i, x, d′)′′′, (2) lg2 = ε, lg1 ends with (i, x, d′), d′(x) = b, and g′ is generated from
g by transforming this item into (i, x, d′)′′′.
Note that, according to→b, x 6= zf . If x 6= zw, then mak = mak′ = ε. Otherwise,
mak = ε and mak′ ∈ markedVal(M,DL, n).
cas transition will flush a item itm out from buffer, or we can say, mark itm with ′′′

symbol. In the first case, itm is chosen from lg2. In the second case, itm is chosen
from lg1.

- Flush transitions: (p, d, u, qs, ε, T, g)
flush(i,x,a)−−−−−−→g(p, d

′, u′, qs, ε, T, g
′), if x 6= zf ,

x 6= zw, lg2 ends with (i, x, d′)′′, d′(x) = a, and g′ is generated from g by trans-
forming this item into (i, x, d′)′′′.
Flush transition will flush a item itm, which is already in buffer (marked with ′′

symbol), out from buffer, or we can say, mark itm with ′′′ symbol. When itm is a
item of zw, we must modify the mak tuple to make sure that the next transition be
a corresponding call or return transition.

- FlushCall and flushReturn transitions: (p, d, u, qs, ε, T, g)
flushCall(i)−−−−−−→g(p, d

′, u′, q′s, ε, T, g
′),

if (p, d, u, ε)
flushCall(i)−−−−−−→b (p, d′, u′, ε), qs

flushCall(i)−−−−−−→sq
′
s, lg2 ends with (i, zf , d

′)′′,
d′(zf) = call, and g′ is generated from g by transforming this item into (i, zf , d

′)′′′.

Similarly, (p, d, u, qs, ε, T, g)
flushReturn(i)−−−−−−−→g(p, d

′, u′, q′s, ε, T, g
′), if (p, d, u, ε)

flushReturn(i)−−−−−−−→b

(p, d′, u′, ε), qs
flushReturn(i)−−−−−−−→sq

′
s, lg2 ends with (i, zf , d

′)′′, d′(x) = ret, and g′ is gen-
erated from g by transforming this item into (i, zf , d

′)′′′.
FlushCall or FlushReturn transition will flush a item itm of zf with zf in valuation
of item being call or ret, respectively. itm must be already in buffer (marked with
′′ symbol) before transition, and will be flushed out (marked with ′′′ symbol) after
transition.

- Call and return transitions: (p, d, u, qs, call(i,m, a), T, g)
call(i,m,a)−−−−−−→g (p

′, d′, u′, q′s,

ε, T, g), if (p, d, u, call(i,m, a))
call(i,m,a)−−−−−−→b (p

′, d′, u′, ε) and qs
call(i,m,a)−−−−−−→sq

′
s. Sim-

ilarly, (p, d, u, qs, return(i,m, a), T, g)
return(i,m,a)−−−−−−−→g (p

′, d′, u′, q′s, ε, T, g), if (p, d, u, return(i,m, a))
return(i,m,a)−−−−−−−→b (p

′, d′, u′, ε) and qs
return(i,m,a)−−−−−−−→sq

′
s.

A call or return action can happen, if the value of mak tuple before transition is the
corresponding call or return action, and we unset mak tuple into ε after transition.
This ensure that a call or return action is “bound” with a corresponding cas action
of zw(which set the mak tuple into the value of the corresponding call or return
action).

A.2 Proof of Lemma 5

Given a sequence g that satisfies requirement in Appendix A.1 and a sequence t of
actions, we say that g is the total store order of t, if the the following conditions are
satisfied:

- Let t′ be the projection of t into write and cas actions. g contains |t′| elements,
and let g′ be generated from g by transforming each element (a, b, c), (a, b, c)′,
(a, b, c)′′ or (a, b, c)′′′ in g into (a, b, c).

- If t′(1) = write(j, x, b) or cas(j, x, a, b), then g′(|t′|) = (j, x, d), where d =
dinit[x : b].

- For each i > 1, if t′(i) = write(j, x, b) or cas(j, x, a, b), and g(|t′| − i + 2) =
(j′, y, d′)′′′, then g′(|t′| − i+ 1) = (j, x, d), where d = d′[x : b].

The following lemma states that if t is a marked witness of an extended history eh
in JCltf (Mod(L)), n+1Kb, then t is also a trace of JCltf (Mod(L)), n+1Kg.

Lemma 13. Given a k-extended history eh. If t is a marked witness of eh from (pin, dinit, ε
n+1, ε)

to (pw, dw, ε
n+1, ε) in JCltf (Mod(L)), n+1Kb, then t is also a trace from (pin, dinit, ε

n+1, qis, ε, F, ε)
to (pw, dw, ε

n+1, qends, ε, T, g) in JCltf (Mod(L)), n+1Kg, where g is the total store order
of t.

Proof. To prove this lemma, for each path of t in JCltf (Mod(L)), n+1Kb from (pin, dinit, ε
n+1, ε)

to (pw, dw, ε
n+1, ε), we generate a path of JCltf (Mod(L)), n+1Kg from (pin, dinit, ε

n+1, qis, ε, F, ε)
to (pw, dw, ε

n+1, qends, ε, T, g) step by step. Note that each element in g is of the form
(, ,).

Assume (pinit, dinit, ε
n+1, ε)

act1−→b (p1, d1, u1,mak1) . . .
actw−→b (pw, dw, uw,makw)

is the path of t in JCltf (Mod(L)), n+1Kb. Here uw = εn+1. For each configuration
(pi, di, ui,maki), we construct another configuration (pi, di, ui, q

i
s,maki, T, gi), where

- qis is generated from qis by call, return, flushCall and flushReturn actions in act1 ·
. . . · acti.

- If acti = cas(n+1, zw, , α) and α ∈ markedVal(M,DL, n), then maki = α.
Otherwise, maki = ε.

- Let us show how to construct gi from g.
- lgi3 contains all the items that has been flushed when reaching (pi, di, ui,maki).
- To construct lgi2, we use ′′ symbol to mark all the item that has been putted into

buffer. Let ind1 be the minimal index that has been marked with ′′, and let ind2
be the minimal index that has been marked with ′′′. For all the items that (1)
has index larger than ind1 and bigger than ind2 and (2) has not been marked
with ′′, we mark them with ′. lgi2 starts from ind1 and ends with ind2-1.

- The remaining part is lgi1.

It is obvious that (pin, dinit, ε
n+1, qis, ε, F, ε)

ε−→g (pin, dinit, ε
n+1, qis, ε, T, g0). Here

g0 is the total store order of t and every element in g0 is of the form (, ,). It is also easy
to see that for each i, (pi, di, ui, qis,maki, T, gi)

acti+1−→e (pi+1, di+1, ui+1, q
i+1
s ,maki+1, T,

gi+1). Therefore, t = act1 · . . . · actw is a trace from (pin, dinit, ε
n+1, qis, ε, F, ε) to

(pw, dw, ε
n+1, qends, ε, T, g) in JCltf (Mod(L)), n+1Kg. ut

Given a sequence g as defined in Appendix A.1 and a sequence l of flush, call,
return, flushCall and flushReturn actions in Mk-(f,exth)

i , we say that l is consistent with g,
if:

- Let g′ be a sequence generated from g by discarding ′ symbol of each item in g. Let
lf be a projection of l into flush, flushCall and flushReturn actions.

- Construct sequences of valuations val0, val1, val0 = dinit. For each i, if lf (i) =
flush(i, x, d), then Vali = d; else, if lf = flushCall(i), then Vali = Vali-1[zf : cal];
otherwise, we can see lf = flushReturn(i), and then Vali = Vali-1[zf : ret].

- Let g′ be a sequence generated from g by discarding ′ symbol of each item in g.
Then for each i, if lf (i) = flush(i, x, d), then g′(|g′| − i+ 1) = (i, x,Vali); else, if
lf = flushCall(i), then g′(|g′| − i+ 1) = (i, zf ,Vali); else, if lf = flushReturn(i),
then g′(|g′| − i+ 1) = (i, zf ,Vali);

Or we can say, l is consistent with g, if the flush, flushCall and flushReturn transi-
tions in l can be used to generate g.

The following lemma states that, given a trace t of JCltf (Mod(L)), n+1Kg, there
exists a sequence l ∈ T

(S,K1)
(qi,q′i)

Mk-(f,exth)
i , such that l is consistent with g, which is the

total store order of t.

Lemma 14. Given a k-extended history eh. Assume that t is a trace from (pin, dinit, ε
n+1, qis, ε, F, ε)

to (pw, dw, ε
n+1, qends, ε, T, g) in JCltf (Mod(L)), n+1Kg, and g is the total store or-

der of t, and assume that t is a marked witness of eh. Then there exists a sequence
l, such that for each process id 1 ≤ i ≤ n+1, l ∈ T

(S,K1)
(qi,q′i)

Mk-(f,exth)
i , where qi =

(pin(i), dinit, dinit, qis, ε), q′i = (pw(i), dw, dw, qends, ε), and l is consistent with g.

Proof. This lemma is proved by constructing a weak simulation between configura-
tions of JCltf (Mod(L)), n+1Kg in the path of t and configurations of (S,K1)-channel
machine Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1 .

Assume (pin, dinit, ε
n+1, qis, ε, F, ε)

act1−→g . . .
actw−→g (pw, dw, uw, qends, ε, T, g) is the

path of t in JCltf (Mod(L)), n+1Kg and uw = εn+1. Let (p, d, u, r, qs,mak, T, g) be the
(v+1)-th configuration of the path. Let ((cs1, . . . , csn+1), (c1, . . . , cn+1)) be a config-
uration of (S,K1)-channel machine Mk-(f,exth)

1 ⊗ . . . ⊗ Mk-(f,exth)
n+1 , and for each i, csi =

(qi, dci, dgi, q
i
s,maki, cnti). A relation ∼ is defined as follows: (p, d, u, qs,mak, T, g) ∼

((cs1, . . . , csn+1), (c1, . . . , cn+1)), if for each process id i,

- p(i) = qi, d = dci, qs = qis, mak = maki, and dgi is generated from dci by doing all
the updates in ci(|ci|), . . . , ci(1).

- cnt1 = . . . = cntn+1. And cnt1 is the number of call, return, flushCall and flushRe-
turn actions in act1 · . . . · actv .

- If lg2 ↑(Σe2∩Σi) 6= ε, then let ind1, ind2 be the index of the leftmostΣe2∩Σi item on
g and the rightmost item on lg2, respectively, let g′ be generated from g by discard-
ing ′ symbols of each item in g. Assume g′ = (i1, x1, d1) · (i2, x2, d2) · Then ci
contains ind2−ind1+1 items, and ∀1 ≤ j ≤ ind2−ind1+1, ci(ind2−ind1−j+2) =
(i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)) or ((i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)),]).

- If lg2 ↑(Σe2∩Σi)= ε and lg2 ↑(Σe1∩Σi) 6= ε, then let ind1, ind2 be the index of the
rightmost Σe1 ∩ Σi item on g and the rightmost item on lg2 respectively, let g′

be generated from g by discarding ′ symbols of each item in g. Assume g′ =
(i1, x1, d1) · (i2, x2, d2) · Then ci contains ind2 − ind1 items, and ∀1 ≤ j ≤
ind2 − ind1, ci(ind2 − ind1 − j + 1) = (i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)) or
((i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)),]).

- If lg2 ↑(Σe2∩Σi)= ε and lg2 ↑(Σe1∩Σi)= ε, then let ind1, ind2 be the index of the
leftmost item on lg2 and the rightmost item on lg2 respectively, let g′ be gener-
ated from g by discarding ′ symbols of each item in g. Assume g′ = (i1, x1, d1) ·
(i2, x2, d2) · Then ci contains ind2 − ind1 + 1 items, and ∀1 ≤ j ≤ ind2 −
ind1 + 1, ci(ind2 − ind1 − j + 2) = (i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)) or
((i(ind2−j+1), x(ind2−j+1), d(ind2−j+1)),]).

It remains to prove that, if (p, d, u, r, qs,mak, T, g) ∼ ((cs1, . . . , csn+1), (c1, . . . , cn+1

)) holds, (p, d, u, r, qs,mak, T, g) actv+1−→g (p′, d′, u′, r′, q′s,mak′, T, g′) and (p′, d′, u′, r′,
q′s,mak′, T, g′) is the v+2-th configuration of the path of t, then there exists cs′1, . . . ,
cs′n+1, c

′
1, . . . , c

′
n+1 and a sequence sv+1, such that ((cs1, . . . , csn+1), (c1, . . . , cn+1))

sv+1−→∗∆k
i

(cs′1, . . . , cs′n+1), (c
′
1, . . . , c

′
n+1)), (p

′, d′, u′, r′, q′s,mak′, T, g′) ∼ ((cs′1, . . . , cs′n+1), (c
′
1, . . . ,

c′n+1)) holds, and the flush, call, return, flushCall and flushReturn actions in actv+1 is
same to that in sv+1. Assume for each i, cs′i = (q′i, d

′
ci, d
′
gi, q

i′

s ,mak′i, cnt′i).

- When αv+1 is a τ , read, call or return action, it is obvious to see that sv+1 = ε and
this holds trivially.

- When αv+1 is a write actions of process i, sv+1 = ε, and Mk-(f,exth)
1 ⊗ . . .⊗Mk-(f,exth)

n+1
do the following transitions and change the channels as follows:

- If lg2 ↑(Σe1∩Σi) 6= ε, then let ind1 be the index of the right most Σe1 ∩ Σi item
on g, let ind2 be

- ind′-1, if lg2 ↑(Σe2∩Σi) 6= ε and ind′ is the index of the leftmost Σe2 ∩ Σi
item on g,

- ind1, if lg2 ↑(Σe2∩Σi)= ε ∧ lg2 ↑(Σe1∩Σi) 6= ε,
c′i is generated from ci by putting updates of g(ind2), . . . , g(ind1) into ci. Dur-
ing this process,several guess write actions and then a write action happen (seen
as internal transitions in Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1). For channel j 6= i, c′j = cj .

- If lg2 ↑(Σe1∩Σi)= ε,
- For channel i: Let ind1 be the index of the right most Σi item of lg1 in g,

let ind2 be
- ind′-1, if lg2 ↑(Σe2∩Σi) 6= ε and ind′ is the index of the leftmostΣe2∩Σi

item on g,
- ind′-1, if lg2 ↑(Σe2∩Σi)= ε and ind′ is the index of the leftmost item of
lg2 on g,

c′i is generated from ci by putting updates of g(ind2), . . . , g(ind1) into ci.
During this process, several guess write actions and then a write actions
happen (seen as internal transitions in Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1).

- For channel j 6= i:
- If lg2 ↑Σj= ε. Let ind1 be the index of the right most Σi item of lg1

in g. Let ind2 be the index of right most item of lg1 in g. Let sequence
g′′ = g(ind1) · . . . · g(ind2).
If g′′ ↑Σj

6= ε, let ind3 be the index of right most item of g′′ ↑Σj
in g,

and c′j is generated from cj by putting updates of g(ind2), . . . , g(ind3+1).
During this process several guess write actions happen (seen as inter-
nal transitions in Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1).

Otherwise, if g′′ ↑Σj
= ε, c′j is generated from cj by putting updates of

g(ind2), . . . , g(ind1). During this process several guess write actions
happen (seen as internal transitions in Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1).

- For channel j 6= i and lg2 ↑Σj 6= ε holds: c′j = cj .

- When actv+1 is a flush action of process i, then sv+1 = actv+1. Mk-(f,exth)
1 ⊗ . . . ⊗

Mk-(f,exth)
n+1 do the following transitions and change the channels as follows:
- For channel j 6= i, c′j is generated from cj by discarding the right most item of
cj . During this process a flush action happens.

- For channel i, c′i is generated from ci as follows:
- If |lg2 ↑(Σe2∩Σi) | ≥ 2, then c′i is generated from ci by discarding the right

most item. During this process a flush action happens.
- Otherwise, |lg2 ↑(Σe2∩Σi) | = 1.

Let ind1 be the index of the right most Σe1∩Σi item in g if lg2 ↑(Σe1∩Σi) 6=
ε. Otherwise, let ind1 be the index of the right most item of lg1 in g. Let
ind2 be the index of the Σe2 ∩ Σi item in g. c′i is generated from ci be
putting updates of g(ind2 − 1), . . . , g(ind + 1) and discarding the right
most item of ci. During this process several guess write actions (seen as
internal transitions in Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1) and a flush action happen.

- When actv+1 is a flushCall or flushReturn action of process i, since such actions
come from flushing zf , the change to channel is similar to the case of flush actions,
and we launch flushCall or flushReturn transition.

- When actv+1 is a cas(i, x, val) action of process i, then sv+1 = flush(i, x, val).
Mk-(f,exth)

1 ⊗ . . . ⊗Mk-(f,exth)
n+1 do the following transitions and change the channels as

follows:
- If lg2 = ε. For channel j 6= i, c′j = cj = ε, and during transition the update
(i, x, val) need to be inserted into c′j by a guess write action (seen as internal
transitions in Mk-(f,exth)

1 ⊗ . . . ⊗ Mk-(f,exth)
n+1) and then flushed our of c′j using a

flush action. For channel i, c′i = ci = ε, and during this process a flush action
happens.

- If lg2 6= ε, then it is easy to see that lg2 ends with a item inΣe1∩Σi. For channel
j 6= i, c′j is generated from cj by discarding the right most item using a flush
action. For channel i, the channel c′i is generated as follows:

- If |lg2 ↑(Σe1∩Σi) | ≥ 2, let ind1 be the index of the second right most Σe1 ∩
Σi item in g, let ind2 be the index of the right mostΣe1∩Σi item in g. c′i is
generated from ci by putting the updates of g(ind2−1), . . . , g(ind+1) into
ci. During this process several guess write action happen (seen as internal
transitions in Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1) and then a flush action happends.

- If lg2 ↑(Σe1∩Σi)= ε, let ind1 be the index of the right most item of lg1 in
g, let ind2 be the index of the Σe1 ∩ Σi item in g. c′i is generated from ci
by putting the updates of g(ind2 − 1), . . . , g(ind + 1) into ci. During this
process several guess write actions happen (seen as internal transitions in
Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1) and then a flush action happens.

When actv+1 is a cas action of process i for zf , the mak tuple of each Mk-(f,exth)
i

must also be changed. Since flush action requires the mak tuples to be ε, in the case

when lg2 6= ε and for process i, we do guess write transitions first and then flush
transition.

According to our construction, given a path pa of t from (pin, dinit, ε
n+1, qis, ε, F, ε)

to (pw, dw, ε
n+1, qends, ε, T, g) in JCltf (Mod(L)), n+1Kg, we can construct a path pa′ of

Mk-(f,exth)
1 ⊗ . . . ⊗Mk-(f,exth)

n+1 , and the call, return, flushCall and flushReturn actions in pa
equals that in pa′. Let t′ be the trace of pa′. It is obvious that t′ ↑(Σcal∪Σret∪Σfcal∪Σfret)=
eh. Therefore, the qs tuple in the end state of pa′ is qends for each process. Since eh con-
tains less or equal than k actions, the number of call, return, flushCall and flushReturn
actions in t′ is less or equals than k. Therefore, channels along states of pa′ satisfies
strong symbol restriction (S,K1). This completes the proof of this lemma. ut

With above two lemmas we can now prove Lemma 5.

Lemma 5. Given a k-extended history eh. If there exists a marked witness t of eh from
(pin, dinit, ε

n+1, ε) to (pw, dw, ε
n+1, ε) in JCltf (Mod(L)), n+1Kb, then∩n+1

i=1T
(S,K1)
(qi,q′i)

Mk-(f,exth)
i 6=

∅, where for each 1≤ i≤n+1, qi = (pin(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qends, ε,
|t ↑(Σcal∪Σret∪Σfcal∪Σfret) |).
Proof. Lemma 5 is a direct consequence of Lemma 13 and Lemma 14. ut

A.3 Proof of Lemma 6

Lemma 6. Given a k-extended history eh. If ∩n+1
i=1T

(S,K1)
(qi,q′i)

Mk-(f,exth)
i 6= ∅, where for each

1 ≤ i ≤ n+1, qi = (pin(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw, dw, qends, ε, |eh|), then
there exists a marked witness t of eh from (pin, dinit, ε

n+1, ε) to (pw, dw, ε
n+1, ε) in JCltf (

Mod(L)), n+1Kb.

Proof. Since∩n+1
i=1T

(S,K1)
(qi,q′i)

Mk-(f,c,r,fc,fr)
i 6= ∅, there is a path pa = (cs01, . . . , cs0n+1), (c

0
1, . . . , c

0
n+1))

act1−→ . . .
actw−→ ((csw1 , . . . , cswn+1), (c

w
1 , . . . , c

w
n+1)) of Mk-(f,exth)

1 ⊗ . . .⊗Mk-(f,exth)
n+1 , such that

for each process id i, cs0i = (pin(i), dinit, dinit, qis, ε), c0i = ε, cswi = (pw(i), dw, dw, qends, ε)

and cswi = ε. Let csji = (qji , d
j
ci, d

j
gi, q

j
si,makji , cntji) for each process id i.

We prove this lemma by constructing a path pa′ of JCltf (Mod(L)), n+1Kb, such that
the call, return, flushCall and flushReturn in pa is same as that of pa′.

A relation ∼ is defined as follows: given configuration ((csv1, . . . , csvn+1), (c
v
1, . . . ,

cvn+1)) for the v+1-th configuration of the path, and a configuration (p, d, u,mak) of
JCltf (Mod(L)), n+1Kb, ((csv1, . . . , csvn+1), (c

v
1, . . . , c

v
n+1)) ∼ (p, d, u,mak), if,

- For each process id i, qvi = p(i), dvci = d, makvi = mak.
- For each process id i1, i2, qvsi1 = qvsi2 , makvi1 = makvi1 , cntvi1 = cntvi2 .
- Let cv’

i be generated from cvi by discarding items of all but process i. Then for each
ind, u(ind) = (x, a), if and only if cv’

i (ind) = (i, x, val) or ((i, x, val),]) for some
val where val(x) = a.

It remains to prove that if ((csv1, . . . , csvn+1), (c
v
1, . . . , c

v
n+1)) ∼ (p, d, u,mak) and

((csv1, . . . , csvn+1), (c
v
1, . . . , c

v
n+1))

actv+1−→ ((csv+1
1 , . . . , csv+1

n+1), (c
v+1
1 , . . . , cv+1

n+1)), then one
of the following two cases holds:

- Case 1: there exists configuration (p′, d′, u′,mak′), such that ((csv+1
1 , . . . , csn+1

v+1), (c
v+1
1 ,

. . . , cv+1
n+1)) ∼ (p′, d′, u′,mak′), (p, d, u,mak) sv+1−→∗b (p′, d′, u′,mak′), the flush, call,

return, flushCall and flushReturn action in actv+1 are same to that in sv+1,
- Case 2: ((csv+1

1 , . . . , csv+1
n+1), (c

v+1
1 , . . . , cv+1

n+1)) ∼ (p, d, u,mak).

We prove this by considering all kinds of transition label actv+1,

- If actv+1 is a internal action derived from a τ or read action of some process, then
sv+1 = ε and case 1 holds trivially.

- If actv+1 is a call, return, flushCall or flushReturn action, then it is easy to see
that sv+1 = actv+1, (p′, d′, u′,mak′) is generated from (p, d, u,mak) by a actv+1

transition, and case 1 holds.
- If actv+1 is a internal action derived from a write(i, x, val) transition of Mk-(f,exth)

i ,
then sv+1 = write(i, x, val(x)), case 1 holds, (p′, d′, u′,mak′) is generated from
(p, d, u,mak) by write(i, x, val(x)) transition.

- If actv+1 is a internal action derived from a guessing write transition of Mk-(f,exth)
i ,

then it is obvious that case 2 holds.
- When actv+1 is a flush action derived from a flush(i, x, val) transition of Mk-(f,exth)

i ,
then sv+1 = flush(i, x, val(x)), case 1 holds, (p′, d′, u′,mak′) is generated from
(p, d, u,mak) by flush(i, x, val(x)) transition.

- When actv+1 is a flush action derived from a cas(i, x, val, val′) transition of Mk-(f,exth)
i ,

then sv+1 = cas(i, x, val(x), val′(x)), case 1 holds and (p′, d′, u′,mak′) is gener-
ated from (p, d, u,mak) by a cas(i, x, val(x), val′(x)) transition.

We construct pa′ step by step, and it is obvious that the extended history of pa′ is
eh, which completes the proof. ut

A.4 Proof of Lemma 10

A configuration ((q, dc, dg, qs,mak, cnt), c) of M k-w
i is called standard, if one of the

following two conditions holds: (1) c = ε ∧ dc = dg , (2) c 6= ε, c(1) is a strong symbol
and c(1) = (, , dg) or ((, , dg),]). It is obvious if a path of (S,K1)-(lossy) channel
machine starts from a standard configuration, then each configuration on this path is
standard.

The following lemma shows that there is a weak simulation between configurations
of (S,K1)-channel machineM k-w

i and configurations of (S,K1)-lossy channel machine
M k-w
i .

Lemma 15. Given standard configuration ((p1, dc1, dg1, q
1
s ,mak1, cnt1), c1), if c1 �K1

S

c′1 and ((p1, dc1, dg1, q
1
s ,mak1, cnt1), c1)

act−→(M k-w
i ,S,K1) ((p2, dc2, dg2, q

2
s ,mak2, cnt2), c2),

then there exists c′2 and s, such that c2 �K1

S c′2, ((p1, dc1, dg1, q
1
s ,mak1, cnt1), c′1)

s−→∗M k-w
i

((p2, dc2, dg2, q
2
s ,mak2, cnt2), c′2), and the write actions in act equals that in s.

Proof. This is proved by considering all kinds of transitions.

- If act is a internal action derived from a τ , read, call or return action, then c′2 = c′1
and this holds trivially.

- If act is a write action derived from a cas action, then c′2 = ε and this holds trivially.
- If act is a write action derived from a write(ind, x, val) action, then c′2 is generated

from c′1 by a write action that puts an item of memory location x and valuation val,
and this holds trivially.

- If act is a internal action derived from a flush action, assume c1 = α1 · . . . · αl,
c′1 = β1 · . . . · βw, since c1 �K1

S c′1, there exists i1, . . . , il, such that for each ind,
αind = βiind .
Assume during the transition ((p1, dc1, dg1, q1s ,mak1, cnt1), c1)

α−→(M k-w
i ,S,K1) ((p2,

dc2, dg2, q2s ,mak2, cnt2), c2), the item which is flushed into memory is the j-th el-
ement in c1. Then s = ε, and ((p2, dc2, dg2, q2s ,mak2, cnt2), c′2) is generated from
((p1, dc1, dg1, q1s ,mak1, cnt1), c′1) by first flushing items βw, . . . , βij+1, and then
flush item βij .

ut

With Lemma 15, we can now prove Lemma 10.

Lemma 10. Given a k-extended history eh. There exists a marked witness t of eh from
(pin, dinit, ε

n+1, ε) to (pw, dw, ε
n+1, ε) in JCltf (Mod(L)), n+1Kb, if and only if∩n+1

i=1LT(S,K1)
(qi,q′i)

M k-w
i 6= ∅, where for each 1≤ i≤n+1, qi = (pin(i), dinit, dinit, qis, ε, 0), q′i = (pw(i), dw,

dw, qends, ε, |t ↑(Σcal∪Σret∪Σfcal∪Σfret) |).

Proof. According to Lemma 9, we reduce the existence of t into ∩n+1
i=1T

(S,K1)
(qi,q′i)

M k-w
i 6=

∅. Then, we need to prove that,∩n+1
i=1T

(S,K1)
(qi,q′i)

M k-w
i 6= ∅, if and only if∩n+1

i=1LT(S,K1)
(qi,q′i)

M k-w
i 6=

∅. The only if direction is obvious, since a sequence l ∈ ∩n+1
i=1T

(S,K1)
(qi,q′i)

M k-w
i is also a se-

quence of ∩n+1
i=1LT(S,K1)

(qi,q′i)
M k-w
i . To prove the if direction, by Lemma 15, we can construct

a path of perfect channel from a path of lossy channel step by step, where both path has
same write actions. This completes the proof of this lemma. ut

	frontpage
	jos-report

