
Computing Invariants for Parameter Abstraction∗

Yi Lv, Huimin Lin, Hong Pan
State Key Laboratory of Computer Science, Institute of Software

Chinese Academy of Sciences, P.O.Box 8718, Beijing 100080, China
Email:{lvyi, lhm, ph}@ios.ac.cn

Abstract

A new approach to combining invariants computing and
guard strengthening methods is presented in the context of
parameter abstraction for parameterized model checking of
cache coherence protocols. The approach uses a small in-
stance of a parameterized protocol as a ”reference model”
to compute candidate invariants. References to a spe-
cific node in these candidate invariants are then abstracted
away, and the resulting formulas are used to strengthen
guards of the transition rules in the abstract node. The cor-
rectness of the approach is guaranteed by symmetry which
exists in many parameterized systems. A number of case
studies have been carried out to illustrate the effectiveness
of the approach. During the process a data consistency er-
ror was identified and fixed in the German 2004 cache co-
herence protocol.

1 Introduction

Verification of parameterized concurrent systems has at-
tracted considerable interests from both model checking
and theorem proving communities, due to practical impor-
tance of such systems. Let P be a parameterized system and
P(N) denotes its instance with the cardinality N .1 P(N)
usually consists of a small number (may be none) of het-
erogeneous processes, plus a set of homogeneous processes
{Pi | 0 ≤ i ≤ N }. Parameterized systems exist in many
importance application areas: cache coherence protocols,
security protocols, communication protocols and network
protocols, to name just a few. The challenge posed by pa-
rameterized systems is that one can only verify the correct-
ness of such a system for a fixed (usually very small) num-
ber of instances, which does not imply the correctness of

∗Supported by research grants from Intel Strategic CAD Labs and Nat-
ural Science Foundation of China (60421001).

1In general there may be several such sets but for simplicity we shall
focus on the case of only one set in this paper, as many interesting appli-
cations fall into this category.

the system with arbitrary sizes.

Although the problem of parameterized systems verifica-
tion is in general undecidable [1], many techniques, either
automatic or interactive, have been developed and success-
fully applied to specific subsets of parameterized system.
Parameter abstraction and guard strengthening, proposed
in [7] with a rigorous proof presented in [13], is one of such
techniques. It is designed for verifying safety properties of
parameterized systems by means of model checking. The
work-flow of the method goes as follows: Given a parame-
terized system instance P(N) = {Pi | 0 ≤ i ≤ N } and
a safety property, expressed as an invariant φ, to verify, one
first decides on a small number m, and merge all the nodes
Pi, m < i ≤ N into an abstract node P ∗ using an ab-
straction function. The abstract system consists of m + 1
nodes {P1, . . . , Pm, P

∗} with m normal nodes and one ab-
stract node. The abstract system normally does not satisfy
the invariant φ. Nevertheless it is still submitted to a model
checker for verification. When a counter-example is pro-
duced, the human verifier carefully analyzes it and comes
up with an auxiliary invariant ψ, then uses it to strengthen
the guards of some transition rules of the abstract node. The
”strengthened” system is then subject to model checking
again. This process may iterate several times, until the re-
fined abstract system is, if lucky enough, eventually found
to satisfy the original invariant φ, as well as all the auxiliary
invariants supplied by the verifier. It was demonstrated in
[7] that this method is powerful enough to handle complex
cache coherence protocols such as FLASH effectively.

It can be seen that the most challenging part of this
method lies in finding appropriate auxiliary invariants for
guard strengthening, a task that calls for human intelli-
gence. In this paper we shall report our on-going research
aiming at replacing a large part of invariant-finding with
invariant-computing, and using abstracted auxiliary invari-
ants to guard strengthening the abstract system, both can be
carried out mechanically. Our approach is partly inspired
by the work of ”invisible invariants” [19].

In our approach a small instance of the parameterized
system is used as a reference model. In the case of the ab-

291-4244-1050-9/07/$25.00 ©2007 IEEE

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

stract system {P1, . . . , Pm, P
∗} described above, the ref-

erence model will consist of m + 1 normal nodes among
which the (m + 1)-th node is used as the ”reference” for
the abstract node P ∗ in the abstract system. Since the ref-
erence model is concrete and small, its strongest invariant
denoting the set of reachable states can be computed us-
ing a suitable model checker. For each transition rule of
the abstract node, candidates for the auxiliary invariants are
generated by computing both correspondent transition rule
of reference node and reachable states set in the reference
model. These candidates may contain references to the ref-
erence node, hence are not suitable for the abstract system.
Such references can be abstracted away using a technique,
which will be detailed in Section 3, to create permutable
invariants. The abstracted versions of the auxiliary invari-
ants are employed to strengthen the relevant guards in the
abstract model. The modified abstract system is then model
checked for the safety properties as well as these auxiliary
invariants. Our approach is sound, in the sense that if the ab-
stract system satisfies the safety properties and the auxiliary
invariants are indeed invariants of the abstract system, then
the original parameterized system also satisfies the safety
properties. In general, the invariant-computing and abstrac-
tion process may be repeated for a few times, and some aux-
iliary variables may need to be introduced.

We have implemented the approach using the TLV tool
[18]. Any verification tools that accept CMU SMV lan-
guage, such as Cadence SMV, TLV and NuSMV, can be
used to model check the abstract systems generated by
our approach. The method has been applied to German
2000, German 2004 and FLASH cache coherence proto-
cols. While working on the German 2004 protocol, a coun-
terexample was reported. By analyzing the counterexample
a data-consistence error was revealed. The error was re-
ported to the designer of the protocol and got fixed.

The rest of this paper is organized as follows. The
remaining part of this section is devoted to discussions on
related work. Section 2 provides a brief overview of the
parameter abstraction and guard strengthening method.
The approach for calculating auxiliary invariants from a
reference model is presented in Section 3. Section 4 reports
case studies. The paper is concluded with Section 5 where
directions for future work is also outlined.

Related Work Automatic discovery of invariants is not a
new idea. A large amount of research has been conducted in
this direction [4, 6, 20]. However, so far no method has been
shown uniformly good across a spectrum of examples. Re-
cently, a heuristic-based method for discovering invariants
for parameterized verification of safety properties was re-
ported in [17]. The heuristics are created by syntactic anal-
ysis of the counterexamples generated during verification,
combined with simple static analysis of predicates involved

in the counterexamples. These heuristics are then used to
construct and refine invariants. The method is implemented
using the UCLID tool with EUF decision procedures.

The ”invisible invariants” method, proposed in [19], is
another automatic technique for parameterized verification.
In this method, auxiliary invariants are computed in a finite
system instance. Their idea of computing invariants in a fi-
nite instance is a source of inspiration for our work. This
method has been extended so that complex protocols such
that FLASH and German 2004 protocols can be handled [2].
However, the cut-off in [2] is rather large. For example, the
cut-off size of finite instance of German 2004 is 14, beyond
the capability of any brute-force model checking tool. In
[5] a new finite-state symbolic model checking algorithm is
presented for safety property verification that reduces a con-
junctively guarded protocol to a broadcast protocol. Their
method can verify German 2000 automatically. But it is not
clear whether it works for FLASH and German 2004.

The literature in the area of cache coherence protocol
verification are abundant. Here we only list a few. In [10]
German 2000 protocol have been verified by reducing it
into a snoopy protocol, for which the cut-off is known to
be 7. Safety properties of FLASH was proved using the
PVS theorem prover in [16]. In a different context, safety
properties of German 2000 and FLASH were proved using
Murϕ tool in [7]. Both methods are based on the notion
of simulation, which is an over-approximation [8]. In [15]
safety and liveness properties of FLASH were verified in
Cadence SMV with built-in abstraction and symmetry re-
ductions, using compositional model checking method. In
all the three methods mentioned above, auxiliary invari-
ants have to be supplied manually by the verifiers, which
requires considerable human insights and skills in proving
conjectures and using the tool. Predicate abstraction based
methods were applied to verify German 2000 in [3], and
FLASH in [9]. Users need to provide plausible properties
in predicate abstraction and automated predicate discovery
techniques to find large predicates. So verifying large proto-
cols like FLASH using predicate abstraction is difficult. In
[14] a method for automatically discovering indexed pred-
icates is developed which can be applied to construct in-
ductive invariants. With this technique a version of German
2000 protocol with unbounded FIFO queues was verified.

2 Preliminaries

We assume a set of basic types including boolean B and
a finite parameter set N = {1, 2, . . . , n} for a fixed n, with
1, 2, . . . , n being the only constants of N . We can easily re-
lax the data type restriction to allow arbitrary finite types
instead of just boolean. Types are generated from basic
types using standard product ×, disjoint union + and func-
tion space ⇒ constructors. Arrays are functions from basic

30

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

types to basic types. Terms are constructed from constants
and variables using typed operators in the usual way. Pred-
icates, also called formulas, are terms of type B.

Valuations, ranged over by s, are total, type-respecting
mappings from V to the domain of all typed values. We
shall write s(e) for the value of the term e evaluated in s,
and use s |= f to mean s(f) = true.

A system presentation is a triple P = (V,Θ,∆) where

• V is the set of system variables.

• Θ(V) is the initial predicate.

• ∆(V, V ′) is the set of transition rules, each rule δ ∈
∆(V, V ′) being of the form ρ(V) � a(V, V ′), where
ρ(V) is the guard predicate and a(V, V ′) is the transi-
tion relation of the rule.

The precondition ρ(i)δ of each rule δ with index i, j of
parameter type are of the following special form:

�(i)δ ∧ (
∧N

j=1 τ1(i, j)δ ∧ . . . ∧
∧N

j=1 τk(i, j)δ)∧
(
∨N

j=1 ς1(i, j)δ ∧ . . . ∧
∨N

j=1 ςl(i, j)δ)
where �(i)δ , τ(i, j)δ and ς(i, j)δ are quantifier-free formu-
las.

As an illustration, in the mutual exclusion protocol
example shown in Figure 1 (written in the Murϕ lan-
guage), we have two system variables x and n. The
StartState "Init" block defines the initial predicate
of the system. There are four transition rules named Try,
Crit, Exit and Idle. The precondition of the rule Crit
is n[i].state = T & x = true, while its transition
relation is given implicitely by the assignment statements
n[i].state := C; x := false.

A state transition system is a triple (S, I,R) where S
is the set of states, I ⊆ S is the set of initial states, and
R ⊆ S×S is the transition relation. We shall write s −→ s′

to mean s, s′ ∈ R. A state s is reachable if there is a finite
sequence of transitions starting from some initial state and
ending at s.

A presentation P = (V,Θ,∆) induces a state transition
system |P | = (S, I,R) in the following way: S is the set
of all valuations for V ; I is the subset of S that satisfies Θ;
For any s, s′ ∈ S, (s, s′) ∈ R if there exists some ρ(V) �
a(V, V ′) ∈ ∆(V, V ′) such that s |= ρ(V) and a(V, V ′)
evaluates to true when each v ∈ V is assigned the value
s(v) and each v′ ∈ V ′ is assigned the value s′(v′). If s |= φ
holds for all reachable states in S then we shall call φ an
invariant of P , denoted P |= φ.

Let π : N ⇒ N be a permutation on the parameter set
N . It induces a transformation on terms, also denoted π,
as follows: for any term e, π(e) is the term obtained by
replacing in e every occurrence of every constant k ∈ N
with π(k). A formula f is symmetric if � f ⇐⇒ π(f)
for every permutation π on N . The conjunction fsym =

NODE : 100;
VAR
x : boolean;
state : enum {I, T, C, E};
n : array [NODE] of state;

StartState "Init"
x := true;
for i : NODE do n[i].state := I;

end; end;

ruleset i : NODE do rule "Try"
n[i].state = I ==> n[i].state := T;

end;

ruleset i : NODE do rule "Crit"
n[i].state = T & x = true ==>
n[i].state := C; x := false;

end;

ruleset i : NODE do rule "Exit"
n[i].state = C ==> n[i].state := E;

end;

ruleset i : NODE do rule "Idle"
n[i].state = E ==> n[i].state := I;
x := true;

end;

Invariant "Mutual Exclusion"
forall i : NODE do forall j : NODE do
(i!=j) -> !(n[i].state=C & n[j].state=C)
end end;

Figure 1. Mutual Exclusion Model

31

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

∧
π π(f) taken over all permutations on N is the weakest

symmetric formula which implies f .
For example, applying the permutation π : 1 → 2, 2 →

3, 3 → 1 to formula φ = ¬(n[1].state=C ∧n[2].state=C)
yields the formula π(φ) = ¬(n[2].state=C ∧
n[3].state=C). Furthermore, φsym = ∀i, j : (i �= j) →
¬(n[i].state = C ∧ n[j].state = C) is the weakest sym-
metric formula of φ.

A presentation P = (V,Θ,∆) is symmetric when

• Θ is a symmetric formula;

• For every permutation π and rule ρ � a ∈ ∆, there
exists a rule ρ′ � a′ ∈ ∆ which satisfies ρ′ = π(ρ)
and a′ = π(a).

Let P be a symmetric presentation on N , M =
{1, . . . ,m} a subset of N , and M∗ = M + {∗}. For each
type T ofP we define an abstract type [T] as follows: [N] =
M∗ and [T] = T for other basic types, [B ⇒ B] = B ⇒ B,
[B ⇒ N] = B ⇒ M∗, [N ⇒ B] = M ⇒ B, and
[N ⇒ N] = M ⇒ M∗. We then define a syntactic trans-
formation HE on terms, by letting HE(i) = if i ≤ m then
i else ∗, HE(u) = u for other constant or variable u, and
HE(op(e1, . . . , ek)) = op(HE(e1), . . . , HE(ek)).

For formulas we further define a total function HF as
follows. Let f be a formula which is a boolean com-
bination of its atom formulas f1, . . . , fk. Then HF (f)
is the same boolean combination of the atom formulas
HF (f1), . . . , HF (fk), where

HF (fi)=



fi if HE(fi) = fi

true if HE(fi) �= fi,where fi is positive in f
false if HE(fi) �= fi,where fi is negative in f

Now we define the abstraction of a symmetric presen-
tation P = (V,Θ,∆) to be Pm = (V,Θm,∆m), where
Θm = HF (Θ), and for every rule ρ � a ∈ ∆, there exists
a rule HF (ρ) � HF (a) ∈ ∆m. Although Pm and P have
the same set of system variables V but the variables of Pm

are of abstract types.
As an example, let us consider the mutual exclusion

protocol in Figure 1. We choose m = 2 to construct
the abstract model. In the abstract model, all occurrences
of i, for i > 2, are abstracted away. For instance, the
abstract versions of the guard and the transition of the
Crit rule are x = true (abbreviated as x in Murϕ) and
x := false, respectively.

We quote the following theorem from [13]:

Theorem 2.1 Let P = (V,Θ,∆) be a symmetric presenta-
tion and Pm its abstraction. Suppose that only the first m
elements of N may occur in φ. Let Q be the presentation
obtained from Pm by replacing each rule HF (ρ)� HF (a)
in Pm with HF (ρ#)� HF (a), where � ρ∧φsym =⇒ ρ#.
Then Q |= φ implies P |= φsym.

NODE : 2;
ABS_NODE: NODE + 1;
VAR
x : boolean;
state : enum {I, T, C, E};
n : array [NODE] of state;

StartState "Init"
x := true;
for i : NODE do n[i].state := I;

end; end;

ruleset i : NODE do rule "Try"
n[i].state = I ==> n[i].state := T;

end;

ruleset i : NODE do rule "Crit"
n[i].state = T & x = true ==>
n[i].state := C; x := false;

end;

ruleset i : NODE do rule "Exit"
n[i].state = C ==> n[i].state := E;

end;

ruleset i : NODE do rule "Idle"
n[i].state = E ==> n[i].state := I;
x := true;

end;

rule "ABS_Skip" end;

rule "ABS_Crit"
x ==>
x := false;

end;

rule "ABS_Idle"
true ==>
x := true;

end;

Invariant "Mutual Exclusion"
forall i : NODE do forall j : NODE do
(i!=j) -> !(n[i].state=C & n[j].state=C)
end end;

Figure 2. Abstract Mutual Exclusion Model

32

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

This theorem justifies the ”guard strengthening” method,
proposed in [7], which works as follows: Given a symmet-
ric presentation P and a symmetric property φ0 = φsym to
verify, first construct an abstract system Q0 = Pm from
P and model check Q0 against φ. If this fails then lo-
cate a rule in Q0 and devise a formula ψ, called a ”non-
interference lemma”, to strengthen the guard of the rule,
and model check the modified system against both φ and ψ.
If this fails too then repeat the process, until the resulting
system satisfies φ and all the non-interference lemmas.

For more details on parameter abstraction and guard
strengthening we refer the readers to [7, 13].

3 Computing Auxiliary Invariants

In this section we discuss how to compute the auxiliary
invariants for parameter abstraction and guard strengthen-
ing. Let us fix a symmetric system presentation parameter-
ized on N , a symmetric property φ0 = φsym to be verified
on P , and a number m which is far less than N . Given a
system we fix an m according to the maximal number of
different variables of parameter type in the transition rules
and the property specification of the system.

After an abstract system Pm has been created from P
by merging all but the first m nodes into an abstract node,
the abstract protocol still permits all possible behaviors of
the m preserved nodes, referred to as the basic component,
but has no information about the internal behavior of the
abstract node. In P the m nodes interact with other nodes,
thus only when the m nodes are in certain states the corre-
sponding state transitions of the other nodes can take place.
After abstraction, such information gets lost. As a conse-
quence, some unexpected behavior of the abstract node may
happen, which could have undesirable impact on the behav-
ior of the m preserved nodes. The key issue in parame-
ter abstraction is to devise suitable ”auxiliary invariants” to
constrain the behavior of the abstract node so that the pre-
served nodes, when ”interacting” with the abstract node in
the abstract system, can simulate the transitions they can en-
gage in when they are in the original system. In the method
proposed in [7] such auxiliary invariants are provided by
the human verifier in a sequence of ”try-and-error” efforts,
through careful analysis of the diagnosis messages gener-
ated from a model checker.

We would like to automate and simplify such a process
as much as possible. From the above analysis we can see
that, among the transition rules of the abstract node, only
those which can change the values of some global variables
and local variables of preserved nodes are of interest. Let
us call such rules ”significant”. We wish to constrain the
guard of a significant rule δ in such a way that the rule can
only be ”fired” if the global variables and local variables of
preserved nodes (the variables of basic component) whose

values to be changed by the rule are in a similar state as
in P when some of the rules ”merged” into δ can be fired.
Such information can be extracted from the formula char-
acterizing all the reachable states of P , denoted by reach.
Let P ′ be the systems obtained by conjugating reach with
the precondition ρ of every rule in P . We can observe that
the behavior of P ′ is the same as P . In P ′ the precondition
of each rule δ in a node i has the form reach ∧ ρ(i)δ where
ρ(i)δ is the guard predicate of δ. Intuitively, reach ∧ ρ(i)δ

denotes the set of states in which node i can perform the
transition specified in δ. This formula is the strongest global
constraint as guard for δ. Besides node i, the formula also
contains the state information of the other nodes. By sym-
metry, we can chose any node j which is different from i as
a representative. The state information of node j can be ex-
tracted out by projecting away all other nodes. This state in-
formation is still a constraint for guard of δ. In other words,
we try to find the local constraint relationship between two
nodes.

Although reach is computable, for large P it is infea-
sible to compute. Our solution is to use a small model
P (m + 1) as a reference and compute the reachable state
set of P (m+ 1) as an approximation. Let reach be the for-
mula for the reachable states of P (m+ 1), and node m+ 1
in P (m+ 1) serves as the ”reference node” for the abstract
node in Pm. Given rule δ in a node i and representative
node j, we can compute the the local constraint relationship
between two nodes. Technically, this can be done using
BDD operations to compute ϕ(i, j)δ = ∃V (1), . . . , V (j −
1), V (j + 1), . . . , V (m + 1) : (reach ∧ ρ(i)δ) in system
P (m+ 1), where i ∈ {1, . . . ,m+ 1} and j ∈ {1, . . . ,m}.
Let ψ(i, j)δ = ρ(i)δ → ϕ(i, j)δ .

Among the m + 1 nodes in P (m + 1), node m + 1 is
of special interest as it is the reference node for the abstract
node in Pm. In particular, HF (ρ(m + 1)δ ∧ ∧m

j=1(ρ(m +
1)δ → ϕ(m + 1, j)δ)) = HF (ρ(m + 1)δ) ∧

∧m
j=1 ϕ(m +

1, j)δ will be used to strengthen the guard of the rule in the
abstract node of Pm which corresponds to δ in node m+ 1
of P (m + 1). To justify this, we appeal to Theorem 2.1.
First we note that, for any j,

� ρ(m+ 1)δ ∧ (ψ(m+ 1, j)δ)sym =⇒
ρ(m+ 1)δ ∧

∧m
j=1(ρ(m+ 1)δ → ϕ(m+ 1, j)δ)

(1)

Besides this, the Theorem 2.1 also requires that ψ(m +
1, j)δ should not contain m + 1, which is not true. But,
since (ψ(m + 1, j)δ)sym = π(ψ(m + 1, j)δ)sym for any
permutation π, in most cases we can choose a suitable π
such that π(ψ(m+ 1, j)δ)sym = (ψ(i, j)δ)sym and m+ 1
does not occur in ψ(i, j)δ , where 1 ≤ i, j ≤ m. Thus we
use π(ψ(m+1, j)δ)sym to replace (ψ(m+1, j)δ)sym in (1).
Note that π(ψ(m+1, j)δ) can be computed from P (m+1)
in the same way as ψ(m+ 1, j)δ .

In some situations special transformations are needed:
(a) The formula computed from P (m + 1) may contain

33

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

sub-formulas of the form v = m + 1. In this case we
can substitute

∧m
i=1 ¬(v = i) and

∨m
i=1 v = i for v =

m + 1 and ¬(v = m + 1), respectively. (b) The for-
mula may contain sub-formulas of the form π(�(m+1)δ)∧∧m+1

j=1 τ(j)δ → π(ϕ(m + 1, j)δ), which can be written as

�(i)δ ∧ ∧m+1
j=1 τ(j)δ → ϕ(i, j)δ , where 1 ≤ i, j ≤ m.

It’s sub-formula τ(m + 1)δ may contain m + 1. In this
case we simply use �(i)δ ∧ ∧m

j=1 τ(j)δ → ϕ(i, j)δ as
approximation. (c) When the sub-formula is of the form
π(�(m + 1)δ) ∧

∨m+1
j=1 ς(j)δ → π(ϕ(m + 1, j)δ), we use

π(�(m + 1)δ) → π(ϕ(m + 1, j)δ) as approximation. For
many parameterized cache coherence protocols, including
those analyzed in the case studies reported in the following
section, the guards of transition rules are in the form as re-
quired. For such protocols the approximation is sound as
shown by the following proposition.

Proposition 3.1 Let ρ(m + 1)δ = �(m + 1)δ ∧
(
∧N

j=1 τ1(m + 1, j)δ ∧ . . . ∧ ∧N
j=1 τk(m + 1, j)δ) ∧

(
∨N

j=1 ς1(m+1, j)δ ∧ . . .∧
∨N

j=1 ςl(m+1, j)δ) be a guard
of δ in node m + 1 of P which corresponds to δ in the ab-
stract node of Pm, and ψ = (�(i)δ ∧ (

∧m
j=1 τ1(i, j)δ ∧ . . .∧∧m

j=1 τk(i, j)δ) → ϕ(i, h)δ be an auxiliary invariant gen-
erated from Pm, where 1 ≤ i, h ≤ m and i �= h. Then
�(m + 1)δ ∧ (

∧N
j=1 τ1(m + 1, j)δ ∧ . . . ∧ ∧N

j=1 τk(m +
1, j)δ) ∧ ∧m

j=1 ϕ(m + 1, j)δ is a logical consequence of
ρ(m+ 1)δ ∧ ψsym.

When constructing the abstract model we mark each
transition rule of the abstract node that can change the state
of the basic component, and indicate which rule in the ref-
erence model it corresponds to, so the candidate invariants
can be computed from the guards of the marked rules and
the reference model, in the way as stated above.

Continue with the mutual exclusion protocol. As we
have chosenm = 2 to construct the abstract model, both the
abstract and the reference models will consist of 3 nodes.
We take φ = ¬(n[1].state=C ∧ n[2].state=C) as mu-
tual exclusion property. The two rules of the abstract node
which need guard strengthening are marked by p1 and p2, as
shown in Figure 3. The guards of their corresponding rules
in the reference model are ρ1 ≡ n[3].state = T ∧x = true
and ρ2 ≡ n[3].state = E, respectively. The two ”markers”
p1 and p2 will be replaced by auxiliary invariants once they
have been computed. First, the candidate auxiliary invari-

NODE : 2;
ABS_NODE: NODE + 1;
-- Include the original mutual exclusion
-- protocol here.

rule "ABS_Skip" end;

rule "ABS_Crit"
p1 & x ==>
x := false;

end;

rule "ABS_Idle"
p2 ==>
x := true;

end;

Invariant "Mutual Exclusion"
forall i : NODE do forall j : NODE do
(i!=j) -> !(n[i].state=C & n[j].state=C)
end end;

Figure 3. Marked Abstract Model

ants can be calculated as follows:

ϕ(3, 1)1 = ∃n[2].state,∃n[3].state : reach∧
(n[3].state = T ∧ x = true)

= x = true ∧ n[1].state ∈ {T, I}
ϕ(3, 1)2 = ∃n[2].state,∃n[3].state : reach∧

(n[3].state = E)
= x = false ∧ n[1].state ∈ {T, I}

ψ(3, 1)1 = (n[3].state = T ∧ x = true) →
(x = true ∧ n[1].state ∈ {T, I})

ψ(3, 1)2 = (n[3].state = E) → (x = false∧
n[1].state ∈ {T, I})

According to Theorem 2.1, we can use the abstract forms
of p1 = ψ(3, 1)1 ∧ ψ(3, 2)1 and p2 = ψ(3, 1)2 ∧ ψ(3, 2)2
to strengthen the guards in the abstract model. However
both ψ(3, 1)1 and ψ(3, 1)2 contain m + 1, hence can not
be verified in abstract model. Thus we choose π : 2 ↔ 3
and compute the permutations π(ψ(3, 1)1) = ψ(2, 1)1 and
π(ψ(3, 1)2) = ψ(2, 1)2. In addition to the mutual exclusion
property φ, we also check that the abstract model satisfy
ψ(2, 1)1 and ψ(2, 1)2, see Figure 4. For this example, all
checks give positive results. Hence the mutual exclusion
property is verified in only one step of abstraction.

For more complicated systems, we may not be so lucky.
Parameter abstraction is an over-approximation technique.
Some information which is crucial to the correctness of the
protocol may still be lost even after guard strengthening.
As a consequence, the abstract system may not get model

34

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

NODE : 2;
ABS_NODE: NODE + 1;
-- Include the original mutual exclusion
-- protocol here.

rule "ABS_Skip" end;

rule "ABS_Crit"
(n[1].state=T | n[1].state=I) &
(n[2].state=T | n[2].state=I) & x ==>
x := false;

end;

rule "ABS_Idle"
(n[1].state=T | n[1].state=I) &
(n[2].state=T | n[2].state=I) & !x ==>
x := true;

end;

Invariant "Mutual Exclusion"
forall i : NODE do forall j : NODE do
(i!=j) -> !(n[i].state=C & n[j].state=C)
end end;

Invariant "Auxiliary Invariants"
(n[2].state=T & x ->
x & (n[1].state=T | n[1].state=I))

& (n[2].state=E ->
!x & (n[1].state=T | n[1].state=I))

Figure 4. Guard Strengthen Abstract Model

checked. One way to uncover such lost information is to
introduce some auxiliary variables into the system which do
not constraint nor change the behavior of the system. That
is, these variables are used as ”observers” of the system. In
practice, we analyze counterexamples to figure out suitable
auxiliary variables and introduce them into the system in
such a way that they only occur in the left hand-side of any
assignment statement or in the guard predicate part of a rule.
The correctness of the procedure of introducing auxiliary
variables is guaranteed by the following proposition.

Let P = (V,Θ,∆) and P ′ = (V ′,Θ′,∆′) are two sys-
tem presentations. |P | = (S, I,R) and |P ′| = (S′, I ′, R′)
are two transition systems generated from P and P ′. P
and P ′ are bisimilar if there exists a bisimulation relation
E ⊆ S × S′ s.t. (P, P ′) ∈ E. Formally, E is a bisimu-
lation if I × I ′ ⊆ E, and for all (s, s′) ∈ E the following
conditions are satisfied:

• if s −→ s1 then there exists some state s′1 ∈ S′ such
that s′ −→ s′1 and (s1, s′1) ∈ E.

• if s′ −→ s′1 then there exists some state s1 ∈ S such

that s −→ s1 and (s1, s′1) ∈ E.

Proposition 3.2 Suppose P = (V,Θ,∆) is a system pre-
sentation, and P+ = (V ∪ {aux},Θ+,∆+) is obtained
from P by adding boolean variable aux to P in such a way
that it only occurs in the left hand-side of any assignment
statement or in the guard predicate part of any rule in Θ+

and ∆+. P+ and P are bisimilar if

• P+ |= aux ↔ pred(V) for some predicate pred(V)
not containing aux,

• P+ |= ρ+ ↔ ρ, where ρ is any guard predicate of P
and ρ+ is its corresponding guard predicate in P+.

It is well-known that bisimilar systems verify the same
temporal properties. Therefore to verify P |= φ it is
sufficient to check if P+ |= φ, for any φ. The work flow of
our approach is as follows:

Verification process

Given a system P parameterized on N , φ0 = φsym a
symmetric safety property to be verified such that only the
first m elements of N occur in φ.

1. Create an abstract presentation Pm from P .

2. Mark each transition rule of an abstract node in Pm

which can change the state of the basic component for
guard strengthening.

3. For every marked rule δ of the abstract node, compute
auxiliary invariant ψ(m + 1, j)δ = ρ(m + 1)δ →
ϕ(m + 1, j)δ , where j ∈ {1, . . . ,m}, and its corre-
sponding invariant π(ψ(m + 1, j)δ) from P (m + 1)
where π is a chosen permutation such that m+ 1 does
not occur in π(ψ(m+ 1, j)δ).

4. Create Q by replacing the guard ρ(∗)δ of every
rule δ in the abstract node with HF (ρ(m + 1)δ) ∧∧m

j=1 ϕ(m+ 1, j)δ .

5. Check Q |= φ ∧ ∧
δ π(ψ(m + 1, j)δ), where δ ranges

over all marked abstract rules.

6. If the results of step 5 are confirmatory, stop. Oth-
erwise, analyze the counterexamples generated in the
step. If it is a real counterexample(which can be deter-
mined by model checking the reference model, for in-
stance), then stop. Otherwise introduce auxiliary vari-
ables into P and modify the abstract model if neces-
sary, go to step 2.

35

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

4 Case Studies

4.1 German 2000 Protocol

The German 2000 directory-based protocol was posted
as a challenge to the formal verification community by
Steven German in 2000. We use a SMV model which be
translated from Murϕ model of Chou etc[7] with data paths
added to allow checking data consistency.

The safety property we need to verify are

∀i, j : (i �= j) →
(¬(n[i].state = E ∧ n[j].state = E) ∧
(¬(n[i].state = E ∧ n[j].state = S)))

∀i : ((exgntd = 0 → memory = auxdata)∧
(n[i].state �= I → n[i].data = auxdata)

Some rules containing sub-formulas ρ ∧ v′ = n[3].d in
German 2000 and other protocols deserves attention dur-
ing the abstraction procedure. After abstraction, any in-
formation of node n[3] in the reference model should be
abstracted away. As a result, we do not know the value
of v′. Therefore we need to consider all possible values
for v′. For example, in case n[3].d is a boolean variable,
we can instantiate v′ with 0 and 1, resulting in two rules:
(ρ ∧ n[3].d = 0) ∧ v′ = 0 and (ρ ∧ n[3].d = 1) ∧ v′ = 1.
Consequently, we need to compute two auxiliary invariants
for these two new rules.

We construct an abstract model including 2 normal nodes
an one abstract node. A reference system of 3 nodes is used
to compute auxiliary invariants. TLV generated 9 auxiliary
invariants to verify these properties. All the experiments
were carried out on a 3.2 GHz Pentium4 PC with 2 GB
memory running Linux. The total time used by TLV and
Cadence SMV was 17 seconds.

4.2 German 2004 Protocol

German 2004 is a considerable extension of German
2000[11]. The SMV German 2004 model was translated
from Murϕ model. We assume that the model has only one
memory address for simplicity. We construct an abstract
model with three normal nodes plus one abstract node, and
one of the three normal nodes is regarded as home node.

A total of 49 auxiliary invariants were generated to verify
cache coherence property. Cadence SMV reported a coun-
terexample. By analyzing the counterexample, we observed
that the variables invalidate list[∗] and directory[∗] of
home nodes that characterize the states of abstract node
were eliminated after the abstraction procedure, so that
all auxiliary invariants generated did not have enough in-
formation to prevent the wrong transition of the abstract
node. So we added three auxiliary global boolean variables

exclusive granted, shared valid and invalidate valid
to retain the information. This counterexample guided aux-
iliary variables adding procedure is done by hand. The
coherence property is verified successfully in the modified
model.

Then we complemented the data path specification and
verified data consistency property:

∀i : n[i].state �= I → n[i].data = auxdata

TLV generated 51 auxiliary invariants to verify this prop-
erty. We expect the data consistency to be verified in the
modified abstract model. However, a counterexample was
reported. Since abstraction may cause false negative, to
make sure that this counterexample is a true counterexam-
ple, we checked an instance of the protocol with four nodes
and a two element data domain in Cadence SMV. The coun-
terexample was also reported. Analyzing both counterex-
amples we found that the original German 2004 protocol
has a bug. The bug is described as follows:

In the protocol a node requiring read access to a given ad-
dress should sends a read shared request to the home node.
If the directory of the address in home node shows that the
cache shared locally, the home node reads data from home
cache, updates directory, and sends grant. The bug concerns
a rare scenario when the home node is in a state where it has
received invalidate acknowledgment from other exclusive
state node and has updated its memory data received from
the invalidate ack message and directory entry, but has not
sent read grant message to itself yet, so the home cache’s
state may have not changed from invalid to shared. If a
read shared require arrives at this point, reading from the
home cache directly will possibly gets stale data, violating
data consistency requirement.

After discussion with the designer of the protocol, the
bug is fixed[12]. We verified the modified model again, this
time all auxiliary invariants and data consistency property
are verified successfully. The total memory TLV uses is
about 562 MB. The total time used by TLV and Cadence
SMV was about 110 minutes.

4.3 FLASH Protocol

FLASH protocol is much more complicated than Ger-
man 2004 protocol. Until now we can only verify the cache
coherence property of reduced model of FLASH without
data path.

The number of nodes in the abstract model is 4 (3 normal
nodes + 1 abstract node), as in [7]. We choose n[0] as home
node(home = 0) and n[3] as abstract node. In FLASH,
the guard of a rule δ may involve two nodes, for instance
ρ(3)δ = n[3].cmd = get∧n[3].proc = 2∧n[2].state = E.

To abstract a rule with such guard, we need to consider
four cases: two nodes i, j are both normal nodes, only node

36

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

i is normal node, only node j is normal node, and two nodes
are both abstract nodes. In the last case, we assume n[2] and
n[3] are both abstract nodes. After generating the auxiliary
invariants ϕ(3, 0)δ = ∃V (1),∃V (2),∃V (3) : (reach ∧
ρ(3)δ) in system P (4), we replace all occurrence number
2 in both ϕ(3, 0)δ and ρ(3)δ with 3 that characterizing the
abstract node, obtaining ϕ(∗, 0)δ and ψ(∗, 0)δ .

We first verified control coherence:

∀i, j : i �= j → ¬(n[i].state = E ∧ n[j].state = E)

We use 56 auxiliary invariants to get the proof to work
for cache coherence properties. The total memory TLV uses
is about 541 MB. The total time used by TLV and Cadence
SMV was about 95 minutes.

When we try to verify data consistency property, we
need to compute reachable state set from the full descrip-
tion FLASH reference model. The procedure failed to com-
plete within the limit of 4GB of memory that TLV can deal
with. We now have two choices. We could adjust the refer-
ence model by eliminating some irrelevant variables manu-
ally and choose an optimal BDD variable order that reduce
the memory consumption of TLV, or we hack the TLV for
64bit version. Both choices need some time to work.

5 Discussion and Future Work

We have presented a systematic approach to parame-
terized verification of safety properties of concurrent sys-
tems by model-checking. Our approach combines ”guard
strengthening” and ”automatically computed invisible in-
variants” methods in a novel way. In this approach, a ”raw”
invariant is first computed in a small reference model (of
the same size as the abstract model), using a BDD-based
model checker; it is then ”cooked”, by exploiting symmetry
in parameterized systems, to generate auxiliary invariants
for guard strengthening. Thus the most human-intelligent
demanding task of invariants discovery is partly automated.
As case studies we have applied the approach to verify
the safety properties of German 2000, German 2004 and
FLASH cache coherence protocols. During this process a
data consistency error was identified and fixed in German
2004 protocol. These studies show the effectiveness of our
approach.

Our approach also has its limitations. In the presence of
data part, even though the reference models are quite small
(usually consisting of only 3 ∼ 4 nodes), invariant com-
putation can be space-demanding. This is already evident
in our case study on the FLASH protocol. Data aspects
cannot be ignored if data consistency is to be checked –
in fact the data consistency error in German 2004 would
not be revealed if all possible data values were collapsed
into one. Currently we are looking for effective data ab-

straction techniques which can be incorporated with param-
eter abstraction to reduce the size of search space. Another
problem is that the generated invariants could be very large
(to give an idea, the invariants for German 2004 protocol
consists of about 20300 lines). We are considering some
filtering heuristics to eliminate irrelevant variables [17], so
that space consumption can be reduced and more compact
invariants can be generated.

Acknowledgements The authors are grateful to Steven
German and Ching-Tsun Chou for providing sources of the
case-study protocols, to Sava Krstic for answering several
questions on his paper, to Ittai Balaban for his help with
TLV system, to Jin Yang and Yongjian Li for helpful dis-
cussions and comments.

References

[1] K.R. Apt and D.C. Kozen(1986), Limits for automatic
verification of finite-state concurrent systems. Infor-
mation Processing Letters, 22(6), pages 307-309.

[2] T. Arons, A. Pnueli, S. Ruah, J. Xu, L. Zuck(2001),
Parameterized Verification with Automatically Com-
puted Inductive Assertions. In CAV’01, volume 2102
of LNCS, pages 221-234. Springer-Verlag.

[3] K. Baukus, Y. Lakhnech, and K. Stahl(2002), Param-
eterized verification of a cache coherence protocol:
safety and liveness. In VMCAI’02, volume 2294 of
LNCS, pages 317-330. Springer-Verlag.

[4] S. Bensalem, Y. Lakhnech, and H. Saidi(1996), Pow-
erful techniques for the automatic generation of invari-
ants. In CAV’96, volume 1102 of LNCS, pages 323-
335. Springer-Verlag.

[5] J. D. Bingham and A. J. Hu(2005), Empirically effi-
cient verification for a class of infinitestate systems.
In TACAS’05, volume 3440 of LNCS, pages 77-92.
Springer-Verlag.

[6] N.Bjorner, A. Browne, and Z. Manna(1997), Auto-
matic generation of invariants and intermediate asser-
tions. Theoretical Computer Science, 173(1), pages
49-87.

[7] C. T. Chou, P. K. Mannava, and S. Park(2004), A
simple method for parameterized verification of cache
coherence protocols. In FMCAD’04, volume 3312 of
LNCS, pages 382-398. Springer-Verlag.

[8] E. Clarke, O. Grumberg, S. Jha, Y. Lu and H.
Veith(2003), Counterexample-guided abstraction re-
finement for smybolic model checking. Journal of the
ACM, 50, pages 752-794.

37

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

[9] S. Das, D. Dill, and S. Park(1999), Experience with
predicate abstraction. In CAV’99, volume 1633 of
LNCS, pages 160-171. Springer-Verlag.

[10] E. A. Emerson and V. Lahon(2003), Exact and ef-
ficient verification of parameterized cache coherence
protocols. InCHARME’03, volume 2860 of LNCS,
pages 247-262. Springer-Verlag.

[11] S. German, G. Janssen(2004), Tutorial on verifica-
tion of distributed cache memory protocols. In FM-
CAD’04.

[12] S. German(2006), Personal communication.

[13] S. Krstic(2006), Parametrized system verification with
guard strengthening and parameter abstraction. In
AVIS’05, ENTCS (to appear).

[14] S. K. Lahiri and R. E. Bryant(2004), Indexed pred-
icate discovery for unbounded system verification.
In CAV’04, volume 3114 of LNCS, pages 135-147.
Springer-Verlag.

[15] K. McMillan(2001), Parameterized verification of the
FLASH cache coherence protocol by compositional
model checking. In CHARME’01, volume 2144 of
LNCS, pages 179-195. Springer-Verlag.

[16] S. Park and D. L. Dill(1996), Verification of FLASH
cache coherence protocol by aggregation of dis-
tributed transactions. In SPAA’96, pages 288-296.
ACM Press.

[17] S. Pandav, K. Slind, and G. Gopalakrishnan(2005),
Counterexample guided invariant discovery for
parameterized cache coherence verification. In
CHARME’05, volume 3725 of LNCS, pages 317-331.
Springer-Verlag.

[18] A. Pnueli and E. Shahar(1996), A platform for com-
bining deductive with algorithmic verification. In
CAV’96, volume 1102 of LNCS, pages 184-195.
Springer-Verlag.

[19] A. Pnueli, S. Ruah, and L. Zuck(2001), Automatic
deductive verification with invisible invariants. In
TACAS’01, volume 2031 of LNCS, pages 82-97.
Springer-Verlag.

[20] A. Tiwari, H. Rueb, H. Saidi, and N. Shankar(2001), A
technique for invariant generation. In TACAS’01, vol-
ume 2031 of LNCS, pages 113-127. Springer-Verlag.

38

Authorized licensed use limited to: Institute of Software. Downloaded on June 2, 2009 at 04:55 from IEEE Xplore. Restrictions apply.

