
Formalizing Provable Anonymity in Isabelle/HOL

Yongjian Li∗,a, Jun Pangb

aState Key Laboratory of Computer Science, Institute of Software, Chinese Academy of
Sciences, Beijing, China

bComputer Science and Communications, Faculty of Science, Technology and
Communication, University of Luxembourg, Luxembourg

Abstract

We formalize in a theorem prover the notion of provable anonymity proposed by
Garcia et al. [11]. Our formalization relies on inductive definitions of message
distinguish ability and observational equivalence on traces observed by the in-
truder. Our theory differs from its original proposal and essentially boils down
to the inductive definition of message distinguish ability with respect to a knowl-
edge set. We build our theory in Isabelle/HOL to have a mechanical framework
for the analysis of anonymity protocols. Its feasibility is illustrated through case
studies of the Crowds and Onion Routing protocols.

1. Introduction

With the rapid growth of the Internet community and the rapid advances in
technology over the past decades, people are getting used to carry out their daily
activities through networked distributed systems providing electronic services
to users. In these systems, people become more and more concerned about
their privacy and how their personal information have been used. Typically,
anonymity is a desired property of such systems, referring to the ability of
a user to own some data or take some actions without being tracked down.
This property is essential in systems that involve sensitive personal data, like
electronic auctions, voting, anonymous broadcasts, file-sharing and etc. For
example, users want to keep anonymous when they visit a particular website or
post their political opinions on a public bulletin board.

Due to its subtle nature, anonymity has been the subject of many theo-
retical studies [27, 14, 13, 2, 11, 23, 25] and formal verification. The pro-
posed definitions aim to capture different aspects of anonymity (either pos-
sibilistic [27, 14, 11, 23] or probabilistic [13, 2, 7]), and formal verification

∗Corresponding author
Email addresses: lyj238@ios.ac.cn (Yongjian Li), jun.pang@uni.lu (Jun Pang)

1The first author is supported by grants (No. 60833001, 60496321, 60421001) from National
Natural Science Foundation of China.

Preprint submitted to Computers & Mathematics with Applications October 23, 2012

treats systems in different application domains, such as electronic voting sys-
tems [19, 6, 16], electronic cash protocols [21], file sharing [30, 4], and electronic
healthcare [10]. However, automatic approaches to the formal verification of
anonymity have mostly focused on the model checking approach on systems
with fixed configurations [27, 28, 5, 7], while theorem proving is a more suit-
able approach when dealing with general systems of infinite state spaces [17].
We address this situation by investigating the possibility of using a powerful
general-purpose theorem prover, Isabelle/HOL [22], to semi-automatically ver-
ify anonymity properties.

The idea of expressing anonymity properties in epistemic logic is widely used
in the area of anonymity and information hiding [11, 15, 1]. The notion of obser-
vational equivalence of traces plays an important role in the epistemic framework
of provable anonymity [11]. Two traces are considered equivalent if an intruder
cannot distinguish them, i.e., he cannot find any meaningful difference. The
distinguishing ability of the intruder is formalized as the ability to distinguish
two messages, which is in turn based on message structures and relations be-
tween random looking messages. Central in the framework proposed by Garcia
et al. [11] is the reinterpretation function. Proving two traces equivalent essen-
tially boils down to the existence of such a reinterpretation function. Within
their framework, Garcia et al. also define epistemic operators and use them to
express information hiding properties like sender anonymity and unlinkability.

Observation equivalence is basically assumed, whereas such a relation is
constructed manually in [11]. However, so far no one has formalized observation
equivalence and the construction of this relation mechanically. These are the
main obstacles to formalize the anonymity theory. In this paper, we fill the gap
by formalizing provable anonymity [11] in the theorem prover Isabelle/HOL.

Our contribution. The main contribution of this paper is twofold: an inductive
theory of provable anonymity and its formalization in a theorem prover. We
briefly discuss the novelties of our work below:

• We introduce an inductive definition of message distinguishability, which
is believed to be a fundamental concept. More precisely, the intruder can
uniquely identify any plain-text message. Furthermore, the intruder can
distinguish any encrypted message for which he has the decryption key,
or which he can construct himself. The observational equivalence between
two messages, which can be then lifted to traces inductively, is naturally
defined as the negation of message distinguishability. Namely, two mes-
sages are observationally equivalent for an agent if he cannot distinguish
them according to his own knowledge.

• We propose the notion of alignment between two message sequences. Intu-
itively, alignment requires that the relation, composed of the correspond-
ing message pairs of the two message sequences, should be single valued.
Furthermore, the single valued requirement should remain valid after ap-
plying the analyzing and synthesizing operations pairwisely to the message

2

pairs in the relation. Combining the alignment requirement with the obser-
vational equivalence between two messages, we propose an (adapted) def-
inition of observational equivalence between two traces. Thus, our frame-
work can naturally incorporate the concept of reinterpretation function
which is extensively used in [11].

• We proceed to formalize anonymity properties in an epistemic logic frame-
work as in [11]. Box and diamond operators are formalized at first, then
sender anonymity and unlinkability are defined accordingly.

• We inductively define the semantics of an anonymity protocol, e.g., Onion
Routing, as a set of traces, and the relaying mechanism of the proto-
col is formally defined as a set of inductive rules. Furthermore, we for-
mally prove that the protocol realizes anonymity properties such as sender
anonymity and unlinkability under some circumstance by providing a
method to construct an observationally equivalent trace for a given trace.
We believe that this construction method is generally applicable.

• We build our theory in Isabelle/HOL [22] to have a mechanical framework
for the analysis of anonymity protocols. We illustrate the feasibility of the
mechanical framework through cases studies on Crowds [26] and Onion
Routing [12, 29].

Presentation of the paper. In this paper, we assume readers have some knowl-
edge with Isabelle/HOL syntax. We give a brief introduction to some Isabelle
concepts, notations and commands in the appendix. Therefore, we present our
formalization directly without elaborated explanation. Notably, a function in
Isabelle/HOL syntax is usually defined in a curried form instead of a tuple form,
that is, we often use the notation f x y to stand for f(x, y). We also use the
notation [[A1;A2; ...;An]] =⇒ B to mean that with assumptions A1, . . . , An, we
can derive a conclusion B. Here, we briefly introduce some functions on lists,
which will be used in later sections of the paper: x#xs for the list that extends
xs by adding x to the front of xs, [x1, ..xn] for a list x1#..xn#[], xs@ys for the
result list by concatenating xs with ys, xs!i for the ith element of the list xs
(counting from 0 as the first element), set xs for the set of all the elements in
xs, length xs for the length of the list xs, last xs for the last element of the list
xs, zip xs ys for the functions which zips two lists xs and ys to generate a list
of pairs, and map f xs for the function which applies f to each element in xs.
More information on our choices of notations can be found in the appendix.

Structure of the paper. Sect. 2 provides a preliminary introduction to notations
and terminologies. Distinguishability and observational equivalence of messages
are formally defined in Sect. 3. Then we introduce the notion of alignment for
two sequences of messages in Sect. 4. Observational equivalence of traces is
formally defined in Sect. 5. Epistemic operators and formalization of anonymity
properties are presented in Sect. 6. We model and analyze Crowds and Onion
Routing in Sect 7 and Sect. 8, respectively. We conclude the paper with some
future research topics in Sect. 9.

3

This article is a revised and extended version of [20] that appears in the
proceedings of the 6th International Conference on Conference on Availability,
Reliability and Security. In this version we have included a new notion of
alignment, which is crucial for the defintion of observational equivalence and
leads to a revised formalization of provable anonymity in Isabelle/HOL. We
have extended the case study on Onion Routing accordingly, and conducted a
new case study on Crowds.

2. Preliminaries

2.1. Agents, messages and events
Agents send or receive messages. There are three kinds of agents: the server,

the honest agents, and the spy. Formally the type of agent is defined as follows:

agent ::= Server | Friend N | Spy

We use bad to denote the set of intruders, which at least includes the agent Spy.
If an agent A is not in bad, then A is honest.

The set of messages is defined using the following BNF notation:

h ::= Agent A | Nonce N | Key k |
MPair h1 h2 | Crypt k h

where A is an element from agents, N and k from natural. Here, we use k−1

to denote the inverse key of k for brevity. MPair h1 h2 is called a composed
message. Crypt k h represents the encryption of message h with k.

In an asymmetric key protocol model, an agent A has a public key pubK A,
which is known to all agents, and a private key priK A. pubK A is the inverse key
of priK A, and vice versa. In a symmetric key model, each agent A has a long-
term symmetric key shrK A. The inverse key of shrK A is itself. We also assume
that (1) asymmetric keys and symmetry keys are disjoint; (2) the functions
shrK, pubK and priK are injective, e.g., if shrK A = shrK A′ then A = A′. In
the following, we abbreviate Crypt k h as {|h|}k, and MPair h1 . . .MPair hn−1 hn

as {|h1, . . . , hn−1, hn|}. Such abbreviations are supported in Isabelle/HOL by
syntax translation [22].

Operators parts, analz, and synth are inductively defined on a message set H.
Their definitions are taken from [24] and tailored for our purposes. Usually, H
contains a penetrator’s initial knowledge and all messages sent by regular agents.
The set parts H is obtained from H by repeatedly adding the components of
compound messages and the bodies of encrypted messages. Formally, parts H
is the least set including H and closed under projection and decryption.

inductive set parts:: "msg set⇒msg set"

for H:: "msg set" where

Inj [intro]: "x∈ H ⇒ x∈ parts H"

|Fst: "{|x,y|} ∈ parts H ⇒ x∈ parts H"

|Snd: "{|x,y|} ∈ parts H ⇒ y∈ parts H"

|Body: "Crypt k x∈ parts H ⇒ x∈ parts H"

4

The parts operator can be used to define the subterm relation <: h1 < h2 ≡
h1 ∈ parts{h2}. Note that k is not considered as occurring in {|g|}k unless k is a
part of g.

Similarly, analz H is defined to be the least set including H and closed
under projection and decryption by known keys. Note that we use invKey k to
formally denote the inverse key of Key k in our formalization.

inductive set analz:: "msg set⇒msg set"

for H :: "msg set" where

Inj [intro,simp] : "x∈ H ⇒ x∈ analz H"

|Fst: "{|x,y|} ∈ analz H ⇒ x∈ analz H"

|Snd: "{|x,y|} ∈ analz H ⇒ y∈ analz H"

|Decrypt [dest]:"[[Crypt k x∈ analz H;

Key(invKey k)∈analz H]]=⇒x∈ analz H"

The set synth H models the messages a spy could build up from elements of H
by repeatedly adding agent names, forming compound messages and encrypting
with keys contained in H. synth H is defined to be the least set that includes
H, agents, and is closed under pairing and encryption.

inductive set synth:: "msg set⇒msg set"

for H :: "msg set" where

Inj [intro,simp] : "x∈ H ⇒ x∈ synth H"

|Fst: "[[x|} ∈ synth H,y|} ∈ synth H ⇒ {|x,y|} ∈ synth H"

|Encrypt [dest]:"[[k∈ synth H;

x∈synth H]]=⇒Crypt k x∈ synth H"

A protocol’s behavior is specified as the set of possible traces of events. A
trace model is concrete and easy to explain. A trace is a sequence of events.
An event is of the form: Says A B m, which means that A sends B the message
m. For an event ev = Says A B m, we define msgPart ev ≡ m, sender ev ≡ A,
receiver ev ≡ B to represent the message, sender and receiver of ev. Function
initState A specifies agent A’s initial knowledge. Typically, an agent’s initial
knowledge consists of its private key and the public keys of all agents.

The function knows A tr describes the set of messages which A can observe
from the trace tr in addition to his initial knowledge. Formally,

knows A []= initState A

knows A ((Says A’ B m)#evs)=

if (A=Spy)∨ (A’=A) ∨ (A=B)

then {m} ∪ knows A evs

else knows A evs

The set used evs formalizes the notion of freshness. The set includes the set
of the parts of the messages sent in the network as well as all messages held
initially by any agent.

used []=
⋃

B. parts (initState B)

used ((Says A B m)#evs)= parts{m} ∪ used evs

5

Function noncesOf msg ≡ {m.∃n.m < msg ∧m = Nonce n} defines the set
of nonces occurring in the message msg. The formula originates A m tr, means
that A originates a fresh message m in the trace tr. Formally,

originates A m []= False

originates A m ((Says A’ B’ msg)#evs=

if (originates A m evs)

then True

else if (m< msg ∧ A=A’) then True

else False

The predicate sends A m tr means that A sends a message m in an event of
the trace tr. Formally,

sends A m []= False

sends A m ((Says A’ B’ msg)#evs)=

if (m<msg ∧ A=A’) then True

else sends A m evs

The predicate regularOrig m tr is to define a message originated by an honest
agent. Formally, regularOrig m tr ≡ ∀A.originates A m tr =⇒ A /∈ bad. The
predicate nonceDisj m tr specifies that the nonces of message m are disjoint with
any other messages occurring in the trace tr. Namely, if nonces of any message
m′ are not disjoint with those of m, then m = m′.

definition nonceDisj::"msg⇒ trace ⇒ bool"

where nonceDisj m tr ≡ ∀ A M m’.

Says A M m’∈(set tr)

∧ (noncesOf m’ ∩ noncesOf m 6= ∅) =⇒ m’=m

We define single valued r as ∀ x y. (x, y) ∈ r −→ (∀ z. (x, z) ∈ r −→ y = z).
Obviously, if single valued r, then a function f from the domain of r to range of
r can be derived by f x = y if (x, y) ∈ r; otherwise f x = x. If single valued r−1

also holds, then such f is a bijection.
Next we define a set of special lists: distinctList. If tr ∈ distinctList, i, j <

length tr, and i 6= j, then we have tri 6= trj . Here tri is the i-th element of the
list tr. Namely, two elements of tr are different from each other.

inductive set distinctList::(’a list) set where

nilDiff: "[] ∈ distinctList"

|consDiff: "[[tr ∈ distinctList;

∀ l.l∈(set tr) −→ l 6= a]]=⇒ (a#tr) ∈ distinctList"

2.2. Intruder model
We discuss anonymity properties based on observations of the intruder. In

this section, we explain our intruder model. Dolev-Yao intruder model [9] is
considered standard in the field of formal symbolic analysis of security protocols.
In this model the network is completely under the control of the intruder: all

6

messages sent on the network are read by the intruder; all received messages
on the network are created or forwarded by the intruder; the intruder can also
remove messages from the network. However, in the analysis of anonymity
protocols, often a weaker attacker model is assumed – the intruder is passive
in the sense that he observes all network traffic, but does not actively modify
the messages or inject new messages. Therefore, we only need one kind of event
Says A B x in our theory, which means that A sends a message x to B, and
B receives the message. This semantics is subtly different from [24], where
A intends to send a message x to B, but B does not necessarily receive the
message. Besides, the intruder can analyze the messages that he has observed,
which is modeled by the operator analz. In the later sections on case studies,
we will point out that some anonymity properties cannot be kept if we have the
Dolev-Yao intruder model instead.

Contrary to the intruder, the regular agents are not necessarily aware of all
the events. We adopt the convention that they only see the events in which they
are involved as either sender or receiver. According to the above arguments, we
can formalize the notion of visible part of a trace.

view A [] =[]" |

view A ((Says A’ B x)#evs) =

if A = Spy then (Says A’ B x)# evs

else if (A’=A ∨ B=A) then ((Says A’ B x) # (view A evs))

else (view A evs)

3. Message Distinguishability

In this section, we focus on modeling the ability for an agent to distin-
guish two received messages based on his knowledge. In principle, an agent can
uniquely identify any plain-text message he observes. Furthermore, an agent
can distinguish any encrypted message for which he possesses the decryption
key, or which he can construct himself. Formally, if m and m′ are of different
type of messages, for instance, if m = Agent A and m′ = Nonce n, the agent
can immediately tell the difference. If both m and m′ are composed messages,
namely, m = {|m1,m2|} and m′ = {|m′

1,m
′
2|}, the agent can distinguish m and

m′ if he either distinguishes m1 from m′
1 or m2 from m′

2. If m = {|x|}k1
and

m′ = {|y|}k2
, then the agent must use the knowledge Kn he possesses to decide

whether the two messages are different. There are five cases as shown below:

1. Both k1 and k2 are in Kn, x and y are in Kn as well, and the agent can
distinguish x and y, then he can tell the difference between m and m′

as he knows that m and m′ are different encrypted messages containing
different plaintexts.

2. Both k1 and k2 are in Kn, x, y are in Kn as well, and the agent can
distinguish k1 and k2 but not x and y, then he also can tell the difference
between m and m′ as he knows that m and m′ are different messages
encrypted by different keys.

7

3. Both x and k1 are in Kn, and the agent knows that he can construct m
from x and k1. However, either y or k2 is not in Kn. The agent can also
tell the difference between m and m′ as m can be constructed by himself,
but m′ cannot be constructed by himself.

4. If k−1
1 , k−1

2 ∈ Kn, and the agent can distinguish x and y, then he also can
tell the difference between m and m′ as he knows that m and m′ can be
decrypted into different messages by using k−1

1 and k−1
2 .

5. If k−1
1 is in Kn, and k−1

1 6= k−1
2 , then there are two subcases, (1) either

k−1
2 ∈ Kn, thus the agent can tell the difference between them as he

knows that the two messages can be decrypted by using different keys; (2)
or k−1

2 /∈ Kn, thus the agent can also tell the difference between them as
he knows that the m can be decrypted but m′ cannot be decrypted.

We capture the above ideas by the following formalization in Isabelle/HOL.

definition basicDiff:: "msg⇒msg⇒bool"

where "basicDiff m m’ ≡
case m of (Agent a) ⇒ m 6= m’

| (Number n) ⇒ m 6= m’

| (Nonce n) ⇒ m 6= m’

| (Key k) ⇒ m 6= m’

| (MPair m1 m2) ⇒ ∀ m1’ m2’ . m’ 6= (MPair m1’ m2’)

| (Crypt k n) ⇒ ∀ k’ n’ . m’ 6= (Crypt k’ n’)

inductive set Diff:: "msg set ⇒ (msg×msg) set"

for Kn:: "msg set" where

basic:"[[x∈Kn; y∈Kn; basicDiff x y]]
=⇒ (x,y)∈ Diff Kn"

| MPLDiff:"[[w∈Kn; z∈Kn; (x,y)∈Diff Kn]]
=⇒ (MPair x w, MPair y z)∈Diff Kn"

| MPRDiff:"[[w∈Kn; z∈Kn; (x,y)∈Diff Kn]]
=⇒ (MPair w x, MPair z y)∈Diff Kn"

| CryptDiff1:"[[(Key k1∈Kn); (Key k2∈Kn); (x,y)∈Diff Kn]]
=⇒ (Crypt k1 x, Crypt k2 y)∈Diff Kn"

| CryptDiff2:"[[x∈Kn; y∈Kn; (Key k1,Key k2)∈Diff Kn]]
=⇒ (Crypt k1 x, Crypt k2 y)∈Diff Kn"

| CryptDiff3:"[[y/∈Kn∨Key k2 /∈ Kn; x∈Kn; Key k1 ∈ Kn; Crypt k2 y∈Kn]]
=⇒ (Crypt k1 x, Crypt k2 y)∈Diff Kn"

| CryptDiff4:"[[y/∈Kn∨Key k2 /∈ Kn; x∈Kn; Key k1 ∈ Kn; Crypt k2 y∈Kn]]
=⇒ (Crypt k2 y, Crypt k1 x)∈Diff Kn"

| DeCryptDiff1:"[[(Crypt k1 x)∈Kn; (Crypt k2 y)∈Kn;
(Key (invKey k1)∈Kn); (Key (invKey k2)∈Kn); (x,y)∈Diff Kn]]
=⇒ (Crypt k1 x, Crypt k2 y)∈Diff Kn"

| DecryptDiff2:"[[(Crypt k1 x)∈Kn; (Crypt k2 y)∈Kn;
(Key (invKey k1))∈Kn; (Key (invKey k1)) 6=(Key (invKey k2))]]
=⇒ (Crypt k1 x, Crypt k2 y)∈Diff Kn"

| DecryptDiff3:"[[(Crypt k1 x)∈Kn; (Crypt k2 y)∈Kn;
(Key (invKey k1))∈Kn; (Key (invKey k1)) 6=(Key (invKey k2))]]
=⇒ (Crypt k2 y, Crypt k1 x)∈Diff Kn"

8

Note that rules CryptDiff3 and CryptDiff4 are two symmetric subcases of
case 3, and rules DecryptDiff2 and DecryptDiff3 are two subcases of case 5.

In this paper, when we discuss Diff Kn, we always assume that Kn is a clo-
sure set under the analz and then synth operators. Namely, Kn = synth (analz Kn)
for some message set Kn which is directly observed from network traffics.

Example 1. Let m = {|Nonce n|}pubK B, and m′ = {|Nonce n′|}pubK B, and sup-
pose Kn = synth(analz{Key (priK B),m, m′}), and n 6= n′, we have (m,m′) ∈
Diff Kn by applying rule basic and rule CryptDiff.

Example 2. Let n′0 6= n, n′0 6= n′, n 6= n′, A 6= B, n0 6= n, n0 6= n′,
m = Nonce n, m′ = Nonce n′, m0 = {|m|}pubK B, m′

0 = {|m′|}pubK B, m1 =
{|Nonce n0,m0|}, m′

1 = {|Nonce n′0,m
′
0|}, m2 = {|Agent B,m1|}pubK A, m′

2 =
{|Agent B,m′

1|}pubK A, if Kn = synth(analz {m0,m
′
0,m2,m

′
2,Key (pubK A),

Key (pubK B),Key (priK B)}), then we have (m2,m
′
2) /∈ Diff Kn.

In Example 2, as priK B, m0 and m′
0 are in Kn, therefore Nonce n ∈ Kn and

Nonce n′ ∈ Kn. The conditions n0 6=n and n0 6=n′ eliminate the possibility of
the case when Nonce n0 ∈ Kn. Similarly, we can derive that Nonce n′0 /∈ Kn.

We then introduce the notion of observational equivalence between messages
which is naturally defined as the negation of message distinguishability. If an
agent cannot distinguish two messages m and m′, then the two messages are
observationally equivalent to the agent.

msgEq::"msg set⇒msg⇒msg⇒bool"

"msgEq Know m1 m2 ≡ (m1, m2)/∈ Diff Know"

Obviously, observational equivalence between messages w.r.t. a knowledge set
Kn is reflexive, symmetric and transitive.

Lemma 3. msgEq Kn m m

Lemma 4. msgEq Kn m n =⇒ msgEq Kn n m

Lemma 5. [[msgEq Kn m1 m2;msgEq Kn m2 m3]] =⇒ msgEq Kn m1 m3

4. Alignment between Two Message Sequences

In order to define observational equivalence between two traces (see Sect. 5),
we first propose a requirement, called alignment, on two message sequences.
The intuitive idea of our alignment requirement is that the relation, composed
of corresponding message pairs in two message sequences, should be single-
valued. For instance, there are two runs msgSq and msgSq′ of a protocol, as
shown in Tab. 1. Let Kn = synth(anlaz{m,m′,m′′}), m 6= m′. Even if we
have msgEq Kn m m′ and msgEq Kn m m′′, msgSq and msgSq′ should still
be different from an observer’s view, because the same message m occurs twice
in msgSq while two different messages m′ and m′′ occur in the corresponding
positions of msgSq′. Alignment requires that a message should have only one

9

Table 1: Two non-alignment message sequences

msgSq msgSq′

m m′

m m′′

Table 2: Two non-alignment message sequences

msgSq msgSq′

{|{|Nonce n′0|}pubK B |}priK M {|{|Nonce n′1|}pubK B′ |}priK M

{|{|Nonce n′1|}pubK B′ |}priK M {|{|Nonce n′0|}pubK B |}priK M

{|Nonce n′0|}pubK B {|Nonce n′0|}pubK B

{|Nonce n′1|}pubK B′ {|Nonce n′1|}pubK B′

interpretation when we map messages from a message sequence to the other
message sequence.

Furthermore, single-valued requirement should remain valid after applying the
analyzing operation (e.g., decryption and seperation) and synthesizing operation
(e.g., encryption and concatenation) pairwisely on the message pairs in the two
message lists of the two message sequences. From Examples 6 to 8, we use two
message sequences msgSq and msgSq′ to explain the above two requirements.
Below n0, n1, n

′
0, n

′
1 are pairwise different nonces.

Example 6. If priK B and priK B′ are not compromised, then msgSq and
msgSq′ as shown in Tab. 2 are different w.r.t. an intruder as the intruder can
decrypt the first and second messages and compare them with the third and
fourth messages in the above message sequences. (After applying the decryption
operation to the first messages pairwise in the two message sequences, the in-
truder obtains a new pair ({|Nonce n′0|}pubK B , {|Nonce n′1|}pubK B′). But this pair
and ({|Nonce n′0|}pubK B , {|Nonce n′0|}pubK B) contradicts with the single-valued
requirement.)

Example 7. If priK B and priK B′ and priK M are not compromised, then
msgSq and msgSq′ as shown in Table 3 are different w.r.t. an intruder as the in-
truder can encrypt the third and fourth messages and compare them with the first
and second messages in the above two sequences. (After applying the encryption
operation to third messages pairwise in the two message sequences, the intruder
obtains a new pair ({|{|Nonce n′0|}pubK B |}pubK M , {|{|Nonce n′0|}pubK B |}pubK M).
But this pair and ({|{|Nonce n′0|}pubK B |}pubK M , {|{|Nonce n′1|}pubK B′ |}pubK M) con-
tradicts with the single-valued requirement.)

Example 8. If priK B and priK B′ and priK M are not compromised, msgSq
and msgSq′ as shown in Table 4 should be equivalent w.r.t. an intruder as all
the messages cannot be analyzed and the linkage of messages in a trace cannot
be established.

10

Table 3: Two non-alignment message sequences

msgSq msgSq′

{|{|Nonce n′0|}pubK B |}pubK M {|{|Nonce n′1|}pubK B′ |}pubK M

{|{|Nonce n′1|}pubK B′ |}pubK M {|{|Nonce n′0|}pubK B |}pubK M

{|Nonce n′0|}pubK B {|Nonce n′0|}pubK B

{|Nonce n′1|}pubK B′ {|Nonce n′1|}pubK B′

Table 4: Two alignment message sequences

msgSq msgSq′

{|Nonce n0, Agent B, {|Nonce n′0|}pubK B |}pubK M {|Nonce n1, Agent B′, {|Nonce n′1|}pubK B′ |}pubK M

{|Nonce n1, Agent B′, {|Nonce n′1|}pubK B′ |}pubK M {|Nonce n0, Agent B, {|Nonce n′0|}pubK B |}pubK M

{|Nonce n′0|}pubK B {|Nonce n′0|}pubK B

{|Nonce n′1|}pubK B′ {|Nonce n′1|}pubK B′

More formally, we first inductively define two more operators analz pairs and
synth pairs to formalize the above pairwise analyzing and synthesizing operations
on the message pairs between two sets of message pairs.

inductive set analz pairs::"(msg×msg) set⇒msg set⇒(msg×msg) set"

for r ::"(msg×msg) set" and Kn::"msg set"

where rAtom [intro]: "[[(x,y):r]]=⇒ (x, y)∈ analz pairs r Kn"

| MPairL closure [intro]: "[[({|x,y|},{|x’,y’|}) ∈analz pairs r Kn]]
=⇒(x,x’)∈analz pairs r Kn"

| MPairR closure [intro]: "[[({|x,y|},{|x’,y’|}) ∈analz pairs r Kn]]
=⇒(y,y’)∈analz pairs r Kn"

| deCrypt closure [intro]: "[[(Crypt k x,Crypt k x’)∈analz pairs r Kn;

Key (invKey k)∈Kn]] =⇒ (x,x’)∈analz pairs r Kn"

inductive set synth pairs::"(msg ×msg) set⇒msg set⇒(msg×msg) set"

for r ::"(msg× msg) set" and Kn::"msg set"

where basicAtom [intro]: "[[x∈Kn; isAtom x]]=⇒ (x, x)∈ synth pairs r Kn"

| rAtom [intro]: "[[(x,y)∈r]]=⇒ (x, y)∈ synth pairs r Kn"

| MPair closure [intro]: "[[(x,x’)∈synth pairs r Kn;

(y,y’)∈ synth pairs r Kn]]=⇒ ([[x,y]],[[x’,y’]])∈ synth pairs r Kn"

| Crypt closure [intro]: "[[(x,x’)∈synth pairs r Kn; Key k∈Kn]]
=⇒ (Crypt k x, Crypt k x’)∈synth pairs r Kn"

The following lemma gives a sufficient condition for the existence of a func-
tion mapping which is naturally derived from synth pairs r Kn provided that r
is single-valued.

Lemma 9. [[single valued r; (x, y) ∈ (synth pairs r Kn);
(x′, y′) ∈ synth pairs r Kn; x = x′;
∀ m m′ m′′.(m,m′′) ∈ synth pairs r Kn −→ ((m,m′) ∈ r −→ m′ = m′′)]]
=⇒ y = y′

11

Note that we cannot establish a similar result for the analz pairs operator.
For instance, let r = {({|Nonce n, Nonce n|}, {|Nonce n, Nonce n′|})}. It is easy
to verify that analz pairs r Kn={(Nonce n, Nonce n), (Nonce n, Nonce n′)}. We
have single valued r and ∀ m m′ m′′.(m,m′′) ∈ analz pairs r Kn −→ (m,m′) ∈
r −→ m′ = m′′. But analz pairs r Kn is not single valued.

5. Observational Equivalence between Traces

Now we can lift observational equivalence to traces with the concepts of
observational equivalence between messages and alignment between two message
sequences: two sequences of messages in two traces look the same to an observer
if a message in one sequence is observationally equivalent to the corresponding
message in the other sequence w.r.t. the knowledge which the observer has
obtained from the two traces. Besides the requirement on the message parts
of the two traces, we require that the sender and receiver of an event in one
trace is the same as those of the corresponding event in the other trace. For
events ev1 and ev2, we define SRMatch ev1 ev2 ≡ (sender ev1 = sender ev2) ∧
(receiver ev1 = receiver ev2). For two traces tr and tr′, SRMatchL tr tr′ ≡
length tr = length tr′ ∧ ∀ i.i < length tr −→ SRMatch tri tr′i. The predicate
SRMatchL tr tr′ means that each event tri has the same sender and receiver as
its corresponding event tr′i and the two traces have the same length.

Two traces tr and tr′ are observationally equivalent, written as tr ≈A tr′, if
the following conditions are satsified:

• tr and tr′ have the same length; and for all events in tri, the senders and
receivers of tri are the same as those of tr′i.

• msgPart tri and msgPart tr′i are observationally equivalent w.r.t. the knowl-
edge obtained after observing the two traces.

• single valued r and single valued r−1 guarantee that an agent cannot rein-
terpret any event differently, where r (r−1) is the sequence of message
paris obtained from tr and tr′ (tr′ and tr) after applying the operations
analz pairs and synth pairs.

The corresponding formalization in Isabelle/HOL is given below.

definition obsEquiv::"agent⇒trace⇒trace⇒bool"

where "obsEquiv A tr tr’≡
let vtr=view A tr in

let vtr’=view A tr’ in

let msgSq=map msgPart vtr in

let msgSq’=map msgPart vtr’ in

(set msgSq)=(set msgSq’) ∧ length vtr=length vtr’∧
SRMatchL vtr vtr’∧
(let H=set (zip msgSq msgSq’) in

let Kn=synth (analz (knows A vtr)) in

(∀ x y. (x,y)∈ H −→ msgEq Kn x y)∧
(let r=synth pairs (analz pairs H Kn) Kn in

(single valued r ∧ single valued (r−1)))"

12

Remark 10. In the work of Garcia et al. [11], a reinterpretation function be-
tween two message sequences is used as a underlining concept. However, no one
has formally argued when such a function exists and how it can be derived. In
our work, the alignment requirement between the two message sequences gives
a sufficient condition for the existence of a reinterpretation function. More-
over, the two operators analz pairs and synth pairs give a mechanical way to
derive the reinterpretation function. Note that if both single valued r and
single valued (r−1), we can naturally construct a bijection function between
the domain of r to its range.

6. Epistemic Operators and Anonymity Properties

Using the observational equivalence relations over a trace set of possible
worlds, we can formally introduce epistemic operators [11] as follows:

constdefs box::"agent⇒trace⇒trace set⇒
assertOfTrace⇒bool"

"box A tr trs Assert≡
∀ tr’.tr’∈trs−→obsEquiv A tr tr’ −→(Assert tr’)"

constdefs diamond::"agent⇒trace⇒trace set⇒
assertOfTrace⇒bool"

"diamond A tr trs Assert≡
∃ tr’.tr’∈trs ∧obsEquiv A tr tr’

∧(Assert tr’)"

For notation convenience, we write tr |= ¤ A trs ϕ for box A tr trs ϕ,
and tr |= 3 A trs ϕ for diamond A tr trs ϕ. Note that ϕ is a predicate on a
trace. Intuitively, tr |= ¤ A trs ϕ means that for any trace tr′ in trs, if tr′

is observationally equivalent to tr for agent A, then tr′ satisfies the assertion
ϕ. On the other hand, tr |= 3 A trs ϕ means that there is a trace tr′ in trs,
tr′ is observationally equivalent to tr for agent A and tr′ satisfies the assertion
ϕ. Now we can formulate some information hiding properties in our epistemic
language. We use the standard notion of an anonymity set: it is a collection of
agents among which a given agent is not identifiable. The larger this set is, the
more anonymous an agent is.

6.1. Sender anonymity
Suppose that tr is a trace of a protocol in which a message m is originated

by some agent. We say that tr provides sender anonymity w.r.t. the anonymity
set AS and a set of possible runs in the view of B if it satisfies:

constdefs senderAnomity::"agent set⇒agent⇒msg⇒
trace⇒trace set⇒bool"

"senderAnomity AS B m tr trs≡ (∀ X.X:AS−→
tr |=3B trs (originates X m))"

13

Here, AS is the set of agents who are under consideration, and trs is the set of
all the traces which B can observe. Intuitively, this definition means that each
agent in AS can originate m in a trace of trs. Therefore, this means that B
cannot be sure of anyone who originates this message.

6.2. Unlinkability
We say that a trace tr provides unlinkability for user A and a message m

w.r.t. the anonymity set AS if

constdefs unlinkability::"agent set⇒agent⇒msg⇒
trace⇒trace set⇒bool"

"unlinkability AS A m tr trs≡
(let P= λX m’ tr. originates X m’ tr in

(¬(tr |=2 Spy trs (P A m)))

∧ senderAnomity AS A m tr trs

where the left side of the conjunction means that the intruder is not certain
whether A has sent the message m, while the right side means that every other
user could have sent m.

7. Case Study I: Crowds

The Crowds system [26] is a system for performing anonymous web transac-
tions based on the idea that anonymity can be provided by hiding in a crowd.
For simplicity reasons, we only model the request part as specified in [11]: when
an agent wants to send a request to a server, he randomly selects a user from a
crowd of users and asks this user to forward the request for him to the server;
and this user then either forwards the request to the server, or selects another
random user from the crowd to do the forwarding. The specification of Crowds
is shown as below:

inductive set Crowds:: trace set where

CrowdsNil: [] ∈ (Crowds)

| CrowdsInit: [[tr∈Crowds; Nonce n/∈(used tr);R 6=Server; A 6=Server]]
=⇒Says A R {|Agent Server, Nonce n|}#tr∈Crowds

| CrowdsRelay: [[tr∈Crowds; Says R R’ {|Agent Server, Nonce n|}∈set tr;

R’6=Server; R’’ 6=Server]]
=⇒Says R’ R’’ {|Agent Server, Nonce n|}#tr∈Crowds

| CrowdsSend: [[tr∈Crowds; Says R R’ {|Agent Server, Nonce n|}∈set tr;

R’6=Server; ∀R’. (Says R’ Server (Nonce n))/∈set tr]]
=⇒Says R’ Server (Nonce n)#tr∈Crowds

In the above formalization, rule crowdNil specifies an empty trace. The
other rules specify trace’s extension with protocol steps. More precisely,

• rule CrowdsInit models that an agent A, who is not the Server, originates
a requests. Here, we model new requests as fresh nonces. The agent

14

randomly selects a user R from a crowd of users and asks this user to
forward the request for him to the Server;

• rule CrowdsRelay specifies that a relay R′ selects another random user R′′

again from the crowd to do the forwarding. Here, we simply require that
R′′ is not the Server;

• rule CrowdsSend models that a relay R′ forwards the request to the Server.
Here, the requirement ∀R′.(Says R′ Server (Nonce n) /∈ set tr specifies that
no other user has sent the request to the Server before.

The following lemma simply states the fact that a request forwarded to the
server must be initiated by an agent before.

Lemma 11. [[tr ∈ Crowds;Says R Server(Nonce n) ∈ set tr]]=⇒
∃A B.Says A B {|Agent Server,Nonce n|} ∈ set tr

Suppose that there exists an event Says A B {|Agent Server,Nonce n|} oc-
curring in a trace tr, then there exist two subtrace tr1 and tr2, two agents
A′ and B′ such that tr = tr1@(Says A′ B′ {|Agent Server,Nonce n|}#tr2) and
the subtrace tr2 does not contain any event whose message is of the form
{|Agent Server,Nonce n|}. We can prove it simply by induction on tr.

Lemma 12. [[Says A B {|Agent Server,Nonce n|} ∈ set tr]] =⇒
∃tr1 tr2 A′ B′.tr = tr1@(Says A′ B′ {|Agent Server,Nonce n|}#tr2)
∧(∀ A B.Says A B {|Agent Server,Nonce n|} /∈ set tr2)

By the above two lemmas, and since {|Agent Server,Nonce n|} does not occur
in tr2, therefore we can know that the agent A′ originates the nonce n.

Lemma 13. [[tr ∈ Crowds;Says R Server (Nonce n) ∈ set tr]] =⇒
∃A.originates A (Nonce n) tr

Assume that tr = tr1@Says A′ B′ {|Agent Server,Nonce n|}#tr2 is a trace in
Crowds, and the message {|Agent Server,Nonce n|} does not occur in tr2. Namely,
A′ is the agent who originates the request {|Agent Server,Nonce n|}. We can add
a new event Says A A′{|Agent Server,Nonce n|} before tr2. Then the new trace
tr1@(Says A′ B′ {|Agent Server,Nonce n|}#Says A A′{|Agent Server,Nonce n|}#tr2

is still a valid trace in Crowds. This is formulated in the next lemma, which
is crucial to prove sender anonymity for agent A′ as another agent A seems
possible for the observer to initiate the request as well. This is due to the fact
that the newly constructed trace is valid in the Crowds system.

Lemma 14. [[tr ∈ crowd; tr = tr1@(Says A′ B′ {|Agent Server,Nonce n|}#tr2);
(∀A B.Says A B{|Agent Server, Nonce n|} /∈ set tr2)]]=⇒
tr1@(Says A′ B′ {|Agent Server,Nonce n|}#Says A A′{|Agent Server,Nonce n|}#tr2)
∈ Crowds

15

Suppose that the Server receives a request (identified by a nonce Nonce n),
then the Server cannot be sure of which agent originates the request. That is
to say, the sender anonymity holds for the Server w.r.t any anonymity agent set
not containing the Server.

Lemma 15. [[tr ∈ Crowds;Says R Server (Nonce n) ∈ set tr]]=⇒
senderAnonymity {A.A 6= Server} Server (Nonce n) tr Crowds

Proof. By unfolding the definition of senderAnonymity, for any agent X
such that X = Server, we need to find a trace tr′ such that tr′ ∈ Crowds,
obsEquiv Server tr tr′ and originates X (Nonce n) tr′. By Says R Server (Nonce n) ∈
set tr and Lemma 13, there exists an agent A such that originates A (Nonce n) tr.
There are two cases:
(1)A = X. Then we simply let tr′ = tr.
(2)A 6= X. By Says R Server (Nonce n) ∈ set tr, and Lemma 11, there exist
agents A and B such that Says A B {|Agent Server,Nonce n|} ∈ set tr. Then
by Lemma 12, there exist tr1, tr2, A′, and B′ such that tr can be transformed
into tr1@Says A′ B′ {|Agent Server,Nonce n|}#tr2, and we have the fact that
∀C D.Says C D{|Agent Server,Nonce n|} /∈ set tr2. Then we can construct tr′ as
tr1@Says A′ B′ {|Agent Server,Nonce n|} (Says X A′{|Agent Server,Nonce n|})#tr2.
By Lemma 14, we have tr′ ∈ Crowds. By Lemma 13, originates X (Nonce n) tr′.
Obviously, from the inductive definition of Crowds, we have A′ 6= Server. It
is easy to verify that view Server tr′= view Server tr. Then we can derive
obsEquiv Server tr tr′.

The sender anonymity comes from the local view of the agent Server, and
the nondeterministic choice of a relay who either forwards a request again or
directly sends the request to the Server. However, for the Spy, who observes the
global network traffic, the sender anonymity does not hold. Namely, the Spy
can be sure of the agent who originates a request. This can be formalized and
proved as Lemma 16.

Lemma 16. [[tr ∈ Crowds; tr = tr1@(Says A′ B′ {|Agent Server,Nonce n|}#tr2);
(∀A B.Says A B{|Agent Server,Nonce n|} /∈ set tr2)]] =⇒
¤ Spy tr Crowds (originates A′ (Nonce n))

8. Case Study II: Onion Routing

Onion Routing [12, 29] provides both sender and receiver anonymity for
communication over the Internet and servers as the basis of the Tor network [8].
Its main idea is based on Chaum’s mix cascades [3] that messages in Onion
Routing have a layered encryption (thus called onions) and travel from source
to destination via a sequence of proxies (called onion routers). Each onion
router can decrypt (or peel) one layer of a received message and forward the
remainder to the next onion router. In order to disguise the relations between
incoming and outgoing messages, an onion routers collect incoming messages
until it has received k messages, and then permutes the messages and sends in
batch to their intended receivers.

16

8.1. Modeling Onion Routing
In this paper, we model a simplified ed version of Onion Routing with only

one onion router as done in [11]. We assume a set of users AS and one router
M , with M /∈ AS. We also assume that each agent can send a message before
the router M launches a batch of forwarding process, and the router does not
accept any message when it is forwarding.

inductive set oneOnionSession:: "nat⇒agent⇒trace set"

for i::"nat" and M::"agent" where

onionNil: "[]∈ (oneOnionSession i M)"

| onionCons1: "[[tr∈(oneOnionSession i M);X 6=M;Y 6=M;

Nonce n0/∈(used tr);Nonce n/∈(used tr); length tr<i]]=⇒
Says X M (Crypt (pubK M)

{|Nonce n0,Agent Y,Crypt (pubK Y) (Nonce n)|})
#tr ∈oneOnionSession i M"

| onionCons2: "[[tr∈(oneOnionSession i M);X 6=M;

Nonce n/∈(used tr);length tr<i]]=⇒
Says X M (Crypt (pubK M) (Nonce n))

#tr ∈oneOnionSession i M"

| onionCons3: "[[tr∈(oneOnionSession i M);length tr≥i;
Says M Y (Crypt (pubK Y) (Nonce n))/∈(set tr)]]=⇒
Says M Y (Crypt (pubK Y) (Nonce n))

#tr ∈oneOnionSession i M"

In the above specification of Onion Routing, there are four induction rules.
Rule onionNil specifies an empty trace. The other rules specify trace’s exten-
sion with protocol steps. The ideas behind these induction rules (onionCons1,
onionCons2, onionCons3) are explained as follows.

• If the length of the current trace is less than i, namely, M is still in a receiv-
ing status, X (or Y) and M are distinct, and both n0 and n are fresh, we
can add an event Says X M {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M .
This step means that X sends a message to M which will be peeled and
forwarded to Y by M .

• If the length of the current trace is less than i, X and M are distinct,
and n is fresh, then we can add an event Says X M{|NonceN |}pubK M .
This means that X sends a dummy message to M which will be simply
discarded later.

• If the length of the current trace is greater than or equal to i meaning
that M is in a forwarding status, and if a received message of the form
{|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M has not been forwarded by
the router yet, then we can add an event Says M Y {|Nonce n|}pubK Y . This
step means that the router M forwards the peeled message to Y .

In the following analysis, our intruder model is passive in the sense that the
spy will not modify the network traffic. An active intruder can easily infer the
receiver of a message m forwarded to some agent. He only needs to intercept

17

any other message except the message m, and replace them by faked dummy
messages. Because all dummy messages will be discarded by the router, and
only m will be peeled and forwarded to the intended receiver.

8.2. An overview our proof strategy
In the following sections, we will formalize and prove the anonymity prop-

erties of Onion Routing. Due to the complexity of the epistemic operators
in anonymity definitions, the proof is rather complicated. We illustrate the
overview of our formalization and the corresponding proof steps.

We will formalize the sender anonymity and unlinkabilty of Onion Routing
in the view of a Spy for a trace tr w.r.t. a set of honest agents and all possible
traces. According to the definition of epistemic operators in the definition of
sender anonymity and unlinkability, we need to construct another trace tr′ which
satisfies two conditions:

(1) tr′ is still an onion routing protocol trace, namely tr′ ∈ oneOnionSession i M .
(2) tr′ is observation equivalent to tr. That is to say, obsEquiv Spy tr tr′. In

order to show this, by the definition of obsEquiv, we need to prove four
subcases. The first two subcases are straightforward, but the latter two
are rather difficult: (i) msgPart tri and msgPart tr′i for any i < length tr
are observationally equivalent w.r.t. the knowledge obtained after observ-
ing the two traces; (ii) the alignment requirements single valued r and
single valued r−1 where r is the sequence of message paris obtained from
tr and tr′ after applying the operations analz pairs and synth pairs.

Sect. 8.4 formally introduces a function swap ma mb tr, which servers the
aim of constructing such an trace tr′. Here ma, mb are the messages sent to the
router in the trace tr. Sect. 8.4.1 gives its formal definition and proves simple
correspondence properties of the swap operator. Sect. 8.4.2 proves the first
condition (1). Sect. 8.4.3 devotes to the proof of (2-ii), and Sect. 8.4.4 proves
(2-i), then finishes the proof of (2). In order to prove (2-i), we need to prove
properties such as secrecy and correspondence properties of Onion Routing,
which are discussed in Sect. 8.3. After these, we finish the proofs of the two
anonymity properties in Sect. 8.5.

8.3. Properties on protocol sessions
As mentioned before, whether two traces are observationally equivalent for

an agent depends on the knowledge of the agent after his observation of the two
traces. Therefore, we need to discuss some properties on the knowledge of the
intruder. They are secrecy properties,and some regularity on the correspondence
of the events in one protocol session of Onion Routing.

8.3.1. Correspondence properties
The following lemma is about the correspondence of two events in a trace tr.

If the router M forwards a message {|Nonce n|}pubK Y , then there must exist an
agent A who has sent a message {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M

using some nonce n0.

18

Lemma 17. [[tr ∈ oneOnionSession i M ; Says M B {|Nonce n|}pubK Y ∈ set tr]]
=⇒ ∃n0 A.Says A M {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M ∈ set tr

If {|Nonce n|}pubK Y is a submessage of a message which A sends to the router
M , then {|Nonce n|}pubK Y is originated by A.

Lemma 18. [[tr ∈ oneOnionSession i M ; ma′ = {|Nonce n|}pubK Y ;
Says A M ma ∈ set tr;ma′ < ma]] =⇒ originates A ma′ tr

8.3.2. Uniqueness properties
Since an agent is required to originate fresh nonces when he sends a message

to the router, therefore if two events where agents send a message to the router
M , either two events are exactly the same, or nonces used in the two events are
disjoint.

Lemma 19. [[tr ∈ oneOnionSession i M ; Says X M ma;Says Y M mb]]
=⇒ (X = Y ∧ma = mb) ∨ (noncesOf ma ∩ noncesOf mb) = ∅

From Lemma 19, we can easily derive that once a nonce n occurs in a message
sent by an agent X, then another agent Y cannot originate a message containing
the same nonce n.

Lemma 20. [[tr ∈ oneOnionSession i M ;Says X M ma; X 6= Y ;
{|Nonce n|}pubK Y < ma]] =⇒ ¬originates Y ({|Nonce n|}pubK Y) tr

The message of each event in a trace of the protocol is unique, namely two
messages in two events in this trace are different.

Lemma 21. [[tr ∈ oneOnionSession i M]] =⇒ map msgPart tr ∈ distinctList

With the above lemma, we can derive that the relation (zip (map msgPart tr) sq′)
must be single valued if tr is in a trace of Onion Routing.

Lemma 22. [[tr ∈ oneOnionSession i M]] =⇒ single valued (zip (map msgPart tr) sq′)

8.3.3. Secrecy properties
First we need to introduce a new predicate:

nonLeakMsg m M ≡
∀ B n0 n.(m = (Crypt (pubK M){|Nonce n0,Agent B,Crypt (pubK B)(Nonce n)|}))
−→ (B /∈ bad ∨ n0 6= n)

Formally, nonLeakMsg m M specifies that if message m is of the form Crypt (pubK M){|Nonce n0,Agent B,Crypt (pubK B)(Nonce n)|},
then either B /∈ bad or n0 6= n. This definition specifies a non-leakage condition
of nonce part n0 in a message of the form Crypt (pubK M){|Nonce n0,Agent B,Crypt (pubK B)(Nonce n)|}
which is sent to the router even if whose nonce part n will be forwarded to a
spy. The following lemma will explain the intuition behind this definition.

If both the router M and an agent B are honest, and B sends a message ma =
{|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M to M , and nonLeakMsg ma M also
holds, then Nonce n0 cannot be analyzed by the intruder.

19

Lemma 23. [[tr ∈ oneOnionSession i M ;M /∈ bad;B /∈ bad;
Says B M ma ∈ tr;
ma = {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M ; nonLeakMsg ma M]]
=⇒ Nonce n0 /∈ analz (knows Spy tr)

Similarly, provided that both M and B are honest, and B sends a dummy
message {|Nonce n0|}pubK M to M , then the intruder cannot know Nonce n0.

Lemma 24. [[tr ∈ oneOnionSession i M ;Says B M{|Nonce n0|}pubK M ∈ tr;M /∈
bad;B /∈ bad]] =⇒ Nonce n0 /∈ analz (knows Spy tr)

8.4. Message swapping
By its definition, to prove sender anonymity of an agent X in a trace tr,

we need to show the existence of an observationally equivalent trace tr′. In
this section, we present a method for the construction of an observationally
equivalent trace.

8.4.1. Formal definition of swap function
We define a function swap ma mb tr, which returns another trace tr′ satis-

fying the following conditions: (1) the sender and receiver of any event in trace
tr′ are the same as in the corresponding event in tr; (2) the message of any
event in tr′ is swapped as mb if the message of the corresponding event in tr is
ma; (3) the message of any event in tr′ is swapped as ma if the message of the
corresponding event in tr is mb; (4) otherwise the message is kept unchanged.

consts swap::"msg⇒msg⇒trace⇒trace"

primrec "swap ma mb [] =[]"

swap ma mb (ev#tr)=

case ev of Says A0 M0 ma0) ⇒
(if (ma0=ma)

then Says A0 M0 mb# swap ma mb tr)

else if (ma0=mb)

then Says A0 M0 ma# swap ma mb tr

else ev# (swap ma mb tr))

For a trace tr of Onion Routing, Fig. 1 illustrates the correspondence between
tr and the function swap ma mb tr. In session 1, agent A (B) communicates
with C (D), while agent A (B) communicates with D (C) in session 2. The
correspondence between tr and swap ma mb tr is formalized as the lemma below.

Lemma 25. Let tr be a trace.

1. [[(m1,m2) ∈ set (zip (map msgPart tr) (map msgPart (swap ma mb tr)))]]
=⇒ m1 = m2 ∨ (m1,m2) = (ma,mb) ∨ (m1,m2) = (mb,ma)

2. sendRecvMatchL tr (swap ma mb tr)
3. length (swap ma mb tr) = length tr

4. set (map msgpart tr) = set (map msgpart (swap mb ma tr))
5. swap ma mb tr = swap mb ma tr

20

Figure 1: An illustration of function swap.

6. [[(Says X M ma ∈ set tr)]] =⇒ Says X M mb ∈ set (swap ma mb tr))
7. [[(Says X M mb ∈ set tr)]] =⇒ Says X M ma ∈ set (swap ma mb tr))
8. [[m 6= ma;m 6= mb; (Says X M m) ∈ set tr]]

=⇒ (Says X M m ∈ set (swap ma mb tr))
9. [[m 6= ma;m 6= mb; (Says X M m) /∈ set tr]]

=⇒ (Says X M m /∈ set (swap ma mb tr))
10. [[Says A M ma ∈ tr;Says B M mb ∈ tr;

∀ev.ev ∈ tr −→ (∃ A′ B′ m. ev = Says A′ B′ m)]]
=⇒ map msgPart tr = map msgPart (swap ma mb tr)

11. [[Says A M ma ∈ tr;Says B M mb ∈ tr;
∀ev.ev ∈ tr −→ (∃ A′ B′ m. ev = Says A′ B′ m)]]
=⇒ knows Spy tr = knows Spy (swap ma mb tr)

12. [[(noncesOf ma) ∩ (used tr) = ∅; (noncesOf ma) ∩ (noncesOf mb) = ∅;
nonceDisj mb tr; noncesOf ma 6= ∅]]
=⇒ (noncesOf mb) ∩ (used (swap ma mb tr)) = ∅

13. [[(noncesOf m) ∩ (used tr) = ∅; (noncesOf m) ∩ (noncesOf mb) = ∅;
(noncesOf m) ∩ (noncesOf ma) = ∅]]
=⇒ (noncesOf m) ∩ (used (swap ma mb tr)) = ∅

Let tr′ = swap ma mb tr. In Lemma 25, part 1 says that the message of the
event tri is almost the same as that of tr′i except the case when the message
is ma or mb. If the message sent in tri is ma, then the counterpart in tr′i is
mb, and vice versa. Part 2 says that each sender and receiver of each event tri

is the same as those of tr′i. Part 3 shows that swap ma mb tr has the same
length as tr. Part 4 says that messages observed from tr is the same as those
of swap ma mb tr. Part 5 shows that the trace swap ma mb tr is the same as
swap ma mb tr. Part 6, part 7, part 8, and part 9 show some correspondence
of an event occurring in tr and the corresponding one in tr′. Part 10 and
part 11 show that if Says A M ma ∈ tr, and Says B M mb ∈ tr, for Spy,
the set of messages and knowledge obtained from tr is the same as those from
swap ma mb tr. Part 12 says that nonces of mb will be disjoint from those of
used tr′ if nonces of ma are disjoint from those of mb, nonces of ma are disjoint

21

from used tr, nonceDisj mb tr, and nonces of ma are not empty. Part 13 says
that nonces of m will be disjoint from those of used tr′ if nonces of m are disjoint
from those of ma, nonces of m are disjoint from those of mb, and nonces of ma
are disjoint from used tr.

8.4.2. swap ma mb tr is an Onion Routing trace
Next predicate nonceDisjUntil ma tr says that nonces of ma are disjoint with

any other message occurring in any tr′ such that tr′ is a prefix of trace tr with
length of tr′ ≤ i.

definition nonceDisjUntil::"msg ⇒ trace ⇒ nat⇒ bool"

where "nonceDisjUntil ma tr i ≡ ∀ tr’.

(length tr’ ≤i∧ tr’∈ tails tr −→nonceDisj ma tr’)"

For a trace tr ∈ oneOnionSession i M and an event Says A M m occurring
tr, we have nonceDisjUntil m tr.

Lemma 26. [[tr ∈ oneOnionSession i M ; Says A M m ∈ set tr]]=⇒nonceDisjUntil m tr

The following predicate isRouterRecvMsg m M specifies that m is a message sent
to the router M . In the context of this subsection, when we mention ma and mb
(see lemmas below), we always mean ma(mb) satisfies isRouterRecvMsg ma(mb) M .

definition isRouterRecvMsg:: "msg ⇒agent⇒ bool"

where "isRouterRecvMsg m M≡
(∃ n0 n Y.Y 6=M ∧
m= (Crypt (pubEK M) {|Nonce n0,Agent Y,Crypt (pubEK Y) (Nonce n)|})) ∨
(∃ n. m=(Crypt (pubEK M) (Nonce n)))"

The next predicate bothContained specifies that both ma and mb are con-
tained in the messages of tr if the length of tr ≥ i.
definition bothContained::"trace ⇒ msg ⇒ msg ⇒ nat ⇒ agent ⇒ bool"

where "bothContained tr ma mb i M ≡
length tr ≥ i −→
((∃ X . Says X M ma ∈ set tr) ∧ (∃ X. Says X M mb ∈ set tr))"

Next lemma specifies an invariant on a trace tr in oneOnionSession i M , if
both ma and mb are messages sent to the router M , nonces of ma and mb are
disjoint, nonces of ma(mb) are disjoint with those any other message in any
prefix tr′ of tr whose length is less than or equal to i, both ma and mb are
contained in the messages of tr is the length of tr ≥ i, then swap ma mb TR is
also a trace in oneOnionSession i M .

Lemma 27. [[tr ∈ oneOnionSession i M ; ((noncesOf ma)∩(noncesOf mb) = ∅);
nonceDisjUntil ma tr i; nonceDisjUntil mb tr i; bothContained tr ma mb i M ;
isRouterRecvMsg ma M ;isRouterRecvMsg mb M]] =⇒
(swap ma mb tr ∈ oneOnionSession i M)

22

Lemma 27 is rather complex, we must consider three cases: (1) neither ma nor
mb occurs in trace tr; (2) only one message ma(mb) occurs in tr, while the
other message mb(ma) does not occur in tr; (3) both ma and mb occur in tr.
Lemma 27 specifies an invariance which holds in each one of the above three
cases. Based on Lemma 26 and Lemma 27, we can conclude an important result:
for a trace tr ∈ oneOnionSession i M , both ma and mb are sent to the router
M by some agents in tr, then swap ma mb tr is still in oneOnionSession i M .
The proof is by induction on tr, and heavily rely on parts of the Lemma 25.

Theorem 28. [[tr ∈ oneOnionSession i M ;Says A M ma ∈ tr;Says B M mb ∈
tr]] =⇒ swap ma mb tr ∈ oneOnionSession i M

Proof. From the premises that Says A M ma ∈ tr and Says B M mb ∈ tr, it
is trivial to prove that the predicate bothContained tr ma mb i M. We have that
they are both messages sent to the router M . Thus the messages ma and mb
satisfy that isRouterRecvMsg ma M and isRouterRecvMsg mb M. By Lemma 26,
we have nonceDisjUntil ma tr i and nonceDisjUntil mb tr i. By Lemma 27, we
conclude that swap ma mb tr ∈ oneOnionSession i M.

8.4.3. Alignment properties
By Lemma 22, we can show that the relation, composed of two messages

sequences of message parts of tr and swap ma mb tr, is single valued.

Lemma 29. [[tr ∈ (oneOnionSession i M);
r = set (zip (map msgPart tr)(map msgPart (swap ma mb tr)))]]
=⇒ single valued r

Let r = set (zip (map msgPart tr)(map msgPart (swap ma mb tr))), Kn =
synth (analz (knows Spy tr));, after applying analyzing operations pairwise on
tr, we obtain a relation analz pairs tr Kn. Based on Lemma 29, we show
analz pairs r Kn is single valued.

Lemma 30. [[r = set (zip (map msgPart tr)(map msgPart (swap ma mb tr));
Kn = synth (analz (knows Spy tr)); r′ = analz pairs r Kn;
M /∈ bad; tr ∈ oneOnionSession i M ;
Says A M ma ∈ set tr;Says B M mb ∈ set tr;
(m,m′) ∈ r′; (m,m′′) ∈ r′]]
=⇒ m′ = m′′

From Lemma 30, we derive a sufficient condition, which is depicted in Lemma
9, in order to prove that synth pairs (analz pairs r Kn) is single valued.

Lemma 31. [[r = set (zip (map msgPart tr)(map msgPart (swap ma mb tr));
Kn = synth (analz (knows Spy tr)); r′ = analz pairs r Kn;
M /∈ bad; tr ∈ oneOnionSession i M ;
nonLeakMsg ma M ;nonLeakMsg mb M ;
Says A M ma ∈ set tr;Says B M mb ∈ set tr;
(m,m′) ∈ r′; (m,m′′) ∈ synth pairs r′ Kn]]
=⇒ m′ = m′′

23

Notice that two conditions nonLeakMsg ma M and nonLeakMsg mbM must
be added in Lemma 31. Without the two conditions, ma(or mb) can be synthe-
sized from some Nonce n if ma = {|Nonce n, Agent Spy, {|Nonce n|}pubK Spy|}pubK M .
Thus both (ma,ma) and (ma,mb) occur in synth pairs r′ Kn. From Lemma 30,
by Lemma 9, we can conclude that synth pairs (analz pairs r Kn) is single valued.

Lemma 32. [[r = set (zip (map msgPart tr)(map msgPart (swap ma mb tr));
Kn = synth (analz (knows Spy tr)); r′ = analz pairs r Kn;
nonLeakMsg ma M ;nonLeakMsg mbM ;
M /∈ bad; tr ∈ oneOnionSession i M ;
Says A M ma ∈ set tr;Says B M mb ∈ set tr;
(m,m′) ∈ synth pairs r′ Kn; (m,m′′) ∈ synth pairs r′ Kn]]
=⇒ m′ = m′′

Because the corresponding relation between tr and swap ma mb tr can guar-
antee that r = r−1, and the reflexivity can be kept by the analz pairs and
synth pairs operators, then (synth pairs r′ Kn)−1 is also single valued.

Lemma 33. [[r = set (zip (map msgPart tr)(map msgPart (swap ma mb tr));
Kn = synth (analz (knows Spy tr)); r′ = analz pairs r Kn;
nonLeakMsg ma M ;nonLeakMsg mbM ;
M /∈ bad; tr ∈ oneOnionSession i M ;
Says A M ma ∈ set tr;Says B M mb ∈ set tr;
(m,m′) ∈ (synth pairs r′ Kn)−1; (m,m′′) ∈ (synth pairs r′ Kn)−1]]
=⇒ m′ = m′′

8.4.4. Observation equivalence between tr and swap ma mb tr

Let r = zip (map msgPart tr) (map msgPart (swap ma mb tr) and Kn =
synth (analz ((knows Spy tr)). For a pair (ma,mb) ∈ r, ma and mb are obser-
vation equivalent to each other w.r.t.t knowledge Kn.

Lemma 34. [[tr ∈ oneOnionSession i M ;Says A M ma ∈ set tr;
Says B M mb ∈ set tr; A /∈ bad; B /∈ bad; M /∈ bad;
ma = Crypt (pubEK M) {|Nonce na0,Agent Y,Crypt (pubEK Y) (Nonce na)|};
nonLeakMsg ma M ;nonLeakMsg mb M]]
=⇒ msgEq (synth (analz ((knows Spy tr))) ma mb

Notice that conditions nonLeakMsg ma M and nonLeakMsg mb M guarantee
the correctness of na0 and some nonce part of mb, which in turn guarantees the
observational equivalence between ma and mb.

Next we show that (swap ma mb tr)) is observational equivalent to tr for a
spy if tr satisfies some constraints.

If ma = {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M , ma is sent to the
router M by an honest agent A, and mb is also sent to the router M by an
honest agent B, then tr is observationally equivalent to swap ma mb tr in the
view of the Spy.

24

Lemma 35. [[tr ∈ oneOnionSession i M ;
ma = {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M ;
Says A M ma ∈ set tr;Says B M mb ∈ set tr;
A /∈ bad;M /∈ bad;B /∈ bad;
nonLeakMsg ma M ;nonLeakMsg mb M]]
=⇒ obsEquiv Spy tr (swap ma mb tr)

Proof. By the definition of view, we can have (a) view Spy tr = tr from
trinoneOnionSession i M . Unfolding the definition of obsEquiv, by part 3 in
Lemma 25, we can prove (b) length (swap ma mb tr) = length tr; by part 2 in
Lemma 25, we also have (c) sendRecvMatchL tr (swap ma mb tr; by part 11 in
Lemma 25, we have (d) set (map msgPart tr) = set ((map msgPart (swap ma mb tr))).
Let r = (zip (map msgPart tr) (map msgPart (swap ma mb tr))) and Kn =
synth (analz (knows Spy tr)), we need to prove (e)∀ m m′.(m,m′) ∈ r −→
msgEq Kn m m′. We only need to fix two messages m1 and m2 such that
(m1,m2) ∈ set r, then prove that msgEq Kn m1 m2. By Lemma 1, we
have either (1) m1 = m2, (2)m1 = ma and m2 = mb, or (3) m1 = mb
and m2 = ma. For the first case, by Lemma 3, we have msgEq Kn m1 m2;
for case (2) and (3), they can be directly proved by Lemma 34. Let r′ =
synth pairs(analz pairs r Kn), by Lemma 32 and 33, we have (f) single valued r′

and single valued (r′)−1.
From (a)(b)(c)(d)(e)(f), we conclude obsEquiv Spy tr (swap ma mb tr).

8.5. Proving anonymity properties
Let us give two preliminary definitions: the senders in a trace is defined as

senders tr M ≡ {A.∃m.Says A M m ∈ set tr}, and a predicate nonLeakTrace tr M ≡
∀A n0 n Y.Says A M m ∈ set tr −→ A /∈ bad −→ nonLeakMsg m tr specify-
ing that tr is a trace where each honest agent sends a message which satisfies
nonLeakMsg m tr.

Message ma′ is forwarded to B by the router M , and is originated by some
honest agent, and the trace satisfies nonLeakMsg m tr, then Spy cannot be sure
of the honest agent who originates ma′ if Spy is an observer. Namely, the sender
anonymity holds for the intruder w.r.t. the honest agents who send messages
to M in the session modeled by tr.

Theorem 36. [[tr ∈ oneOnionSession i M ; ma′ = {|Nonce n|}pubK Y ;
Says M B ma′ ∈ set tr; regularOrig ma′ tr; M /∈ bad; nonLeakTrace tr M]]
=⇒ senderAnomity (senders tr M − bad) Spy ma′ tr (oneOnionSession i M),

Proof. By unfolding the definition of the predicate senderAnomity, for any
agent X ∈ (senders tr M − bad), fix an agent X, we need to construct a
trace tr′ such that tr′ ∈ oneOnionSession i M and obsEquiv Spy tr tr′ and
originates X ma tr′. From Says M B ma′ ∈ set tr, by Lemma 17, there exists
A and n0, such that Says A M {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M ∈
set tr. By Lemma 18, we have originates A ma′ tr. Obviously, by the fact
regularOrig ma′ tr, we have A /∈ bad. From the fact X ∈ (senders tr M − bad),

25

by the definition of senders, there exists an event Says X M mb ∈ set tr,
X 6= M , X /∈ bad. Let ma = {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M . By
nonLeakTrace tr M n, we have both nonLeakMsg ma M and nonLeakMsg mb M .
Let tr′ = swap ma mb tr, by Lemma 35, we have obsEquiv Spy tr (swap ma mb tr).
By Lemma 28, we have swap ma mb tr ∈ oneOnionSession i M . From the fact
Says X M mb ∈ set tr, by part 6 in Lemma 25, we have Says X M ma ∈
swap ma mb tr. By Lemma 18, we have originates X ma′ (swap ma mb tr).

The last result is about the linkability of a sender A and a peeled onion ma.
Suppose that an honest agent A sends a message m to the router M , and an
agent B receives a message ma from M , the intruder cannot link the message
ma’ with the agent A provided that there exists at least one agent X who is
not A and sends a message to M .

Theorem 37. [[tr ∈ oneOnionSession i M ; ma′ = {|Nonce n|}pubK Y ;
Says M B ma′ ∈ set tr; regularOrig ma′ tr;
Says A M m′ ∈ set tr;A /∈ bad;M /∈ bad;
∃X, mx.Says X M mx ∈ set tr ∧X 6= A ∧X /∈ bad; nonLeakTrace tr M]]
=⇒ let AS= senders tr M − bad in
unlinkability AS A m tr (oneOnionSession i M)

Proof. Let runs = oneOnionSession i M , AS= senders tr M − bad. By un-
folding the definition of the predicate unlinkability, we only need to prove that (1)
tr ² 3Spy runs (¬originates A ma′ tr) and (2)senderAnomity AS Spy ma′ tr runs.
Here (1) is our main goal, and (2) is proved in Lemma 36.

From the premise, there exist X and mx such that Says X M mx ∈ set tr,
X 6= A, and X /∈ bad. From Says M B ma′ ∈ set tr, by Lemma 17, there exists
a message m, an agent A′, a nonce n0, such that ma has the form of

Says A′ M {|Nonce n0,Agent Y, {|Nonce n|}pubK Y |}pubK M ∈ set tr.

Obviously, by the fact regularOrig ma′ tr, we have A′ /∈ bad.In order to prove
(1), by unfolding the definition of the diamond operator, we only need construct
a trace tr′ such that obsEquiv Spy tr tr′ and ¬ originates A ma′ tr. Here we
do case analysis on A′.

If A′ 6= A, then (1) can be proved immediately. Obviously obsEquiv Spy tr tr,
tr ∈ oneOnionSession i M . By Lemma 20, we have ¬originates A ma′ tr. Oth-
erwise, from A′ = A, we have X 6= A′. let tr′ = swap ma mx tr, by Lemma 35,
we have obsEquiv Spy tr tr′. By Lemma 28, we have tr′ ∈ oneOnionSession i M .
From Says X M mx ∈ set tr and Says A M ma ∈ set tr, by Lemma 6, we
have Says X M ma ∈ set tr′ and Says A M mx ∈ set tr′. From X 6= A, by
Lemma 20, immediately we have ¬originates A ma′ tr′.

8.6. A weakness of the protocol
Here, we show a weakness of the onion routing protocol, which is hinted by

the premise cond tr M n. Namely, without this condition, the sender anonymity
and unlinkability may not hold. For example, consider the session shown in

26

Fig. 1, the trace tr in (1) is not observationally equivalent to that in (2) when
C = D = Spy, na = na′, nb = nb′, and na 6= nb. Because after the router
M forwards messages {|Nonce na|}pubK Spy and {|Nonce nb|}pubK Spy, the Spy can
analyse na and nb respectively, and distinguish the two nonces, then he can
distinguish the two messages {|Nonce na,Agent Spy, {|Nonce na|}pubK Spy|}pubK M

and {|Nonce nb, Agent Spy, {|Nonce nb|}pubK Spy|}pubK M at last.

9. Conclusion and Future Work

We have formalized the notion of provable anonymity in the theorem prover
Isabelle/HOL. We propose an inductive definition of message distinguishability
based on the observer’s knowledge, then define message equivalence as the nega-
tion of message distinguishability. Next, we define observational equivalence of
two traces using the message equivalence, and define the semantics of anonymity
properties in an epistemic logical framework. In the end, we inductively formal-
ize the semantics of Crowds and Onion Routing, and formally prove anonymity
properties for the protocols in our formal framework, i.e., sender anonymity for
Crowds, sender anonymity and unlikability for Onion Routing.

When we prove that anonymity properties, e.g., sender anonymity, hold for
a trace under consideration, we need to consider the existence of another trace
which is observationally equivalent to the given trace, but differs, for example,
in the sender of some message. This is the essence of information hiding on
the senders or the linkage between a message and its sender, which makes the
analysis of anonymity different from analysis on secrecy and authentication. For
secrecy and authentication, normally the focus is on individual traces. However,
the observer decides whether two traces are observationally equivalent according
to his knowledge obtained in two traces, which usually boils down to the secrecy
of some terms. Therefore, the induction proof method used in the analysis of
secrecy properties can still be applied here.

In future, we plan to apply our framework to more case studies. We would
like to check whether our framework can be easily generalized to model other
different kinds of privacy and information hiding properties and to model pro-
tocols that allow more cryptographic primitives. Theoretically, we believe the
inductive approach proposed in this paper can be extended because only addi-
tional induction rules are required. In particular, it is interesting for us to find
out whether the method of constructing an observationally equivalent trace us-
ing the swap function is generally applicable. In the literature, simulation-based
proof techniques similar to the our swap function have been proposed [17, 18].
Trace anonymity [27] is formalized using I/O automaton and the Larch prover
is employed for check trace anonymity [17]. An anonymous fair exchange e-
commerce protocol that is claimed to satisfy customer’s anonymity is analyzed
using the OTS/CafeOBJ method [18] following the approach proposed in [17].
However, both approaches only consider a weaker intruder, which does not have
the same ability to distinguish messages as we presented in this paper.

27

References

[1] A. Baskar, R. Ramanujam, and S. P. Suresh. Knowledge-based modelling
of voting protocols. In Proc. 11th Conference on Theoretical Aspects of
Rationality and Knowledge, pages 62–71. ACM, 2007.

[2] M. Bhargava and C. Palamidessi. Probabilistic anonymity. In Proc. 16th
Conference on Concurrency Theory, volume 3653 of LNCS, pages 171–185.
Springer, 2005.

[3] D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[4] T. Chothia. Analysing the mute anonymous file-sharing system using the
pi-calculus. In Proc. 26th Conference on Formal Methods for Networked
and Distributed Systems, volume 4229 of LNCS, pages 115–130, 2006.

[5] T. Chothia, S. M. Orzan, J. Pang, and M. Torabi Dashti. A framework for
automatically checking anonymity with µCRL. In Proc. 2nd Symposium
on Trustworthy Global Computing, volume 4661 of LNCS, pages 301–318.
Springer, 2007.

[6] S. Delaune, S. Kremer, and M. D. Ryan. Verifying privacy-type properties
of electronic voting protocols. Journal of Computer Security, 17(4):435–
487, 2009.

[7] Y. Deng, C. Palamidessi, and J. Pang. Weak probabilistic anonymity.
In Proc. 3rd Workshop on Security Issues in Concurrency, volume 180 of
ENTCS, pages 55–76, 2007.

[8] R. Dingledine, N. Mathewson, and P. F. Syverson. Tor: The second-
generation onion router. In Proc. 13th USENIX Security Symposium, pages
303–320, 2004.

[9] D. Dolev and A. C.-C. Yao. On the security of public key protocols. IEEE
Transactions on Information Theory, 29(2):198–207, 1983.

[10] N. Dong, H. L. Jonker, and J. Pang. Formal analysis of privacy in an
eHealth protocol. In Proc. 17th European Symposium on Research in Com-
puter Security, volume 7459 of LNCS, pages 325–342. Springer, 2012.

[11] F. D. Garcia, I. Hasuo, W. Pieters, and P. van Rossum. Provable
anonymity. In Proc. 3rd Workshop on Formal Methods in Security En-
gineering, pages 63–72. ACM, 2005.

[12] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. Hiding routing infor-
mation. In Proc. 1st Workshop on Information Hiding, LNCS 1174, pages
137–150. Springer, 1996.

[13] J. Y. Halpern and K. R. O’Neill. Anonymity and information hiding in
multiagent systems. Journal of Computer Security, 13(3):483–514, 2005.

28

[14] D. Hughes and V. Shmatikov. Information hiding, anonymity and privacy:
A modular approach. Journal of Computer Security, 12(1):3–36, 2004.

[15] H. L. Jonker and E. P. de Vink. Formalising receipt-freeness. In Proc. 9th
Conference on Information Security, volume 4176 of LNCS, pages 476–488.
Springer, 2006.

[16] H. L. Jonker, S. Mauw, and J. Pang. A formal framework for quantifying
voter-controlled privacy. Journal of Algorithms in Cognition, Informatics
and Logic, 64(2-3):89–105, 2009.

[17] Y. Kawabe, K. Mano, H. Sakurada, and Y. Tsukada. Theorem-proving
anonymity of infinite state systems. Information Processing Letters,
101(1):46–51, 2007.

[18] W. Kong, K. Ogata, J. Cheng, and K. Futatsugi. Trace anonymity in the
OTS/CafeOBJ method. In Proc. 8th IEEE International Conference on
Computer and Information Technology, pages 754–759. IEEE, 2008.

[19] S. Kremer and M. Ryan. Analysis of an electronic voting protocol in the
applied pi-calculus. In Proc. 14th European Symposium on Programming,
volume 3444 of LNCS, pages 186–200. Springer, 2005.

[20] Y. Li and J. Pang. An inductive approach to provable anonymity. In Proc.
6th Conference on Availability, Reliability and Security, pages 454–459.
IEEE Computer Society, 2011.

[21] L. Luo, X. Cai, J. Pang, and Y. Deng. Analyzing an electronic cash protocol
using applied pi-calculus. In Proc. 5th Conference on Applied Cryptography
and Network Security, volume 4521 of LNCS, pages 87–103. Springer, 2007.

[22] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL - A Proof Assis-
tant for Higher-Order Logic, volume 2283 of LNCS. Springer, 2002.

[23] J. Pang and C. Zhang. How to work with honest but curious judges? (pre-
liminary report). In Proc. 7th Workshop on Security Issues in Concurrency,
volume 7 of EPTCS, pages 31–45, 2009.

[24] L. C. Paulson. The inductive approach to verifying cryptographic protocols.
Journal of Computer Security, 6(1-2):85–128, 1998.

[25] A. Pfitzmann and M. Hansen. A terminology for talking about privacy by
data minimization: Anonymity, unlinkability, undetectability, unobserv-
ability, pseudonymity, and identity management, April 2010.

[26] M. K. Reiter and A. D. Rubin. Crowds: anonymity for web transactions.
ACM Transactions on Information and System Security, 1(1):66–92, 1998.

[27] S. Schneider and A. Sidiropoulos. CSP and anonymity. In Proc. 4th Euro-
pean Symposium on Research in Computer Security, volume 1146 of LNCS,
pages 198–218. Springer, 1996.

29

[28] V. Shmatikov. Probabilistic model checking of an anonymity system. Jour-
nal of Computer Security, 12(3/4):355–377, 2004.

[29] P. F. Syverson, D. M. Goldschlag, and M. G. Reed. Anonymous connections
and onion routing. In Proc. 18th IEEE Symposium on Security and Privacy,
pages 44–54. IEEE, 1997.

[30] L. Yan, K. Sere, X. Zhou, and J. Pang. Towards an integrated architecture
for peer-to-peer and ad hoc overlay network applications. In Proc. 10th
Workshop on Future Trends in Distributed Computing Systems, pages 312–
318. IEEE Computer Society, 2004.

Appendix

In the appendix, we briefly present some Isabelle concepts, notations and
commands, and our notation conventions for variables in our work.

Isabelle’s meta-logic is the intuitionistic fragment of Church’s theory of sim-
ple types, which can be used to formalize an object-logic which we need [22].
Normally, we use rich infrastructure of the object-logics such as HOL to for-
malize some theory, which has been provided by Isabelle system. Important
connectives of the meta-logic are as follows: implication (=⇒) is for separating
premises and conclusion of theorems; equality (≡) definitions; universal quan-
tifier (

∧
) parameters in goals. In our work, we use the object-logic HOL to

formalize the anonymity theory. Therefore, we briefly show how to use HOL to
formalize a theory.

Theories. Working with Isabelle means creating theories. A theory is a file
with a named collection of types, functions, and theorems, proofs. The general
format of a theory T is as follows:

theory T = B1 + B2 + . . . + Bn;
declarations for types, definitions, lemmas, and proofs
end

where B1, B2, . . . , Bn are are the names of existing theories that T is based on.
In our case, we only need to import HOL library Main to create our theory
anonymity.thy.

Types. There are basic types such as bool, the type of truth values; nat, the type
of natural numbers. Function types are denoted by ⇒, and product types by
×. Types can also be constructed by type constructors such as list and set. For
instance, nat list declares the type of lists whose members are natural numbers.

30

Terms. Forms of terms used in this paper are rather simple. It is simply a
constant or variable identifier, or a function application such as f t, where f
is a function of type τ1 ⇒ τ2, and t is a term of type τ1. Formulas are terms
of type bool. bool has two basic constants True and False and the usual logical
connectives (in decreasing order of priority): ¬, ∧, ∨, −→, ∀, and ∃, all of which
(except the unary ¬) associate to the right. Note that the logical connectives
introduced here are used in the object-logic HOL.

Introducing new types. There are three kinds of commands for introducing new
types. typedecl name introduces new “opaque” type name without definition;
types name = τ introduces an abbreviation name for type τ . datatype command
can introduce a recursive data type. A general datatype definition is of the form

datatype (α1, . . . , αn) = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

where αi are distinct type variables (the parameters), Ci are distinct constructor
names and τij are types. Note that n can be 0, i.e., there is no type parameters
in datatype declaration.

Definition commands. consts command declares a function’s name and type.
defs gives the definition of a declared function. constdefs combines the effect of
consts and defs. Combining a consts and inductive commands, we can give an
inductive definition for a set. An inductively defined set S is typically of the
following form:

consts S :: τset inductive S intros
rule1 : [[a11 ∈ S; . . . ; a1k1 ∈ S;A11, . . . , A1i1]] =⇒ a1 ∈ S
...
rulen : [[an1 ∈ S; . . . ; ankn

∈ S;An1, . . . , Anin
]] =⇒ an ∈ S

Lemmas. In Isabelle’s traditional style, we use the notation lemma name :
[[A1;A2; . . . ;An]] =⇒ B to donote that with assumptions A1, . . . , An, we can
derive a conclusion B. In Isar’s style, a lemma is written as lemma name :
assumes a1 : “A1” and . . . and an : “An” shows B.

Notation conventions. Throughout this paper, we use the conventions for meta-
variables as follows:

i, j range over natural numbers for lengths of traces
m, m′, x, y range over messages

n, n′, n1, n2 ranges over nonces
r, r′ ranges over sets of message pairs

A, B, M , X, Y , R range over agent names
k, k1, k2 range over keys

ev, ev1, ev2 range over events
tr, tr1, tr2 range over traces

G, H, Kn, Know range over message sets

31

