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Abstract

This paper presents a formal symbolic trajectory evaluation theory based on a
structural netlist circuit model, instead of an abstract next state function. We
introduce an inductive definition for netlists, which gives an accurate and formal
definition for netlist structures. A closure state function of netlists is formally
introduced in terms of the formal netlist model. We refine the definition of
defining trajectory and the STE implementation to deal with the closure state
function. The close correspondence between netlist structures and properties is
discussed. We present a set of novel algebraic laws to characterize the relation
between structures and properties of netlists. Finally, the application of the
new laws is demonstrated by parameterized verification of properties of content
addressable memories.

1. Introduction

Symbolic trajectory evaluation (STE) is an efficient formal hardware verifi-
cation method that has grown from the combination of multi-valued simulation
and symbolic simulation [1]. It has shown great promise in verifying medium
to large scale industrial hardware designs with a higher degree of automation.
STE has been in active use in Intel, Motorola, and IBM. In Intel, for instance,
STE was used to verify a floating point arithmetic unit against IEEE standard
754 and a complex IA instruction length decoder unit [2, 3]. In addition, the
FORTE formal hardware verification tool, which combines STE and theorem
proving in a higher-order logic, has been developed at Intel[4].

In the classical STE literature, a circuit is a set of logical gates and storage
element connected by nodes (wires). A state of the circuit is a function from
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its nodes to their values. The behaviors of the circuit is commonly modelled
by some abstract next-state function, usually written Y [1, 5]. Given a state of
the nodes at the current time, the Y function returns the states of the nodes at
the next time. For convenience, we informally call these classical semantics Y-
semantics. However, this work does not formally explain how a corresponding Y
function is derived from a netlist structure. Besides, a next-state function only
expresses a relation between nodes in successive points in time, while ignoring
the relation between nodes in the circuit at the same time point. Therefore, a
semantics based on next-state functions cannot deal with assertions that express
a relation between circuit nodes at the same time point.

Figure 1: A netlist example

For instance, consider the 2-bit comparator circuit drawn by Quartus II [6] in
Figure. 1. The circuit consists of two XNOR-gates and an AND-gate. Provided
that the delay time of all the gates is zero, and input primitives a0, b0, a1, b1 of
the circuit are driven by new values 0, 0, 1, 1, then nodes c0, c1, out should be
1, 1, 1 immediately, not at the next time. Because the above change on values of
nodes is finished at the current time, it is very cumbersome for a Y-semantics
to cover such information calculation because it only depicts state transition
between successive time points.

Recently Roorda and Claessen clarify the semantics of STE model checking
by providing closure semantics [7, 8]. The closure semantics of STE takes as
an input a state of the circuit, and calculates all information about the circuit
state at the same point in time that can be derived by propagating the infor-
mation in the input state in a forwards fashion. Subsequently, the definition
of defining trajectory and the STE implementation are refined to deal with the
closure functions rather than the next-state function. However, they did not
formally define the structure of netlist. Their definition is just a sketchy prop-
erty description of a circuit, that is, there is neither a cycle in the combinational
part nor name conflict between two output nodes of two gates in the circuit.
However it does not tell us how the circuit is constructed. From such definition,
it is very difficult to naturally formalize the closure function of a circuit as a
form of primitive recursive function or a total recursive function. In addition,
many interesting properties of circuits are closely related with its structures.
For example, the output node of an AND-gate will be set low if one of its input
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nodes is driven by a low value. A good netlist formalization is a base on which
we can conveniently explore these interesting properties. To sum up, a formal-
ization of netlist structures is the base of the STE theory framework which has
a netlist computational model.

1.1. Our Contribution
The main contributions of this paper are twofold. The first one is to continue

to develop a formal STE theory based on a netlist computation model. Our
work gives a more formal closure semantics which faithfully explains how STE
model checker (or symbolic simulator) work. Here we not only formally explain
how a next-state function Y is derived from a netlist structure, but also deal
with combinational properties. This semantics has netlist as a solid background,
therefore makes STE easier to be understood formally.

• We introduce an inductive definition for netlists. It not only provides us
an accurate and constructive formulation for a netlist, but also introduces
an effective and rigorous technique of rule induction to prove properties
of netlists. In particular, we use the induction principle on the structures
of netlists to formally prove that the output of a logical entity in a netlist
is uniquely defined.

• We formally define the closure semantics of netlists based on the formal
netlist model. The simulation result of a netlist in a driven state is defined
as a relation between nodes and values. The relation is formally proved to
be single-valued, and naturally used to derive the closure function of the
netlist on driven states.

• We refine the definition of defining trajectory and the STE implementation
to deal with the newly introduced closure functions.

• We introduce symmetry between netlist structures in our formal netlist
model, and relate it with symmetry between STE assertions. We prove
the close correspondence between the two kinds of symmetry. This result
resembles a similar symmetric reduction methodology shown in [9].

• We show a set of algebraic laws which relates a netlist structure with its
properties. These laws can be seen as an algebraic semantics for STE, and
used to verify interesting STE trajectory assertions on circuit netlists.

The second contribution is to formalize the STE theory in a theorem prover,
with the hope that the theoretical improvement can make it feasible to mech-
anize the fundamental STE theory based on a netlist circuit model. By using
a theorem prover to formalize the meta-theory of STE, we hope to raise the
standard of rigor of, and hence our confidence in STE. We formalize our theory
in Isabelle/HOL, an instantiation of generic theorem prover Isabelle/HOL to
higher-order logic [10]. The formalized theories in Isabelle/HOL are available in
[11]. Isabelle/HOL is appropriate because of its support for inductively defined
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sets and its automatic tools. However, the fact that we used Isabelle is not es-
pecially relevant for the topic, and the formalization proposal in this work can
also be implemented by other higher-order theorem provers such as PVS and
COQ.

1.2. Related Work
Besides the inheritance from the proposal of closure semantics in [7, 8], our

work is also closely with [12, 13, 14, 15, 16]. Works in [12, 13, 14] have demon-
strated that higher-order logic is well suited for modelling and reasoning about
hardware, so we decide to use higher-order logic to formalize the STE theory.
The work in [15] outlined the theoretical foundation for linking the general logic
of STE with higher order logic. The main result is a formal translation from
trajectory evaluation’s temporal operators over lattices to a shallow embedding
of the temporal operators over Boolean streams. Any result verified by the
trajectory evaluation algorithm will hold in the relational world. In [16], Dar-
bari did the machine based formalization in HOL for a theory whose details
were described in [3], and he extended the work by proving the soundness of a
symmetry reduction method in his framework [17]. The above work provides
a formal framework to formalize the lattice value, the syntax and the seman-
tics of trajectory formulas. These formalizing techniques are still used in our
work. But all of this work formalizes a kind of Y-semantics in which a circuit
is modelled by an abstract next-state function Y.

In [18, 19, 20, 21, 22], functional program languages have been advocated for
hardware verification. Especially, useful insights of using inductive data types
to formally describe circuit structures are provided in the work on µfp [18], Hy-
dra [19, 20], Lava [21]. Other important features of a functional programming
language such as Haskell: monads, type classes, polymorphism, and higher or-
der functions are employed to model, verify, and implement a circuit in these
work. However, combinational cycles and name conflicting between different
entries should be eliminated in a legal netlist structure, it may be not very easy
to directly use an inductive data type to formalize the two legal requirements.
Instead, we use an inductively defined set to model all legal netlists. The cor-
responding induction rules formally specifies the legal requirement when a legal
netlist is constructed.

Our formalization technique on the closure semantics is inspired by the work
by Nipkow and Paulson in [23],[24]. Nipkow proposed an induction approach
to formalize the first 100 pages of Winskel’s textbook [25], which covers the
operational and denotational and axiomatic semantics of an imperative language
called IMP. For instance, the natural semantics of IMP is inductively defined
by a set of configurations each of which is a triple. We borrow the induction
principle to formally specify the closure semantics of a netlist. Namely, we define
the simulation result of a netlist by a relation which is also an inductively defined
set of pairs between nodes and values. Furthermore, we use the technique
proposed in [24] to define the unique closure function in such a relation, and
prove that the corresponding function is well-defined because the closure relation
is single-valued.
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In the classical literature of STE, some laws have already been introduced
to decompose a complex STE assertion [1, 17]. However, these laws usually
hold for any circuit and can’t relate properties of a circuit with their special
structure due to the lack of a formalization on circuit structures. Different from
their work, a set of novel laws are introduced to formally explore the special
structures of a circuit in our formal netlist model. To the best of our knowledge,
these laws has never been discussed in previous STE work.

Darbari proposed a symmetry reduction method for STE model checking
using a structured model [17]. Our symmetry reduction method is deeply in-
spired by his work. However, he used Y–semantics, and avoided discussing
symmetry between netlist structures directly. He proposed a higher-level design
language which allows to record symmetry of a circuit, and make a connection
to the theory of STE logic. This connection is made by giving functions that
derive a next-state function from the structured models and proving lemmas
that guarantee that if the structured models have symmetry, then the corre-
sponding derived next-state function will have symmetry as well. In our theory,
the high-level modeling langauge, and the connection is not needed, we directly
discuss symmetry between netlist structures in our formal netlist model, and
relate it with symmetry between STE properties. Here our motivation is to
provide a symmetry reduction method when we face a netlist model which is
directly compiled from a popular hardware language such as Verilog and VHDL
which still does not support a type system to record symmetry in a design.

1.3. Presentation of the paper
As mentioned before, our work involves both developments on the STE the-

ory itself and the formalization of the theory in a theorem prover in order to
provide mechanical support for the new STE theory. Because formalization is
one of our main objectives in this paper and our implementation is tailored to
Isabelle/HOL, we directly use parts of our Isabelle’s theories to introduce def-
initions and lemmas to convey the main idea of the formalization. In order to
make the formalized theories readable for the readers who are not familiar with
Isabelle, we also try to give a detailed text account for the formalized theories
by using usual mathematical notations. Thus our work is interesting not only
for the Isabelle/HOL users, but also for those who either are interested in STE
theory or in theorem proving work by using other higher-order theorem provers
such as HOL.

Isabelle/HOL has a polymorphic type system as in ML [26]. Type inference
eliminates the need to specify types in expressions. Lemmas about lists, sets,
etc., are polymorphic, and the prover uses the appropriate types automatically.
Besides, a function in Isabelle/HOL syntax is usually defined in a curried form
instead of a tupled form, that is, we often use the notation f x y to stand
for f(x, y). The advantage of a curried function is to allow a partial function
application [26]. We use the notation [[A1;A2; ...;An]] =⇒ B to mean that
with assumptions A1, . . . , An, we can derive a conclusion B. For a pair (a, b),
fst(a, b) ≡ a and snd(a, b) ≡ b. We write x#xs for the list that extends xs with
x, [x1, ..xn] for a list x1#..xn#[], xs@ys for the result list by concatenating
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xs with ys, xs!i for the ith element of the list xs (counting from 0 as the first
element), set xs for the set of all the elements in xs, x mem ls for x ∈ (set ls)
and length xs for the length of the list xs. We also need a definite description
THE x.P (x) to denote the x such that P (x) is true, provided that there exists
a unique such x; otherwise, it returns an arbitrary value of the expected type.

In the appendix, we provide detail introduction for Isabelle/HOL notations
which formalize the concepts in the paper.

1.4. Structure of the Paper
The remainder of this paper is organized as follows: Section 2 formalizes pre-

liminary definitions on the four-valued lattice. Section 3 introduces the structure
of a netlist and its formal model. Section 4 formalizes the syntax and seman-
tics of trajectory formulas. Section 5 formalizes the closure function induced
from a netlist. Section 6 introduces the most fundamental result of STE: the
soundness of using defining trajectories and defining sequence to verify STE
assertions. Section 7 discusses sub-netlists of a netlist. Section 8 explores the
close correspondence between symmetry in circuit structures and symmetry in
circuit properties. Section 9 presents some interesting algebraic laws to explore
the close relation between the structure and properties of a circuit. Section 10
demonstrates how to apply symmetry reduction and these new laws to decom-
pose STE assertions by a case study on CAMs, which is a typical example used
in STE literature. Section 11 concludes the paper.

2. Background

Four values ff, tt, X, and > are used in STE simulation [1]. ff and tt
are standard binary values false and true. The third value X stands for an
unknown value, while the fourth value > a clash value. Formally, we define
V=df {ff, tt,X,>}

It is common to introduce a truth information ordering v on V as follows:
X v ff, X v tt, while ff and tt are incomparable, ff v >, and tt v >. Namely,
the unknown value X contains no truth information; the mutually incomparable
values ff and tt contain sufficient information to determine truth exactly, and
the top value > contains inconsistent truth information. We can easily see that
V with the ordering relation v forms a lattice. We can introduce a join or a
least-upper bound operator t with respect to the ordering v . Its rather routine
to check that a v b if and only if a t b = a. For other operators on the domain
V, there are natural definitions for negation NOT(¬4), conjunction AND(∧4),
disjunction OR(∨4)2, etc. The classic definitions of these operators are shown
in Figure 3.

2Here we use the subcript 4 to distinguish the x-symbols of these operators from their
counterparts in boolean domain.
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Figure 2: STE lattice

a ¬4a
ff tt
tt ff
X X
> >

a b a ∧4 b
ff v3 ff
tt v4 v4

X ff ff
X tt X
X X X
> v4 >
v4 > >

a b a ∨4 b
ff v4 v4

tt v3 tt
X ff X
X tt tt
X X X
> v4 >
v4 > >

Figure 3: Operators over four-valued lattice (v3 ∈ {tt, ff, X}, v4 ∈ {tt, ff, X,> }

In order to define the set of four lattice values V, we use strategy of dual-rail
encoding [15, 16]. Thus, we introduce a type boolPairs, and encode the four
values in V as four constants of type boolPairs.

types boolPairs = bool× bool
> ≡ (False, False) tt ≡ (True, False)
ff ≡ (False, True) X ≡ (True, True)

The least-upper bound operator t and the partial ordering relationv are defined
as follows:

a t b ≡ (fst a ∧ fst b, snd a ∧ snd b)
a v b ≡ a t b = b

Due to limitation of space, more formal definitions of other operators can be
found in [11].

3. Circuit Netlist Formalization

3.1. An informal model of circuit netlists
A circuit is modelled by a netlist, which is a set of nodes connected by

logical entities such as I/O devices, gates and one-phase delays. I/O devices
are pins connected to its environment. For simplicity, only input devices are
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used in this work. Gates describe combinational logics deciding the relationship
between values of nodes. Delays refer to all sequential elements which can
keep ”state”. In real-world VLSI designs, there are different types of sequential
devices, some of which can be more complex than our delay devices in both
structures and behaviors. However, we will see that real-world sequential devices
can be modelled by our simple delay elements in later discussion.

In a netlist description language such as BLIF [27], input pins of a circuit
are defined as follows:

.inputs x y
A gate is specified by a truth table, as shown below:
.names in1 in2 ...out
in1 value1 in2 value1 ...out value1
in1 value2 in2 value2 ...out value2
where in1, in2, ..., are names of the inputs of the gate, out is the name of

its output. The subsequent lines define the on-off sets:: ini valuej is one of 0,
1, or – (don’t care), and out valuei is one 0 or 1.

A truth table encapsulates a programmable logical array (PLA), which is
expanded to AND gates driving an OR gate. So it is natural for us to associate
a truth table with a function on V. For example, the table of the XNOR gate
is corresponding to a function λ a b.a ∧4 b ∨4 ¬4a ∧4 ¬4b. Informally we write
Ftab for the induced function from the table tab.

For instance, a two-input AND gate with inputs a and b and output foo,
and a two-input XNOR gate with the same inputs and output of a netlist could
be defined as follows:

.names a b foo .name a b foo
11 1 00 1

11 1
A latch is defined as follows:
.latch latch input latch output.
where a latch has a data input and an output node. As mentioned before,

our latch is simply a one-phase delay element. The value of node latch output
in the next time is the value of latch input in the current time.

Remark 1. In fact, the definition of a latch in BLIF is more complex than ours.
In BLIF, a latch is defined as the following statement: .latch latch-input

latch-output type control-signal [latch-control-list], where type spec-
ifies whether the latch is edge-sensitive or level-sensitive. Latch control con-
structs specifies the set or reset or enable control signals of the latch. For exam-
ple, .latch in1 out1 re clk as=set ar=reset en=en1 specifies a flip-flop
which is driven at the rising edge of signal clk with an input signal in1, an
output signal out1, an asynchronous reset signal reset and a asynchronous set
signal set. But any type of latch can be modelled by combinational gates and
delay elements. Figure 4 gives an example to show how a rising-edge triggered
flipflop is modelled by delay elements and combinational gates, where an in-
verted triangle stands for a delay element. In Forte, d and d ## stands for
the input and output node of the delay element respectively.
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Figure 4: A rising-edge triggered flipflop

3.2. Formalization of netlists
We first use the type nat as the type of nodes in our theory.
types node=nat
To formally define a truth table, we use an enumerating type LIT to specify

a literal for defining on or off-sets, a type LINE to specify a line of a table, and
PLA to define a table .

datatype LIT= One | Zero | DontCare
types LINE=LIT list
types PLA=LINE list

Input pins and gates and delays are three kinds of logical entities in a circuit,
and are formally defined as follows:

datatype entity = Input node | Gate node ”node list” PLA | Delay node node

Here we assume inp, out are node names, inps is a list of node names, tab is
a table of type PLA. Input inp means that inp is an input pin of a netlist under
study which is an interface between the netlist and its environment. Gate out
inps tab refers to a gate which has out as its output node, and inps as its input
nodes, tab as its truth table. As does the library function get node truth table
in Forte, a PLA in this paper lists clauses for inputs when an output is to go
high only. For example, Gate c1 [a1, b1] [[ONE,ONE]] formally defines an AND
gate. Delay out inp defines a delay which has inp as its input and out as its
output respectively.

For a logical entity g, we define a function fanOut to map g to its output
node, namely, fanOut g ≡ inp, if g = Input inp, or fanOut g ≡ out if g =
Gate out inps tab or g = Delay out inp . Similarly, we also define a function fanIn
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to map g to the list of all its input nodes, that is, fanIn g ≡ [], if g = Input inp, or
fanIn g ≡ inps if g = Gate out inps tab, or fanIn g ≡ [inp] if g = Delay out inp.

Consider a node n, a logical entity set nl, we say isDefinedIn n nl if n is defined
as an output of a logical entity in the nl. More formally, isDefinedIn n nl ≡ l ∈
nl∧ fanOut l = n. The set of all the nodes defined in the nl is denoted by
defAsOuts nl ≡ {n.isDefinedIn n nl} .

Now we come to the a crucial point, the formalization of netlists. Intuitively,
a netlist is simply a set of logical entities connected by nodes, but adding entities
into a netlist should follow some restriction rules to guarantee the legality of the
structure of the netlist. Here we introduce an inductive definition for the set of
all the netlists, as shown below:

consts netlists :: (entity set) set
inductive netlists
intros
nilNetlist :∅ ∈ netlists;
addInput :

[[nl ∈ netlists;¬isDefinedIn n nl]]
=⇒ {Input n} ∪ nl ∈ netlists;

addDelay :
[[nl ∈ netlists;¬isDefinedIn n nl]]
=⇒ {Delay n inp} ∪ nl ∈ netlists;

addGate :
[[nl ∈ netlists;¬isDefinedIn n nl;
∀inpsi. (inpsi mem inps) −→ isDefinedIn inpsi nl;
∀l.(l mem tab) −→ length l = length inps]]
=⇒ {Gate n inps tab } ∪ nl ∈ netlists.

In the above definition, rule nilNetlist specifies an empty netlist. Other
rules specify the order which should be followed to add a logical entity into a
netlist. In the last three rules, the condition ¬isDefinedIn n nl requires that
the output node n of the newly added logical entity should not be an output of
the existing entities in nl. This resolves the name conflicting of output nodes
between two different logical entities in a netlist. In rule addGate, the third con-
dition requires that all the input nodes of the newly added combinational gate
must have been defined in the existing netlist. Combining this condition and
the condition ¬isDefinedIn n nl can eliminate combinational cycle in a netlist.
Unlike rule addGate, addDelay rule allows that the input node of a delay can
be used before the node is defined. Formally, when a component Delay n inp is
added in the rule, inp is a free variable which is only restricted by its type. If
a delay’s output node is in the fanin cone of the delay, then a cycle passes the
delay. Therefore, a cycle is allowed to pass a delay element.

Example 2. Let xnorTab = [[ZERO,ZERO], [ONE,ONE]], xnorG0 = Gate c0

[a0, b0] xnorTab, xnorG1 = Gate c1 [a1, b1] xnorTab, andTab =[[ONE,ONE]],
andG = Gate out [c0, c1] andTab, then the set

nl = {Input a0, Input b0, Input a1, Input b1, xnorG0, xnorG1, andG}
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stands for the netlist shown in Figure 1. In figure 4, let tab1 = [ONE,ZERO],
G1 = Gate sel [clk, clk ## ] tab1, and tab2 = [[ONE,ONE,DontCare], [ZERO,
DontCare,ONE]], G2 = Gate s [sel, d ## , s ## ] tab2, delay1 = Delay d ## d,
delay2 = Delay s ## s, nl2 = {G1, G2, delay1, delay2}, nl2 is also a netlist.

Our netlist model is sound in the sense that for any defined node n in a
netlist, there is an unique logical entity in the netlist whose output node is n.
In Isabelle, unique existence quantifier is denoted by ∃!.
Lemma 3. [[nl ∈netlists; isDefinedIn n nl]] =⇒ ∃!l.l ∈ nl ∧fanOut l = n.

Because of the existence of the one-to-one mapping from a logical entity to its
output node name, formally, we define lookUp nl n ≡ THE g.g ∈ nl∧ fanOut g =
n.

Definition of netlists itself can not guarantee that each node of a netlist is
defined because an input of a delay can be used without being defined. In real
circuit designs, an input of a delay needs to be defined. If each input node of
each logical entity in a netlist is defined as an output of another logical entity,
then we call the netlist closed.

Definition 4. isClosed nl ≡ ∀m n.isDefinedIn m nl −→ n ∈ set (fanins ((lookUp nl
m))) −→ isDefinedIn n nl

Example 5. In Example 2, the netlist nl is closed; nl2 is a netlist, but it is not
closed because nodes s and d are not defined in nl2.

We are mainly interested in closed netlists in our work, so we always assume
that nl ∈ netlists and isClosed nl in the following discussion when we meet a
word nl. To save space, we omit the two side conditions when we present lemmas
about a netlist nl.

4. Syntax and Semantics of Trajectory Formula

States. A circuit state is an instantaneous snapshot of a circuit behavior given
by an assignment of lattice values to nodes of the circuit. Therefore, type
state= node ⇒ boolPairs is defined. A state sequence assigns a state to
a time point. Here we still use nat to define the type time. Thus, we define
stateSeq = time ⇒ state. Naturally, we extend the ordering relation on the
state and stateSeq types. we define s1 vs s2 ≡ ∀n.s1 x v s2 x, and sq1 vsq

sq2 ≡ ∀t.sq1 t vs sq2 t.

Trajectory Evaluation Logic. Specifications in STE are symbolic trajectory for-
mulas. In order to formalize the syntax of trajectory formulas, we introduce a
datatype trajForm as follows:

datatype trajForm = Is1 node |Is0 node|chaos
|Next trajForm
|When bool trajForm (infixr −→T 65)
|TAND trajForm trajForm (infixr andT 65)

11



For convenience in reasoning, we introduce a novel formula chaos in our theory
to represent that the values of all the nodes are unknown at all time. In the
above definition, the definition of trajectory formulas is naturally symbolic in
the sense that the Boolean guard P can be simply defined as a boolean formula
in HOL.

The semantics of trajectory formulas is formally defined as a primary recur-
sion function valid on datatype trajForm.

consts
valid :: stateSeq⇒ trajForm⇒ bool

(( ² ) [80, 80]80)
primrec
sq ² (Is1 n) = tt v (sq 0 n)
sq ² (Is0 n) = ff v (sq 0 n)
sq ² chaos = True
sq ² (A1 andT A2) = (sq ² A1∧sq ² A2)
sq ² (P −→T A) = (P −→ sq ² A)
sq ² (Next A) = ((suffix 1 sq) ² A)

where notation (( ² ) [80, 80]80) stands for an infix notation ² for function
valid, and suffix i sq ≡λ t.sq(t + i).

5. Formalization of Closure Functions over Netlists

During STE simulation, information is propagated forwards through both
a circuit structure and time. By simulation, we mean that a circuit nl takes a
stimulating sequence as input and returns a result sequence. We first illustrate
the meaning of information propagation forwards through the circuit structure
at a time point. Namely, the circuit takes a state of the stimulating sequence at
some time point, then calculates all information about the circuit at the same
point that can be derived by propagating the information from any combination
gate’s input nodes to its output. After this propagation is finished, a new state of
the circuit is returned as a simulation result of this time point. More specifically,
given a state s, for an input node n of the circuit, or a delay node, s n is simply
the value of n after simulation. For an internal node n which is an output of a
gate with a truth table tab, provided that the returned values of inputs of the
gate are v1, ..., vi after simulation, the value of n is returned as the upperbound
of s n and Ftab v1 ... vi.

For instance, suppose that s a0 = tt, s b0 = tt, s a1 = tt, and s n = X
for any other nodes, a simulation for the circuit in Figure 1 is started at s,
then in the end of time point 0, the result state s′ after simulation satisfies that
s′ n = s n if n ∈ {a0, b0, a1, b1}, s′ c0 = tt, s′ c1 = X, and s′ out = X. Formally,
the information propagation can be represented as a set of value assignments as
follows: {(a0, tt), (b0, tt), (a1, tt), (b1,X)(c0, tt), (c1,X), (out, X)}.

In order to define the closure semantics of netlists, we need some preliminary
formalization on semantics of literals, lines, and truth tables. These are defined
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rather straightforward: funOfLit (v, lit) returns the input value v if lit is on,
else if lit is off, then returns the negation of v, else just returns tt. Here we
briefly explain why tt is returned when the literal is DontCare. Because tt is an
unit for the operator AND in the four-valued domain, and funOfLine vs line is a
conjunction of the values of literals in this line. At a state, if a value of a literal
in a line is returned as tt, then the value of this line will not be care of the value
of this literal. funOfLine vs line returns the conjunction of the values of literals
in a line provided that the values assigned to inputs are vs. funOfTab tab vs
returns the disjunction of the values of lines of a table provided that the values
assigned to inputs are vs.
funOfLit :: boolPairs× Lit⇒ boolPairs
funOfLit x ≡ if (snd x) = ONE then (fst x)

else if ( snd x) = ZERO
then (NOT (fst x))
else tt

funOfLine :: boolPairs list⇒ LINE⇒ boolPairs
primrec funOfLine bps [] = tt
funOfLine (bps) (el0#ls) =
AND (funOfLit ((hd bps), el0)) (funOfLine (tl bps) ls)

funOfTab :: PLA⇒ boolPairs list⇒ boolPairs
primrec funOfTab [] bps = ff
funOfTab (line#tbl) bps =
OR (funOfLine bps line) (funOfTab tbl bps)
Now we formally introduce a so-called closure relation rclosure, which is de-

fined on a netlist and a state. rclosure nl s returns the closure set of information
propagated forwards in the simulation of the netlist nl at the state s, and for-
mally is a pair set and inductively defined as follows:

consts rclosure :: entity set⇒ state⇒ (node× boolPairs) set
inductive rclosure nl s
intros
stAddInput :
[[Input n ∈ nl]] =⇒ (n, s n) ∈ rclosure nl s
stAddLatch :
[[Delay n inp ∈ nl]] =⇒ (n, s n) ∈ rclosure nls
stAddGate :
[[Gate n inps tab ∈ nl; length stateLs = length inps;
∀l.(l mem tab)) −→ length l = length inps;
∀pair.pair mem (zip inps stateLs) −→ pair ∈ rclosure nl s]]
=⇒ (n, ((funOfTab tab stateLs) t (s n))) ∈ rclosure nl s

The relation rclosure nl s is corresponding to a function, namely, for any
node n such that isDefinedIn n nl, there is pair p such that fst p = n, further-
more, if both (n, v1) and (n, v2) are in rclosure nl s, then v1 = v2. Intuitively,
rclosure nl s is single-valued because output node of a logical entity is uniquely
defined and the combination logic of a netlist is acyclic. More formally,
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Lemma 6. [[isDefinedIn n nl]] =⇒ ∃!pair.pair ∈ rclosure nl s ∧fst pair = n

Therefore, we define a function fclosure on a netlist nl and a state s. fclosure nl s
returns the result state of nl after simulation at the driving state s.

fclosure nl s n ≡
if isDefinedIn n nl
then let pair =(THE pair.pair ∈ rclosure nl s ∧ (fst pair) = n)

in (snd pair)
else s n

In this definition, if n is defined as an output of a logical entity, then the
value of n in the result is the second element of the unique element pair which
is in the closure set rclosure nl s and fst pair = n.

Roughly speaking, ”a closure function f” means that applying f once can
derive a closure of information in some form. In detail, (1) f is monotonic,
f x v f y if x v y. (2) f is idempotent : f x = f (f x); (3) f is extensive:
x v f x. Function fclosure nl is a closure function.

Function fclosure is a closure function. More formally, we have

1. [[ s1 vs s2]] =⇒ fclosure nl s1 n v fclosure nl s2 n

2. s n v fclosure nl s n

3. fclosure nl (fclosure nl s) n = fclosure nl s n

Now we show how simulation information is propagated forwards through
time given a stimulating sequence σ, i.e., from each time step t to time step
t + 1. Recall that each delay has an output node data ## and input node
data. For the delay, the value of node data at time point t is denoted as datat

after the simulation at time t, and the information datat will be propagated to
node data ## at time t + 1, i.e., the simulator initially sets the value of node
data ## at time point t+1 as the upper bound of datat and σ(t+1)(data ## )
, then starts the simulation over the circuit at time point t+1. In order to model
this forwards propagation of information through time, we define a function of
over a logical entity and time fSeq nl σ, which returns a result sequence after
simulation of nl given a stimulating sequence σ. fSeq nl σ is another sequence
and defined as a primary recursion on time t basing on the definition of fclosure.
In the following discussion, we use isDelayName x nl to denote that x is an
output node of a delay in the netlist nl.

fSeq nl σ 0 = fclosure nl (σ 0)
fSeq nl σ (t + 1)
= (let s =

(λn.if (isDelayName n nl)
then (let l = (lookUp nl n) in

let inps = fanins l in
((fSeq nl σ t) (hd inps)) t (σ (t + 1) n))

else σ (t + 1) n)
in fclosure nl s)

Similarly, we also can prove that fSeq is also a closure function, namely,
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1. [[nl ∈ netlists; isClosed nl; sq1 vsq sq2]]
=⇒ fSeq nl sq1 vsq fSeq nl sq2

2. [[nl ∈ netlists; isClosed nl]] =⇒ sq vsq fSeq nl sq

3. [[nl ∈ netlists]] =⇒ fSeq nl (fSeq nl sq) = fSeq nl sq

5.0.1. Trajectories
A trajectory is a result state sequence of some circuit netlist nl after a run

of simulation. It is a sequence in which no more information can be derived
by forwards propagation. Namely, the result sequence returned by a simulation
run of nl is the same as the stimulating sequence fed into the simulator. We
define trajOfCirc nl as the set of all trajectories of a netlist nl:

trajOfCirc :: entity set⇒ stateSeq set
trajOfCirc nl ≡ {sq.fSeq nl sq = sq}

6. Semantics of STE

Now we define the semantics of a STE assertion A ; C, where both A
and C are trajectory formulas. A is called the antecedent, which specifies with
what values we should drive the simulation. C is called the consequent, which
specifies the expected results of the simulation. A circuit nl satisfies a trajectory
assertion, written cktSat nl A ; C, if for every trajectory τ of nl, it holds that
τ |= A implies τ |= C.

We define a type assertion to formalize the syntax of a STE assertion.

datatype assertion =
Leadsto trajForm trajForm (infixr ; 50)

We introduce a predicate cktSat that checks the validity of a STE assertion.

cktSat :: entity set⇒ assertion⇒ bool
primrec cktSat nl (A ; C) =
(∀τ.τ ∈ (trajOfCirc nl) −→ (τ |= A −→ τ |= C))

The key feature of STE logic is that there is a unique weakest sequence
that satisfies f for any boolean symbolic variable assignment φ. This sequence
is called the defining sequence of f . To define the defining sequence of a for-
mula, we introduce a primary recursive function defSqOfTF which operates on
a trajectory formula, and returns a symbolic sequence.

Definition 7 (Defining Sequence). Given a trajectory formula A, the defin-
ing sequence of A, written defSqOfTrForm A, is defined as a primary recursive
function on type trajForm.
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defSqOfTrForm ::trajForm⇒stateSeq
primrec
defSqOfTrForm (Is1 n) =(λt m.(if (t=0∧m=n) then tt else X))
defSqOfTrForm (Is0 n) =(λt m.(if (t=0∧m=n) then ff else X))
defSqOfTrForm (A andT B)=

(λt m.(defSqOfTrForm A t m)t(defSqOfTrForm B t m))
defSqOfTrForm (P −→T A) = (λt m. let v = (defSqOfTrForm A t m) in

(P −→ (fst v), P −→ (snd v))
defSqOfTrForm (Next A)= (λt m. let v=(defSqOfTrForm A (t - 1) m) in

if (t 6=0) then v else X)
defSqOfTrForm chaos= λt m. X

In the above definition of defSqOfTrForm, −→ denotes the implication oper-
ator in Boolean domain in the case of guard trajectory formula.

From the definition of the defining sequence of A, we can easily prove that
the sequence satisfies A by induction.

Lemma 8. defSqOfTrForm A |= A

Furthermore, for any sequence σ that satisfies A, the defining sequence is
the weakest of all.

Lemma 9.

(1) defSqOfTrForm A vsq sq =⇒ sq |= A.
(2) sq |= A =⇒ defSqOfTrForm A vsq sq

Now we introduce the defining trajectory of trajectory formula A w.r.t. nl,
which is the weakest trajectory that satisfies A. The defining trajectory of A
w.r.t. nl is naturally the result sequence by driving nl with the defining sequence
of A.

Definition 10 (Defining Trajectory). Given a trajectory form A, a netlist
nl, the defining trajectory of A w.r.t. nl, denoted by defTrajOfCirc A nl, is
defined as follows:

defTrajOfCirc A nl ≡ fSeq nl (defSqOfTrForm A)

Similarly, we can prove that a defining trajectory of A w.r.t. nl satisfies A.

Lemma 11. (defTrajOfCirc A nl) ∈ trajOfCirc nl ∧ (defTrajOfCirc A nl) |= A

The following lemma proves that the defining trajectory of nl is indeed the
weakest trajectory of nl that satisfies A.

Lemma 12.

(1) [[τ ∈ trajOfCirc nl; τ |= A]] =⇒ (defTrajOfCirc A nl)vsq τ
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(2) [[(defTrajOfCirc A nl )vsq τ ]] =⇒ τ |= A

The following lemma is the most fundamental result of STE theory, which
states that (defSqOfTrForm C) vsq (defTrajOfCirc A nl) if and only if cktSat nl
(A ; C) for a closed netlist nl. This result guarantees an effective way to check
validity of a STE assertion. In order to check an STE assertion cktSat nl (A ;

C), we only need consider whether (defSqOfTrForm C) vsq (defTrajOfCirc A nl)
holds.

Lemma 13.

(1) [[(defSqOfTrForm C) vsq (defTrajOfCirc A nl) =⇒ cktSat nl (A ; C)

Proof. In order to prove cktSat nl (A ; C), we need fix a trace tr such
that (a) tr ∈ trajOfCirc nl and tr |= A, and we need prove that tr |= C. By
lemma 9 (1), we only need prove that defSqOfTrForm C vsq tr. From (a),
by lemma 12 (1), we have (defTrajOfCirc A nl)vsq tr. From the assumption
(defSqOfTrForm C) vsq (defTrajOfCirc A nl), and the transitivity of vsq,
we have defSqOfTrForm C vsq tr.

(2) [[cktSat nl (A ; C)]] =⇒ (defSqOfTrForm C) vsq (defTrajOfCirc A nl)

Proof. By lemma 11, we have (defTrajOfCirc A nl) ∈ trajOfCirc nl and
(defTrajOfCirc A nl) |= A. From this, by the definition of cktSat nl (A ;

C), we have (a) (defTrajOfCirc A nl) |= C. By lemma 9 (2), we easily show
efSqOfTrForm C vsq (defTrajOfCirc A nl).

7. Sub-netlists

It is interesting to note that the evaluation of a STE assertion in a netlist
may be only related with a part of the netlist, and this part is also a netlist itself.
Therefore, we introduce the concept of sub-netlist, given two logical entity sets
nl and nl′, usually nl′ ⊆ nl, a sub-netlist derived from nl′ in nl is an closure set
of entities which is defined as follows:

Definition 14. Let nl, nl′ be two set of devices, a sub-netlist closure function
subNet nl nl′, which is an inductively defined set by the following rules:

consts subNet :: entity set⇒ entity set⇒ entity set
inductive subNet nl nl′

intros
subAddself :
[[enttr ∈ nl′; enttr ∈ nl ]] =⇒ enttr ∈ subNet nl nl′

subAddLink :
[[enttr0∈ subNet nl nl′; enttr1∈ nl;
(fanout (enttr1)) ∈ set (fanins (enttr0))]] =⇒ enttr1∈ subNet nl nl′

In the rule subAddLink, (fanout (enttr1)) ∈ set (fanins (enttr0)) means
that the output node of enttr1 is driving one input node of enttr0. This rule
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guarantees that all the fanin cones of entities in nl′ is defined in subNet nl nl′.
Obviously, it holds that subNet nl nl′ ⊆ nl for any nl′. Infomally we call nl1
is a sub-netlist of nl if nl1 = subNet nl nl0 for some nl0.

Example 15. In Example 2, let nl′ = {xnorG0}, subNet nl nl′ = {Input a0,
Input b0, xnorG0}.

Supposed that nl′ is a sub-netlist of nl. At a time point, if n is a node defined
in nl′, then the same value will be propagated into node n after simulations for
nl and nl′ respectively from a state s.

Lemma 16.

(1)

[[nl′ ⊆ nl; isDefinedIn n ∈ nl′]] =⇒ (n, v) ∈ (rclosure nl′ s) = (n, v) ∈ (rclosure nl s)

(2)

[[nl′ ⊆ nl; isDefinedIn n ∈ nl′]] =⇒ fclosure nl s n = fclosure nl′ s n

Similarly, supposed that n is defined in nl′, node n will be updated with the
same value at any time point after two simulations for nl and nl′ from a same
state s.

Lemma 17.

[[nl′ ⊆ nl; isDefinedIn n ∈ nl′]] =⇒ fSeq nl s n = fSeq nl′ s n

Using lemma 17, we can prove that two sequences defTrajOfCirc B nl and
defTrajOfCirc B nl′ agree the same value on a node n at any time point if n is
defined in nl′.

Lemma 18.

[[nl′ ⊆ nl; isDefinedIn n ∈ nl′]] =⇒ defTrajOfCirc B nl t n = defTrajOfCirc B nl′ t n

Provided that nl′ is a sub-netlist of nl, and all the nodes specified in the
consequent C of an STE assertion are defined in nl′, then it can be safely
concluded that cktSat nl A ; C iff cktSat nl′ A ; C.

Lemma 19 (subsetI).

[[nl′ ⊆ nl; ∀n.n ∈ (onNodes C) −→ isDefinedIn n nl′]]
=⇒ cktSat nl′ A ; C = cktSat nl A ; C

The proof of this lemma is rather straightforward. We mainly combine Lemma
18 and lemma 13 to prove this result. The key point is that for any node n ∈
(onNodes C), we have that defTrajOfCirc A nl t n = defTrajOfCirc A nl′ t n.
Therefore, (defSqOfTrForm C) t n v (defTrajOfCirc A nl) t n iff (defSqOfTrForm
C) t n vsq (defTrajOfCirc A nl′) t n for any t, any node n ∈ (onNodes C).
We are only interested in the evaluation of nodes n ∈ (onNodes C) because
(defSqOfTrForm C) t n = X for any node n /∈ (onNodes C) and X v v for any
value v.
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We need two preliminary definitions before we continue.

Definition 20. Let A be a trajectory formula, onNodes A, which returns the
set of nodes which occur in A, is defined as follows:

onNodes :: trajForm⇒ node set
primrec
onNodes (Is1 n) = {n}
onNodes (Is0 n) = {n}
onNodes (A andT B)= (onNodes A) ∪ (onNodes B)
onNodes (P −→T A)= onNodes A
onNodes (Next A)= onNodes A
onNodes chaos = ∅

Next definition InducedNet nl ns, where nl is a netlist and ns is a node set.
InducedNet nl ns return a sub-netlist which includes the logical entities which
has a node in ns as an output node.

Definition 21.

InducedNet :: entity set⇒ node set⇒ entity set
InducedNet nl ns ≡ subNet nl {g.∃n.isDefinedIn n nl ∧ n ∈ ns ∧ g = lookUp nl n}

The next lemma says that if an antecedent B has nothing to do with nodes
which may affect the nodes in the consequent C, more specifically, (onNodes B)∩
defAsOuts (InducedNet nl (onNodes C)) = ∅, then B has nothing with the truth
of this assertion.

Lemma 22 (steEqAnt).

[[(onNodes B) ∩ defAsOuts (InducedNet nl (onNodes C)) = ∅;
∀n.n ∈ (onNodes C) −→ isDefinedIn n nl]]
=⇒ cktSat nl A ; C = cktSat nl (A and B) ; C

For instance, let A = (Is1 a0) andT (Is1 b0), B = (Isb a1 Ba1) andT (Isb b1 Bb1),
C = Is1 c0, nl be the netlist as shown Fig. 1, nl′ = InducedNet nl (onNodes C),
then we have onNodes B = {a1, b1}, onNodes C = {c0}, nl′ = {Input a0, Input b0,
xnorG0}, because (onNodes B)∩defAsOuts nl′ = ∅, cktSat nl (A and B) ; C is
equivalent to cktSat nl A ; C. Usually the (A and B) ; C has more symbolic
variables than A ; C does, so we often use the following law which tells us the
heuristics to simplify an assertion by eliminating unnecessary antecedents.

Lemma 23 (steDelAnt).

[[(onNodes B) ∩ defAsOuts (InducedNet nl (onNodes C)) = ∅;
cktSat nl A ; C]]
=⇒ cktSat nl (A and B) ; C

This result tells us the heuristics to simplify an assertion by eliminating some
unnecessary antecedents without affecting the truth of the assertion under study.
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8. Symmetry in Circuit Structure and STE

In this section, we introduce the concept of structure symmetry. Due to
formalization on the structure of circuits, it is rather straightforward to formalize
structure symmetry.

Definition 24. Let nl and nl′ be two closed netlists, nl and nl′ are symmetric
w.r.t. a function f, written by sym nl nl′ f, which is defined as follows:

sym :: (node => node) ⇒ entity set⇒ entity set⇒ bool
sym f M N ≡ bij f ∧ f‘(defAsOuts M) = (defAsOuts N)∧
(∀m.isDefinedIn m M −→ isDefinedIn (f m) N∧
(let lx = (lookUp M m) in
let ly = (lookUp N (f m)) in
(case (lx) of
Input x⇒ ly = Input (f x)|
Delay out data⇒ ly = Delay (f out) (f data)|
Gate out inps tab⇒
ly = Gate (f out) (map f inps) tab)))

Roughly speaking, sym f nl nl′ says that f is an isomorphism mapping from
the structure of nl to that of nl′. Namely, if n is an output of a logical entity l
in nl, then f n is an output of a similar logical entity l′ and the fanins of l is
also mapped to those of l′ under f . Informally, l and l′ are similar in the sense
that they are both input devices, or both delays, or both gates with the same
truth table.

Usually we need discuss the symmetry between two nodes in one netlist,
which is defined by symmetry between sub-netlists induced by the two node
sets. The predicate nodeSetSym f M N nl specifies that the subnetlists induced
from node sets M and N in a entity set nl are symmetric w.r.t. some function
f . Informally, we call that node set M and N are symmetric in nl w.r.t f .

Definition 25.

nodeSetSym :: (node => node) ⇒ node set⇒ node set⇒ entity set => bool
nodeSetSym f M N nl ≡ sym f (InducedNet nl M) (InducedNet nl N)

Example 26. Let nl0 = {Input a0, Input b0, xnorG0}, nl1 = {Input a1, Input b1,
xnorG1}, N0 = {c0}, N1 = {c1}, and f = λx.(if x = a0 then a1 else if x = a1

then a0 else if x = b0 then b1 else if x = b1 then b0 else if x = c0 then c1 else if
x = c1 then c0 else x). InducedNet nl N0 = nl0, InducedNet nl N1 = nl1. We
have that sym nl0 nl1 f and nodeSetSym f N0 N1 nl.

Next we define permutations on states, sequences, and formulas. These are
similar to their conterparts in [17].
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Definition 27. Permutation on states.
appSym2State :: (node⇒ node) ⇒ state⇒ state
appSym2State f s = λ n.s (f n))

Definition 28. Permutation on sequences.
appSym2Seq :: (node⇒ node) ⇒ stateSeq⇒ stateSeq
appSym2Seq f sq ≡ λ t.appSym2State f (sq t)

Definition 29. Permutation on formulas.
applySym2Form :: (node⇒ node) ⇒ trajForm⇒
trajForm
primrec
appSym2Form f (Is0 n) = Is0 (f n)
appSym2Form f (Is0 n) = Is1 (f n)
appSym2Form f (A andT B) = (appSym2Form f A) andT (appSym2Form f B)
appSym2Form f (P −→T A) = P −→T (appSym2Form f A)
appSym2Form f (Next A) = Next (appSym2Form f A)
appSym2Form f chaos = chaos

Each permutation can be defined in terms of a composition of swap functions.
Here we use a predicate isSwap to specify that a function is a swap function:
isSwap f ≡ ∀a b.f a = b −→ f b = a.

It is equivalent to apply a swap permutation f on a defining sequence of a
formula and to compute the defining sequence of the permutation of a formula,
provided that f is a swap function.

Lemma 30.

isSwap f =⇒
appSym2Seq f (defSqOfTrForm A) = defSqOfTrForm (appSym2Form f A)

Suppose that nl and nl′ are symmetric w.r.t. f , then a swap permutation
on the defining trajectory of A w.r.t. nl is equivalent to the defining trajectory
of appSym2Form f A w.r.t. nl′.

Lemma 31.

[[nl ∈ netlists; nl′ ∈ netlists; sym f nl nl′; isSwap f ]]
=⇒ appSym2Seq f (trajOfCirc A nl) = trajOfCirc (appSym2Form f A) nl′

With the help of Lemma 13 and 30 and 31, we can derive an important result
which encapsulates the relation between symmetric netlists and the symmetric
STE assertions.

Lemma 32.

[[sym f nl nl′; isSwap f ; ]] =⇒
cktSat nl (A ; C) = cktSat nl′ (appSym2Form f A ; appSym2Form f C)
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This result guarantees us that we only need verify one representative STE
assertion from an equivalence class, and deduce the correctness of the entire
class for symmetric circuits.

Provided that all the nodes in onNodes C and onNodes (f C) are defined in
nl, and they are symmetric in nl w.r.t f, cktSat nl (A ; C) implies cktSat nl
(appSym2Form f A ; appSym2Form f C) . The proof of this result needs the
combination of Lemma 32 and Lemma 19. Because we often meet the case
of symmetry between two subnetlists in a netlist, the following lemma is very
useful in our verification.

Lemma 33 (symReduce2).

[[isSwap f ;∀n.n ∈ (onNodes C) → isDefinedIn n nl;
∀n.n ∈ (onNodes (appSym2Form f C)) → isDefinedIn n nl;
nodeSetSym f (onNodes C) (onNodes (appSym2Form f C)) nl]]
=⇒ cktSat nl (A ; C) = cktSat nl (appSym2Form f A ; appSym2Form f C)

9. Novel Algebraic Laws

In this section, we introduce a set of algebraic laws. The novelty of our laws
lies in that they relate properties of some circuits with their special structures. In
the classical literature of STE, some laws have already been introduced, and they
usually are general in the sense that they are independent in the structures of cir-
cuits. For instance, the steConjI rule, [[nl ∈ netlists; isClosed nl; cktSat nl (A ; B) ;
cktSat nl (A ; C) ]] =⇒ cktSat nl A ; (B andT C) , has already been intro-
duced in [1, 17], and it holds for any netlist nl. Different from their laws such
as steConjI, our laws, which are introduced below, formally explore the special
structures of some circuits in our formal netlist model.

We need some preliminary definitions before we continue. andFormLists tfs
returns the conjunction of a list of trajectory formulas:

andLists [] = chaos
andLists (A#listA) = A andT (andLists listA)

Two predicates isFullAndLine :: LINE ⇒ bool and isAndTab :: PLA ⇒ bool are in-
troduced to define a truth table of an AND-gate:

isFullAndLine line ≡ ∀l.l mem line −→ l = ONE
isAndTab tab ≡ length tab = 1 ∧ isFullAndLine (hd tab)

The first lemma says that if all the input nodes of an AND-gate are set high,
then its out should be high too.

Lemma 34 (andTabPropT).

[[isAndTab tab;Gate out inps tab ∈ nl;
∀l.(l mem tab) −→ length l = length inps]] =⇒
cktSat nl ((andLists (map (λn.Is1 n) inps)) ; (Is1 out))
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The second lemma says that if one input node of an and-gate are set low,
then its out turns low.

Lemma 35 (andTabPropF).

[[isAndTab tab;Gate out inps tab ∈ nl; inpsi mem inps;
∀l.(l mem tab) −→ length l = length inps]] =⇒
cktSat nl (Is0 inpsi)) ; (Is0 out))

Naturally a table, whose length is greater than 1, is a disjunction of lines.
We need not deliberately define an OR-gate. However, we need formally de-
fine a function which specifies value assignments of all inputs in a line before
we go on. The function posAssertOfLine inps lits returns a list of trajectory
formulas, each of which specifies a special value of each node inpsi accord-
ing to the literal litsi. If litsi is ZERO, then inpsi is specified as ff by an Is0
formula, else if litsi is ONE, then inpsi is specified as tt by an Is1 formula,
otherwise it is set as X by chaos. Let inps = [i1, i2], line = [ONE,ONE], then
posAssertOfLine inps line=[Is1 i1, Is1 i2].

posAssertOfLine :: node list⇒ Literal list⇒ trajForm list
primrec
posAssertOfLine inps [] = []
posAssertOfLine inps (l#line) =
let otherAss = posAssertOfLine (tl inps) line in
(case l of ZERO⇒ (Is0 (hd inps))#otherAss|

ONE⇒ (Is1 (hd inps))#otherAss|
DONTCARE⇒ chaos#otherAss)

Obviously, if there exists a line l in the table tab of a gate, and the values
assigned to the inputs of the gate satisfy the formula posAssertOfLine inps l,
then the output of the line is tt, thus the output of the gate is also set tt.

Lemma 36 (orTabPropT).

[[Gate out inps tab ∈ nl; l mem tab;
∀l.(l mem tab) −→ length l = length inps]] =⇒
cktSat nl (andLists (posAssertOfLine inps l)) ; (Is1 out))

Next we introduce a function isNegAssOfLine A line inps, the function re-
turns true if a formula A specifies a proper value for some node inpsi according
to the literal litsi, if A is Is1 n, then the literal is ZERO, else if A is Is1 n, then
the literal is ONE. For simplicity, isNegAssOfLine A line inps is defined to be
False for any other formula.
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isNegAssOfLine :: trajForm⇒ node list⇒ Literal list⇒ bool
primrec
isNegAssOfLine (Is1 n) inps line = n mem inps∧
∃pair.(pair ∈ zip inps line ∧ fst pair = n ∧ snd pair = ZERO)
isNegAssOfLine (Is0 n) inps line = n mem inps ∧
∃pair.(pair ∈ zip inps line ∧ fst pair = n ∧ snd pair = ONE)
isNegAssOfLine A inps line = False,
for any other formula A

For a trajectory formula list asList, for any line l in the table tab of a
gate, it holds that there exists a formula A which is a member of asList and
isNegAssOfLine A line inps, then the value of the output of each line is ff, thus
the output of the gate is set ff. For instance, let tab = [[ONE,ONE], [ZERO,ZERO]],
and asList = [Is1 i1, Is0 i2], we have ∃A. (A mem asList)∧isNegAssOfLine A
inps l for any l such that l mem tab.

Lemma 37 (orTabPropF).

[[Gate out inps tab ∈ nl;∀l.(l mem tab) −→ length l = length inps;
∀l.(l mem tab) −→ (∃A. (A mem asList) ∧ isNegAssOfLine A inps l ) ]] =⇒
cktSat nl (andLists asList) ; (Is0 out))

For convenience, we define a syntactical abbreviation: Isb n a ≡ (a−→TIs1 n)
andT (¬a−→TIs0 n) . Roughly speaking, Isb n a means that node n is set a

boolean value a. If an input node n of a delay is set a boolean value a at time
0, then the output of the delay will be set a at the next time point.

Lemma 38.

[[Delay out data ∈ nl;nl ∈ netlists; isClosed nl]] =⇒
cktSat nl (Isb n a) ; Next (Isb out a))

10. Illustrative Case Studies

In this section, we use illustrative examples to demonstrate the power of
our new laws. We choose content addressable memories (CAMs), which is a
classical example used in STE literature. CAMs are widely used wherever fast
parallel search operations are required. Pandey used symbolic indexing tech-
niques to verify CAMs, which is regarded as a classical work in STE literature
[28]. He reported a logarithmic reduction in the number of variables required
if the symbolic indexing encoding style is adopted. Darbari took advantage of
a type-checking approach for symmetry detection based on a high-level HDL
description, where he used a richer type system to record the symmetry [9, 17].
Using the symmetry type information, he combined symmetry reduction with
other decomposition rules. CAMs could be verified using a fixed number of
BDD variables since he only had to verify one line at a time, and the other lines
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can be verified by symmetry reduction. The amount of time used in verification
is linear with respect to the tag width, number of CAM lines and the number
of CAMs.

The structure and property of a CAM circuit is rather complex, and the core
of a CAM is a list of comparators whose outputs are driving an OR-gate. So
we start from a N -bits comparator.

10.1. N-bits Comparator

The structure of a N -bits comparator is a natural extension of 2-bits com-
parator, which is shown in Figure 1. For convenience, we need define some
syntactical abbreviation: [0.. < N ] ≡ [0, ..., N − 1] if N > 0. Let f be a function
over natural number, [f i. i < N ] ≡ map f [0.. < N ]. In this work, we usually
call such f a vector, f i is denoted by fi. If fi is still a vector, we write fij for
f i j.

Let a, b, c be three vectors of nodes. ai is a node. Let N > 1, xnorTab =
[[ONE,ONE], [ZERO,ZERO]], andLine = [(λj.ONE) i. i < N ], xnorGLs =
{Gate ci [ai, bi] xnorTab. i < N}, cs = [ci. i < N ], andG = Gate out cs [andLine].
Let nl be a closed netlist such that xnorGLs∪{andG} ⊆ nl. To make our results
more general, we only require that nl has the gate andG and all the XNOR-gates
in xnorGLs.

Let bvOfAs and bvOfBs be two vectors of boolean variables to model sym-
bolic values of nodes, bvOfAsi is a boolean variable. antOfAs = [Isb ai bvOfAsi.
i < N ], antOfBs = [Isb bi bvOfBsi. i < N ], Gp0 = ∃i.i < N ∧ bvOfAsi 6=
bvOfBsi, Gp1 = ∀i.i < N −→ bvOfAsi = bvOfBsi. Let ant = andLists
(antOfAs@antOfBs) , cons0 = Gp0 −→T Is0 out, cons1 = Gp1 −→T Is1 out,
cons = cons0 andT cons1. Here we want to prove an assertion cktSat nl (ant ;

cons). Intuitively, ant specifies the symbolic values of the nodes to be compared,
cons0 says that out is low when a and b do not agree on a bit i, and cons1 says
out is high when a and b agree on all bits i < N. Due to space limitation, we
only give key auxiliary results for the main lemma. Refer to the Isabelle proof
scripts [11] for the details.

Lemma 39.

(1) [[i < N ;¬bvOfAsi ∧ bvOfBsi]] =⇒ cktSat nl ant ; andLists [Is0 ai, Is1 bi]

(2) [[i < N ; bvOfAsi ∧ ¬bvOfBsi]] =⇒ cktSat nl ant ; andLists [Is1 ai, Is0 bi]

(3) [[i < N ]] =⇒ cktSat nl (andLists [Is0 ai, Is1 bi]) ; Is0 ci

(4) [[i < N ]] =⇒ cktSat nl (andLists [Is1 ai, Is0 bi]) ; Is0 ci

(5) [[i < N ; bvOfAsi 6= bvOfBsi]] =⇒ cktSat nl ant ; Is0 ci

(6) [[i < N ]] =⇒ cktSat nl Is0 ci ; Is0 out

(7)
[[i < N ; bvOfAsi ∧ bvOfBsi]] =⇒
cktSat nl ant ; (andLists (posAssertOfLine [ai, bi] [ONE,ONE]))
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(8)
[[i < N ]] =⇒ cktSat nl
(andLists (posAssertOfLine [ai, bi] [ONE,ONE])) ; Is1 ci

(9)
[[i < N ;¬bvOfAsi ∧ ¬bvOfBsi]] =⇒ cktSat nl ant ;

(andLists (posAssertOfLine [ai, bi] [ZERO,ZERO]))

(10)
[[i < N ]] =⇒ cktSat nl
(andLists (posAssertOfLine [ai, bi] [ZERO,ZERO])) ; Is1 ci

(11) [[i < N ; bvOfAsi = bvOfBsi]] =⇒ cktSat nl ant ; Is1 ci

(12) [[Gp1]] =⇒ cktSat nl ant ; (andLists [Is1 ci. i < N ])

(13) cktSat nl (andLists [Is1 ci. i < N ]) ; Is1 out

In Lemma 39, (1)-(5) prove that the value of node ci will be set low if there is
a bit i such that nodes ai and bi are set by different values, and rule orTabPropF
is the main rule used to prove these results. (6) says that once ci is set low, then
the output out is set low. (6) is proved by law andTabPropF. (7)-(11) prove
that the value of node ci will be set high if nodes ai and bi agree on the value
of a bit i such that i < N , and rule orTabPropT is the main rule used to prove
these results. From these, (12) can be easily proved. (13) can be proved by law
andTabPropT.

Lemma 40. cktSat nl (ant ; cons).

Proof. For the main goal, we use rule steconjI to decompose it two subgoals:
(a) cktSat nl ant ; cons0 and (b) cktSat nl ant ; cons1.

In order to prove (a), by rule steImpI, we assume that (c) Gp0, and need show
cktSat nl ant ; Is0 out. From (c), we obtain i where i < N and (d) bvOfAsi 6=
bvOfBsi. From this and Lemma 39 (5), we have (e) cktSat nl ant ; Is0 ci.
With Lemma 39 (6), by rule steTrans, we show cktSat nl ant ; Is0 out.

In order to prove (b), by rule steImpI, we assume that (f) Gp1, and need show
cktSat nl ant ; Is1 out.From (f) and Lemma 39 (12), we have (g) cktSat nl ant ;

(andLists [Is1 ci. i < N ]). With Lemma 39 (13), by rule steTrans, we can show
cktSat nl ant ; Is1 out.

10.2. M −N−CAM
Figure 5 shows a part of a M −N−CAMs circuit. It stores M lines of tags,

and the width of each tag is N. Let T and c be a vector of vectors of nodes,
Tij be a node, Tag and match be a vector of nodes. Let M > 1, N > 1,
xnorTab and andLine be defined as in subsection 10.1, css = [[cij . j < N ]. i <
M ], xnorGs = {Gate cij [Tij , Tagj ] xnorTab. j < N, i < M}, matches =
[matchi. i < M ], andGs = {Gate matchi cssi [andLine]. i < M}, orLine =
λi.[(λj.if (j = i) then ONE else DontCare) j. j < M ], orTab = [orLine i.i < M ],
orG = Gate hit matches orTab. Let nl be a closed netlist such that xnorGs ∪
andGs ∪ {orG} ⊆ nl.
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Figure 5: A M −N− CAM

Let bvOfTs be a vector of vectors of of boolean variables to model sym-
bolic values of stored tags, bvOfTag is a vector of boolean variables to model
the symbolic value of input tag. antOfTag = [Isb Tagj bvOfTagj . j < N ],
antOfTs = [[Isb Tij bvOfBsij . j < N ]. i < M ], GpOfUnHitI = λi.(∃j.j <
N ∧ bvOfTagj 6= bvOfTij), GpOfHitI = λi.(∀j.j < N −→ bvOfTagj =
bvOfTij), GpOfUnHit = ∀i.i < M −→ GpOfUnHitI i, GpOfHit = ∃i.i <
M ∧ GpOfHitI i. Let ant = andLists (antOfTag@(flat antOfTs)) , cons0 =
GpOfUnHit −→T Is0 hit, cons1 = GpOfHit −→T Is1 hit, cons = cons0 andT cons1.
Here we want to prove an assertion cktSat nl (ant ; cons). In this assertion,
ant still specifies that the symbolic values of the nodes of the input tag and the
stored tags, cons0 says that the node hit is set low if no line matches the input
tag, and cons1 says that the node hit is set high if there exists one line which
matches the input tag.

Lemma 41.

(1) [[i < M ;GpOfUnHitI i]] =⇒ cktSat nl ant ; Is0 matchi

(2) [[GpOfUnHit]] =⇒ cktSat nl ant ; (andLists [Is0 matchi. i < M ])

(3) cktSat nl (andLists [Is0 matchi. i < M ]) ; Is0 hit

(4) [[GpOfUnHit]] =⇒ cktSat nl ant ; Is0 hit

(5) [[i < M ;GpOfHitI i]] =⇒ cktSat nl ant ; Is1 matchi

(6)
[[i < M ]] =⇒ cktSat nl (Is1 matchi) ;

(andLists (posAssertOfLine matches (orLine i)))

(7)
[[i < M ]] =⇒ cktSat nl
(andLists (posAssertOfLine matches (orLine i)) ; Is1 hit)

(8) [[i < M ;GpOfHitI i]] =⇒ cktSat nl ant ; Is1 hit
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In Lemma 41, (1) and (2) are simply derived by the results of a N -bits
comparator when its output matchi is set low, as is shown in Lemma 39. Here
the antecedent GpOfUnHitI i specifies that the value of i-th stored tag Ti

does not match with that of the input tag Tag. (3) can be proved by law
orTabPropF. (4) can be proved by combining (2) and (3). (5) is the result
of a N -bits comparator when its output matchi is set high, as is shown in
Lemma 39. Here the antecedent GpOfHitI i specifies that the value of i-
th stored tag Ti matches with that of the input tag Tag. (6) can be simply
proved by unfolding the definitions of andLists and posAssertOfLine. The asser-
tion (andLists posAssertOfLine matches (orLine i)) is a list of trajectory formu-
las in which the i-th element is (Is1 matchi) and any other one is chaos. (7) can
be proved by law orTabPropT. (8) can be proved by combing (5), (6) and (7).
From these results, it is rather easy to derive the following result by using rules
steImpI, steConjI, and steTrans.

Lemma 42. cktSat nl ant ; cons

Proof. For the main goal, we use rule steconjI to decompose it two subgoals:
(a) cktSat nl ant ; cons0 and (b) cktSat nl ant ; cons1.

In order to prove (a), by rule steImpI, we assume that (c) GpOfUnHit, and
need show cktSat nl ant ; Is0 hit. This can be easily proved by Lemma 41 (4).

In order to prove (b), by rule steImpI, we assume that (f) GpOfHit, and
need show cktSat nl ant ; Is1 hit. From (f), we can obtain a i such that
i < M and GpOfHitI i. From this, by Lemma 41 (8), we can easily prove that
cktSat nl ant ; Is1 hit.

Our proofs are purely algebraic reductions without any symbolic simulation.
A distinguishing feature of our approach is the use of laws andTabPropT(andTabPropF)
or orTabPropT(orTabPropF) to decompose one assertion on the output of an
AND-gate or OR-gate to assertions on each branch input node of the gate.
This explains why we call the laws the algebraic semantics of STE. Note that
any combinational parts of a circuit is combined by AND-gates or OR-gates,
therefore, our laws andTabPropT(andTabPropF) or orTabPropT(orTabPropF) is
proposed for general-purpose in the sense that they can be combined together
to analyze any combination parts of a circuit. Second, our proof is a parameter-
ized verification of CAMs, where M and N are parameters which are arbitrary
positive natural numbers. Based on the results of N -bits comparator, our pa-
rameterized proof is clean deductions which are involved in simple applications
of rules orTabPropT(orTabPropF) and those on quantifiers, and does not suffer
from any state explosion problem.

11. Conclusion

The key contribution of our work is to introduce the inductive approach to
formalize both the structure and simulation semantics of a netlist. Because the
legal structure of a netlist requires the following condition: the conflict between
output nodes of two logical entities should be eliminated, and a cycle should not
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occur in the combinational part of the netlist, but a cycle is allowed to pass a
delay element. It is difficult to simply use a datatype to define the structure be-
cause such a cycle exists. The inductive definition of a netlist formally specifies
these requirements by a set of intuitive introduction rules.

The inductive approach also provides a satisfying answer to formalize the
information propagation through netlist structure in the simulation semantics
of a netlist. Essentially such a propagation is a process of value assignments to
nodes which spreads from each gate’s inputs to its outputs, and this process is
started from the primitive input nodes of the netlists and state-holding nodes
of delay entities. The three inductive rules in rclosure accurately capture the
semantics of the information propagation process. Furthermore, we can formally
derive function fclosure and fSeq. Here the function fSeq can be seen as a concrete
version of the abstract next-state Y-function used in classical STE literature.
It is sound in the sense that fSeq is monotonic. Therefore our work not only
proves the existence of a special next-state Y-function, but also shows its formal
construction by deriving fSeq.

Not only does the inductive approach help us to formally define the structure
and simulation semantics of a netlist, but also provides an effective inductive
principle to prove useful properties of a netlist. Especially, we use the induction
principle to prove two unique-existence results which prove the soundness of
the semantical model. The first one says that for any defined node n, there is
an unique logical entity in the netlist whose output is n. The second proves
a relation rclosure nl s is single-valued, thus the function rclosure nl s can be
formally induced.

The advantage of introducing a formal netlist model is to explicitly explore
the close relation between properties of a circuit and its structure. Two main
results of ours are symmetry reduction and a set of novel algebraic laws, and they
are introduced to decompose a STE assertion. In our case study, we show how to
combine some of our laws for parameterized verification of content addressable
memories (CAMs). This experience has demonstrated both theoretical and
practical benefits because it provides an alternative effective way - algebraic
reduction for STE assertion verification.

In the future, we will extend our research in two directions. (1) We will
make our reduction method as automatic as possible. In facts, there is strong
heuristics to use some laws. For instance, if the consequent of an assertion
specifies that the output node of an AND-gate is set positive value, then rules
steTrans and andTabPropT should be applied, and a new assertion is introduced
to specifies that the values of all the input nodes should also be set positive values
if the antecedent of the original assertion holds, as shown in Lemma 40. (2) We
look into combining our reduction method with STE model-checking. Using our
reduction method, we decompose a complex assertion into small assertions, then
use a STE tool like Forte to directly model-check the small assertions. The key
to combining the two techniques is to select a proper interface and development
environment to integrate them.
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A. Isabelle Notations

We briefly present some Isabelle notations and commands used in this work.
For more details, we refer to [10].

Types. There are basic types such as bool, the type of truth values - True and
Flase; nat, the type of natural numbers. Standard boolean operators ∧ and ∨
and → are defined as usual. Function types are denoted by ⇒, and product
types by ×. Types can also be constructed by type constructors such as list and
set. For instance, nat list declares the type of lists whose members are natural
numbers.

Terms. Forms of terms used in this paper are rather simple. It is simply a
constant or variable identifier, or a function application such as f t, where f is
a function of type τ1 ⇒ τ2, and t is a term of type τ1.

Introducing new types. There are three kinds of commands for introducing new
types. typedecl name introduces new “opaque” type name without definition;
types name = τ introduces an abbreviation name for type τ. datatype command
can introduce a recursive data type. A general datatype definition is of the form

datatype (α1, . . . , αn) = C1 τ11 . . . τ1k1 | . . . | Cm τm1 . . . τmkm

where αi are distinct type variables (the parameters), Ci are distinct constructor
names and τij are types. Note that n can be 0, i.e., there is no type parameters
in datatype declaration.
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Definition commands. consts command declares a function’s name and type.
defs gives the definition of a declared function. constdefs combines the effect of
consts and defs. For instance, the following commands define a square function
on nat.

Combining a consts and inductive commands, we can give an inductive defi-
nition for a set. An inductively defined set S is typically of the following form:

consts S::τ set inductive S intros
rule1: [|a11 ∈ S; ...; a1k1 ∈ S;A11, ..., A1i1 |]=⇒ a1 ∈ S ... rulen: [|an1 ∈

S; ...; ankn
∈ S;An1, ..., Anin

|]=⇒ an ∈ S

Lemmas. Lemmas are presented by the notation [[A1;A2; ...;An]] =⇒ B , which
means that with assumptions A1, . . . , An, we can derive a conclusion B.

B. Other Laws

In this part, we introduce some other laws which are used in our work. Many
of these laws have been introduced in previous STE work. They are general in
the sense that they are independent in the structure of a netlist.

The first one is the Reflexivity rule.

Lemma 43 (steRefl).
cktSat nl (A ; A)

Next is the transitivity rule. It allows us to combine together STE assertions
in a transitive way.

Lemma 44 (steTrans).

[[cktSat nl (A ; B); cktSat nl (B ; C)]] =⇒ cktSat nl (A ; C)

Next rule steconjI splits the consequent of an STE assertion into individual
conjuncts, which can be verified separately.

Lemma 45 (steconjI).

[[cktSat nl (A ; B); cktSat nl (A ; C)]] =⇒ cktSat nl (A ; B andT C)

Rule steImpI takes out the boolean guard g in the consequent of an STE
assertion, and turns it into a boolean assumption.

Lemma 46 (steImpI).

[[g =⇒ cktSat nl (A ; B)]] =⇒ cktSat nl (A ; g−→TC)

Rule steEnStrenAnt says that if defSqOfTrForm A′ vsq defSqOfTrForm A,
then assertions A′ ; B imples A ; B because the antecedent A is stronger
than A′.
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Lemma 47 (steEnStrenAnt).

[[cktSat nl (A′ ; B); defSqOfTrForm A′ vsq defSqOfTrForm A]] =⇒ cktSat nl (A ; B)

Rule steWeakenCons says that if defSqOfTrForm B vsq defSqOfTrForm B′,
then assertions A ; B′ implies A ; B because the consequent B is weaker
than A′. .

Lemma 48 (steWeakenCons).

[[cktSat nl (A ; B′); defSqOfTrForm B vsq defSqOfTrForm B′]] =⇒ cktSat nl (A ; B)

Lemma steAndComm and steAndAssoc say that operator andT satisfies com-
mutative and associative laws.

Lemma 49 (steAndComm). defSqOfTrForm (A andT B) = defSqOfTrForm (B andT A)

Lemma 50 (steAndAssoc). defSqOfTrForm ((A andT B) andT C) =
defSqOfTrForm (A andT (B andT C))

A conjunct (False−→TB) can be safely eliminated from a trjectory formula.

Lemma 51 (elimFalseGuard). defSqOfTrForm (A andT (False−→TB)) =
defSqOfTrForm A

A trajectory formula True−→TA is equivalent to A.

Lemma 52 (simpTrueGuard). defSqOfTrForm (True−→TA) = defSqOfTrForm A

chaos is the unit of the operator andT.

Lemma 53 (andChaosId). defSqOfTrForm (A andT chaos) = defSqOfTrForm A

defSqOfTrForm is congruent for operator andT.

Lemma 54 (steAndCong). defSqOfTrForm (A andT B) = defSqOfTrForm
(A andT B′) if defSqOfTrForm B = defSqOfTrForm B′.
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