
Detecting Memory Errors in Python Native Code by
Tracking Object Lifecycle with Reference Count

Xutong Ma1,3,†, Jiwei Yan2,‡, Hao Zhang1,3,†, Jun Yan1,2,3,§,† and Jian Zhang1,3,§,†
1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences

3University of Chinese Academy of Sciences
Email: †{maxt, zhanghao19, yanjun, zj}@ios.ac.cn, ‡yanjiwei@otcaix.iscas.ac.cn

Abstract—Third-party Python modules are usually imple-
mented as binary extensions by using native code (C/C++) to
provide additional features and runtime acceleration. In native
code, the heap-allocated PyObjects are managed by the reference
counting mechanism provided in Python/C APIs for automatic
reclaiming. Hence, improper refcount manipulations can lead
to memory leaks and use-after-free problems, and cannot be
detected by simply pairing the occurrence of source and sink
points. To detect such problems, state-of-the-art approaches have
made groundbreaking contributions to identifying inappropriate
final refcount values before returning from native code to Python.
However, not all problems can be exposed at the end of a path.
To detect those hidden in the middle of a path in native code, it
is also crucial to track the lifecycle state of PyObjects through
the refcount and lifecycle operations in API calls.

To achieve this goal, we propose the PyObject State Transition
Model (PSTM) recording the lifecycle states and refcount values
of PyObjects to describe the effects of Python/C API calls and
pointer operations. We track state transitions of PyObjects with
symbolic execution based on the model, and report problems
when a statement triggers a transition to buggy states. The
program state is also expanded to handle pointer nullity checks
and smart pointers of PyObjects. We conduct experiments on
12 open-source projects and detect 259 real problems out of
280 reports, which is twice as many bugs as state-of-the-art
approaches. We submit 168 real bugs to those active projects,
and 106 issues are either confirmed or resolved.

Index Terms—Python Native Code, Static Analysis, Reference
Counting, Memory Error

I. INTRODUCTION

In recent years, Python has become one of the most popular
languages [1], [2]. It is widely used as the host language for
many application fields, especially for machine learning [3].
These Python scripts are usually executed on top of elaborate
third-party modules, such as NumPy [4], TensorFlow [5], and
PyTorch [6]. And to accelerate the onerous computational
tasks and expand language features, these modules are usually
implemented with native code (C/C++) as binary extensions by
using the Python/C API to interact with the Python interpreter
and corresponding user scripts [7].

In the Python interpreter, everything is a heap-allocated
object called PyObject. To guarantee PyObjects in native code
are properly recycled, the reference counting mechanism is
employed to manage the lifecycle of PyObjects. The refcount
of each PyObject is explicitly manipulated via increment and

§Corresponding authors

decrement APIs. And when the refcount is decreased to zero,
the PyObject will be recursively recycled immediately.

Similar to lifecycle management bugs of other resources,
i.e. unpaired source–sink API calls [8], forgetting to decrease
the refcount will make the PyObject get leaked, whereas
decreasing the refcount of a PyObject still being used can
lead to a use-after-free or double-free defect. We call the
memory errors caused by improper refcount operations the
Refcount Bugs. Since the reference counting mechanism delays
the destruction of a PyObject until its refcount is decreased
to zero, the missing and redundant decrements are difficult to
be observed and located. Furthermore, there has been limited
research focusing on this problem [9].

Hence, the situation is severe. Figure 1 presents the trend
of GitHub issues and pull requests about the Python reference
counting mechanism. By August 2023, there have been more
than 4 million issues and 7.9 million pull requests under this
topic, which may indicate there would be a lot of Refcount
Bugs hidden in real-world projects, and a usable checker to
detect such problems is urgently required in the industry.

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023

0
1
2
3
4
5
6
7
8

Year

Number of (×106)

Issues
Pull Requests

Fig. 1: Trend of issues and pull requests about the Python
reference counting mechanism on GitHub

Typically, static analysis approaches check for resource
management bugs by tracking the lifecycle of resources with
typestate analysis on a Finite State Machine (FSM) [10], [11].
Checking refcount bugs is similar except that we cannot use an
FSM to represent all values of a reference counter. Fortunately,
groundbreaking contributions have been made in verifying the
final refcount values before the control flow returns from native

1

code to the Python interpreter [12], [13]. However, they cannot
correctly handle the following three cases.

First, for two connected refcount bugs of a leaking and a
double-free on the same PyObject, their improper refcount
operations will be canceled by each other at the end of the
path. Second, for destructed PyObjects, existing approaches
will continue tracking their ineffective refcount for leaking
bugs, and cannot report their use-after-free bugs. And third,
these approaches cannot verify the correctness of refcount
values of PyObjects that are not returned from Python APIs.
Hence, tracking only the refcount value is inadequate to
precisely identify refcount bugs.

Focusing on this issue, our key idea is to additionally track
the lifecycle state of a PyObject while concerning its refcount
changes. And this will help us to detect refcount bugs at any
program point according to the state transition of a PyObject.
To achieve this, we need to respond to two challenges when
simultaneously tracking lifecycle and refcount.

First, designing state transition for the lifecycle of
PyObjects. Manipulating the refcount can trigger transitions
on the lifecycle state; whereas lifecycle operations can also
activate or deactivate the refcount. Hence, the basic FSM
transition cannot precisely model the state of PyObjects.
Besides, the newly designed transition model also needs to
consider non-API returned PyObjects, as well as rules to
represent misused operations on them.

Second, in addition to Python/C APIs, the effects of pointer
operations also need to be considered to avoid imprecision
when analyzing real-world projects. Since PyObjects are ac-
cessed via pointer variables under almost all circumstances,
pointer operations affecting the PyObject states also need to
be modeled, such as pointer nullity check, as well as C++
Smart Pointers for automatic refcount decrement.

Facing these challenges, we propose the PyObject State
Transition Model (PSTM), which tracks the lifecycle and
refcount of a PyObject together, to describe the effects of
Python/C APIs and pointer operations. Based on the basic
FSM transition for heap objects [10], [11], new lifecycle
states are added for PyObjects returned from different kinds
of APIs and non-API functions. And new transition rules are
also added to modify the lifecycle state according to refcount
changes and activate or deactivate the reference counter based
on lifecycle states to avoid tracking dead PyObjects. Besides,
the program state recording the PyObject state and refcount,
and pointer assignments are extended to handle pointer nullity
checks and C++ Smart Pointers of PyObjects.

We implement the approach in PyRefcon on top of the Clang
Static Analyzer [14], which contains checkers for identifying
two kinds of refcount bugs, as well as models of refcount
operations in 384 APIs semi-automatically extracted from the
documentation. With the models and the checkers, 259 real
refcount bugs out of 280 reports are found from 12 open-
source Python binary extension modules. Among the identified
bugs, 168 reports are submitted to the developers of the
projects that are still under maintenance, and 106 of them
have been confirmed or fixed by now.

The main contributions of this work lie in three aspects.
• Compared with tracking just refcount changes, we design

the PyObject State Transition Model (PSTM) to describe
the effects of Python/C APIs on the lifecycle and refcount
of PyObjects (Section III-A).

• Compared with the basic FSM transition for heap objects,
we make an extension to the program state to model
nullity check on PyObject pointers and operations of
PyObject smart pointer objects (Section III-B).

• We implemented PyRefcon based on the novel approach,
with which we have found hundreds of real bugs verified
by developers in large-scale projects (Section V-B).

II. BACKGROUND

In this section, we will briefly introduce the Python binary
extensions from two aspects: the reference counting mecha-
nism and refcount operations in APIs. Then we will propose
the patterns of refcount bugs, and present the limitations of
the state-of-the-art research with two examples extracted from
real-world Python modules.

A. Python Binary Extensions

The Python binary extension represents the modules im-
plemented with native code (C/C++) on top of the Python/C
API [7]. In contrast with Python code executed on the Python
interpreter [15], such modules are compiled as plugins to the
interpreter and executed on a real CPU. Hence, memory errors
in native code will directly crash the interpreter.

Everything in Python is an object of class PyObject.
And nearly all PyObjects are allocated on the heap [16].
Hence, PyObject pointers are used almost everywhere in native
code [16]. To track the lifecycle of PyObjects and destruct
PyObjects properly, the interpreter employs the reference
counting mechanism.

B. Reference Counting Mechanism

In native code, developers manipulate PyObjects and com-
municate with the interpreter via more than 1,000 APIs [9].
Among them, in addition to the refcount increment and
decrement APIs, another 384 APIs, according to our statistics,
will also modify the refcount of their parameters and return
values. And the refcount operations in each API are presented
in the documentation [7].

PyObjects are shared in native code. Each PyObject has
a refcount field to track the number of its references. The
counted conceptual references represent the shared owner-
ship of a PyObject, whereas the concrete pointer variables are
used to access the PyObject. Hence, the number of references
and pointers to a PyObject are not necessarily equal, as
refcount increments and decrements in a scope are mutually
canceled and can hence be pruned for simplicity [16].

1) Directly Manipulate Reference Count: The refcount is
explicitly increased and decreased via refcount APIs. In-
creasing the refcount acquires a reference to the PyObject
and hence blocks the destruction of the PyObject until the
reference is released via decrement. When the refcount is

2

decreased to zero, it means all references to the PyObject are
released. And the PyObject will be destructed recursively and
automatically.

2) Reference Count Changes in APIs: If we consider every
API as a closed box, we can omit the internal refcount
changes for the functionalities in the API. Apart from these
modifications, an API can still have influences on the refcount
of the PyObject passed to or returned from it in two ways as
illustrated in the documentation [7].

On one hand, for an API returns a PyObject, it can acquire a
reference to the PyObject being returned on the caller’s behalf,
such as PyObject constructors like PyLong_FromLong.
They are tagged as returning a reference in the documen-
tation. And the caller needs to consume the reference when
the PyObject is no longer used. We can analogize these APIs
as additional sources of references.

On the other hand, when a PyObject is passed to an
API as an argument, the API can decrease its refcount,
or take a reference from the caller. For instance, API call
PyList_SetItem(List, i, Item) equals to Python
code List[i] = Item, which stores PyObject Item to
the i-th element of list List. And the API will transfer a
reference to Item from the caller context to List instead
of acquiring one via refcount increment inside the API. These
APIs are tagged as stealing a reference for the argument,
which can be seen as extra sinks releasing references.

3) Smart Pointers of PyObjects: In addition to manually
decreasing the refcount when a reference is no longer needed,
the refcount of a PyObject can also be automatically decreased
with C++ Smart Pointers.

For C++ objects wrapping a PyObject pointer and decreas-
ing the refcount in their destructors, which have similar struc-
tures and behaviors to the C++ smart pointers, we call them
the refcount monitors. Modeling operations of refcount
monitors is essential, as it is a common idiom in C++ to wrap
a handle to a resource and release it in destructors [17].

C. Refcount Bugs

Different from the state-of-the-art work that defines bug
patterns based on refcount values [13], [18], we analogize the
counted references to heap objects and define refcount bugs
based on two kinds of lifecycle bugs of heap objects: memory
leak and use-after-free.

Similar to memory leak bugs, when a reference is not
released before all its pointer variables go out of scope,
the reference can no longer be released. It will block the
destruction of the PyObject and make it occupy the system
memory for a long period. We define such a symptom a
reference leak (RL) bug.

And analogize with use-after-free bugs, when the refer-
ences acquired in a scope are released, the PyObject will be
destructed. If the PyObject is then used again, a use-after-
release (UaR) bug will be triggered. Besides, for PyObjects
returned from APIs that do not acquire a reference for the
caller, decreasing its refcount is also considered a pending
use-after-release bug.

D. Motivating Example

The state-of-the-art approaches draw attention to the total
refcount changes on a program path. Without the lifecycle state
of PyObjects, they will continue tracking destructed PyObjects
and miss bugs in the middle of program paths.

• File: src/ webp.c
117 PyObject *_anim_encoder_new(...) {

· · ·
165 encp = PyObject_New(...); // Created
166 if (encp) {

· · ·
171 if (...) return encp; // Sink-1: Returned

· · ·
175 PyObject_Del(encp); // Sink-2: Destructed
176 }
177 PyErr_SetString(...);
178 return NULL; // No leaks
179 }

Fig. 2: A correct function from Pillow, where approaches
based on only refcount will generate a false leaking report

• The first example shown in Figure 2 is a snippet without
refcount bugs. The API PyObject_New creates PyObject
encp and returns a reference on line 165. Then on line 171,
when the if condition is satisfiable, encp is returned to the
caller together with the reference (Sink-1). Otherwise, it is
explicitly destructed on line 175 (Sink-2).

With lifecycle state transition, we can use two states to
distinguish a live PyObject from a destructed one, and properly
deactivate the refcount of encp after its destruction. As
dead PyObjects cannot be simply represented with refcount
changes, the approaches based on refcount changes will report
that encp leaks.

• File: numpy/core/src/multiarray/ctors.c
2849 PyObject *PyArray_Zeros(...) {

· · ·
2857 ret = PyArray_NewFromDescr_int(...); // 1. Captured

· · ·
2869 if (_zerofill(ret) < 0) {
2870 Py_DECREF(ret); // 3. Use-after-release
2871 return NULL;
2872 }

· · ·
2876 return (PyObject *) ret;
2877 }

• File: numpy/core/src/multiarray/common.c
147 int _zerofill(PyArrayObject *self) {

· · ·
154 if (...) {
155 Py_DECREF(self); // 2. Decrease, destructed
156 return -1;
157 }

· · ·
163 return 0;
164 }

Fig. 3: A confirmed use-after-released bug found in NumPy,
which is detected by PyRefcon and fixed after submitted

• The second example in Figure 3 shows a use-after-
release bug found from NumPy1. On line 2857 of the first
file, the PyObject ret is created from a function pointer call
inside non-API function PyArray_NewFromDescr_int

1https://github.com/numpy/numpy/issues/19859

3

https://github.com/numpy/numpy/issues/19859

and passed to function _zerofill as parameter self.
Then on line 155 of the second file, the refcount of the
PyObject is decreased. And finally, on line 2870 of the
first file, the refcount is decreased for the second time.
After digging into the code base, we discovered that func-
tion PyArray_NewFromDescr_int returns a reference.
Hence, the second decrement on line 2870 can be recognized
as a use-after-release bug.

Unfortunately, such bugs cannot be precisely reported by
state-of-the-art approaches. Since the refcount is implicitly
increased in the function pointer call, which is difficult to be
inferred statically, available approaches will give up tracking
its refcount and hence leads to a false negative. And due
to the limitation of defining bug patterns based on refcount
values, forcing reporting such issues will lead to a lot of false
positives. Since the initial refcount is unknown, to precisely
report such issues, we need to design a specific lifecycle state
for PyObjects returned from non-API functions.

III. MODELING AND CHECKING PYOBJECTS

In this section, we first introduce the PyObject State Tran-
sition Model (PSTM) with the designation of lifecycle states
and transition rules under lifecycle and refcount operations.
Then, we present solutions for handling pointer nullity checks
and refcount monitors with enhanced program state. Figure 4
shows the workflow of modeling PyObjects and checking
refcount bugs.

Program
States

Bug Checkers

Statement Evaluator

Bug Reports

PyObject Manager

 Lifecycle
 States

Refcount
Operations

Lifecycle
Operations

Source Files

API Models

Monitor Definitions

PyObject State
Transition Model

Refcount
Values

P
ointer O

perations

Fig. 4: Workflow of checking refcount bug with PSTM

According to the workflow, the inputs of the analysis
include source files, models for refcount operations in Python
APIs, and the definition of refcount monitors. The Statement
Evaluator will model the semantics of the code and store
the results in the program state. The encountered lifecycle,
refcount, and pointer operations will be passed to the PyObject
Manager to apply the models. And the modified program state
on each program point is checked finally with Bug Checkers.

A. PyObject State Transition Model

For a PyObject, we track its lifecycle state transition and
refcount changes with a triple 〈id, st, rc〉, where
• id is the unique identifier of each PyObject;
• st ∈ Σ represents its lifecycle state;
• rc ∈ N ∪ {N/A} measures its refcount value.

The set of lifecycle state Σ is defined as Σ = {Created,
Borrowed, Captured, Released, Escaped, Leaked, Reused}.
And among the states in set Σ, refcount is activated only for
state Created and Escaped. For others, we use N/A indicating
that the refcount is not tracked.

We define the lifecycle state transition by expanding the
existing FSM transition for heap objects [10], [11], as pre-
sented in Figure 5. Different from the available model designed
for a Created–Released switch state under paired source–sink
APIs [8], designing the lifecycle state for PyObjects needs to
consider the refcount and the API effects together.

Created Released

Leaked

Reused
Destruct

Out-of-Scope

Use

Initial State Safe State Buggy States

Fig. 5: Basic FSM transition model for heap objects

When designing the transition rules, we need to consider
the mutual influences between lifecycle states and refcount.
Lifecycle operations modify the lifecycle states, as well as
activate or deactivate the refcount. Whereas refcount opera-
tions can manipulate the refcount and trigger lifecycle state
transitions simultaneously. Figure 6 presents the transition
rules of lifecycle states. And we will introduce the states by
following the transitions from left to right.

Initial States Safe States Buggy States

Dᴇᴄʀᴇᴀsᴇ, Dᴇsᴛʀᴜᴄᴛ

Dᴇᴛᴀᴄʜ

Usᴇ

Pʀᴜɴᴇ

Iɴᴄʀᴇᴀsᴇ

Iɴᴄʀᴇᴀsᴇ

Dᴇᴄʀᴇᴀsᴇ, Dᴇsᴛʀᴜᴄᴛ

Released

Leaked

Borrowed

Escaped*

Captured

Reused

Dᴇᴄʀᴇᴀsᴇ,
Dᴇsᴛʀᴜᴄᴛ

Dᴇᴄʀᴇᴀsᴇ,
Dᴇsᴛʀᴜᴄᴛ

Created*

Iɴᴄʀᴇᴀsᴇ, Dᴇᴄʀᴇᴀsᴇ

Iɴᴄʀᴇᴀsᴇ, Dᴇᴄʀᴇᴀsᴇ

Fig. 6: Lifecycle state transition of a PyObject, where refer-
ence counted states are tagged with a star mark. INCREASE
and DECREASE denote the refcount increment and decrement;
DESTRUCT represents the destruction triggered automatically
after refcount decreased to zero or explicitly by calling life-
cycle APIs; DETACH indicates the PyObject is returned or
assigned to non-stack pointers; USE represents all dereference
operations to a PyObject pointer; and PRUNE means that all
pointers to the PyObject go out of scope, and the correspond-
ing PyObject symbol is being removed from the program state.

1) PyObject Construction: In the basic FSM transition of
heap objects, there is one initial state since only one source
function can create heap objects. Whereas in our PSTM, we
categorize functions returning a PyObject into three types as
discussed below. Each of them will return a PyObject with
a unique id when invoked, indicating that we assume the

4

returned pointers are not aliased. We will discuss the reasons
for this assumption in Section VI.
• APIs returning a reference. Most of these functions

are PyObject constructors creating a new PyObject, such as
function PyObject_New in Figure 2. Since the returned
PyObject is usually newly created with a refcount of one, users
should consider that it is neither referenced by nor an alias
of another PyObject. To emphasize the difference with other
kinds of PyObjects, their initial states are set to 〈id, Created,
1〉, which is similar to the initial state of heap objects.
• APIs not returning a reference. In native code, such APIs

are usually the getter methods, such as PyTuple_GetItem
accessing the content of a tuple object. By calling them,
the caller context only receives a pointer to the returned
PyObject for temporary use. This means destructing the re-
turned PyObject or releasing its references will introduce
a use-after-release problem for the sources providing the
returned PyObject. To distinguish them from newly created
ones, we use state 〈id, Borrowed, N/A〉 to represent such
PyObjects until the caller acquires a reference to it.
• Non-API functions returning a PyObject from an unknown

source, such as function PyArray_NewFromDescr_int
in Figure 3 that returns a PyObject from a function pointer.
Since we cannot know the behavior of the callee, the returned
PyObject can be either of the above cases. Hence, we use
state 〈id, Captured, N/A〉 representing the superposition state
of Created and Borrowed. And it will collapse to either of
them through future operations.

2) PyObject Detachment: For a PyObject in the Created
state, when it is (a) returned from the entry function of the
analysis, or (b) assigned to a pointer variable accessible from
outside of the analysis context, operation DETACH will change
its lifecycle state to Escaped without modifying its refcount.

[DETACH] s = 〈id ,Created , rc〉
DETACH(s): s = 〈id ,Escaped , rc〉

As we do not know whether external pointers need to hold a
reference, this state represents that we cannot precisely know
what value its refcount should exactly be. And we only report
use-after-release bugs for an Escaped PyObject when it is
explicitly destructed, or its refcount is decreased to less than
zero, which is similar to a Borrowed PyObject.

3) Refcount Operations: The refcount of a PyObject is
manipulated by only one unit with operation INCREASE and
DECREASE. In the PSTM, the refcount is measured with the
number of references in the current analysis context, rather
than simply accumulating increments and decrements. Hence,
for a PyObject passed to a reference-stealing API, we also
decrease its refcount by one with operation DECREASE.

[INCREASE] s = 〈id , st , rc〉 ∧ rc ∈ N
INCREASE(s): s = 〈id , st , rc + 1〉

[DECREASE] s = 〈id , st , rc〉 ∧ rc > 1
DECREASE(s): s = 〈id , st , rc − 1〉

As mentioned in Section II-B2, the stolen reference is no
longer managed by the current context, it can hence be released
at any time. This may lead to use-after-release bugs for further

dereferences. By modeling the behavior of reference-stealing
APIs with decrement, we can now additionally detect such
use-after-release threats rather than consider them as safe, just
like what the state-of-the-art approaches do.

When decreasing the refcount from one to zero (rc =
1) through either refcount decrement or reference-stealing
APIs, for Created PyObjects, the decrement will automatically
trigger its destruction as required by the reference counting
mechanism mentioned in Section II-B1;

[DECREASE] s = 〈id ,Created , 1〉
DECREASE(s): DESTRUCT(s)

whereas for an Escaped PyObject, we will not destruct the
PyObject but continue tracking its refcount changes by de-
creasing it to zero to check further use-after-release bugs as
illustrated in Section III-A2.

[DECREASE] s = 〈id ,Escaped , 1〉
DECREASE(s): s = 〈id ,Escaped , 0〉

Since state Captured represents the superposition state of
Created and Borrowed (Section III-A1), we define the follow-
ing two transition rules based on assumption and inference.
First, when decreasing the refcount of a Captured PyObject,
if the function returning it does not return a reference (i.e.
this Captured PyObject is actually a Borrowed PyObject),
the decrement will trigger a use-after-released bug. Therefore,
to avoid generating false alarms, we handle such Captured
PyObjects as Created ones.

[DECREASE] s = 〈id ,Captured ,N/A〉
DECREASE(s): DESTRUCT(s)

Second, if a refcount increment appears in the code, there
are great chances that the current context is not holding
a reference to the PyObject. Hence, when increasing the
refcount of a Captured PyObject, we will first collapse the
superposition state to Borrowed before the refcount increment.
While for a Borrowed PyObject (both returned and collapsed),
a refcount increment will make the current context hold one
reference to it. Therefore, we change state Borrowed to 〈id,
Created, 1〉, which is the same as a PyObject returned from
an API returning a reference, and begin tracking its refcount
changes since then.

[INCREASE] s = 〈id , st ,N/A〉 ∧ st ∈ {Borrowed ,Captured}
s = 〈id ,Created , 1〉

4) PyObject Destruction: Similar to deallocated heap ob-
jects, we also need a state to represent a destructed PyObject
whose occupied memory is reclaimed. We use this state to
distinguish live PyObjects from dead ones to check use-after-
release bugs.

PyObject destruction will be triggered automatically with
refcount decrement, or directly invoked when lifecycle APIs
are called explicitly (e.g. calling PyObject_Del on line 175
in Figure 2). Operation DESTRUCT will change the lifecycle
state to Released and deactivate the refcount. As illustrated
when introducing refcount decrements, only PyObjects in state
Created and Captured can be destructed, i.e. state Captured
is collapsed to Created before the destruction.

5

[DESTRUCT] s = 〈id , st , rc〉 ∧ st ∈ {Created ,Captured}
DESTRUCT(s): s = 〈id ,Released ,N/A〉

5) Transition to Buggy States: Transitions to buggy states
show how a refcount bug is triggered. And the buggy states
represent that an identified bug on the PyObject has been
reported. State Leaked represents reference leaks and state
Reused stands for use-after-released bugs.

When a PyObject s losses all pointers pointing to it, it
cannot be accessed again in the analysis. Operation PRUNE
will remove it from the program state. If its refcount is not
zero, its lifecycle state will be changed to Leaked, and report
a reference leak bug for it.

[PRUNE] s = 〈id ,Created , rc〉 ∧ rc 6= 0
PRUNE(s): s = 〈id ,Leaked ,N/A〉

Besides, for a Released PyObject, using a pointer p to it
with operation USE, which contains the behaviors of
• reading via the pointer (*p or p->);
• returning the pointer (return p);
• calling a function with the pointer (f(p));
• assigning to other non-local pointers (pp = p),

will be reported as a use-after-release bug and transit its
lifecycle state to Reused.

[USE] s = 〈id ,Released ,N/A〉
USE(s): s = 〈id ,Reused ,N/A〉

For Borrowed PyObjects and Escaped PyObjects with a
refcount of zero, refcount decrement will release a reference
not measured in the current analysis context and make an
external reference dangling. Hence, we report such behaviors
as use-after-release bugs.

[DECREASE] s = 〈id ,Borrowed ,N/A〉 ∨ s = 〈id ,Escaped , 0〉
DECREASE(s): s = 〈id ,Reused ,N/A〉

Similarly, explicitly destructing PyObjects in state Borrowed
or Escaped with operation DESTRUCT is also recognized as
use-after-released bugs.

[DESTRUCT] s = 〈id , st , rc〉 ∧ st ∈ {Borrowed ,Escaped}
DESTRUCT(s): s = 〈id ,Reused ,N/A〉

B. Enhanced Program State

We employ symbolic execution to analyze the code and
track the state changes of PyObjects. To model the behavior
of refcount monitors (Section II-B3), we enhance the program
state with a new set M and define the new program state as
P that P = 〈V, S,C,M〉 where
• V contains the assignments of all tracked variables as a

map from a variable to its assigned value (var → value);
• S stores PyObject state tuples currently being used;
• C is the set of path constraints;
• M stores refcount monitor objects.

In this section, we introduce operations modifying the program
state during the symbolic execution.

1) Modeling Refcount Monitors: We model the behavior of
refcount monitors with a simplified C++ smart pointer model
in our previous research [19].

When a monitor object m is constructed, it will be added to
the monitor set M . When assigning a PyObject to a monitor

via method calls, we will store the assignment in the variable
set V , and remove it during reassignment.

[ASSIGN] σ ∈ S ∧m ∈M
ASSIGN(m, σ): ∀(m→ ς) ∈ V,

V ′ = (V \ {(m→ ς)}) ∪ {(m→ σ)}

The additional monitor assignment can extend the lifetime of
the PyObject like other pointer variables, which can delay the
leak checker in operation PRUNE until the monitor object goes
out of scope and gets removed from set M .

The reference held in the monitor will not trigger a refcount
decrement immediately after the assignment. And when the
monitor goes out of scope, operation PRUNE will then remove
the assignment from variable set V and decrease the refcount
of the PyObject.

[PRUNE] P = 〈V ∪ {(m→ σ)}, S, C,M ∪ {m}〉 ∧ σ ∈ S
PRUNE(m): P ′ = 〈V, S,C,M〉; DECREASE(σ)

We apply the monitor model on an object if it is an object
of the C++ standard Unique Pointer [20] with a refcount-
decreasing deleter, or (a) it contains one and only one private
PyObject pointer field, (b) it has a constructor accepting a
PyObject pointer argument and initializing the field with the
argument, and (c) its destructor decreases the refcount of the
wrapped PyObject pointer. Besides, users can also manually
add other classes of monitors if they are not automatically
recognized with the above rules.

2) Pointer Nullity Check: Nullity check on PyObject point-
ers is frequently used in native code to check whether an
API call succeeded. The state-of-the-art approach forks the
program path to non-null and null branches when a PyObject
is created and returned from an API [13]. To simplify the path
constraints and reduce unnecessary path forks, we introduce
the lazy-check strategy for nullity check on PyObject pointers.

After the construction of a PyObject, its nullity is kept unde-
termined until checked on branch conditions or dereferenced
directly. On the null branch of the nullity check, operation
PRUNE will remove the PyObject from symbol set S and reset
the assignments of PyObject pointers to NULL.

[PRUNE] σ ∈ S
PRUNE(σ): S′ = S \ {σ} ∧ ∀(p→ σ) ∈ V,
V ′ = (V \ {(p→ σ)}) ∪ {(p→ NULL)}

Whereas on the non-null branch, we will add a non-null
constraint σ != NULL to the constraint set C with operation
USE. Besides, if a PyObject is directly used without a nullity
check, we will also append the non-null constraint to set C,
as developers believe that it cannot be NULL.

[USE] σ ∈ S ∧ σ = NULL /∈ C
C′ = C ∪ {σ != NULL}

IV. CASE STUDY

In this section, we will use three examples to illustrate the
detailed program state transition. For assignments of PyObject
pointers in set V , we use their ids for simplicity.
• Figure 7 shows the transition of program state for the

example in Figure 2. As no monitors are present in the
example, we omit the monitor set M in the program state.

6

117: V: {}, S: {}, C: {}

165, create:
V: {encp→S165}
S: {⟨S165, Created, 1⟩}
C: {}

171-then, Sink-1:
V: {encp→S165}
S: {⟨S165, Escaped, 1⟩}
C: {S165 != NULL, C171}

171-else, Sink-2:
V: {encp→S165}
S: {⟨S165, Released, N/A⟩}
C: {S165 != NULL, ¬ C171}

166-then:
V: {encp→S165}
S: {⟨S165, Created, 1⟩}
C: {S165 != NULL}

166-else:
V: {encp→NULL}
S: {}
C: {}

Fig. 7: Program state transition of the example in Figure 2

On line 165, we apply the returning-a-reference operation
on API PyObject_New according to the API model, which
creates PyObject 〈S165, Created, 1〉 and assigns it to pointer
encp. Then on line 166, we apply the pointer-nullity-check
operation on the if statement. On the then branch, a non-null
constraint is appended; and on the else branch, the original
assignment is cleared with the assigned symbol removed.
Next on line 171, if the path constraint C171 is satisfiable,
PyObject S165 is returned with its lifecycle state changed
to Escaped (Sink-1). Otherwise (¬C171), PyObject S165 is
destructed with its lifecycle state changed to Released and
refcount deactivated (Sink-2). And hence, we can avoid a false
reference leak report for S165.

2849: V: {}, S: {}, C: {}

2857, create:
V: {ret→S2857}
S: {⟨S2857, Captured, N/A⟩}
C: {}

2869, call _zerofill→147:
V: {ret→S2857, self→S2857}
S: {⟨S2857, Captured, N/A⟩}
C: {S2857 != NULL}

154-else→163:
V: {ret→S2857, self→S2857}
S: {⟨S2857, Captured, N/A⟩}
C: {S2857 != NULL, ¬ C154}

154-then→155-decrease:
V: {ret→S2857, self→S2857}
S: {⟨S2857, Released, N/A⟩}
C: {S2857 != NULL, C154}

156, return→2869-then:
V: {ret→S2857, $?→-1}
S: {⟨S2857, Released, N/A⟩}
C: {S2857 != NULL}

163, return→2869-else:
V: {ret→S2857, $?→0}
S: {⟨S2857, Captured, N/A⟩}
C: {S2857 != NULL}

2870, use-after-release:
V: {ret→S2857}
S: {⟨S2857, Reused, N/A⟩}
C: {S2857 != NULL}

2876, return:
V: {$?→S2857}
S: {⟨S2857, Captured, N/A⟩}
C: {S2857 != NULL}

Fig. 8: Program state transition of the example in Figure 3

• Figure 8 shows the transition of program state for the
example in Figure 3. On line 2857, for the non-API call,

we create PyObject S2857 with an initial state of Captured,
according to the PyObject model. As it is used directly
by passing to function _zerofill, we append a non-null
constraint for S2857. And the parameter self of the callee
is also aliased to S2857 before the function call.

In the callee, if the path follows the then branch (C154) on
line 154, the lifecycle state of S2857 is transited to Released
with the refcount decrement according to the transition rules.
Whereas on the else branch (¬C154), the state of S2857 is
not changed.

After returning from the callee, the dead assignments,
symbols, and path constraints are pruned from the state. And
the return value is stored via built-in variable $? in the variable
assignment set V . As the branch condition on line 2869 can
be directly determined with the return value, the analysis will
follow the correct path of the if statement. On the then
branch, the dangling pointer to PyObject S2857 is used. This
makes the lifecycle state changed to Reused indicating a use-
after-released bug. Whereas on the else branch, the PyObject
is returned with its lifecycle state unchanged.

• File: torch/csrc/Module.cpp
592 THPObjectPtr list(PyList_New(...)); // Monitor assignment

· · ·
595 if (...)
596 throw python_error(); // Monitor destructor call

(a) An example function extracted from PyTorch, where our tool
generates a false positive without the model of refcount monitors.
Class THPObjectPtr implements the refcount monitor.

592:
V: {list→S592, list.ptr→S592}
S: {⟨S592, Created, 1⟩}
C: {}
M: {list}

595-then, throw:
V: {list→S592, list.ptr→S592}
S: {⟨S592, Created, 1⟩}
C: {C595}
M: {list}

596, unwinding:
V: {}
S: {⟨S592, Released, N/A⟩}
C: {C595}
M: {}

(b) Program state transition on the exception branch

Fig. 9: Example of automatic refcount decrement

• Figure 9 presents the program state transition when the
analyzer applies the model of refcount monitors. When the
PyObject symbol S592 is created on line 592, the constructor
of the monitor object list is invoked. It assigns the pointer
field list.ptr to S592. The monitor model then adds list
to the monitor set M and adds the monitor assignment of
list→S592 to the assignment set V .

If the execution takes the then branch on line 595, it
will throw a python_error exception and terminate the
path. The analysis engine then removes the dead assignment

7

list.ptr→S592, and the monitor assignment helps to
extend the lifetime of S592. Finally, monitor object list
is removed during stack unwinding, which decreases the
refcount of S592 and changes its lifecycle state to Released.
Without the monitor model, the analyzer will generate a false
alarm reporting S592 leaks a reference, when assignment
list.ptr→S592 is removed.

V. EVALUATION

To evaluate the effectiveness and usability of revealing
refcount bugs, we carried out the following experiments to
answer the three research questions below.
• RQ 1: How many refcount bugs can we detect? What are

the reasons for false positives?
• RQ 2: How is the result compared with other tools? What

are the reasons for our false negatives?
• RQ 3: How much system resource is consumed during

the analysis compared with other tools?

A. Setup of Experiments

Tool Implementation. We implement our tool, PyRefcon,
on top of a static symbolic execution engine, the Clang
Static Analyzer (CSA) [14]. The PSTM and enhanced program
state are added together with new checkers to detect refcount
bugs based on state transition. Refcount operations of 384
APIs are semi-automatically extracted from the formatted
documentation and added to the analyzer.

To speed up the analysis process, we execute PyRefcon on
each translation unit separately in parallel with Panda [21].
And the interfile function calls are handled with the cross-
translation-unit analysis mechanism of CSA. To remove re-
dundant bug reports generated for the same buggy site from
different analyzer instances, we deduplicate bug reports with
a categorization and sorting based strategy [22].

Environment and Tools. The experiments are executed on
a Linux server with Intel® Xeon® E5-2680 v4 CPU of 56
threads and 256 GB of memory. Unfortunately, the state-
of-the-art tools, Pungi [13] and RID [18], are not publicly
available. We hence evaluate our tool against CpyChecker [23],
which is the tool that both Pungi and RID have compared
with. It implements refcount bug checks with a path-sensitive
approach similar to Pungi. Besides, we also literally compare
our results with the original data provided in the paper of
Pungi and RID.

We build CpyChecker from source on an Ubuntu 18.04
Docker image with GCC 6.5, which are the highest versions
that CpyChecker can work with [24]. The experiments are
executed under Python 3.8 header files for both PyRefcon and
CpyChecker.

Benchmark Composition. The benchmark is composed of
two parts: the open-source Python binary extension modules
used by the state-of-the-art research, as well as popular large-
scale open-source modules written in C/C++. The detailed
information is presented in Table I.

For the first part, we select six out of thirteen projects
from the benchmark of Pungi [13] and RID [18]. Among the

TABLE I: Information of evaluated open-source Python binary
extension modules. The name, Git repository link, and version
(refer to the references) of selected modules (Project); the
research where this project comes from (Source); the number
of kilo lines of C/C++ code in the project repository (Kloc);
and whether the project can be analyzed by PyRefcon and
CpyChecker: analyzer exits normally with reports correctly
generated (3), analyzer exits in error state with some reports
generated (37), and no reports are generated due to analyzer
errors or unsupported input project (7).

Project Source Kloc PyRefcon CpyChecker

pyaudio [25] Pungi
RID 2.86 3 3

pycrypto [26] Pungi 17.48 3 37

pyxattr [27] Pungi 1.23 3 3

rrdtool [28] Pungi 1.48 3 37

dbus [29] Pungi 12.59 3 7
duplicity [30] Pungi 0.50 3 3

NumPy [31] - 298.05 3 7
SciPy [32] - 1,146.91 3 7

Numba [33] - 251.09 3 7
Pillow [34] - 22.08 3 7

TensorFlow [35] - 43.74 3 37

PyTorch [36] - 2,617.65 3 7

expunged projects, four of them (krbV [37], ldap [38], py-
OpenSSL [39], and netifaces [40]) cannot support the Python
3 API under the selected versions; whereas for the other three
(gst, canto, and yum [41]), we cannot find a Python binary
extension module with the names on GitHub.

For the second part, six other projects are selected for their
reported refcount bugs in our previous research [42]. These
projects mainly cover the scene of machine learning, scientific
computation, and so on. These usage scenarios have high
efficiency and usability requirements and sometimes need to be
executed with limited system resources. Hence, it is important
for these projects to avoid memory leaks and use-after-free
bugs that can be triggered with refcount bugs.

B. Effectiveness and Correctness (RQ 1)

Reports generated by PyRefcon. To evaluate the effective-
ness of checking real-world projects, we run PyRefcon on
the benchmark. Table II shows the statistics of the reports
generated by PyRefcon.

Reports are manually reviewed by two authors to determine
their correctness. As seen in the table, 259 true bugs are
identified from 280 reports according to the manual revision
of two authors. Beyond the 280 reviewed reports, the dedupli-
cation strategy for bug reports removes 270 redundant reports
(Column Redu.), which report the same bug triggered from
different entries with similar paths.

Reports of initial state Borrowed and Captured. Among
the bug reports, 18 reports have these two kinds of initial state
(Column B.&C.), where 16 of them are real bugs together with

8

TABLE II: The statistics of reports generated by PyRefcon.
The Bug Reports columns show the number of true positives
(TP) and false positives (FP) reporting Reference Leak (RL)
and Use-after-Release (UaR) bugs. And the Strategies columns
present the number of reports on PyObjects starting with
state Borrowed or Captured (B.&C.), redundant reports pruned
with the categorization approach (Redu.), and false alarms
eliminated with the monitor model (FPMo.). The +1 TPRL. in
PyTorch is reported after applying the monitor model.

Project Bug Reports Strategies

TPRL FPRL TPUaR FPUaR B.&C. Redu. FPMo.

pyaudio 42 - - - - - -
pycrypto 2 2 5 - 5 - -
pyxattr 2 - - - - - -
rrdtool 18 - 6 - - - -
dbus 9 2 - - - 1 -

duplicity 3 - - - - - -

NumPy 26 3 13 - 10 41 -
SciPy 21 2 2 1 1 225 5

Numba 30 3 1 - - - -
Pillow 40 4 - - - 1 -

TensorFlow 31 4 2 - - 1 9
PyTorch 5+1 - - - 2 1 45

Total 229+1 20 29 1 18 270 59

2 false positives due to the side effects of third-party function
calls.

Reasons for false positives. The main reason for false
positives is due to the unmodeled behaviors of PyRefcon. The
root causes can be categorized into three clusters.

We mark six reports as false positives since we do not
model the functionality but only the refcount operations of
API functions. The side effects of API functions and implicit
constraints between PyObjects make PyRefcon follow an in-
feasible program path, which finally leads to a false positive.

Another five false positives are caused by the analysis
engine. When a noreturn function is called on the path,
such as function abort, the engine will first invoke the
reference leak checker before terminating the path. This makes
PyObject with unreleased references reported as leaked. These
reports can be eliminated with an option of CSA, which will
move the dead symbol deletion to the end of the path, but the
memory usage will be increased.

There are also three reports marked as false positives as we
assume that the developers did this on purpose. And four other
false positives are due to the path provided in the report is not
complete and cannot be reviewed.

False positives pruned by monitors. The recognition strate-
gies for monitors find three wrapper classes as refcount
monitors. When applying the monitor model to objects of
these classes, as shown in Column FPMo., all 59 false positives
related to refcount monitors are eliminated with one additional
true positive newly reported, and no true positives originally
reported are suppressed with the monitor model.

Among the pruned 59 false positives, 48 of them are

triggered by throwing exceptions like the example in Figure 9;
3 false alarms are triggered by noreturn functions in
assertions, which is similar to the previous type; and the rest
8 reports are generated because the destructor of the monitor
object is not called for the invocation limitation of the analysis
engine. The experimental results prove that modeling refcount
monitors are helpful in suppressing related false positives.

Revisions from Developers. To further confirm the fair-
ness of our revision on reports, we submit 168 (60%) true
positives to the developers. Among them, 22 of them have
been confirmed; 84 of them have been fixed according to
our reports; 53 of them are still pending; and 9 of them are
closed as developers do not think there are problems with their
knowledge of the code.

The rest 112 reports are not submitted, where 21 of them are
false-positive reports; 9 of them are fixed or deleted before our
submission; 51 of them from two projects (pyaudio and dbus)
are due to the projects do not have an interactive issue system;
and 31 of them from two projects (pycrypto and rrdtool) are
due to the projects being out of support.

C. Comparison with Related Tools (RQ 2)

Comparison with CpyChecker. To further compare the
effectiveness, we compare our reports against those generated
by CpyChecker. The number of common true positives with
CpyChecker is shown in Figure 10a.

After reviewing the reports, we found that most of the
reference leak bugs missed by CpyChecker are caused by
incomplete program paths. The CpyChecker will miss the bugs
far from the entry, whereas our PyRefcon can track deeper
call stack. This observation may be caused by the reporting
strategy of CpyChecker and its stability problem when analyz-
ing Python 3 projects. And 11 use-after-release bugs are not
reported by CpyChecker. This is due to lacking the lifecycle
state of PyObjects when tracking only the refcount values as
mentioned in Section II-D.

Among the reports generated by CpyChecker, one reference
leak bug is not detected by PyRefcon. The reason is that the
corresponding source file is not analyzed, as it is not compiled
when building the project. The difference in compiler versions
used by PyRefcon and CpyChecker leads to this result.

Comparison with Pungi and RID. To evaluate the per-
formance of PyRefcon against the state-of-the-art approaches,
we literally compare the results provided by Pungi and RID in
their papers [13], [18]. The number of true positives of these
four tools is shown in Figure 10b.

According to the figure, our tool can report twice more true
bugs as CpyChecker does for the total number from both Pungi
and RID. And compared with the data provided by Pungi, our
tool can still find approximately twice as many true bugs from
the latest versions of the compared projects, where the bugs
previously found may have been fixed if they were submitted
to the developers. Whereas for RID, it can find four more bugs
than PyRefcon on the evaluated project.

Since neither tools nor detailed reports generated by them
are publicly available, we cannot tell the intersection and

9

RL UaR

0

50

100
107

11

53

0

52

0

PyRefcon
CpyChecker

Common

(a) Actual comparison

Pungi RID

0

50

100 87

4236 32
42 46

PyRefcon
CpyChecker
Pungi / RID

(b) Literal comparison

Fig. 10: Comparison among all tools. Subfigure (a) shows the
number of common and respective true positives of PyRefcon
against CpyChecker, where the projects for which CpyChecker
can generate reports (the projects marked as 3 or 37 in Table I)
are measured. Subfigure (b) presents the number of true
positives of Pungi, RID, and CpyChecker from their original
papers against PyRefcon, where the data of the corresponding
source (Column Source) is measured.

differences between PyRefcon and the other tools. And hence,
we cannot draw further conclusions from this comparison.

D. Resource Consumption (RQ 3)

In this subsection, we show the resource consumption of
PyRefcon against the CSA engine (by executing PyRefcon with
all our checkers and models disabled) and CpyChecker. The
data is measured with the average value of five executions.

Table III shows the resource consumption comparison of
PyRefcon and the CSA engine when executing them in
parallel. For all projects in the benchmark, the total time
consumption under a concurrency of 16 parallel processes is
13,152.89 seconds or 3.65 hours, which spends 1.26× time

TABLE III: Time and memory consumption of PyRefcon and
corresponding overhead compared with executing the CSA
engine under a concurrency of 16 parallel processes.

Project Time (Seconds) Memory (GB)

Total Overhead Peak Overhead

pyaudio 1.18 3.28× 0.01 0.95×
pycrypto 2.89 1.52× 0.16 1.63×
pyxattr 1.54 1.49× 0.01 0.86×
rrdtool 5.30 1.70× 0.01 0.86×
dbus 6.25 1.74× 0.24 1.46×

duplicity 0.20 1.08× 0.01 2.36×

NumPy 489.93 1.63× 0.67 2.12×
SciPy 588.19 2.03× 0.62 1.51×

Numba 10.44 1.50× 0.24 1.51×
Pillow 67.94 1.77× 0.30 0.82×

TensorFlow 7,243.75 1.28× 3.08 1.68×
PyTorch 4,735.28 1.15× 3.28 3.10×

Total 13,152.89 1.26× 3.47 1.84×

than the CSA engine. Besides, we also estimate the upper
bound of peak memory usage under concurrent analysis with
the sum value of peak memory usage of the top 16 translation
units. According to the peak memory usage of each translation
unit, the estimated upper bound of memory consumption under
a concurrency of 16 parallel processes is 3.47 GiB, which uses
1.84× memory as the CSA engine.

To evaluate the detailed resource consumption, we also
measure the time cost and peak memory usage for each
translation unit separately. Among the 12,208 translation units
in 12 projects, 4,415 kilo lines of code are analyzed. The
average resource consumption per Kloc is 81.29 seconds and
2.00 GB. Compared with the CSA engine, where resource
consumption is 30.46 seconds and 0.91 GB, the overheads are
2.67× and 2.20× respectively.

Furthermore, we also measure the resource consumption
of PyRefcon and CpyChecker on the three projects that Cpy-
Checker can correctly analyze. Among them, PyRefcon uses
49.99% memory and 38.71% time on average compared with
CpyChecker.

VI. THREAT TO VALIDITY

Handling Pointer Aliases. Symbolic execution does a pre-
cise pointer analysis that can detect all alias relations inside
the current analysis context. Whereas for external pointers,
such as parameters and return values of a callee function, we
assume that they point to separated PyObjects, and analyze
their refcount and lifecycle state respectively.

Since it is difficult to have a full vision over the project,
third-party libraries, and the interpreter, a preferred solution for
developers to avoid potential refcount bugs is to follow this
assumption, especially for developers in large projects. And
the submitted bug reports also prove that it will not introduce
false alarms on aliased pointers, as developers can neither tell
whether two external pointers can be aliased.

Captured PyObjects. In PyRefcon, we design the inference-
based transition rules for Captured PyObject by following
a conservative manner. And our evaluation has successfully
shown the low false positive rate of the strategy. Unfortunately,
there would be some bugs missed by our approach. To over-
come this problem, users can add specific model definitions
for the private and third-party API functions in their projects
by imitating our built-in models for Python/C APIs.

Besides, only the PyObjects returned from functions will be
tracked, whereas PyObjects accessed from global variables and
parameters are not considered. Due to the conservative man-
agement strategies of CSA for global variables, the PyObjects
assigned to such pointers will be soon invalidated and pruned,
even though the PyObjects that are pointed to by global
variables can also be analyzed with our approach. To avoid
false alarms and unreasonable reports, we also drop them in
PyRefcon, which may also lead to false negatives.

Selection of compared tools. In this paper, we compare
our tool against CpyChecker in practice, as it is the only
tool publicly available and compared with both state-of-the-
art work, even though it is outdated and out-of-support.

10

To compensate for this unfairness, we carry out the literal
comparison with state-of-the-art work through the original data
from their papers. Besides, as all these three tools cannot
support the latest stable version of Python (version 3.9 when
writing this paper), the results may be affected by the behavior
changes of API functions, which can affect the fairness of our
comparison.

VII. RELATED WORK

As a static analysis approach checking for refcount bugs in
Python binary extensions, PyRefcon is mainly related to the
topic of Reference Counting checkers, and native code analysis
on languages with virtual machines or interpreters.

Reference Counting Checkers. For projects using the Refer-
ence Counting mechanism to manage heap objects, developers
usually have their dynamic checkers to detect cyclic structures
or check refcount values during execution. In the Python
interpreter, a generational garbage collector is used to detect
circular reference problems for container objects [43]. Related
PyObjects are required to be registered to make the garbage
collector check their references. In Firefox, they use a tracking
and balancing approach to find out potentially forgotten decre-
ments [44]. Logs are dumped during the tracking process, and
then an analysis step will locate the bugs.

Li and Tan proposed a tool called Pungi [13] for checking
the Python Reference Counting Errors. They transformed the
original C code to affine programs [12] and checked the
property violations of reference counts with a path-sensitive
verification tool on the affine code. But during the transfor-
mation, a lot of information such as path constraints were
dropped. Whereas our approach can precisely analyze the code
with a very low false-positive rate. Similarly in CpyChecker
made by Malcom [23], the same error patterns are followed.
They used the Static Single Assignment (SSA) form in GCC
to analyze the code for reference counting bugs with an intra-
procedural and path-sensitive approach.

Mao et al. created RID [18] that also checks the Reference
Count Bugs. They used a summary-based approach to collect
operations on reference counts and search for path pairs whose
refcount changes are different but external effects (return
values, etc.) are the same. Similar to Pungi, the input code
is also transformed to affine programs before being analyzed.
Tan et al. proposed an approach to checking reference counts
by pairing the increment and decrement operations via their
path conditions [45]. And they tried to further report reference
count bugs by comparing the usages for the same increment
and decrement function pairs and reporting the cases different
from the majority.

Besides, Emmi et al. presented an approach to verifying
the implementations of reference counting mechanisms [46].
They modeled the reference counts of target objects and used a
model-checking tool to verify the correctness of the properties
and hunt for bugs. And Férey et al. provided PVS2C [47]
to convert a high-level language to C for runtime efficiency
with the help of the reference counting approach to manage
dynamic memory deallocations.

Native Code Analysis. Tan et al. proposed an approach
to detecting the Python code that may lag the program
execution [48]. They mapped the memory addresses and their
operations in binary libraries to the original Python code and
searched for efficiency issues via memory operations. Hu and
Zhang presented their research on the evolution of Python/C
API usage [9]. They also provided the error patterns they found
during the research. Monat et al. create Mopsa [49], which
statically scans Python exceptions and C runtime errors for
a Python program using binary extension modules. They use
an abstract interpretation based approach to analyze both the
Python and C code by sharing abstract domains between the
two languages. However, they cannot check refcount bugs.

Besides, Kondoh and Onodera checked the Java native code
for memory errors of four patterns with a typestate analysis
approach and a coding style checker [50]. Li and Tan focused
on finding mishandled Java exceptions thrown in native code
in their research [51], [52]. Brown et al. attempted to report
bugs for the intermediate binding layer between JavaScript and
C++ [53]. Kalubandi et al. also focused on this problem [54].
They tried to prevent JavaScript exceptions and C++ runtime
crashes by checking the type errors. And Degenbaev et al.
proposed an approach to tracking the objects crossing the
borderline to JavaScript heap and help developers to find
potential memory errors [55].

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to tracking the life-
cycle of PyObject with the help of its refcount manipulations
to detect refcount bugs in native code. We defined the lifecycle
states and transition rules in the novel model. Beyond the
model, we also track the changes in lifecycle state and refcount
triggered with pointer operations and refcount monitors. We
implemented the PyRefcon analyzer based on the approach
and found 259 real bugs from 12 open-source projects.

In the future, we will continue our research on checking
the Captured PyObjects, and improving the efficiency of
the approach with summary-based strategies, and automatic
approaches to searching for refcount monitors.

ACKNOWLEDGMENT

This work is supported by the National Natural Science
Foundation of China (NSFC) under grant No.62132020. Many
appreciations to Mr. Xin Zhang for his discussion on the
idea of this paper, Mr. Shuo Sun for gathering the data, the
developers of project NumPy for their in time feedback on our
bug reports, and anonymous reviewers of this paper for their
suggestions for improving this work.

REFERENCES

[1] IEEE, “Top programming languages 2022.” [Online]. Available:
https://spectrum.ieee.org/top-programming-languages-2022

[2] TIOBE Software BV, “TIOBE Index.” [Online]. Available: https:
//www.tiobe.com/tiobe-index/

[3] M. Grichi, E. E. Eghan, and B. Adams, “On the impact of multi-language
development in machine learning frameworks,” in 2020 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME).
IEEE, 2020, pp. 546–556.

11

https://spectrum.ieee.org/top-programming-languages-2022
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

[4] C. R. Harris et al., “Array programming with NumPy,” Nature, vol. 585,
no. 7825, pp. 357–362, Sep. 2020.

[5] M. Abadi et al., “TensorFlow: Large-scale machine learning on
heterogeneous systems.” [Online]. Available: https://www.tensorflow.
org/

[6] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Advances in Neural Information Processing Systems
32, 2019, pp. 8024–8035.

[7] “Python/C API reference manual.” [Online]. Available: https://docs.
python.org/3/c-api/index.html

[8] P. Bian, B. Liang, J. Huang, W. Shi, X. Wang, and J. Zhang, “SinkFinder:
harvesting hundreds of unknown interesting function pairs with just one
seed,” in Proceedings of the 28th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations
of Software Engineering, 2020, pp. 1101–1113.

[9] M. Hu and Y. Zhang, “The Python/C API: Evolution, usage statistics,
and bug patterns,” in 2020 IEEE 27th International Conference on
Software Analysis, Evolution and Reengineering (SANER). IEEE, 2020,
pp. 532–536.

[10] Z. Xu, J. Zhang, and Z. Xu, “Melton: A practical and precise memory
leak detection tool for C programs,” Frontiers of Computer Science,
vol. 9, no. 1, pp. 34–54, 2015.

[11] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang, “Smoke:
Scalable path-sensitive memory leak detection for millions of lines of
code,” in 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 2019, pp. 72–82.

[12] A. Lal and G. Ramalingam, “Reference count analysis with shallow
aliasing,” Information processing letters, vol. 111, no. 2, pp. 57–63,
2010.

[13] S. Li and G. Tan, “Finding reference-counting errors in Python/C
programs with affine analysis,” in European Conference on Object-
Oriented Programming. Springer, 2014, pp. 80–104.

[14] LLVM Project, “Clang Static Analyzer (CSA).” [Online]. Available:
https://clang-analyzer.llvm.org

[15] “The Python programming language.” [Online]. Available: https:
//github.com/python/cpython

[16] “Objects, types and reference counts.” [Online]. Available: https:
//docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts

[17] Wikipedia, “Resource acquisition is initialization.” [Online]. Available:
https://en.wikipedia.org/wiki/Resource acquisition is initialization

[18] J. Mao, Y. Chen, Q. Xiao, and Y. Shi, “RID: finding reference count bugs
with inconsistent path pair checking,” in Proceedings of the Twenty-First
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2016, pp. 531–544.

[19] X. Ma, J. Yan, W. Wang, J. Yan, J. Zhang, and Z. Qiu, “Detecting
memory-related bugs by tracking heap memory management of C++
smart pointers,” in 2021 36th IEEE/ACM International Conference on
Automated Software Engineering (ASE). IEEE, 2021, pp. 880–891.

[20] cppreference, “std::unique ptr.” [Online]. Available: https://en.
cppreference.com/w/cpp/memory/unique ptr

[21] X. Ma, “Panda: A parallel tooling driver based on compilation
database.” [Online]. Available: https://github.com/Snape3058/panda

[22] X. Ma, J. Yan, J. Yan, and J. Zhang, “Reorganizing and optimizing post-
inspection on suspicious bug reports in path-sensitive analysis,” in 2019
IEEE 19th International Conference on Software Quality, Reliability and
Security (QRS). IEEE, 2019, pp. 260–271.

[23] D. Malcolm, “GCC Python Plugin,” 2011–2018. [Online]. Available:
https://gcc-python-plugin.readthedocs.io/en/latest/index.html

[24] “gcc-python-plugin,” release 0.17. [Online]. Available: https://github.
com/davidmalcolm/gcc-python-plugin/releases/tag/v0.17

[25] “PyAudio,” commit fc7bd1d2b0c887d65473283c10889f446030b4cc,
version 0.2.8. [Online]. Available: https://people.csail.mit.edu/hubert/
pyaudio/

[26] “pycrypto,” commit 7acba5f3a6ff10f1424c309d0d34d2b713233019.
[Online]. Available: https://github.com/pycrypto/pycrypto

[27] “pyxattr,” commit c3466e74a2d72ede0d121aabdf687fa8d348bfc6. [On-
line]. Available: https://github.com/iustin/pyxattr

[28] “python-rrdtool,” commit 93c72b3a8f06d7308d913a6f3cf3d2f200ea8e70.
[Online]. Available: https://github.com/commx/python-rrdtool

[29] “dbus-python,” commit 012f0e3adbe3bebf73d983b3a0a8eb8138e06548,
Originally downloaded from: https://github.com/freedesktop/dbus-
python, deleted by the authors when this paper is published.

[30] “duplicity,” commit 7f91932c8316ed1a91e3f85decf7e525e616b772.
[Online]. Available: https://gitlab.com/duplicity/duplicity

[31] “NumPy,” commit 04ab04d93d4d7a4d241fe0ceb725436a8b6c8c2e.
[Online]. Available: https://github.com/numpy/numpy

[32] “SciPy,” commit 8ef583067438a16e7f3a4bed2e109168f16dfda8. [On-
line]. Available: https://github.com/scipy/scipy

[33] “Numba,” commit 0c499bfff7ebe4fe5d8a6c1d20653e69f1f2a639. [On-
line]. Available: https://github.com/numba/numba

[34] “Pillow,” commit 8714ac55660cfb7ca8733d4fb67c12975e7c3f7a. [On-
line]. Available: https://github.com/python-pillow/Pillow

[35] “TensorFlow,” commit faad219fc46032a0ae9576ccc3076612cc1f5f72.
[Online]. Available: https://github.com/tensorflow/tensorflow

[36] “PyTorch,” commit 703675a18b438e7be1f3aab93c6fb4d5f8549526.
[Online]. Available: https://github.com/pytorch/pytorch

[37] “krbv,” commit 29fe0f856145e265f1aa12cbd7e21f2bfa156b74, version
1.0.90. [Online]. Available: https://github.com/vijaykiran/python-krbv

[38] “ldap,” commit 69335a5af193290d1522f4dde19b6e71fb383949, version
2.4.20. [Online]. Available: https://github.com/python-ldap/python-ldap

[39] “pyOpenSSL,” commit 5bc85ffff99a0cc767f378b1fc6b03cf869f4d2d.
[Online]. Available: https://github.com/msabramo/pyOpenSSL

[40] “netifaces,” commit 53fcdb6e5dccc84f6734939cfee1a95d3f470d7b.
[Online]. Available: https://github.com/al45tair/netifaces

[41] “yum,” non Python native project. [Online]. Available: https://github.
com/rpm-software-management/yum

[42] X. Zhang, X. Ma, J. Yan, B. Cui, J. Yan, and J. Zhang, “Improving tese
case generation for Python native libraries through constraints on input
data structures,” arXiv preprint arXiv:2206.13828, 2022.

[43] “Supporting cyclic garbage collection.” [Online]. Available: https:
//docs.python.org/3/c-api/gcsupport.html

[44] M. Foundation, “Refcount tracing and balancing - Firefox source docs.”
[45] X. Tan, Y. Zhang, X. Yang, K. Lu, and M. Yang, “Detecting kernel

refcount bugs with two-dimensional consistency checking,” in 30th
USENIX Security Symposium (USENIX Security 21), 2021, pp. 2471–
2488.

[46] M. Emmi, R. Jhala, E. Kohler, and R. Majumdar, “Verifying reference
counting implementations,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer,
2009, pp. 352–367.

[47] G. Férey and N. Shankar, “Code generation using a formal model of
reference counting,” in NASA Formal Methods Symposium. Springer,
2016, pp. 150–165.

[48] J. Tan, Y. Chen, Z. Liu, B. Ren, S. L. Song, X. Shen, and X. Liu,
“Toward efficient interactions between Python and native libraries,” in
Proceedings of the 29th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, 2021, pp. 1117–1128.

[49] R. Monat, A. Ouadjaout, and A. Miné, “A multilanguage static analysis
of Python programs with native C extensions,” in Static Analysis
Symposium (SAS), 2021.

[50] G. Kondoh and T. Onodera, “Finding bugs in Java native interface
programs,” in Proceedings of the 2008 international symposium on
Software testing and analysis, 2008, pp. 109–118.

[51] S. Li and G. Tan, “Finding bugs in exceptional situations of JNI
programs,” in Proceedings of the 16th ACM conference on Computer
and communications security, 2009, pp. 442–452.

[52] S. Li and G. Tan, “JET: exception checking in the Java native interface,”
ACM SIGPLAN Notices, vol. 46, no. 10, pp. 345–358, 2011.

[53] F. Brown, S. Narayan, R. S. Wahby, D. Engler, R. Jhala, and D. Stefan,
“Finding and preventing bugs in JavaScript bindings,” in 2017 IEEE
Symposium on Security and Privacy (SP). IEEE, 2017, pp. 559–578.

[54] V. K. Kalubandi, T. Elwell, and J. Muralikumar, “Toward preserving the
crash safety of JavaScript in Node.”

[55] U. Degenbaev, J. Eisinger, K. Hara, M. Hlopko, M. Lippautz, and
H. Payer, “Cross-component garbage collection,” Proceedings of the
ACM on Programming Languages, vol. 2, no. OOPSLA, pp. 1–24, 2018.

12

https://www.tensorflow.org/
https://www.tensorflow.org/
https://docs.python.org/3/c-api/index.html
https://docs.python.org/3/c-api/index.html
https://clang-analyzer.llvm.org
https://github.com/python/cpython
https://github.com/python/cpython
https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts
https://docs.python.org/3/c-api/intro.html#objects-types-and-reference-counts
https://en.wikipedia.org/wiki/Resource_acquisition_is_initialization
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://en.cppreference.com/w/cpp/memory/unique_ptr
https://github.com/Snape3058/panda
https://gcc-python-plugin.readthedocs.io/en/latest/index.html
https://github.com/davidmalcolm/gcc-python-plugin/releases/tag/v0.17
https://github.com/davidmalcolm/gcc-python-plugin/releases/tag/v0.17
https://people.csail.mit.edu/hubert/pyaudio/
https://people.csail.mit.edu/hubert/pyaudio/
https://github.com/pycrypto/pycrypto
https://github.com/iustin/pyxattr
https://github.com/commx/python-rrdtool
https://github.com/freedesktop/dbus-python
https://github.com/freedesktop/dbus-python
https://gitlab.com/duplicity/duplicity
https://github.com/numpy/numpy
https://github.com/scipy/scipy
https://github.com/numba/numba
https://github.com/python-pillow/Pillow
https://github.com/tensorflow/tensorflow
https://github.com/pytorch/pytorch
https://github.com/vijaykiran/python-krbv
https://github.com/python-ldap/python-ldap
https://github.com/msabramo/pyOpenSSL
https://github.com/al45tair/netifaces
https://github.com/rpm-software-management/yum
https://github.com/rpm-software-management/yum
https://docs.python.org/3/c-api/gcsupport.html
https://docs.python.org/3/c-api/gcsupport.html

	Introduction
	Background
	Python Binary Extensions
	Reference Counting Mechanism
	Directly Manipulate Reference Count
	Reference Count Changes in APIs
	Smart Pointers of PyObjects

	Refcount Bugs
	Motivating Example

	Modeling and Checking PyObjects
	PyObject State Transition Model
	PyObject Construction
	PyObject Detachment
	Refcount Operations
	PyObject Destruction
	Transition to Buggy States

	Enhanced Program State
	Modeling Refcount Monitors
	Pointer Nullity Check

	Case Study
	Evaluation
	Setup of Experiments
	Effectiveness and Correctness (RQ 1)
	Comparison with Related Tools (RQ 2)
	Resource Consumption (RQ 3)

	Threat to Validity
	Related Work
	Conclusion and Future Work
	References

