File: | home/liujun/Analysis/pyrefcon_ws/Paddle/build/paddle/fluid/pybind/../../../../paddle/fluid/pybind/eager_py_layer.cc |
Warning: | line 274, column 21 PyObject ownership leak with reference count of 1 |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. | |||
2 | Licensed under the Apache License, Version 2.0 (the "License"); | |||
3 | you may not use this file except in compliance with the License. | |||
4 | You may obtain a copy of the License at | |||
5 | http://www.apache.org/licenses/LICENSE-2.0 | |||
6 | Unless required by applicable law or agreed to in writing, software | |||
7 | distributed under the License is distributed on an "AS IS" BASIS, | |||
8 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
9 | See the License for the specific language governing permissions and | |||
10 | limitations under the License. */ | |||
11 | // disable numpy compile error | |||
12 | #include <Python.h> | |||
13 | // Avoid a problem with copysign defined in pyconfig.h on Windows. | |||
14 | #ifdef copysign | |||
15 | #undef copysign | |||
16 | #endif | |||
17 | ||||
18 | #include <set> | |||
19 | #include <string> | |||
20 | #include <vector> | |||
21 | ||||
22 | #pragma GCC diagnostic ignored "-Wattributes" | |||
23 | #include "paddle/fluid/eager/accumulation/accumulation_node.h" | |||
24 | #include "paddle/fluid/eager/api/all.h" | |||
25 | #include "paddle/fluid/eager/autograd_meta.h" | |||
26 | #include "paddle/fluid/eager/pylayer/py_layer_node.h" | |||
27 | #include "paddle/fluid/eager/utils.h" | |||
28 | #include "paddle/fluid/framework/convert_utils.h" | |||
29 | #include "paddle/fluid/memory/allocation/allocator.h" | |||
30 | #include "paddle/fluid/memory/memcpy.h" | |||
31 | #include "paddle/fluid/platform/enforce.h" | |||
32 | #include "paddle/fluid/pybind/eager.h" | |||
33 | #include "paddle/fluid/pybind/eager_utils.h" | |||
34 | #include "paddle/fluid/pybind/exception.h" | |||
35 | #include "paddle/phi/common/data_type.h" | |||
36 | #include "paddle/phi/core/compat/convert_utils.h" | |||
37 | #include "paddle/phi/core/dense_tensor.h" | |||
38 | #include "pybind11/detail/internals.h" | |||
39 | #include "pybind11/pytypes.h" | |||
40 | #pragma GCC diagnostic ignored "-Wwrite-strings" | |||
41 | #pragma GCC diagnostic ignored "-Wmissing-field-initializers" | |||
42 | ||||
43 | namespace paddle { | |||
44 | namespace pybind { | |||
45 | ||||
46 | PyTypeObject* p_pylayer_type; | |||
47 | extern PyTypeObject* p_tensor_type; | |||
48 | ||||
49 | std::set<paddle::Tensor*> GetTensorsFromPyObject(PyObject* obj) { | |||
50 | std::set<paddle::Tensor*> result; | |||
51 | if (obj == nullptr) { | |||
52 | return result; | |||
53 | } | |||
54 | if (PyCheckTensor(obj)) { | |||
55 | result.insert(&reinterpret_cast<TensorObject*>(obj)->tensor); // NOLINT | |||
56 | } else if (PyList_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 25))) != 0)) { | |||
57 | Py_ssize_t len = PyList_Size(obj); | |||
58 | for (Py_ssize_t i = 0; i < len; i++) { | |||
59 | if (PyCheckTensor(PyList_GetItem(obj, i))) { | |||
60 | result.insert( | |||
61 | &reinterpret_cast<TensorObject*>(PyList_GetItem(obj, i)) // NOLINT | |||
62 | ->tensor); | |||
63 | } | |||
64 | } | |||
65 | } else if (PyTuple_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | |||
66 | Py_ssize_t len = PyTuple_Size(obj); | |||
67 | for (Py_ssize_t i = 0; i < len; i++) { | |||
68 | if (PyCheckTensor(PyTuple_GetItem(obj, i))) { | |||
69 | result.insert( | |||
70 | &reinterpret_cast<TensorObject*>(PyTuple_GetItem(obj, i)) // NOLINT | |||
71 | ->tensor); | |||
72 | } | |||
73 | } | |||
74 | } | |||
75 | return result; | |||
76 | } | |||
77 | ||||
78 | PyObject* PyLayerNew(PyTypeObject* type, PyObject* args, PyObject* kwargs) { | |||
79 | PyObject* obj = type->tp_alloc(type, 0); | |||
80 | if (obj) { | |||
81 | auto v = reinterpret_cast<PyLayerObject*>(obj); | |||
82 | v->materialize_grads = true; | |||
83 | v->container_be_packed = false; | |||
84 | new (&v->grad_node) std::weak_ptr<egr::GradNodePyLayer>(); | |||
85 | new (&v->forward_input_tensor_is_duplicable) std::vector<bool>(); | |||
86 | new (&v->forward_output_tensor_is_duplicable) std::vector<bool>(); | |||
87 | } | |||
88 | return obj; | |||
89 | } | |||
90 | ||||
91 | static void PyLayerDealloc(PyLayerObject* self) { | |||
92 | if (self->container) { | |||
93 | Py_DECREF(self->container)_Py_DECREF(((PyObject*)(self->container))); | |||
94 | } | |||
95 | if (self->non_differentiable) { | |||
96 | Py_DECREF(self->non_differentiable)_Py_DECREF(((PyObject*)(self->non_differentiable))); | |||
97 | } | |||
98 | if (self->not_inplace_tensors) { | |||
99 | Py_DECREF(self->not_inplace_tensors)_Py_DECREF(((PyObject*)(self->not_inplace_tensors))); | |||
100 | } | |||
101 | self->grad_node.~weak_ptr<egr::GradNodePyLayer>(); | |||
102 | self->unpack_hook = nullptr; | |||
103 | self->forward_input_tensor_is_duplicable.~vector(); | |||
104 | self->forward_output_tensor_is_duplicable.~vector(); | |||
105 | Py_TYPE(self)(((PyObject*)(self))->ob_type)->tp_free(reinterpret_cast<PyObject*>(self)); | |||
106 | } | |||
107 | ||||
108 | PyObject* pylayer_method_name(PyObject* self, PyObject* noargs) { | |||
109 | EAGER_TRYtry { | |||
110 | return ToPyObject( | |||
111 | reinterpret_cast<PyLayerObject*>(self)->grad_node.lock()->name()); | |||
112 | EAGER_CATCH_AND_THROW_RETURN_NULL} catch (...) { ThrowExceptionToPython(std::current_exception ()); return nullptr; } | |||
113 | } | |||
114 | ||||
115 | PyObject* new_tensor_with_impl(paddle::Tensor* tensor) { | |||
116 | PyObject* obj = p_tensor_type->tp_alloc(p_tensor_type, 0); | |||
117 | if (obj) { | |||
118 | auto v = reinterpret_cast<TensorObject*>(obj); | |||
119 | new (&(v->tensor)) paddle::Tensor(); | |||
120 | v->tensor.set_impl(tensor->impl()); | |||
121 | v->tensor.set_name(egr::Controller::Instance().GenerateUniqueName()); | |||
122 | } else { | |||
123 | PADDLE_THROW(platform::errors::Fatal(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::Fatal( "tp_alloc return null, can not new a PyObject." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 124) ; } while (0) | |||
124 | "tp_alloc return null, can not new a PyObject."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::Fatal( "tp_alloc return null, can not new a PyObject." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 124) ; } while (0); | |||
125 | } | |||
126 | return obj; | |||
127 | } | |||
128 | ||||
129 | PyObject* pylayer_method_apply(PyObject* cls, | |||
130 | PyObject* args, | |||
131 | PyObject* kwargs) { | |||
132 | EAGER_TRYtry { | |||
133 | VLOG(6)static_cast<void>(0), !(__extension__ ({ static google:: int32* vlocal__ = &google::kLogSiteUninitialized; google:: int32 verbose_level__ = (6); (*vlocal__ >= verbose_level__ ) && ((vlocal__ != &google::kLogSiteUninitialized ) || (google::InitVLOG3__(&vlocal__, &FLAGS_v, "../../../../paddle/fluid/pybind/eager_py_layer.cc" , verbose_level__))); })) ? (void) 0 : google::LogMessageVoidify () & google::LogMessage( "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 133).stream() << "Begin run PyLayer apply..."; | |||
| ||||
134 | PyObject* backward_function = | |||
135 | PyObject_GetAttrString(cls, "_backward_function"); | |||
136 | if (!backward_function) { | |||
137 | PADDLE_THROW(paddle::platform::errors::InvalidArgument(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (paddle::platform::errors::InvalidArgument( "Get _backward_function failed." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 138) ; } while (0) | |||
138 | "Get _backward_function failed."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (paddle::platform::errors::InvalidArgument( "Get _backward_function failed." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 138) ; } while (0); | |||
139 | } | |||
140 | PyLayerObject* ctx = reinterpret_cast<PyLayerObject*>( | |||
141 | PyObject_CallFunctionObjArgs(backward_function, nullptr)); | |||
142 | if (!ctx) { | |||
143 | PADDLE_THROW(paddle::platform::errors::External(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (paddle::platform::errors::External( pybind11::detail::error_string ().c_str())), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 144); } while (0) | |||
144 | pybind11::detail::error_string().c_str()))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (paddle::platform::errors::External( pybind11::detail::error_string ().c_str())), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 144); } while (0); | |||
145 | return nullptr; | |||
146 | } | |||
147 | VLOG(6)static_cast<void>(0), !(__extension__ ({ static google:: int32* vlocal__ = &google::kLogSiteUninitialized; google:: int32 verbose_level__ = (6); (*vlocal__ >= verbose_level__ ) && ((vlocal__ != &google::kLogSiteUninitialized ) || (google::InitVLOG3__(&vlocal__, &FLAGS_v, "../../../../paddle/fluid/pybind/eager_py_layer.cc" , verbose_level__))); })) ? (void) 0 : google::LogMessageVoidify () & google::LogMessage( "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 147).stream() << "PyLayer construct PyLayerContext finish..."; | |||
148 | ||||
149 | bool require_any_grad = false; | |||
150 | ||||
151 | size_t inputs_size = 0; | |||
152 | size_t args_size = 0; | |||
153 | size_t kwargs_size = 0; | |||
154 | PyObject* forward_args = nullptr; | |||
155 | PyObject* kwargs_value_list = nullptr; | |||
156 | if (kwargs) { | |||
157 | kwargs_size = PyDict_Size(kwargs); | |||
158 | kwargs_value_list = PyDict_Values(kwargs); | |||
159 | } | |||
160 | if (args) { | |||
161 | args_size = PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size); | |||
162 | } | |||
163 | inputs_size = kwargs_size + args_size; | |||
164 | forward_args = PyTuple_New(args_size + 1); | |||
165 | Py_INCREF(ctx)_Py_INCREF(((PyObject*)(ctx))); | |||
166 | PyTuple_SET_ITEM(forward_args, 0, reinterpret_cast<PyObject*>(ctx))PyTuple_SetItem(forward_args, 0, reinterpret_cast<PyObject *>(ctx)); | |||
167 | ||||
168 | std::vector<std::vector<egr::AutogradMeta*>> inputs_autograd_meta; | |||
169 | inputs_autograd_meta.reserve(inputs_size); | |||
170 | std::vector<std::vector<paddle::Tensor*>> inputs_tensor; | |||
171 | inputs_tensor.reserve(inputs_size); | |||
172 | ctx->forward_input_tensor_is_duplicable.clear(); | |||
173 | ctx->forward_input_tensor_is_duplicable.reserve(inputs_size); | |||
174 | std::set<phi::TensorBase*> input_tensorbases; | |||
175 | for (size_t i = 0; i < inputs_size; i++) { | |||
176 | PyObject* obj = nullptr; | |||
177 | if (i >= args_size) { | |||
178 | obj = PyList_GetItem(kwargs_value_list, i - args_size); | |||
179 | } else { | |||
180 | obj = PyTuple_GET_ITEM(args, i)(((PyTupleObject *)(args))->ob_item[i]); | |||
181 | } | |||
182 | if (PyCheckTensor(obj)) { | |||
183 | input_tensorbases.insert( | |||
184 | reinterpret_cast<TensorObject*>(obj)->tensor.impl().get()); | |||
185 | auto autograd_meta = egr::EagerUtils::nullable_autograd_meta( | |||
186 | reinterpret_cast<TensorObject*>(obj)->tensor); | |||
187 | inputs_autograd_meta.push_back({autograd_meta}); | |||
188 | inputs_tensor.push_back( | |||
189 | {&(reinterpret_cast<TensorObject*>(obj)->tensor)}); // NOLINT | |||
190 | bool stop_gradient = | |||
191 | autograd_meta == nullptr ? true : autograd_meta->StopGradient(); | |||
192 | if (!stop_gradient) { | |||
193 | require_any_grad = true; | |||
194 | } | |||
195 | ctx->forward_input_tensor_is_duplicable.push_back(false); | |||
196 | } else if (PyList_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 25))) != 0)) { | |||
197 | std::vector<paddle::Tensor*> tensors; | |||
198 | Py_ssize_t len = PyList_Size(obj); | |||
199 | for (Py_ssize_t j = 0; j < len; j++) { | |||
200 | PyObject* o = PyList_GetItem(obj, j); | |||
201 | if (PyCheckTensor(o)) { | |||
202 | input_tensorbases.insert( | |||
203 | reinterpret_cast<TensorObject*>(o)->tensor.impl().get()); | |||
204 | tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor)); | |||
205 | } | |||
206 | } | |||
207 | if (!tensors.empty()) { | |||
208 | auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(tensors); | |||
209 | for (auto iter : autograd_meta) { | |||
210 | bool stop_gradient = iter == nullptr ? true : iter->StopGradient(); | |||
211 | if (!stop_gradient) { | |||
212 | require_any_grad = true; | |||
213 | } | |||
214 | } | |||
215 | inputs_autograd_meta.push_back(autograd_meta); | |||
216 | inputs_tensor.push_back(tensors); | |||
217 | ctx->forward_input_tensor_is_duplicable.push_back(true); | |||
218 | } | |||
219 | } else if (PyTuple_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | |||
220 | std::vector<paddle::Tensor*> tensors; | |||
221 | Py_ssize_t len = PyTuple_Size(obj); | |||
222 | for (Py_ssize_t j = 0; j < len; j++) { | |||
223 | PyObject* o = PyTuple_GetItem(obj, j); | |||
224 | if (PyCheckTensor(o)) { | |||
225 | input_tensorbases.insert( | |||
226 | reinterpret_cast<TensorObject*>(o)->tensor.impl().get()); | |||
227 | tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor)); | |||
228 | } | |||
229 | } | |||
230 | if (!tensors.empty()) { | |||
231 | auto autograd_meta = egr::EagerUtils::nullable_autograd_meta(tensors); | |||
232 | for (auto iter : autograd_meta) { | |||
233 | bool stop_gradient = iter == nullptr ? true : iter->StopGradient(); | |||
234 | if (!stop_gradient) { | |||
235 | require_any_grad = true; | |||
236 | } | |||
237 | } | |||
238 | inputs_autograd_meta.push_back(autograd_meta); | |||
239 | inputs_tensor.push_back(tensors); | |||
240 | ctx->forward_input_tensor_is_duplicable.push_back(true); | |||
241 | } | |||
242 | } | |||
243 | ||||
244 | if (i < args_size) { | |||
245 | Py_INCREF(obj)_Py_INCREF(((PyObject*)(obj))); | |||
246 | PyTuple_SET_ITEM(forward_args, i + 1, obj)PyTuple_SetItem(forward_args, i + 1, obj); | |||
247 | } | |||
248 | } | |||
249 | ||||
250 | VLOG(6)static_cast<void>(0), !(__extension__ ({ static google:: int32* vlocal__ = &google::kLogSiteUninitialized; google:: int32 verbose_level__ = (6); (*vlocal__ >= verbose_level__ ) && ((vlocal__ != &google::kLogSiteUninitialized ) || (google::InitVLOG3__(&vlocal__, &FLAGS_v, "../../../../paddle/fluid/pybind/eager_py_layer.cc" , verbose_level__))); })) ? (void) 0 : google::LogMessageVoidify () & google::LogMessage( "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 250).stream() | |||
251 | << "PyLayer forward args is ready, begin call user's forward function..."; | |||
252 | // call forward | |||
253 | auto forward_fn = PyObject_GetAttrString(cls, "forward"); | |||
254 | if (!forward_fn) { | |||
255 | PADDLE_THROW(paddle::platform::errors::InvalidArgument(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (paddle::platform::errors::InvalidArgument( "Get forward function failed." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 256) ; } while (0) | |||
256 | "Get forward function failed."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (paddle::platform::errors::InvalidArgument( "Get forward function failed." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 256) ; } while (0); | |||
257 | } | |||
258 | bool trace_backward = egr::Controller::Instance().HasGrad(); | |||
259 | egr::Controller::Instance().SetHasGrad(false); | |||
260 | auto outputs = PyObject_Call(forward_fn, forward_args, kwargs); | |||
261 | egr::Controller::Instance().SetHasGrad(trace_backward); | |||
262 | if (!outputs) { | |||
263 | Py_XDECREF(forward_args)_Py_XDECREF(((PyObject*)(forward_args))); | |||
264 | Py_XDECREF(kwargs_value_list)_Py_XDECREF(((PyObject*)(kwargs_value_list))); | |||
265 | Py_XDECREF(backward_function)_Py_XDECREF(((PyObject*)(backward_function))); | |||
266 | Py_XDECREF(forward_fn)_Py_XDECREF(((PyObject*)(forward_fn))); | |||
267 | return nullptr; | |||
268 | } | |||
269 | ||||
270 | PyObject* outputs_tuple = nullptr; | |||
271 | if (PyTuple_Check(outputs)((((((PyObject*)(outputs))->ob_type))->tp_flags & ( (1UL << 26))) != 0)) { | |||
272 | outputs_tuple = outputs; | |||
273 | } else if (PyList_Check(outputs)((((((PyObject*)(outputs))->ob_type))->tp_flags & ( (1UL << 25))) != 0)) { | |||
274 | outputs_tuple = PyList_AsTuple(outputs); | |||
| ||||
275 | } else { | |||
276 | outputs_tuple = PyTuple_New(1); | |||
277 | Py_INCREF(outputs)_Py_INCREF(((PyObject*)(outputs))); | |||
278 | PyTuple_SET_ITEM(outputs_tuple, 0, outputs)PyTuple_SetItem(outputs_tuple, 0, outputs); | |||
279 | } | |||
280 | ||||
281 | std::set<paddle::Tensor*> inplace_tensors; | |||
282 | std::set<phi::TensorBase*> not_inplace_tensorbases; | |||
283 | auto not_inplace_tensors = GetTensorsFromPyObject(ctx->not_inplace_tensors); | |||
284 | for (auto it : not_inplace_tensors) { | |||
285 | not_inplace_tensorbases.insert(it->impl().get()); | |||
286 | } | |||
287 | ||||
288 | auto outputs_size = PyTuple_GET_SIZE(outputs_tuple)(((PyVarObject*)(((PyTupleObject *)(outputs_tuple))))->ob_size ); | |||
289 | std::vector<std::vector<paddle::Tensor*>> outputs_tensor; | |||
290 | outputs_tensor.reserve(outputs_size); | |||
291 | std::vector<std::vector<egr::AutogradMeta*>> outputs_autograd_meta; | |||
292 | outputs_autograd_meta.reserve(outputs_size); | |||
293 | ctx->forward_output_tensor_is_duplicable.clear(); | |||
294 | ctx->forward_output_tensor_is_duplicable.reserve(outputs_size); | |||
295 | for (Py_ssize_t i = 0; i < outputs_size; i++) { | |||
296 | PyObject* obj = PyTuple_GET_ITEM(outputs_tuple, i)(((PyTupleObject *)(outputs_tuple))->ob_item[i]); | |||
297 | if (PyCheckTensor(obj)) { | |||
298 | outputs_tensor.push_back( | |||
299 | {&(reinterpret_cast<TensorObject*>(obj)->tensor)}); | |||
300 | outputs_autograd_meta.push_back({egr::EagerUtils::autograd_meta( | |||
301 | &(reinterpret_cast<TensorObject*>(obj)->tensor))}); | |||
302 | ctx->forward_output_tensor_is_duplicable.push_back(false); | |||
303 | if (input_tensorbases.count( | |||
304 | reinterpret_cast<TensorObject*>(obj)->tensor.impl().get())) { | |||
305 | if (not_inplace_tensorbases.count( | |||
306 | reinterpret_cast<TensorObject*>(obj)->tensor.impl().get())) { | |||
307 | PyTuple_SET_ITEM(outputs_tuple,PyTuple_SetItem(outputs_tuple, i, new_tensor_with_impl(&( reinterpret_cast<TensorObject*>(obj)->tensor))) | |||
308 | i,PyTuple_SetItem(outputs_tuple, i, new_tensor_with_impl(&( reinterpret_cast<TensorObject*>(obj)->tensor))) | |||
309 | new_tensor_with_impl(&(PyTuple_SetItem(outputs_tuple, i, new_tensor_with_impl(&( reinterpret_cast<TensorObject*>(obj)->tensor))) | |||
310 | reinterpret_cast<TensorObject*>(obj)->tensor)))PyTuple_SetItem(outputs_tuple, i, new_tensor_with_impl(&( reinterpret_cast<TensorObject*>(obj)->tensor))); | |||
311 | } else { | |||
312 | inplace_tensors.insert( | |||
313 | &(reinterpret_cast<TensorObject*>(obj)->tensor)); | |||
314 | } | |||
315 | } | |||
316 | } else if (PyList_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 25))) != 0)) { | |||
317 | std::vector<paddle::Tensor*> tensors; | |||
318 | Py_ssize_t len = PyList_Size(obj); | |||
319 | for (Py_ssize_t j = 0; j < len; j++) { | |||
320 | PyObject* o = PyList_GetItem(obj, j); | |||
321 | if (PyCheckTensor(o)) { | |||
322 | tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor)); | |||
323 | if (input_tensorbases.count( | |||
324 | reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) { | |||
325 | if (not_inplace_tensorbases.count( | |||
326 | reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) { | |||
327 | PyTuple_SetItem(obj, | |||
328 | j, | |||
329 | new_tensor_with_impl(&( | |||
330 | reinterpret_cast<TensorObject*>(o)->tensor))); | |||
331 | } else { | |||
332 | inplace_tensors.insert( | |||
333 | &(reinterpret_cast<TensorObject*>(o)->tensor)); | |||
334 | } | |||
335 | } | |||
336 | } | |||
337 | } | |||
338 | if (!tensors.empty()) { | |||
339 | outputs_tensor.push_back(tensors); | |||
340 | outputs_autograd_meta.push_back( | |||
341 | egr::EagerUtils::autograd_meta(&tensors)); | |||
342 | ctx->forward_output_tensor_is_duplicable.push_back(true); | |||
343 | } | |||
344 | } else if (PyTuple_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | |||
345 | std::vector<paddle::Tensor*> tensors; | |||
346 | Py_ssize_t len = PyTuple_Size(obj); | |||
347 | for (Py_ssize_t j = 0; j < len; j++) { | |||
348 | PyObject* o = PyTuple_GetItem(obj, j); | |||
349 | if (PyCheckTensor(o)) { | |||
350 | tensors.push_back(&(reinterpret_cast<TensorObject*>(o)->tensor)); | |||
351 | if (input_tensorbases.count( | |||
352 | reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) { | |||
353 | if (not_inplace_tensorbases.count( | |||
354 | reinterpret_cast<TensorObject*>(o)->tensor.impl().get())) { | |||
355 | PyTuple_SetItem(obj, | |||
356 | j, | |||
357 | new_tensor_with_impl(&( | |||
358 | reinterpret_cast<TensorObject*>(o)->tensor))); | |||
359 | } else { | |||
360 | inplace_tensors.insert( | |||
361 | &(reinterpret_cast<TensorObject*>(o)->tensor)); | |||
362 | } | |||
363 | } | |||
364 | } | |||
365 | } | |||
366 | if (!tensors.empty()) { | |||
367 | outputs_tensor.push_back(tensors); | |||
368 | outputs_autograd_meta.push_back( | |||
369 | egr::EagerUtils::autograd_meta(&tensors)); | |||
370 | ctx->forward_output_tensor_is_duplicable.push_back(true); | |||
371 | } | |||
372 | } | |||
373 | } | |||
374 | ||||
375 | if (outputs_tensor.empty()) { | |||
376 | PADDLE_THROW(platform::errors::InvalidArgument(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "At least one output of `PyLayer.forward` is a `Tensor`." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 377) ; } while (0) | |||
377 | "At least one output of `PyLayer.forward` is a `Tensor`."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "At least one output of `PyLayer.forward` is a `Tensor`." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 377) ; } while (0); | |||
378 | } | |||
379 | VLOG(6)static_cast<void>(0), !(__extension__ ({ static google:: int32* vlocal__ = &google::kLogSiteUninitialized; google:: int32 verbose_level__ = (6); (*vlocal__ >= verbose_level__ ) && ((vlocal__ != &google::kLogSiteUninitialized ) || (google::InitVLOG3__(&vlocal__, &FLAGS_v, "../../../../paddle/fluid/pybind/eager_py_layer.cc" , verbose_level__))); })) ? (void) 0 : google::LogMessageVoidify () & google::LogMessage( "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 379).stream() << "PyLayer forward function finish..."; | |||
380 | ||||
381 | if (require_any_grad && trace_backward) { | |||
382 | auto non_differentiable = GetTensorsFromPyObject(ctx->non_differentiable); | |||
383 | for (size_t i = 0; i < outputs_autograd_meta.size(); i++) { | |||
384 | for (size_t j = 0; j < outputs_autograd_meta[i].size(); j++) { | |||
385 | if (non_differentiable.find(outputs_tensor[i][j]) != | |||
386 | non_differentiable.end()) { | |||
387 | outputs_autograd_meta[i][j]->SetStopGradient(true); | |||
388 | } else { | |||
389 | outputs_autograd_meta[i][j]->SetStopGradient(false); | |||
390 | } | |||
391 | } | |||
392 | } | |||
393 | ||||
394 | for (auto inplace_tensor : inplace_tensors) { | |||
395 | auto inplace_tensor_autograd_meta = | |||
396 | egr::EagerUtils::autograd_meta(inplace_tensor); | |||
397 | PADDLE_ENFORCE_EQ(!inplace_tensor_autograd_meta->StopGradient() &&do { auto __val1 = (!inplace_tensor_autograd_meta->StopGradient () && egr::EagerUtils::IsLeafTensor(*inplace_tensor)) ; auto __val2 = (false); using __TYPE1__ = decltype(__val1); using __TYPE2__ = decltype(__val2); using __COMMON_TYPE1__ = ::phi ::details::CommonType1<__TYPE1__, __TYPE2__>; using __COMMON_TYPE2__ = ::phi::details::CommonType2<__TYPE1__, __TYPE2__>; bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1 ))==( static_cast<__COMMON_TYPE2__>(__val2)); if (__builtin_expect (static_cast<bool>(!__is_not_error), 0)) { auto __summary__ = phi::ErrorSummary(paddle::platform::errors::InvalidArgument ( "Leaf Var (%s) that doesn't stop gradient " "can't use inplace strategy." , inplace_tensor->name())); constexpr bool __kCanToString__ = ::phi::details::CanToString<__TYPE1__>::kValue && ::phi::details::CanToString<__TYPE2__>::kValue; auto __message__ = ::paddle::string::Sprintf( "%s\n [Hint: Expected %s " "==" " %s, but received %s " "!=" " %s.]", __summary__.error_message (), "!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , "false", ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , __val1), ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("false", __val2)); do { throw ::phi::enforce::EnforceNotMet (phi::ErrorSummary(__summary__.code(), std::move(__message__) ), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 403); } while (0); } } while (0) | |||
398 | egr::EagerUtils::IsLeafTensor(*inplace_tensor),do { auto __val1 = (!inplace_tensor_autograd_meta->StopGradient () && egr::EagerUtils::IsLeafTensor(*inplace_tensor)) ; auto __val2 = (false); using __TYPE1__ = decltype(__val1); using __TYPE2__ = decltype(__val2); using __COMMON_TYPE1__ = ::phi ::details::CommonType1<__TYPE1__, __TYPE2__>; using __COMMON_TYPE2__ = ::phi::details::CommonType2<__TYPE1__, __TYPE2__>; bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1 ))==( static_cast<__COMMON_TYPE2__>(__val2)); if (__builtin_expect (static_cast<bool>(!__is_not_error), 0)) { auto __summary__ = phi::ErrorSummary(paddle::platform::errors::InvalidArgument ( "Leaf Var (%s) that doesn't stop gradient " "can't use inplace strategy." , inplace_tensor->name())); constexpr bool __kCanToString__ = ::phi::details::CanToString<__TYPE1__>::kValue && ::phi::details::CanToString<__TYPE2__>::kValue; auto __message__ = ::paddle::string::Sprintf( "%s\n [Hint: Expected %s " "==" " %s, but received %s " "!=" " %s.]", __summary__.error_message (), "!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , "false", ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , __val1), ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("false", __val2)); do { throw ::phi::enforce::EnforceNotMet (phi::ErrorSummary(__summary__.code(), std::move(__message__) ), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 403); } while (0); } } while (0) | |||
399 | false,do { auto __val1 = (!inplace_tensor_autograd_meta->StopGradient () && egr::EagerUtils::IsLeafTensor(*inplace_tensor)) ; auto __val2 = (false); using __TYPE1__ = decltype(__val1); using __TYPE2__ = decltype(__val2); using __COMMON_TYPE1__ = ::phi ::details::CommonType1<__TYPE1__, __TYPE2__>; using __COMMON_TYPE2__ = ::phi::details::CommonType2<__TYPE1__, __TYPE2__>; bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1 ))==( static_cast<__COMMON_TYPE2__>(__val2)); if (__builtin_expect (static_cast<bool>(!__is_not_error), 0)) { auto __summary__ = phi::ErrorSummary(paddle::platform::errors::InvalidArgument ( "Leaf Var (%s) that doesn't stop gradient " "can't use inplace strategy." , inplace_tensor->name())); constexpr bool __kCanToString__ = ::phi::details::CanToString<__TYPE1__>::kValue && ::phi::details::CanToString<__TYPE2__>::kValue; auto __message__ = ::paddle::string::Sprintf( "%s\n [Hint: Expected %s " "==" " %s, but received %s " "!=" " %s.]", __summary__.error_message (), "!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , "false", ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , __val1), ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("false", __val2)); do { throw ::phi::enforce::EnforceNotMet (phi::ErrorSummary(__summary__.code(), std::move(__message__) ), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 403); } while (0); } } while (0) | |||
400 | paddle::platform::errors::InvalidArgument(do { auto __val1 = (!inplace_tensor_autograd_meta->StopGradient () && egr::EagerUtils::IsLeafTensor(*inplace_tensor)) ; auto __val2 = (false); using __TYPE1__ = decltype(__val1); using __TYPE2__ = decltype(__val2); using __COMMON_TYPE1__ = ::phi ::details::CommonType1<__TYPE1__, __TYPE2__>; using __COMMON_TYPE2__ = ::phi::details::CommonType2<__TYPE1__, __TYPE2__>; bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1 ))==( static_cast<__COMMON_TYPE2__>(__val2)); if (__builtin_expect (static_cast<bool>(!__is_not_error), 0)) { auto __summary__ = phi::ErrorSummary(paddle::platform::errors::InvalidArgument ( "Leaf Var (%s) that doesn't stop gradient " "can't use inplace strategy." , inplace_tensor->name())); constexpr bool __kCanToString__ = ::phi::details::CanToString<__TYPE1__>::kValue && ::phi::details::CanToString<__TYPE2__>::kValue; auto __message__ = ::paddle::string::Sprintf( "%s\n [Hint: Expected %s " "==" " %s, but received %s " "!=" " %s.]", __summary__.error_message (), "!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , "false", ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , __val1), ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("false", __val2)); do { throw ::phi::enforce::EnforceNotMet (phi::ErrorSummary(__summary__.code(), std::move(__message__) ), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 403); } while (0); } } while (0) | |||
401 | "Leaf Var (%s) that doesn't stop gradient "do { auto __val1 = (!inplace_tensor_autograd_meta->StopGradient () && egr::EagerUtils::IsLeafTensor(*inplace_tensor)) ; auto __val2 = (false); using __TYPE1__ = decltype(__val1); using __TYPE2__ = decltype(__val2); using __COMMON_TYPE1__ = ::phi ::details::CommonType1<__TYPE1__, __TYPE2__>; using __COMMON_TYPE2__ = ::phi::details::CommonType2<__TYPE1__, __TYPE2__>; bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1 ))==( static_cast<__COMMON_TYPE2__>(__val2)); if (__builtin_expect (static_cast<bool>(!__is_not_error), 0)) { auto __summary__ = phi::ErrorSummary(paddle::platform::errors::InvalidArgument ( "Leaf Var (%s) that doesn't stop gradient " "can't use inplace strategy." , inplace_tensor->name())); constexpr bool __kCanToString__ = ::phi::details::CanToString<__TYPE1__>::kValue && ::phi::details::CanToString<__TYPE2__>::kValue; auto __message__ = ::paddle::string::Sprintf( "%s\n [Hint: Expected %s " "==" " %s, but received %s " "!=" " %s.]", __summary__.error_message (), "!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , "false", ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , __val1), ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("false", __val2)); do { throw ::phi::enforce::EnforceNotMet (phi::ErrorSummary(__summary__.code(), std::move(__message__) ), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 403); } while (0); } } while (0) | |||
402 | "can't use inplace strategy.",do { auto __val1 = (!inplace_tensor_autograd_meta->StopGradient () && egr::EagerUtils::IsLeafTensor(*inplace_tensor)) ; auto __val2 = (false); using __TYPE1__ = decltype(__val1); using __TYPE2__ = decltype(__val2); using __COMMON_TYPE1__ = ::phi ::details::CommonType1<__TYPE1__, __TYPE2__>; using __COMMON_TYPE2__ = ::phi::details::CommonType2<__TYPE1__, __TYPE2__>; bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1 ))==( static_cast<__COMMON_TYPE2__>(__val2)); if (__builtin_expect (static_cast<bool>(!__is_not_error), 0)) { auto __summary__ = phi::ErrorSummary(paddle::platform::errors::InvalidArgument ( "Leaf Var (%s) that doesn't stop gradient " "can't use inplace strategy." , inplace_tensor->name())); constexpr bool __kCanToString__ = ::phi::details::CanToString<__TYPE1__>::kValue && ::phi::details::CanToString<__TYPE2__>::kValue; auto __message__ = ::paddle::string::Sprintf( "%s\n [Hint: Expected %s " "==" " %s, but received %s " "!=" " %s.]", __summary__.error_message (), "!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , "false", ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , __val1), ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("false", __val2)); do { throw ::phi::enforce::EnforceNotMet (phi::ErrorSummary(__summary__.code(), std::move(__message__) ), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 403); } while (0); } } while (0) | |||
403 | inplace_tensor->name()))do { auto __val1 = (!inplace_tensor_autograd_meta->StopGradient () && egr::EagerUtils::IsLeafTensor(*inplace_tensor)) ; auto __val2 = (false); using __TYPE1__ = decltype(__val1); using __TYPE2__ = decltype(__val2); using __COMMON_TYPE1__ = ::phi ::details::CommonType1<__TYPE1__, __TYPE2__>; using __COMMON_TYPE2__ = ::phi::details::CommonType2<__TYPE1__, __TYPE2__>; bool __is_not_error = (static_cast<__COMMON_TYPE1__>(__val1 ))==( static_cast<__COMMON_TYPE2__>(__val2)); if (__builtin_expect (static_cast<bool>(!__is_not_error), 0)) { auto __summary__ = phi::ErrorSummary(paddle::platform::errors::InvalidArgument ( "Leaf Var (%s) that doesn't stop gradient " "can't use inplace strategy." , inplace_tensor->name())); constexpr bool __kCanToString__ = ::phi::details::CanToString<__TYPE1__>::kValue && ::phi::details::CanToString<__TYPE2__>::kValue; auto __message__ = ::paddle::string::Sprintf( "%s\n [Hint: Expected %s " "==" " %s, but received %s " "!=" " %s.]", __summary__.error_message (), "!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , "false", ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("!inplace_tensor_autograd_meta->StopGradient() && egr::EagerUtils::IsLeafTensor(*inplace_tensor)" , __val1), ::phi::details::BinaryCompareMessageConverter< __kCanToString__ >::Convert("false", __val2)); do { throw ::phi::enforce::EnforceNotMet (phi::ErrorSummary(__summary__.code(), std::move(__message__) ), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 403); } while (0); } } while (0); | |||
404 | inplace_tensor->bump_inplace_version(); | |||
405 | VLOG(3)static_cast<void>(0), !(__extension__ ({ static google:: int32* vlocal__ = &google::kLogSiteUninitialized; google:: int32 verbose_level__ = (3); (*vlocal__ >= verbose_level__ ) && ((vlocal__ != &google::kLogSiteUninitialized ) || (google::InitVLOG3__(&vlocal__, &FLAGS_v, "../../../../paddle/fluid/pybind/eager_py_layer.cc" , verbose_level__))); })) ? (void) 0 : google::LogMessageVoidify () & google::LogMessage( "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 405).stream() << "Tensor(" << inplace_tensor->name() | |||
406 | << ") uses Inplace Strategy."; | |||
407 | } | |||
408 | ||||
409 | auto grad_node = | |||
410 | std::make_shared<egr::GradNodePyLayer>(reinterpret_cast<PyObject*>(ctx), | |||
411 | outputs_autograd_meta.size(), | |||
412 | inputs_autograd_meta.size()); | |||
413 | ctx->grad_node = grad_node; | |||
414 | ||||
415 | if (ctx->materialize_grads) { | |||
416 | grad_node->SaveForwardOutputsMeta(outputs_tensor); | |||
417 | } | |||
418 | ||||
419 | for (size_t i = 0; i < inputs_autograd_meta.size(); i++) { | |||
420 | if (ctx->forward_input_tensor_is_duplicable[i]) { | |||
421 | for (auto t : inputs_tensor[i]) { | |||
422 | grad_node->SetGradOutMeta(*t, i); | |||
423 | } | |||
424 | } else { | |||
425 | grad_node->SetGradOutMeta(*inputs_tensor[i][0], i); | |||
426 | } | |||
427 | } | |||
428 | ||||
429 | for (size_t i = 0; i < outputs_autograd_meta.size(); i++) { | |||
430 | if (ctx->forward_output_tensor_is_duplicable[i]) { | |||
431 | egr::EagerUtils::SetOutRankWithSlot(&outputs_autograd_meta[i], i); | |||
432 | egr::EagerUtils::SetHistory(&outputs_autograd_meta[i], grad_node); | |||
433 | for (auto t : outputs_tensor[i]) { | |||
434 | grad_node->SetGradInMeta(*t, i); | |||
435 | } | |||
436 | } else { | |||
437 | egr::EagerUtils::SetOutRankWithSlot(outputs_autograd_meta[i][0], i); | |||
438 | egr::EagerUtils::SetHistory(outputs_autograd_meta[i][0], grad_node); | |||
439 | grad_node->SetGradInMeta(*outputs_tensor[i][0], i); | |||
440 | } | |||
441 | } | |||
442 | VLOG(6)static_cast<void>(0), !(__extension__ ({ static google:: int32* vlocal__ = &google::kLogSiteUninitialized; google:: int32 verbose_level__ = (6); (*vlocal__ >= verbose_level__ ) && ((vlocal__ != &google::kLogSiteUninitialized ) || (google::InitVLOG3__(&vlocal__, &FLAGS_v, "../../../../paddle/fluid/pybind/eager_py_layer.cc" , verbose_level__))); })) ? (void) 0 : google::LogMessageVoidify () & google::LogMessage( "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 442).stream() << "PyLayer construct backward node finish..."; | |||
443 | } | |||
444 | ||||
445 | if (outputs_size == 1) { | |||
446 | if (!PyTuple_Check(outputs)((((((PyObject*)(outputs))->ob_type))->tp_flags & ( (1UL << 26))) != 0) && !PyList_Check(outputs)((((((PyObject*)(outputs))->ob_type))->tp_flags & ( (1UL << 25))) != 0)) { | |||
447 | Py_XDECREF(outputs)_Py_XDECREF(((PyObject*)(outputs))); | |||
448 | outputs = PyTuple_GetItem(outputs_tuple, 0); | |||
449 | Py_INCREF(outputs)_Py_INCREF(((PyObject*)(outputs))); | |||
450 | Py_XDECREF(outputs_tuple)_Py_XDECREF(((PyObject*)(outputs_tuple))); | |||
451 | } | |||
452 | } | |||
453 | ||||
454 | Py_XDECREF(forward_args)_Py_XDECREF(((PyObject*)(forward_args))); | |||
455 | Py_XDECREF(kwargs_value_list)_Py_XDECREF(((PyObject*)(kwargs_value_list))); | |||
456 | Py_XDECREF(backward_function)_Py_XDECREF(((PyObject*)(backward_function))); | |||
457 | Py_XDECREF(forward_fn)_Py_XDECREF(((PyObject*)(forward_fn))); | |||
458 | Py_XDECREF(ctx)_Py_XDECREF(((PyObject*)(ctx))); | |||
459 | ||||
460 | return outputs; | |||
461 | EAGER_CATCH_AND_THROW_RETURN_NULL} catch (...) { ThrowExceptionToPython(std::current_exception ()); return nullptr; } | |||
462 | } | |||
463 | ||||
464 | PyObject* call_unpack_hook(PyLayerObject* self) { | |||
465 | auto unpack_hook = self->unpack_hook; | |||
466 | auto packed_value = self->container; | |||
467 | ||||
468 | auto packed_value_size = PyTuple_GET_SIZE(packed_value)(((PyVarObject*)(((PyTupleObject *)(packed_value))))->ob_size ); | |||
469 | auto unpacked_value = PyTuple_New(packed_value_size); | |||
470 | ||||
471 | for (Py_ssize_t i = 0; i < packed_value_size; i++) { | |||
472 | PyObject* obj = PyTuple_GET_ITEM(packed_value, i)(((PyTupleObject *)(packed_value))->ob_item[i]); | |||
473 | if (PyList_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 25))) != 0)) { | |||
474 | Py_ssize_t len = PyList_Size(obj); | |||
475 | auto tmp_list = PyList_New(len); | |||
476 | for (Py_ssize_t j = 0; j < len; j++) { | |||
477 | PyObject* o = PyList_GetItem(obj, j); | |||
478 | PyTuple_SET_ITEM(tmp_list,PyTuple_SetItem(tmp_list, j, reinterpret_cast<PyObject*> (((*unpack_hook)( reinterpret_cast<void*>(o), nullptr)) )) | |||
479 | j,PyTuple_SetItem(tmp_list, j, reinterpret_cast<PyObject*> (((*unpack_hook)( reinterpret_cast<void*>(o), nullptr)) )) | |||
480 | reinterpret_cast<PyObject*>(((*unpack_hook)(PyTuple_SetItem(tmp_list, j, reinterpret_cast<PyObject*> (((*unpack_hook)( reinterpret_cast<void*>(o), nullptr)) )) | |||
481 | reinterpret_cast<void*>(o), nullptr))))PyTuple_SetItem(tmp_list, j, reinterpret_cast<PyObject*> (((*unpack_hook)( reinterpret_cast<void*>(o), nullptr)) )); | |||
482 | } | |||
483 | PyTuple_SET_ITEM(unpacked_value, i, tmp_list)PyTuple_SetItem(unpacked_value, i, tmp_list); | |||
484 | } else if (PyTuple_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | |||
485 | Py_ssize_t len = PyTuple_Size(obj); | |||
486 | auto tmp_tuple = PyTuple_New(len); | |||
487 | for (Py_ssize_t j = 0; j < len; j++) { | |||
488 | PyObject* o = PyTuple_GetItem(obj, j); | |||
489 | PyTuple_SET_ITEM(tmp_tuple,PyTuple_SetItem(tmp_tuple, j, reinterpret_cast<PyObject*> ((*unpack_hook)( reinterpret_cast<void*>(o), nullptr))) | |||
490 | j,PyTuple_SetItem(tmp_tuple, j, reinterpret_cast<PyObject*> ((*unpack_hook)( reinterpret_cast<void*>(o), nullptr))) | |||
491 | reinterpret_cast<PyObject*>((*unpack_hook)(PyTuple_SetItem(tmp_tuple, j, reinterpret_cast<PyObject*> ((*unpack_hook)( reinterpret_cast<void*>(o), nullptr))) | |||
492 | reinterpret_cast<void*>(o), nullptr)))PyTuple_SetItem(tmp_tuple, j, reinterpret_cast<PyObject*> ((*unpack_hook)( reinterpret_cast<void*>(o), nullptr))); | |||
493 | } | |||
494 | PyTuple_SET_ITEM(unpacked_value, i, tmp_tuple)PyTuple_SetItem(unpacked_value, i, tmp_tuple); | |||
495 | } else { | |||
496 | PyTuple_SET_ITEM(unpacked_value,PyTuple_SetItem(unpacked_value, i, reinterpret_cast<PyObject *>((*unpack_hook)( reinterpret_cast<void*>(obj), nullptr ))) | |||
497 | i,PyTuple_SetItem(unpacked_value, i, reinterpret_cast<PyObject *>((*unpack_hook)( reinterpret_cast<void*>(obj), nullptr ))) | |||
498 | reinterpret_cast<PyObject*>((*unpack_hook)(PyTuple_SetItem(unpacked_value, i, reinterpret_cast<PyObject *>((*unpack_hook)( reinterpret_cast<void*>(obj), nullptr ))) | |||
499 | reinterpret_cast<void*>(obj), nullptr)))PyTuple_SetItem(unpacked_value, i, reinterpret_cast<PyObject *>((*unpack_hook)( reinterpret_cast<void*>(obj), nullptr ))); | |||
500 | } | |||
501 | } | |||
502 | ||||
503 | return unpacked_value; | |||
504 | } | |||
505 | ||||
506 | PyObject* tensor_properties_get_container(PyLayerObject* self, void* closure) { | |||
507 | EAGER_TRYtry { | |||
508 | if (self->container == nullptr) { | |||
509 | RETURN_PY_NONE_Py_INCREF(((PyObject*)((&_Py_NoneStruct)))); return (& _Py_NoneStruct);; | |||
510 | } | |||
511 | if (self->container_be_packed) { | |||
512 | return call_unpack_hook(self); | |||
513 | } else { | |||
514 | Py_INCREF(self->container)_Py_INCREF(((PyObject*)(self->container))); | |||
515 | return self->container; | |||
516 | } | |||
517 | EAGER_CATCH_AND_THROW_RETURN_NULL} catch (...) { ThrowExceptionToPython(std::current_exception ()); return nullptr; } | |||
518 | } | |||
519 | ||||
520 | void call_pack_hook(PyLayerObject* self, PyObject* value) { | |||
521 | PyObject* saved_value = nullptr; | |||
522 | if (PyTuple_Check(value)((((((PyObject*)(value))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | |||
523 | saved_value = value; | |||
524 | } else if (PyList_Check(value)((((((PyObject*)(value))->ob_type))->tp_flags & ((1UL << 25))) != 0)) { | |||
525 | saved_value = PyList_AsTuple(value); | |||
526 | } else { | |||
527 | saved_value = PyTuple_New(1); | |||
528 | Py_INCREF(value)_Py_INCREF(((PyObject*)(value))); | |||
529 | PyTuple_SET_ITEM(saved_value, 0, value)PyTuple_SetItem(saved_value, 0, value); | |||
530 | } | |||
531 | ||||
532 | auto pack_hook = egr::SavedTensorsHooks::GetInstance().GetPackHook(); | |||
533 | self->unpack_hook = egr::SavedTensorsHooks::GetInstance().GetUnPackHook(); | |||
534 | ||||
535 | auto saved_value_size = PyTuple_GET_SIZE(saved_value)(((PyVarObject*)(((PyTupleObject *)(saved_value))))->ob_size ); | |||
536 | PyObject* packed_value = PyTuple_New(saved_value_size); | |||
537 | ||||
538 | for (Py_ssize_t i = 0; i < saved_value_size; i++) { | |||
539 | PyObject* obj = PyTuple_GET_ITEM(saved_value, i)(((PyTupleObject *)(saved_value))->ob_item[i]); | |||
540 | if (PyCheckTensor(obj)) { | |||
541 | PyTuple_SET_ITEM(packed_value,PyTuple_SetItem(packed_value, i, reinterpret_cast<PyObject *>( (*pack_hook)(reinterpret_cast<void*>(obj)))) | |||
542 | i,PyTuple_SetItem(packed_value, i, reinterpret_cast<PyObject *>( (*pack_hook)(reinterpret_cast<void*>(obj)))) | |||
543 | reinterpret_cast<PyObject*>(PyTuple_SetItem(packed_value, i, reinterpret_cast<PyObject *>( (*pack_hook)(reinterpret_cast<void*>(obj)))) | |||
544 | (*pack_hook)(reinterpret_cast<void*>(obj))))PyTuple_SetItem(packed_value, i, reinterpret_cast<PyObject *>( (*pack_hook)(reinterpret_cast<void*>(obj)))); | |||
545 | } else if (PyList_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 25))) != 0)) { | |||
546 | Py_ssize_t len = PyList_Size(obj); | |||
547 | auto tmp_list = PyList_New(len); | |||
548 | for (Py_ssize_t j = 0; j < len; j++) { | |||
549 | PyObject* o = PyList_GetItem(obj, j); | |||
550 | if (PyCheckTensor(o)) { | |||
551 | PyTuple_SET_ITEM(tmp_list,PyTuple_SetItem(tmp_list, j, reinterpret_cast<PyObject*> ( (*pack_hook)(reinterpret_cast<void*>(o)))) | |||
552 | j,PyTuple_SetItem(tmp_list, j, reinterpret_cast<PyObject*> ( (*pack_hook)(reinterpret_cast<void*>(o)))) | |||
553 | reinterpret_cast<PyObject*>(PyTuple_SetItem(tmp_list, j, reinterpret_cast<PyObject*> ( (*pack_hook)(reinterpret_cast<void*>(o)))) | |||
554 | (*pack_hook)(reinterpret_cast<void*>(o))))PyTuple_SetItem(tmp_list, j, reinterpret_cast<PyObject*> ( (*pack_hook)(reinterpret_cast<void*>(o)))); | |||
555 | } else { | |||
556 | PADDLE_THROW(platform::errors::InvalidArgument(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 558); } while (0) | |||
557 | "save_for_backward only support Tensor, list of Tensor, tuple of "do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 558); } while (0) | |||
558 | "Tensor."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 558); } while (0); | |||
559 | } | |||
560 | } | |||
561 | PyTuple_SET_ITEM(packed_value, i, tmp_list)PyTuple_SetItem(packed_value, i, tmp_list); | |||
562 | } else if (PyTuple_Check(obj)((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | |||
563 | Py_ssize_t len = PyTuple_Size(obj); | |||
564 | auto tmp_tuple = PyTuple_New(len); | |||
565 | for (Py_ssize_t j = 0; j < len; j++) { | |||
566 | PyObject* o = PyTuple_GetItem(obj, j); | |||
567 | if (PyCheckTensor(o)) { | |||
568 | PyTuple_SET_ITEM(tmp_tuple,PyTuple_SetItem(tmp_tuple, j, reinterpret_cast<PyObject*> ( (*pack_hook)(reinterpret_cast<void*>(o)))) | |||
569 | j,PyTuple_SetItem(tmp_tuple, j, reinterpret_cast<PyObject*> ( (*pack_hook)(reinterpret_cast<void*>(o)))) | |||
570 | reinterpret_cast<PyObject*>(PyTuple_SetItem(tmp_tuple, j, reinterpret_cast<PyObject*> ( (*pack_hook)(reinterpret_cast<void*>(o)))) | |||
571 | (*pack_hook)(reinterpret_cast<void*>(o))))PyTuple_SetItem(tmp_tuple, j, reinterpret_cast<PyObject*> ( (*pack_hook)(reinterpret_cast<void*>(o)))); | |||
572 | } else { | |||
573 | PADDLE_THROW(platform::errors::InvalidArgument(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 575); } while (0) | |||
574 | "save_for_backward only support Tensor, list of Tensor, tuple of "do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 575); } while (0) | |||
575 | "Tensor."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 575); } while (0); | |||
576 | } | |||
577 | } | |||
578 | PyTuple_SET_ITEM(packed_value, i, tmp_tuple)PyTuple_SetItem(packed_value, i, tmp_tuple); | |||
579 | } else { | |||
580 | PADDLE_THROW(platform::errors::InvalidArgument(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 582); } while (0) | |||
581 | "save_for_backward only support Tensor, list of Tensor, tuple of "do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 582); } while (0) | |||
582 | "Tensor."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::InvalidArgument( "save_for_backward only support Tensor, list of Tensor, tuple of " "Tensor.")), "../../../../paddle/fluid/pybind/eager_py_layer.cc" , 582); } while (0); | |||
583 | } | |||
584 | } | |||
585 | ||||
586 | if (PyTuple_Check(value)((((((PyObject*)(value))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | |||
587 | Py_XDECREF(saved_value)_Py_XDECREF(((PyObject*)(saved_value))); | |||
588 | } | |||
589 | ||||
590 | Py_XDECREF(self->container)_Py_XDECREF(((PyObject*)(self->container))); | |||
591 | self->container = packed_value; | |||
592 | self->container_be_packed = true; | |||
593 | } | |||
594 | ||||
595 | int tensor_properties_set_container(PyLayerObject* self, | |||
596 | PyObject* value, | |||
597 | void* closure) { | |||
598 | EAGER_TRYtry { | |||
599 | if (egr::SavedTensorsHooks::GetInstance().IsEnable()) { | |||
600 | call_pack_hook(self, value); | |||
601 | } else { | |||
602 | Py_XINCREF(value)_Py_XINCREF(((PyObject*)(value))); | |||
603 | Py_XDECREF(self->container)_Py_XDECREF(((PyObject*)(self->container))); | |||
604 | self->container = value; | |||
605 | } | |||
606 | return 0; | |||
607 | EAGER_CATCH_AND_THROW_RETURN_NEG} catch (...) { ThrowExceptionToPython(std::current_exception ()); return -1; } | |||
608 | } | |||
609 | ||||
610 | PyObject* tensor_properties_get_non_differentiable(PyLayerObject* self, | |||
611 | void* closure) { | |||
612 | EAGER_TRYtry { | |||
613 | if (self->non_differentiable == nullptr) { | |||
614 | RETURN_PY_NONE_Py_INCREF(((PyObject*)((&_Py_NoneStruct)))); return (& _Py_NoneStruct);; | |||
615 | } | |||
616 | Py_INCREF(self->non_differentiable)_Py_INCREF(((PyObject*)(self->non_differentiable))); | |||
617 | return self->non_differentiable; | |||
618 | EAGER_CATCH_AND_THROW_RETURN_NULL} catch (...) { ThrowExceptionToPython(std::current_exception ()); return nullptr; } | |||
619 | } | |||
620 | ||||
621 | int tensor_properties_set_non_differentiable(PyLayerObject* self, | |||
622 | PyObject* value, | |||
623 | void* closure) { | |||
624 | EAGER_TRYtry { | |||
625 | Py_XINCREF(value)_Py_XINCREF(((PyObject*)(value))); | |||
626 | Py_XDECREF(self->non_differentiable)_Py_XDECREF(((PyObject*)(self->non_differentiable))); | |||
627 | self->non_differentiable = value; | |||
628 | return 0; | |||
629 | EAGER_CATCH_AND_THROW_RETURN_NEG} catch (...) { ThrowExceptionToPython(std::current_exception ()); return -1; } | |||
630 | } | |||
631 | ||||
632 | PyObject* tensor_properties_get_not_inplace_tensors(PyLayerObject* self, | |||
633 | void* closure) { | |||
634 | EAGER_TRYtry { | |||
635 | if (self->not_inplace_tensors == nullptr) { | |||
636 | RETURN_PY_NONE_Py_INCREF(((PyObject*)((&_Py_NoneStruct)))); return (& _Py_NoneStruct);; | |||
637 | } | |||
638 | Py_INCREF(self->not_inplace_tensors)_Py_INCREF(((PyObject*)(self->not_inplace_tensors))); | |||
639 | return self->not_inplace_tensors; | |||
640 | EAGER_CATCH_AND_THROW_RETURN_NULL} catch (...) { ThrowExceptionToPython(std::current_exception ()); return nullptr; } | |||
641 | } | |||
642 | ||||
643 | int tensor_properties_set_not_inplace_tensors(PyLayerObject* self, | |||
644 | PyObject* value, | |||
645 | void* closure) { | |||
646 | EAGER_TRYtry { | |||
647 | Py_XINCREF(value)_Py_XINCREF(((PyObject*)(value))); | |||
648 | Py_XDECREF(self->not_inplace_tensors)_Py_XDECREF(((PyObject*)(self->not_inplace_tensors))); | |||
649 | self->not_inplace_tensors = value; | |||
650 | return 0; | |||
651 | EAGER_CATCH_AND_THROW_RETURN_NEG} catch (...) { ThrowExceptionToPython(std::current_exception ()); return -1; } | |||
652 | } | |||
653 | ||||
654 | int tensor_properties_set_materialize_grads(PyLayerObject* self, | |||
655 | PyObject* value, | |||
656 | void* closure) { | |||
657 | EAGER_TRYtry { | |||
658 | self->materialize_grads = CastPyArg2AttrBoolean(value, 0); | |||
659 | return 0; | |||
660 | EAGER_CATCH_AND_THROW_RETURN_NEG} catch (...) { ThrowExceptionToPython(std::current_exception ()); return -1; } | |||
661 | } | |||
662 | ||||
663 | PyMethodDef pylayer_methods[] = {{"name", // NOLINT | |||
664 | (PyCFunction)(void (*)())pylayer_method_name, | |||
665 | METH_NOARGS0x0004, | |||
666 | nullptr}, | |||
667 | {"apply", | |||
668 | (PyCFunction)(void (*)())pylayer_method_apply, | |||
669 | METH_CLASS0x0010 | METH_VARARGS0x0001 | METH_KEYWORDS0x0002, | |||
670 | nullptr}, | |||
671 | {nullptr, nullptr, 0, nullptr}}; | |||
672 | ||||
673 | struct PyGetSetDef pylayer_properties[] { // NOLINT | |||
674 | {"container", | |||
675 | (getter)tensor_properties_get_container, | |||
676 | (setter)tensor_properties_set_container, | |||
677 | nullptr, | |||
678 | nullptr}, | |||
679 | {"non_differentiable", | |||
680 | (getter)tensor_properties_get_non_differentiable, | |||
681 | (setter)tensor_properties_set_non_differentiable, | |||
682 | nullptr, | |||
683 | nullptr}, | |||
684 | {"not_inplace_tensors", | |||
685 | (getter)tensor_properties_get_not_inplace_tensors, | |||
686 | (setter)tensor_properties_set_not_inplace_tensors, | |||
687 | nullptr, | |||
688 | nullptr}, | |||
689 | {"materialize_grads", | |||
690 | nullptr, | |||
691 | (setter)tensor_properties_set_materialize_grads, | |||
692 | nullptr, | |||
693 | nullptr}, | |||
694 | { | |||
695 | nullptr, nullptr, nullptr, nullptr, nullptr | |||
696 | } | |||
697 | }; | |||
698 | ||||
699 | void BindEagerPyLayer(PyObject* module) { | |||
700 | auto heap_type = reinterpret_cast<PyHeapTypeObject*>( | |||
701 | PyType_Type.tp_alloc(&PyType_Type, 0)); | |||
702 | heap_type->ht_name = ToPyObject("PyLayer"); | |||
703 | heap_type->ht_qualname = ToPyObject("PyLayer"); | |||
704 | auto type = &heap_type->ht_type; | |||
705 | type->tp_name = "PyLayer"; | |||
706 | type->tp_basicsize = sizeof(PyLayerObject); | |||
707 | type->tp_dealloc = (destructor)PyLayerDealloc; | |||
708 | type->tp_methods = pylayer_methods; | |||
709 | type->tp_getset = pylayer_properties; | |||
710 | type->tp_new = (newfunc)PyLayerNew; | |||
711 | Py_INCREF(&PyBaseObject_Type)_Py_INCREF(((PyObject*)(&PyBaseObject_Type))); | |||
712 | type->tp_base = reinterpret_cast<PyTypeObject*>(&PyBaseObject_Type); | |||
713 | type->tp_flags |= | |||
714 | Py_TPFLAGS_DEFAULT( 0 | (1UL << 18) | 0) | Py_TPFLAGS_BASETYPE(1UL << 10) | Py_TPFLAGS_HEAPTYPE(1UL << 9); | |||
715 | #if PY_VERSION_HEX((3 << 24) | (8 << 16) | (5 << 8) | (0xF << 4) | (0 << 0)) >= 0x03050000 | |||
716 | type->tp_as_async = &heap_type->as_async; | |||
717 | #endif | |||
718 | p_pylayer_type = type; | |||
719 | ||||
720 | if (PyType_Ready(type) < 0) { | |||
721 | PADDLE_THROW(platform::errors::Fatal(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::Fatal( "Init Paddle error in BindEager(PyType_Ready)." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 722) ; } while (0) | |||
722 | "Init Paddle error in BindEager(PyType_Ready)."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::Fatal( "Init Paddle error in BindEager(PyType_Ready)." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 722) ; } while (0); | |||
723 | return; | |||
724 | } | |||
725 | ||||
726 | Py_INCREF(type)_Py_INCREF(((PyObject*)(type))); | |||
727 | if (PyModule_AddObject(module, "PyLayer", reinterpret_cast<PyObject*>(type)) < | |||
728 | 0) { | |||
729 | Py_DECREF(type)_Py_DECREF(((PyObject*)(type))); | |||
730 | Py_DECREF(module)_Py_DECREF(((PyObject*)(module))); | |||
731 | PADDLE_THROW(platform::errors::Fatal(do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::Fatal( "Init Paddle error in BindEager(PyModule_AddObject)." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 732) ; } while (0) | |||
732 | "Init Paddle error in BindEager(PyModule_AddObject)."))do { throw ::phi::enforce::EnforceNotMet( ::phi::ErrorSummary (platform::errors::Fatal( "Init Paddle error in BindEager(PyModule_AddObject)." )), "../../../../paddle/fluid/pybind/eager_py_layer.cc", 732) ; } while (0); | |||
733 | return; | |||
734 | } | |||
735 | } | |||
736 | ||||
737 | } // namespace pybind | |||
738 | } // namespace paddle |
1 | #ifndef PyList_AsTuple |
2 | struct _object; |
3 | typedef struct _object PyObject; |
4 | PyObject* clang_analyzer_PyObject_New_Reference(); |
5 | PyObject* PyList_AsTuple(PyObject *list) { |
6 | return clang_analyzer_PyObject_New_Reference(); |
7 | } |
8 | #else |
9 | #warning "API PyList_AsTuple is defined as a macro." |
10 | #endif |