| File: | build/../torch/csrc/utils/tensor_new.cpp | 
| Warning: | line 105, column 27 PyObject ownership leak with reference count of 1  | 
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | #include <torch/csrc/python_headers.h> | |||
| 2 | #include <torch/csrc/utils/tensor_new.h> | |||
| 3 | ||||
| 4 | #include <pybind11/pybind11.h> | |||
| 5 | #include <torch/csrc/DynamicTypes.h> | |||
| 6 | #include <torch/csrc/Exceptions.h> | |||
| 7 | #include <torch/csrc/Size.h> | |||
| 8 | #include <torch/csrc/autograd/variable.h> | |||
| 9 | #include <torch/csrc/utils/cuda_lazy_init.h> | |||
| 10 | #include <torch/csrc/utils/numpy_stub.h> | |||
| 11 | #include <torch/csrc/utils/python_arg_parser.h> | |||
| 12 | #include <torch/csrc/utils/python_numbers.h> | |||
| 13 | #include <torch/csrc/utils/python_scalars.h> | |||
| 14 | #include <torch/csrc/utils/python_strings.h> | |||
| 15 | #include <torch/csrc/utils/tensor_numpy.h> | |||
| 16 | #include <torch/csrc/autograd/generated/variable_factories.h> | |||
| 17 | ||||
| 18 | #include <ATen/ATen.h> | |||
| 19 | #include <ATen/InitialTensorOptions.h> | |||
| 20 | #include <ATen/NamedTensorUtils.h> | |||
| 21 | #include <ATen/TracerMode.h> | |||
| 22 | #include <c10/core/Backend.h> | |||
| 23 | #include <c10/core/Layout.h> | |||
| 24 | #include <c10/util/Exception.h> | |||
| 25 | #include <c10/util/irange.h> | |||
| 26 | #include <c10/util/Optional.h> | |||
| 27 | ||||
| 28 | #include <stdexcept> | |||
| 29 | #include <vector> | |||
| 30 | ||||
| 31 | using at::Backend; | |||
| 32 | using at::Device; | |||
| 33 | using at::IntArrayRef; | |||
| 34 | using at::kCPU; | |||
| 35 | using at::kCUDA; | |||
| 36 | using at::kLong; | |||
| 37 | using at::kInt; | |||
| 38 | using at::Scalar; | |||
| 39 | using at::ScalarType; | |||
| 40 | using at::Storage; | |||
| 41 | using at::Tensor; | |||
| 42 | using at::TensorOptions; | |||
| 43 | using at::Type; | |||
| 44 | using c10::optional; | |||
| 45 | ||||
| 46 | namespace torch { namespace utils { | |||
| 47 | namespace { | |||
| 48 | const int MAX_DIMS = 128; | |||
| 49 | ||||
| 50 | TensorOptions build_options(c10::TensorOptions options, at::ScalarType scalar_type, const c10::optional<Device>& device=c10::nullopt) { | |||
| 51 | options = options.dtype(scalar_type); | |||
| 52 | if (device.has_value()) { | |||
| 53 | return options.device(device); | |||
| 54 | } | |||
| 55 | return options; | |||
| 56 | } | |||
| 57 | ||||
| 58 | void maybe_initialize_cuda(const Device device) { | |||
| 59 | if (device.is_cuda()) { | |||
| 60 | torch::utils::cuda_lazy_init(); | |||
| 61 | } | |||
| 62 | } | |||
| 63 | ||||
| 64 | // NB: It appears there is some consistency invariant between options and device, where | |||
| 65 | // if device is non-empty, its type must be consistent with the device type in | |||
| 66 | // options. | |||
| 67 | // TODO: Refactor this so we just pass everything in via options | |||
| 68 | ||||
| 69 | Tensor dispatch_ones(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) { | |||
| 70 | maybe_initialize_cuda(options.device()); | |||
| 71 | pybind11::gil_scoped_release no_gil; | |||
| 72 | return torch::ones(sizes, build_options(options, scalar_type, device)); | |||
| 73 | } | |||
| 74 | ||||
| 75 | Tensor new_with_sizes(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) { | |||
| 76 | maybe_initialize_cuda(options.device()); | |||
| 77 | pybind11::gil_scoped_release no_gil; | |||
| 78 | return torch::empty(sizes, build_options(options, scalar_type, device)); | |||
| 79 | } | |||
| 80 | ||||
| 81 | Tensor new_with_storage(c10::TensorOptions options, at::ScalarType scalar_type, Storage storage) { | |||
| 82 | auto tensor = at::empty({}, build_options(options, scalar_type)); | |||
| 83 | tensor.set_(std::move(storage)); | |||
| 84 | return tensor; | |||
| 85 | } | |||
| 86 | ||||
| 87 | Tensor new_with_tensor(c10::TensorOptions options, at::ScalarType scalar_type, const Tensor& other) { | |||
| 88 | options = options.dtype(scalar_type); | |||
| 89 |   TORCH_CHECK_TYPE(other.options().type_equal(options), "expected ",if ((__builtin_expect(static_cast<bool>(!(other.options ().type_equal(options))), 0))) { throw ::c10::TypeError( {__func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(90)}, (::c10::detail::torchCheckMsgImpl( "Expected " "other.options().type_equal(options)" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "expected " , options, " (got ", other.options(), ")"))); }  | |||
| 90 |                    options, " (got ", other.options(), ")")if ((__builtin_expect(static_cast<bool>(!(other.options ().type_equal(options))), 0))) { throw ::c10::TypeError( {__func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(90)}, (::c10::detail::torchCheckMsgImpl( "Expected " "other.options().type_equal(options)" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "expected " , options, " (got ", other.options(), ")"))); };  | |||
| 91 | return other.alias(); | |||
| 92 | } | |||
| 93 | ||||
| 94 | std::vector<int64_t> compute_sizes(PyObject* seq) { | |||
| 95 | std::vector<int64_t> sizes; | |||
| 96 | THPObjectPtr handle; | |||
| 97 | while (PySequence_Check(seq)) { | |||
| 98 | auto length = PySequence_LengthPySequence_Size(seq); | |||
| 99 | if (length < 0) throw python_error(); | |||
| 100 | sizes.push_back(length); | |||
| 101 | if (sizes.size() > MAX_DIMS) { | |||
| 102 | throw ValueError("too many dimensions '%s'", Py_TYPE(seq)(((PyObject*)(seq))->ob_type)->tp_name); | |||
| 103 | } | |||
| 104 | if (length == 0) break; | |||
| 105 | handle = THPObjectPtr(PySequence_GetItem(seq, 0)); | |||
  | ||||
| 106 | if (!handle) { | |||
| 107 | throw ValueError("could not determine the shape of object type '%s'", Py_TYPE(seq)(((PyObject*)(seq))->ob_type)->tp_name); | |||
| 108 | } | |||
| 109 | seq = handle.get(); | |||
| 110 | } | |||
| 111 | ||||
| 112 | return sizes; | |||
| 113 | } | |||
| 114 | ||||
| 115 | ScalarType infer_scalar_type(PyObject *obj) { | |||
| 116 | #ifdef USE_NUMPY1 | |||
| 117 | if (is_numpy_available()) { | |||
| 118 |     if (PyArray_Check(obj)((((PyObject*)(obj))->ob_type) == (&(*(PyTypeObject *) __numpy_array_api[2])) || PyType_IsSubtype((((PyObject*)(obj) )->ob_type), (&(*(PyTypeObject *)__numpy_array_api[2]) )))) {  | |||
| 119 | return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj)); | |||
| 120 | } | |||
| 121 |     if (PyArray_CheckScalar(obj)((((((PyObject*)(obj))->ob_type) == (&(*(PyTypeObject * )__numpy_array_api[10])) || PyType_IsSubtype((((PyObject*)(obj ))->ob_type), (&(*(PyTypeObject *)__numpy_array_api[10 ]))))) || (((((PyObject*)(obj))->ob_type) == (&(*(PyTypeObject *)__numpy_array_api[2])) || PyType_IsSubtype((((PyObject*)(obj ))->ob_type), (&(*(PyTypeObject *)__numpy_array_api[2] )))) && (PyArray_NDIM((PyArrayObject *)obj) == 0)))) {  | |||
| 122 |       THPObjectPtr arr(PyArray_FromScalar(*(PyObject * (*)(PyObject *, PyArray_Descr *)) __numpy_array_api [61])(obj, nullptr));  | |||
| 123 | return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*) arr.get())); | |||
| 124 | } | |||
| 125 | } | |||
| 126 | #endif | |||
| 127 |   if (PyFloat_Check(obj)((((PyObject*)(obj))->ob_type) == (&PyFloat_Type) || PyType_IsSubtype ((((PyObject*)(obj))->ob_type), (&PyFloat_Type)))) {  | |||
| 128 | // this is always guaranteed to be a floating-point type, and makes it more | |||
| 129 | // convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype). | |||
| 130 | return torch::tensors::get_default_scalar_type(); | |||
| 131 | } | |||
| 132 | if (THPUtils_checkLong(obj)) { | |||
| 133 | return ScalarType::Long; | |||
| 134 | } | |||
| 135 | if (PyBool_Check(obj)((((PyObject*)(obj))->ob_type) == &PyBool_Type)) { | |||
| 136 | return ScalarType::Bool; | |||
| 137 | } | |||
| 138 |   if (PyComplex_Check(obj)((((PyObject*)(obj))->ob_type) == (&PyComplex_Type) || PyType_IsSubtype((((PyObject*)(obj))->ob_type), (&PyComplex_Type )))) {  | |||
| 139 | switch (torch::tensors::get_default_scalar_type()) { | |||
| 140 | case ScalarType::Float: return ScalarType::ComplexFloat; | |||
| 141 | case ScalarType::Double: return ScalarType::ComplexDouble; | |||
| 142 |       default: TORCH_CHECK(false, "invalid default scalar type for complex")if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(142), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "invalid default scalar type for complex" ))); };  | |||
| 143 | } | |||
| 144 | } | |||
| 145 | if (THPVariable_Check(obj)) { | |||
| 146 | const auto& var = THPVariable_Unpack(obj); | |||
| 147 | return var.scalar_type(); | |||
| 148 | } | |||
| 149 | if (THPUtils_checkString(obj)) { | |||
| 150 | throw TypeError("new(): invalid data type '%s'", Py_TYPE(obj)(((PyObject*)(obj))->ob_type)->tp_name); | |||
| 151 | } | |||
| 152 | if (PySequence_Check(obj)) { | |||
| 153 | c10::optional<ScalarType> scalarType; | |||
| 154 | auto length = PySequence_LengthPySequence_Size(obj); | |||
| 155 | if (length < 0) throw python_error(); | |||
| 156 | // match NumPy semantics, except use default tensor type instead of double. | |||
| 157 | if (length == 0) return torch::tensors::get_default_scalar_type(); | |||
| 158 | for (const auto i : c10::irange(length)) { | |||
| 159 | THPObjectPtr handle(PySequence_GetItem(obj, i)); | |||
| 160 | if (!handle) throw python_error(); | |||
| 161 | auto cur_item = handle.get(); | |||
| 162 | if (cur_item == obj) throw TypeError("new(): self-referential lists are incompatible"); | |||
| 163 | ScalarType item_scalarType = infer_scalar_type(cur_item); | |||
| 164 | scalarType = (scalarType) ? | |||
| 165 | at::promoteTypes(*scalarType, item_scalarType) : item_scalarType; | |||
| 166 | if (scalarType == ScalarType::ComplexDouble) { | |||
| 167 | // this won't change (unless we hit undefined, but that will fail later). | |||
| 168 | return *scalarType; | |||
| 169 | } | |||
| 170 | } | |||
| 171 | return *scalarType; | |||
| 172 | } | |||
| 173 |   AT_ERROR("Could not infer dtype of ", Py_TYPE(obj)->tp_name)do { ::c10::detail::deprecated_AT_ERROR(); if ((__builtin_expect (static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(173), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10:: str("Could not infer dtype of ", (((PyObject*)(obj))->ob_type )->tp_name)))); }; } while (false);  | |||
| 174 | } | |||
| 175 | ||||
| 176 | void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t dim, | |||
| 177 | ScalarType scalarType, int elementSize, PyObject* obj) { | |||
| 178 | int64_t ndim = sizes.size(); | |||
| 179 | if (dim == ndim) { | |||
| 180 | torch::utils::store_scalar(data, scalarType, obj); | |||
| 181 | return; | |||
| 182 | } | |||
| 183 | ||||
| 184 | auto n = sizes[dim]; | |||
| 185 | auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence")); | |||
| 186 | if (!seq) throw python_error(); | |||
| 187 | // NOLINTNEXTLINE(bugprone-branch-clone) | |||
| 188 |   auto seq_size = PySequence_Fast_GET_SIZE(seq.get())(((((((PyObject*)(seq.get()))->ob_type))->tp_flags & ((1UL << 25))) != 0) ? ((((PyVarObject*)(seq.get()))-> ob_size)) : (((PyVarObject*)(((PyTupleObject *)(seq.get())))) ->ob_size));  | |||
| 189 | if (seq_size != n) { | |||
| 190 | throw ValueError("expected sequence of length %lld at dim %lld (got %lld)", | |||
| 191 | (long long)n, (long long)dim, (long long)seq_size); | |||
| 192 | } | |||
| 193 | ||||
| 194 |   PyObject** items = PySequence_Fast_ITEMS(seq.get())(((((((PyObject*)(seq.get()))->ob_type))->tp_flags & ((1UL << 25))) != 0) ? ((PyListObject *)(seq.get()))-> ob_item : ((PyTupleObject *)(seq.get()))->ob_item);  | |||
| 195 | for(const auto i : c10::irange(n)) { | |||
| 196 | recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]); | |||
| 197 | data += strides[dim] * elementSize; | |||
| 198 | } | |||
| 199 | } | |||
| 200 | ||||
| 201 | Tensor internal_new_from_data( | |||
| 202 | c10::TensorOptions options, | |||
| 203 | at::ScalarType scalar_type, | |||
| 204 | c10::optional<Device> device_opt, | |||
| 205 | PyObject* data, | |||
| 206 | bool copy_variables, | |||
| 207 | bool copy_numpy, | |||
| 208 | bool type_inference, | |||
| 209 | bool pin_memory = false) { | |||
| 210 | ||||
| 211 | if (THPUtils_checkString(data)) { | |||
| 212 | throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)(((PyObject*)(data))->ob_type)->tp_name); | |||
| 213 | } | |||
| 214 | ||||
| 215 | if (THPVariable_Check(data)) { | |||
| 216 |     TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable")if ((__builtin_expect(static_cast<bool>(!(!pin_memory)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(216), (::c10::detail::torchCheckMsgImpl ( "Expected " "!pin_memory" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Can't pin tensor constructed from a variable" ))); };  | |||
| 217 | // TODO: use MaybeOwned | |||
| 218 | auto var = THPVariable_Unpack(data); | |||
| 219 | if (copy_variables) { | |||
| 220 | var = var.detach(); | |||
| 221 | } | |||
| 222 | // infer the scalar type and device type; it's not expected to infer the layout since these constructors | |||
| 223 | // are defined per-layout-type (e.g. tensor vs sparse_coo_tensor). | |||
| 224 | const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type; | |||
| 225 | auto device = device_opt.has_value() ? *device_opt : var.device(); | |||
| 226 | pybind11::gil_scoped_release no_gil; | |||
| 227 | maybe_initialize_cuda(device); | |||
| 228 | return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables); | |||
| 229 | } | |||
| 230 | ||||
| 231 | #ifdef USE_NUMPY1 | |||
| 232 | if (PyObject_HasAttrString(data, "__cuda_array_interface__")) { | |||
| 233 |     TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from __cuda_array_interface__")if ((__builtin_expect(static_cast<bool>(!(!pin_memory)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(233), (::c10::detail::torchCheckMsgImpl ( "Expected " "!pin_memory" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Can't pin tensor constructed from __cuda_array_interface__" ))); };  | |||
| 234 | auto tensor = tensor_from_cuda_array_interface(data); | |||
| 235 | const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type; | |||
| 236 | auto device = device_opt.has_value() ? *device_opt : options.device(); | |||
| 237 | pybind11::gil_scoped_release no_gil; | |||
| 238 | maybe_initialize_cuda(device); | |||
| 239 | return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy); | |||
| 240 | } | |||
| 241 | ||||
| 242 |   if (is_numpy_available() && PyArray_Check(data)((((PyObject*)(data))->ob_type) == (&(*(PyTypeObject * )__numpy_array_api[2])) || PyType_IsSubtype((((PyObject*)(data ))->ob_type), (&(*(PyTypeObject *)__numpy_array_api[2] ))))) {  | |||
| 243 |     TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy")if ((__builtin_expect(static_cast<bool>(!(!pin_memory)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(243), (::c10::detail::torchCheckMsgImpl ( "Expected " "!pin_memory" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Can't pin tensor constructed from numpy" ))); };  | |||
| 244 | auto tensor = tensor_from_numpy(data, /*warn_if_not_writeable=*/!copy_numpy); | |||
| 245 | const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type; | |||
| 246 | auto device = device_opt.has_value() ? *device_opt : options.device(); | |||
| 247 | pybind11::gil_scoped_release no_gil; | |||
| 248 | maybe_initialize_cuda(device); | |||
| 249 | return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy); | |||
| 250 | } | |||
| 251 | #endif | |||
| 252 | ||||
| 253 | auto sizes = compute_sizes(data); | |||
| 254 | ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type; | |||
| 255 | // This exists to prevent us from tracing the call to empty(). The actual | |||
| 256 | // autograd code doesn't really matter, because requires_grad is always false | |||
| 257 | // here. | |||
| 258 | Tensor tensor; | |||
| 259 | { | |||
| 260 | at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove | |||
| 261 | at::tracer::impl::NoTracerDispatchMode tracer_guard; | |||
| 262 | tensor = at::empty(sizes, at::initialTensorOptions().dtype(inferred_scalar_type).pinned_memory(pin_memory)); | |||
| 263 | recursive_store( | |||
| 264 | (char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0, | |||
| 265 | inferred_scalar_type, tensor.dtype().itemsize(), data); | |||
| 266 | } | |||
| 267 | auto device = device_opt.has_value() ? *device_opt : options.device(); | |||
| 268 | pybind11::gil_scoped_release no_gil; | |||
| 269 | maybe_initialize_cuda(device); | |||
| 270 | // However, it is VERY important that we trace the to() call here (even | |||
| 271 | // though the reason this is important is a hack). Without *some* factory | |||
| 272 | // function call that is traced at construction time, we will consider | |||
| 273 | // a tensor constant as originating from "outside" the trace, and if you | |||
| 274 | // try to return it directly we will fail with the error saying no | |||
| 275 | // "no observable data dependence". In an ideal world, we wouldn't trace | |||
| 276 | // a to() call but I need to think harder about what exactly we should trace | |||
| 277 | // in this case. | |||
| 278 | return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false); | |||
| 279 | } | |||
| 280 | ||||
| 281 | Tensor new_from_data_copy( | |||
| 282 | c10::TensorOptions options, | |||
| 283 | at::ScalarType scalar_type, | |||
| 284 | c10::optional<Device> device, | |||
| 285 | PyObject* data) { | |||
| 286 | return internal_new_from_data(options, scalar_type, device, data, | |||
| 287 | /*copy_variables=*/true, /*copy_numpy=*/true, | |||
| 288 | /*type_inference=*/false); | |||
| 289 | } | |||
| 290 | ||||
| 291 | Tensor legacy_new_from_sequence( | |||
| 292 | c10::TensorOptions options, | |||
| 293 | at::ScalarType scalar_type, | |||
| 294 | c10::optional<Device> device, | |||
| 295 | PyObject* data) { | |||
| 296 | if (!PySequence_Check(data)) { | |||
| 297 | throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)(((PyObject*)(data))->ob_type)->tp_name); | |||
| 298 | } | |||
| 299 | return internal_new_from_data(options, scalar_type, device, data, | |||
| 300 | /*copy_variables=*/false, /*copy_numpy=*/false, | |||
| 301 | /*type_inference=*/false); | |||
| 302 | } | |||
| 303 | ||||
| 304 | // "base" here refers to the Tensor type on which the function was invoked, e.g.: | |||
| 305 | // in x.new(y), 'x' is the base. | |||
| 306 | // TODO: Rewrite this using dispatchKeyToTensorOptions | |||
| 307 | void check_base_legacy_new(c10::DispatchKey dispatch_key, at::Layout expected_layout) { | |||
| 308 | if (expected_layout == c10::kStrided) { | |||
| 309 |     TORCH_CHECK(if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 310 |         dispatch_key == c10::DispatchKey::CPU ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 311 |             dispatch_key == c10::DispatchKey::CUDA ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 312 |             dispatch_key == c10::DispatchKey::HIP ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 313 |             dispatch_key == c10::DispatchKey::XLA ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 314 |             dispatch_key == c10::DispatchKey::XPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 315 |         "new(): expected DispatchKey: ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 316 |         c10::DispatchKey::CPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 317 |         " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 318 |         c10::DispatchKey::CUDA,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 319 |         " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 320 |         c10::DispatchKey::HIP,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 321 |         " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 322 |         c10::DispatchKey::XLA,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 323 |         " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 324 |         c10::DispatchKey::XPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 325 |         " but got: ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }  | |||
| 326 |         dispatch_key)if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); };  | |||
| 327 | } else if(expected_layout == c10::kSparse) { | |||
| 328 | // NOTE: no sparse XLA | |||
| 329 |     TORCH_CHECK(if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 330 |         dispatch_key == c10::DispatchKey::SparseCPU ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 331 |             dispatch_key == c10::DispatchKey::SparseCUDA ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 332 |             dispatch_key == c10::DispatchKey::SparseHIP ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 333 |             dispatch_key == c10::DispatchKey::SparseXPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 334 |         "new(): expected DispatchKey: ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 335 |         c10::DispatchKey::SparseCPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 336 |         " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 337 |         c10::DispatchKey::SparseCUDA,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 338 |         " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 339 |         c10::DispatchKey::SparseHIP,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 340 |         " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 341 |         c10::DispatchKey::SparseXPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 342 |         " but got: ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }  | |||
| 343 |         dispatch_key)if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); };  | |||
| 344 | } else { | |||
| 345 |     TORCH_INTERNAL_ASSERT(false, "unexpected layout")if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(345), "false" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "345" ", please report a bug to PyTorch. " , c10::str("unexpected layout")); };  | |||
| 346 | } | |||
| 347 | } | |||
| 348 | ||||
| 349 | // TODO: Make this accept options instead of dispatch key | |||
| 350 | void check_legacy_ctor_device(c10::DispatchKey dispatch_key, c10::optional<Device> device) { | |||
| 351 | if (device.has_value()) { | |||
| 352 |     TORCH_CHECK(dispatchKeyToDeviceType(dispatch_key) == device.value().type(),if ((__builtin_expect(static_cast<bool>(!(dispatchKeyToDeviceType (dispatch_key) == device.value().type())), 0))) { ::c10::detail ::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(354), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatchKeyToDeviceType(dispatch_key) == device.value().type()" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "legacy constructor expects device type: " , dispatchKeyToDeviceType(dispatch_key), " but device type: " , device.value().type(), " was passed"))); }  | |||
| 353 |              "legacy constructor expects device type: ", dispatchKeyToDeviceType(dispatch_key),if ((__builtin_expect(static_cast<bool>(!(dispatchKeyToDeviceType (dispatch_key) == device.value().type())), 0))) { ::c10::detail ::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(354), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatchKeyToDeviceType(dispatch_key) == device.value().type()" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "legacy constructor expects device type: " , dispatchKeyToDeviceType(dispatch_key), " but device type: " , device.value().type(), " was passed"))); }  | |||
| 354 |              " but device type: ", device.value().type(), " was passed")if ((__builtin_expect(static_cast<bool>(!(dispatchKeyToDeviceType (dispatch_key) == device.value().type())), 0))) { ::c10::detail ::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(354), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatchKeyToDeviceType(dispatch_key) == device.value().type()" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "legacy constructor expects device type: " , dispatchKeyToDeviceType(dispatch_key), " but device type: " , device.value().type(), " was passed"))); };  | |||
| 355 | } | |||
| 356 | } | |||
| 357 | ||||
| 358 | Tensor legacy_sparse_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 359 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
| 360 | static PythonArgParser parser({ | |||
| 361 | "new(*, Device? device=None)", | |||
| 362 | "new(*, int64_t cdata)|hidden", | |||
| 363 | "new(Tensor indices, Tensor values, *, Device? device=None)", | |||
| 364 | "new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)", | |||
| 365 | "new(IntArrayRef size, *, Device? device=None)", | |||
| 366 | }); | |||
| 367 | ParsedArgs<4> parsed_args; | |||
| 368 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 369 | if (r.idx == 0) { | |||
| 370 | auto deviceOptional = r.deviceOptional(0); | |||
| 371 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 372 | return at::empty({0}, build_options(options, scalar_type, deviceOptional)); | |||
| 373 | } else if (r.idx == 1) { | |||
| 374 | auto cdata = reinterpret_cast<void*>(r.toInt64(0)); | |||
| 375 | return at::unsafeTensorFromTH(cdata, true); | |||
| 376 | } else if (r.idx == 2) { | |||
| 377 | auto deviceOptional = r.deviceOptional(2); | |||
| 378 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 379 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
| 380 | return at::sparse_coo_tensor(r.tensor(0), r.tensor(1)); | |||
| 381 | } else if (r.idx == 3) { | |||
| 382 | auto deviceOptional = r.deviceOptional(3); | |||
| 383 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 384 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
| 385 | return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); | |||
| 386 | } else if (r.idx == 4) { | |||
| 387 | PyObject* arg = r.pyobject(0); | |||
| 388 | auto deviceOptional = r.deviceOptional(1); | |||
| 389 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 390 | if (!THPSize_Check(arg)((((PyObject*)(arg))->ob_type) == &THPSizeType) && PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size) >= 1 && arg == PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0])) { | |||
| 391 | // new(sequence) binds to this signature but should be treated differently | |||
| 392 | // unless the sequences is a torch.Size | |||
| 393 | throw TypeError("torch.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \ | |||
| 394 | "or construct a strided tensor and convert it to sparse via to_sparse."); | |||
| 395 | } | |||
| 396 | return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0)); | |||
| 397 | } | |||
| 398 | throw std::runtime_error("new(): invalid arguments"); | |||
| 399 | } | |||
| 400 | ||||
| 401 | Tensor legacy_sparse_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 402 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
| 403 | static PythonArgParser parser({ | |||
| 404 | "new(*, Device? device=None)", | |||
| 405 | "new(*, int64_t cdata)|hidden", | |||
| 406 | "new(Tensor indices, Tensor values, *, Device? device=None)", | |||
| 407 | "new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)", | |||
| 408 | "new(IntArrayRef size, *, Device? device=None)", | |||
| 409 | }); | |||
| 410 | check_base_legacy_new(dispatch_key, c10::kSparse); | |||
| 411 | ParsedArgs<5> parsed_args; | |||
| 412 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 413 | if (r.idx == 0) { | |||
| 414 | auto deviceOptional = r.deviceOptional(0); | |||
| 415 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 416 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
| 417 | return at::empty({0}, build_options(options, scalar_type)); | |||
| 418 | } else if (r.idx == 1) { | |||
| 419 | auto cdata = reinterpret_cast<void*>(r.toInt64(0)); | |||
| 420 | return at::unsafeTensorFromTH(cdata, true); | |||
| 421 | } else if (r.idx == 2) { | |||
| 422 | // Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't | |||
| 423 | // have a device (we should infer it). | |||
| 424 | auto deviceOptional = r.deviceOptional(2); | |||
| 425 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 426 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
| 427 | return at::sparse_coo_tensor(r.tensor(0), r.tensor(1)); | |||
| 428 | } else if (r.idx == 3) { | |||
| 429 | // Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't | |||
| 430 | // have a device (we should infer it). | |||
| 431 | auto deviceOptional = r.deviceOptional(3); | |||
| 432 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 433 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
| 434 | return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); | |||
| 435 | } else if (r.idx == 4) { | |||
| 436 | PyObject* arg = r.pyobject(0); | |||
| 437 | auto deviceOptional = r.deviceOptional(1); | |||
| 438 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 439 | if (!THPSize_Check(arg)((((PyObject*)(arg))->ob_type) == &THPSizeType) && PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size) >= 1 && arg == PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0])) { | |||
| 440 | // new(sequence) binds to this signature but should be treated differently | |||
| 441 | // unless the sequences is a torch.Size | |||
| 442 | throw TypeError("SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \ | |||
| 443 | "or construct a strided tensor and convert it to sparse via to_sparse."); | |||
| 444 | } | |||
| 445 | return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0)); | |||
| 446 | } | |||
| 447 | throw std::runtime_error("new(): invalid arguments"); | |||
| 448 | } | |||
| 449 | ||||
| 450 | // NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs | |||
| 451 | c10::TensorOptions typeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) { | |||
| 452 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
| 453 | if (!r.isNone(device_idx)) { | |||
| 454 | // TODO: This line doesn't seem to be exercised at all in tests | |||
| 455 | options = options.device(r.device(device_idx).type()); | |||
| 456 | } | |||
| 457 | return options; | |||
| 458 | } | |||
| 459 | ||||
| 460 | } // namespace | |||
| 461 | ||||
| 462 | Tensor legacy_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 463 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
| 464 | static PythonArgParser parser({ | |||
| 465 | "new(*, Device? device=None)", | |||
| 466 | "new(Storage storage)", | |||
| 467 | "new(*, int64_t cdata)|hidden", | |||
| 468 | "new(Tensor other)", | |||
| 469 | "new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor matching with IntArrayRef, PyObject* | |||
| 470 | "new(IntArrayRef size, *, Device? device=None)", | |||
| 471 | "new(PyObject* data, *, Device? device=None)", | |||
| 472 | }); | |||
| 473 | ||||
| 474 | if (isSparse(dispatchKeyToBackend(dispatch_key))) { | |||
| 475 | return legacy_sparse_tensor_ctor(dispatch_key, scalar_type, args, kwargs); | |||
| 476 | } | |||
| 477 | ||||
| 478 | ParsedArgs<2> parsed_args; | |||
| 479 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 480 | if (r.idx == 0) { | |||
| 481 | auto deviceOptional = r.deviceOptional(0); | |||
| 482 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 483 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
| 484 | return at::empty({0}, build_options(options, scalar_type)); | |||
| 485 | } else if (r.idx == 1) { | |||
| 486 | THPObjectPtr dtype_attr(PyObject_GetAttrString(r.pyobject(0), "dtype")); | |||
| 487 | if (!dtype_attr) throw python_error(); | |||
| 488 | at::ScalarType storage_scalar_type = reinterpret_cast<THPDtype*>( | |||
| 489 | dtype_attr.get())->scalar_type; | |||
| 490 |     TORCH_CHECK(if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 491 |         storage_scalar_type == scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 492 |         "Expected Storage of type ",if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 493 |         scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 494 |         " but got type ",if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 495 |         storage_scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 496 |         " for argument 1 'storage'")if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); };  | |||
| 497 | return new_with_storage(options, scalar_type, r.storage(0)); | |||
| 498 | } else if (r.idx == 2) { | |||
| 499 | auto cdata = reinterpret_cast<void*>(r.toInt64(0)); | |||
| 500 | return at::unsafeTensorFromTH(cdata, true); | |||
| 501 | } else if (r.idx == 3) { | |||
| 502 | return new_with_tensor(options, scalar_type, r.tensor(0)); | |||
| 503 | } else if (r.idx == 4) { | |||
| 504 |     TORCH_CHECK(false, "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " \if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(505), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " "is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead." ))); }  | |||
| 505 |                 "is not supported.  Use torch.tensor(...) or torch.as_tensor(...) instead.")if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(505), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " "is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead." ))); };  | |||
| 506 | } else if (r.idx == 5) { | |||
| 507 | PyObject* arg = r.pyobject(0); | |||
| 508 | auto deviceOptional = r.deviceOptional(1); | |||
| 509 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 510 | if (!THPSize_Check(arg)((((PyObject*)(arg))->ob_type) == &THPSizeType) && PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size) >= 1 && arg == PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0])) { | |||
| 511 | // new(sequence) binds to this signature but should be treated differently | |||
| 512 | // unless the sequences is a torch.Size | |||
| 513 | return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0)); | |||
| 514 | } | |||
| 515 | return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0)); | |||
| 516 | } else if (r.idx == 6) { | |||
| 517 | auto deviceOptional = r.deviceOptional(1); | |||
| 518 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 519 | return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0)); | |||
| 520 | } | |||
| 521 | throw std::runtime_error("new(): invalid arguments"); | |||
| 522 | } | |||
| 523 | ||||
| 524 | Tensor legacy_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 525 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
| 526 | static PythonArgParser parser({ | |||
| 527 | "new(*, Device? device=None)", | |||
| 528 | "new(Storage storage)", | |||
| 529 | "new(*, int64_t cdata)|hidden", | |||
| 530 | "new(Tensor other)", // this doesn't have a dtype/device because it creates an alias. | |||
| 531 | "new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor matching with IntArrayRef, PyObject* | |||
| 532 | "new(IntArrayRef size, *, Device? device=None)", | |||
| 533 | "new(PyObject* data, *, Device? device=None)", | |||
| 534 | }); | |||
| 535 | ||||
| 536 | if (isSparse(dispatchKeyToBackend(dispatch_key))) { | |||
| 537 | return legacy_sparse_tensor_new(dispatch_key, scalar_type, args, kwargs); | |||
| 538 | } | |||
| 539 | ||||
| 540 | check_base_legacy_new(dispatch_key, c10::kStrided); | |||
| 541 | ParsedArgs<3> parsed_args; | |||
| 542 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 543 | if (r.idx == 0) { | |||
| 544 | auto deviceOptional = r.deviceOptional(0); | |||
| 545 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 546 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
| 547 | return at::empty({0}, build_options(options, scalar_type)); | |||
| 548 | } else if (r.idx == 1) { | |||
| 549 | THPObjectPtr dtype_attr(PyObject_GetAttrString(r.pyobject(0), "dtype")); | |||
| 550 | if (!dtype_attr) throw python_error(); | |||
| 551 | at::ScalarType storage_scalar_type = reinterpret_cast<THPDtype*>( | |||
| 552 | dtype_attr.get())->scalar_type; | |||
| 553 |     TORCH_CHECK(if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 554 |         storage_scalar_type == scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 555 |         "Expected Storage of type ",if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 556 |         scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 557 |         " but got type ",if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 558 |         storage_scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }  | |||
| 559 |         " for argument 1 'storage'")if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); };  | |||
| 560 | return new_with_storage(options, scalar_type, r.storage(0)); | |||
| 561 | } else if (r.idx == 2) { | |||
| 562 | auto cdata = reinterpret_cast<void*>(r.toInt64(0)); | |||
| 563 | return at::unsafeTensorFromTH(cdata, true); | |||
| 564 | } else if (r.idx == 3) { | |||
| 565 | return new_with_tensor(options, scalar_type, r.tensor(0)); | |||
| 566 | } else if (r.idx == 4) { | |||
| 567 |       TORCH_CHECK(false, "Legacy tensor new of the form tensor.new(tensor, device=device) " \if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(568), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Legacy tensor new of the form tensor.new(tensor, device=device) " "is not supported. Use torch.as_tensor(...) instead."))); }  | |||
| 568 |                   "is not supported.  Use torch.as_tensor(...) instead.")if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(568), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Legacy tensor new of the form tensor.new(tensor, device=device) " "is not supported. Use torch.as_tensor(...) instead."))); };  | |||
| 569 | } else if (r.idx == 5) { | |||
| 570 | PyObject* arg = r.pyobject(0); | |||
| 571 | auto deviceOptional = r.deviceOptional(1); | |||
| 572 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 573 | if (!THPSize_Check(arg)((((PyObject*)(arg))->ob_type) == &THPSizeType) && PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size) >= 1 && arg == PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0])) { | |||
| 574 | // new(sequence) binds to this signature but should be treated differently | |||
| 575 | // unless the sequences is a torch.Size | |||
| 576 | return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0)); | |||
| 577 | } | |||
| 578 | return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0)); | |||
| 579 | } else if (r.idx == 6) { | |||
| 580 | auto deviceOptional = r.deviceOptional(1); | |||
| 581 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
| 582 | return legacy_new_from_sequence(options, scalar_type, r.deviceOptional(1), r.pyobject(0)); | |||
| 583 | } | |||
| 584 | throw std::runtime_error("new(): invalid arguments"); | |||
| 585 | } | |||
| 586 | ||||
| 587 | Tensor indexing_tensor_from_data( | |||
| 588 | c10::TensorOptions options, | |||
| 589 | at::ScalarType scalar_type, | |||
| 590 | c10::optional<Device> device, | |||
| 591 | PyObject* data) { | |||
| 592 | // Specific to tensor indexing, converts an indexing list to an | |||
| 593 | // indexing tensor (type Byte or Long) | |||
| 594 | ScalarType inferred_scalar_type = infer_scalar_type(data); | |||
| 595 | if (inferred_scalar_type == ScalarType::Byte || inferred_scalar_type == ScalarType::Bool) { | |||
| 596 | return internal_new_from_data(options, inferred_scalar_type, device, data, | |||
| 597 | /*copy_variables=*/false, /*copy_numpy=*/false, | |||
| 598 | /*type_inference=*/false); | |||
| 599 | } else { | |||
| 600 | return internal_new_from_data(options, scalar_type, device, data, | |||
| 601 | /*copy_variables=*/false, /*copy_numpy=*/false, | |||
| 602 | /*type_inference=*/false); | |||
| 603 | } | |||
| 604 | } | |||
| 605 | ||||
| 606 | Tensor sparse_csr_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 607 |   TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparseCsr( dispatchKeyToBackend(dispatch_key)))), 0))) { ::c10::detail:: torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(607), "!isSparseCsr(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "607" ", please report a bug to PyTorch. ", c10::str()); };  | |||
| 608 |   TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparse(dispatchKeyToBackend (dispatch_key)))), 0))) { ::c10::detail::torchInternalAssertFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(608), "!isSparse(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "608" ", please report a bug to PyTorch. ", c10::str()); };  | |||
| 609 | static PythonArgParser parser({ | |||
| 610 | "sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)", | |||
| 611 | "sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)", | |||
| 612 | }); | |||
| 613 | const int NUM_ARGS = 9, CROW_INDICES_ARG = 0, COL_INDICES_ARG = 1, VALUES_ARG = 2; | |||
| 614 | ParsedArgs<NUM_ARGS> parsed_args; | |||
| 615 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 616 | auto safe_get_attr_string = [](PyObject *o, const char *attr_name) -> PyObject* { | |||
| 617 | // Clear error indicator if attribute does not exists. | |||
| 618 | // Otherwise subsequent Python C API calls might return bogus values. | |||
| 619 | // See https://github.com/pytorch/pytorch/issues/58520 for more details | |||
| 620 | auto rc = PyObject_GetAttrString(o, attr_name); | |||
| 621 | if (!rc) { | |||
| 622 | if (!PyErr_ExceptionMatches(PyExc_AttributeError)) { | |||
| 623 | throw python_error(); | |||
| 624 | } | |||
| 625 | // Warning: a wrong attribute error may be suppressed here | |||
| 626 | PyErr_Clear(); | |||
| 627 | } | |||
| 628 | return rc; | |||
| 629 | }; | |||
| 630 | THPObjectPtr crow_indices_dtype_attr(safe_get_attr_string(r.pyobject(CROW_INDICES_ARG), "dtype")); | |||
| 631 | THPObjectPtr col_indices_dtype_attr(safe_get_attr_string(r.pyobject(COL_INDICES_ARG), "dtype")); | |||
| 632 | at::ScalarType crow_indices_scalar_type = crow_indices_dtype_attr ? reinterpret_cast<THPDtype*>( | |||
| 633 | crow_indices_dtype_attr.get())->scalar_type : kInt; | |||
| 634 | at::ScalarType col_indices_scalar_type = col_indices_dtype_attr ? reinterpret_cast<THPDtype*>( | |||
| 635 | col_indices_dtype_attr.get())->scalar_type : kInt; | |||
| 636 | ||||
| 637 | if (r.idx == 0) { | |||
| 638 | const int SIZE_ARRAY_ARG = 3, TYPE_INFERENCE_ARG = 4, DEVICE_TYPE_ARG = 6, REQ_GRAD_ARG = 8; | |||
| 639 | bool type_inference = r.isNone(TYPE_INFERENCE_ARG); | |||
| 640 | const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key); | |||
| 641 | const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type); | |||
| 642 | at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG)); | |||
| 643 | ||||
| 644 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), | |||
| 645 | r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 646 | /*type_inference=*/type_inference); | |||
| 647 | Tensor crow_indices = internal_new_from_data(values.options(), | |||
| 648 | crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(CROW_INDICES_ARG), | |||
| 649 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 650 | /*type_inference=*/true); | |||
| 651 | Tensor col_indices = internal_new_from_data(values.options(), | |||
| 652 | col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(COL_INDICES_ARG), | |||
| 653 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 654 | /*type_inference=*/true); | |||
| 655 | ||||
| 656 | return at::sparse_csr_tensor(crow_indices, col_indices, values, r.intlist(SIZE_ARRAY_ARG), | |||
| 657 | values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG)); | |||
| 658 | } else if (r.idx == 1) { | |||
| 659 | const int TYPE_INFERENCE_ARG = 3, DEVICE_TYPE_ARG = 5, REQ_GRAD_ARG = 7; | |||
| 660 | bool type_inference = r.isNone(TYPE_INFERENCE_ARG); | |||
| 661 | const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key); | |||
| 662 | const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type); | |||
| 663 | at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG)); | |||
| 664 | ||||
| 665 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), | |||
| 666 | r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 667 | /*type_inference=*/type_inference); | |||
| 668 | Tensor crow_indices = internal_new_from_data(values.options(), | |||
| 669 | crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), | |||
| 670 | r.pyobject(CROW_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 671 | /*type_inference=*/true); | |||
| 672 | Tensor col_indices = internal_new_from_data(values.options(), col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), | |||
| 673 | r.pyobject(COL_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 674 | /*type_inference=*/true); | |||
| 675 | return at::sparse_csr_tensor(crow_indices, col_indices, values, | |||
| 676 | values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG)); | |||
| 677 | } | |||
| 678 | throw std::runtime_error("sparse_csr_tensor(): invalid arguments"); | |||
| 679 | } | |||
| 680 | ||||
| 681 | Tensor _sparse_csr_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 682 |   TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparseCsr( dispatchKeyToBackend(dispatch_key)))), 0))) { ::c10::detail:: torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(682), "!isSparseCsr(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "682" ", please report a bug to PyTorch. ", c10::str()); };  | |||
| 683 |   TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparse(dispatchKeyToBackend (dispatch_key)))), 0))) { ::c10::detail::torchInternalAssertFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(683), "!isSparse(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "683" ", please report a bug to PyTorch. ", c10::str()); };  | |||
| 684 | enum { | |||
| 685 | ARG_CROW_INDICES = 0, | |||
| 686 | ARG_COL_INDICES, | |||
| 687 | ARG_VALUES, | |||
| 688 | ARG_SIZE, | |||
| 689 | ARG_TYPE, | |||
| 690 | ARG_DEVICE, | |||
| 691 | ARG_REQUIRES_GRAD, | |||
| 692 | ARGS_COUNT | |||
| 693 | }; | |||
| 694 | static PythonArgParser parser({ | |||
| 695 | "_sparse_csr_tensor_unsafe(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
| 696 | }); | |||
| 697 | ||||
| 698 | ParsedArgs<ARGS_COUNT> parsed_args; | |||
| 699 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 700 | bool type_inference = r.isNone(ARG_TYPE); | |||
| 701 | const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key); | |||
| 702 | const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type); | |||
| 703 | at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE)); | |||
| 704 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES), | |||
| 705 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 706 | /*type_inference=*/type_inference); | |||
| 707 | ||||
| 708 | Tensor crow_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_CROW_INDICES), | |||
| 709 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 710 | /*type_inference=*/true); | |||
| 711 | ||||
| 712 | Tensor col_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_COL_INDICES), | |||
| 713 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 714 | /*type_inference=*/true); | |||
| 715 | ||||
| 716 | return at::_sparse_csr_tensor_unsafe(crow_indices, col_indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD)); | |||
| 717 | } | |||
| 718 | ||||
| 719 | // Note [Ensuring sparse values and indices match devices] | |||
| 720 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |||
| 721 | // In all places where we construct indices, we read out options from values | |||
| 722 | // (rather than use inferred_options). Why? This handles the case when | |||
| 723 | // values is a CUDA tensor, but indices is a non-Tensor value (and the device | |||
| 724 | // argument is not set). Example: | |||
| 725 | // | |||
| 726 | // torch.sparse_coo_tensor(([0, 1],), self.empty(2, 0).cuda(), (4, 0)) | |||
| 727 | // | |||
| 728 | // Sparse tensors require both indices and values to live on the same device. | |||
| 729 | // If values lives on CUDA, we can infer where the indices should live, and | |||
| 730 | // should accept even ordinary index sequences (and just make sure we write them | |||
| 731 | // into the correct device). values is the ONLY way we know that the index | |||
| 732 | // tensor should go to CUDA, so we have to get the information in somehow. | |||
| 733 | // | |||
| 734 | // This code is kind of jank. For one, the dtype in options is silently ignored | |||
| 735 | // by internal_new_from_data. Also, in classic janky code style, it used to | |||
| 736 | // not work quite right: if values lives on "cuda:1", before all we said was | |||
| 737 | // "this needs to be CUDA" and indices would be allocated on the wrong tensor. | |||
| 738 | // Options is more right and gets this correct. | |||
| 739 | ||||
| 740 | Tensor sparse_coo_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 741 |   TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparse(dispatchKeyToBackend (dispatch_key)))), 0))) { ::c10::detail::torchInternalAssertFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(741), "!isSparse(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "741" ", please report a bug to PyTorch. ", c10::str()); };  | |||
| 742 |   TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparseCsr( dispatchKeyToBackend(dispatch_key)))), 0))) { ::c10::detail:: torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(742), "!isSparseCsr(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "742" ", please report a bug to PyTorch. ", c10::str()); };  | |||
| 743 | static PythonArgParser parser({ | |||
| 744 | "sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
| 745 | "sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
| 746 | "sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
| 747 | }); | |||
| 748 | ||||
| 749 | ParsedArgs<6> parsed_args; | |||
| 750 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 751 | if (r.idx == 0) { | |||
| 752 | bool type_inference = r.isNone(2); | |||
| 753 | const auto inferred_options = typeIdWithDefault(r, 3, dispatch_key); | |||
| 754 | const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type); | |||
| 755 | at::OptionalDeviceGuard device_guard(r.deviceOptional(3)); | |||
| 756 | // if no dtype provided, infer type based on value type. | |||
| 757 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1), | |||
| 758 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 759 | /*type_inference=*/type_inference); | |||
| 760 | // See Note [Ensuring sparse values and indices match devices] | |||
| 761 | Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(3), r.pyobject(0), | |||
| 762 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 763 | /*type_inference=*/false); | |||
| 764 | return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4)); | |||
| 765 | } else if (r.idx == 1) { | |||
| 766 | bool type_inference = r.isNone(3); | |||
| 767 | const auto inferred_options = typeIdWithDefault(r, 4, dispatch_key); | |||
| 768 | const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type); | |||
| 769 | at::OptionalDeviceGuard device_guard(r.deviceOptional(4)); | |||
| 770 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1), | |||
| 771 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 772 | /*type_inference=*/type_inference); | |||
| 773 | // See Note [Ensuring sparse values and indices match devices] | |||
| 774 | Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(4), r.pyobject(0), | |||
| 775 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 776 | /*type_inference=*/false); | |||
| 777 | return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5)); | |||
| 778 | } else if (r.idx == 2) { | |||
| 779 | const auto inferred_options = typeIdWithDefault(r, 2, dispatch_key); | |||
| 780 | const auto inferred_scalar_type = r.scalartypeWithDefault(1, scalar_type); | |||
| 781 | at::OptionalDeviceGuard device_guard(r.deviceOptional(2)); | |||
| 782 | return at::sparse_coo_tensor(r.intlist(0), inferred_options.dtype(inferred_scalar_type).layout(at::kSparse)).set_requires_grad(r.toBool(3)); | |||
| 783 | } | |||
| 784 | throw std::runtime_error("sparse_coo_tensor(): invalid arguments"); | |||
| 785 | } | |||
| 786 | ||||
| 787 | Tensor _sparse_coo_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 788 |   TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparse(dispatchKeyToBackend (dispatch_key)))), 0))) { ::c10::detail::torchInternalAssertFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(788), "!isSparse(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "788" ", please report a bug to PyTorch. ", c10::str()); };  | |||
| 789 |   TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparseCsr( dispatchKeyToBackend(dispatch_key)))), 0))) { ::c10::detail:: torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(789), "!isSparseCsr(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "789" ", please report a bug to PyTorch. ", c10::str()); };  | |||
| 790 | enum { | |||
| 791 | ARG_INDICES = 0, | |||
| 792 | ARG_VALUES, | |||
| 793 | ARG_SIZE, | |||
| 794 | ARG_TYPE, | |||
| 795 | ARG_DEVICE, | |||
| 796 | ARG_REQUIRES_GRAD, | |||
| 797 | ARGS_COUNT | |||
| 798 | }; | |||
| 799 | static PythonArgParser parser({ | |||
| 800 | "_sparse_coo_tensor_unsafe(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
| 801 | }); | |||
| 802 | ||||
| 803 | ParsedArgs<ARGS_COUNT> parsed_args; | |||
| 804 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 805 | bool type_inference = r.isNone(ARG_TYPE); | |||
| 806 | const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key); | |||
| 807 | const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type); | |||
| 808 | at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE)); | |||
| 809 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES), | |||
| 810 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 811 | /*type_inference=*/type_inference); | |||
| 812 | // See Note [Ensuring sparse values and indices match devices] | |||
| 813 | Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_INDICES), | |||
| 814 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
| 815 | /*type_inference=*/false); | |||
| 816 | return at::_sparse_coo_tensor_unsafe(indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD)); | |||
| 817 | } | |||
| 818 | ||||
| 819 | void _validate_sparse_coo_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 820 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
| 821 | static PythonArgParser parser({ | |||
| 822 | "_validate_sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size)", | |||
| 823 | }); | |||
| 824 | ||||
| 825 | ParsedArgs<3> parsed_args; | |||
| 826 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 827 | Tensor values = internal_new_from_data( | |||
| 828 | options, scalar_type, c10::nullopt, r.pyobject(1), | |||
| 829 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true); | |||
| 830 | // See Note [Ensuring sparse values and indices match devices] | |||
| 831 | Tensor indices = internal_new_from_data( | |||
| 832 | values.options(), kLong, c10::nullopt, r.pyobject(0), | |||
| 833 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/false); | |||
| 834 | at::native::_validate_sparse_coo_tensor_args(indices, values, r.intlist(2)); | |||
| 835 | } | |||
| 836 | ||||
| 837 | ||||
| 838 | void _validate_sparse_csr_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 839 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
| 840 | static PythonArgParser parser({ | |||
| 841 | "_validate_sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size)", | |||
| 842 | }); | |||
| 843 | ||||
| 844 | ParsedArgs<4> parsed_args; | |||
| 845 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 846 | Tensor values = internal_new_from_data( | |||
| 847 | options, scalar_type, c10::nullopt, r.pyobject(2), | |||
| 848 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true); | |||
| 849 | // See Note [Ensuring sparse values and indices match devices] | |||
| 850 | Tensor crow_indices = internal_new_from_data( | |||
| 851 | values.options(), kInt, c10::nullopt, r.pyobject(0), | |||
| 852 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true); | |||
| 853 | Tensor col_indices = internal_new_from_data( | |||
| 854 | values.options(), kInt, c10::nullopt, r.pyobject(1), | |||
| 855 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true); | |||
| 856 | ||||
| 857 | at::native::_validate_sparse_csr_tensor_args(crow_indices, col_indices, values, r.intlist(3)); | |||
| 858 | } | |||
| 859 | ||||
| 860 | Tensor tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 861 | static PythonArgParser parser({ | |||
| 862 | "tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False, DimnameList? names=None)", | |||
| 863 | }); | |||
| 864 | ||||
| 865 | constexpr int ctor_num_args = 6; | |||
| 866 | ParsedArgs<ctor_num_args> parsed_args; | |||
| 867 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 868 | if (r.idx == 0) { | |||
| 869 | PyObject* data = r.pyobject(0); | |||
| 870 | if (THPVariable_Check(data)) { | |||
| 871 | auto ret = PyErr_WarnEx(PyExc_UserWarning, | |||
| 872 | "To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() " | |||
| 873 | "or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).", 1); | |||
| 874 | if (ret != 0) throw python_error(); | |||
| 875 | } | |||
| 876 | ||||
| 877 | bool type_inference = r.isNone(1); | |||
| 878 | bool pin_memory = r.toBool(3); | |||
| 879 | bool args_requires_grad = r.toBool(4); | |||
| 880 | auto new_tensor = internal_new_from_data( | |||
| 881 | typeIdWithDefault(r, 2, dispatch_key), | |||
| 882 | r.scalartypeWithDefault(1, scalar_type), | |||
| 883 | r.deviceOptional(2), | |||
| 884 | data, | |||
| 885 | /*copy_variables=*/true, | |||
| 886 | /*copy_numpy=*/true, | |||
| 887 | /*type_inference=*/type_inference, | |||
| 888 | pin_memory); | |||
| 889 | auto names = r.toDimnameListOptional(5); | |||
| 890 | if (names) { | |||
| 891 | at::namedinference::propagate_names(new_tensor, *names, /*validate_names=*/true); | |||
| 892 | } | |||
| 893 | new_tensor.detach_(); // ensure new_tensor a leaf node | |||
| 894 | new_tensor.set_requires_grad(args_requires_grad); | |||
| 895 | return new_tensor; | |||
| 896 | } | |||
| 897 | throw std::runtime_error("tensor(): invalid arguments"); | |||
| 898 | } | |||
| 899 | ||||
| 900 | Tensor as_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 901 | // TODO: add requires_grad once we decide on semantics for sharing data. | |||
| 902 | static PythonArgParser parser({ | |||
| 903 | "as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)", | |||
| 904 | }); | |||
| 905 | ||||
| 906 | ParsedArgs<3> parsed_args; | |||
| 907 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 908 | if (r.idx == 0) { | |||
| 909 | bool type_inference = r.isNone(1); | |||
| 910 | return internal_new_from_data( | |||
| 911 | typeIdWithDefault(r, 2, dispatch_key), | |||
| 912 | r.scalartypeWithDefault(1, scalar_type), | |||
| 913 | r.deviceOptional(2), | |||
| 914 | r.pyobject(0), | |||
| 915 | /*copy_variables=*/false, | |||
| 916 | /*copy_numpy=*/false, | |||
| 917 | /*type_inference=*/type_inference); | |||
| 918 | } | |||
| 919 | throw std::runtime_error("tensor(): invalid arguments"); | |||
| 920 | } | |||
| 921 | ||||
| 922 | Tensor new_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
| 923 | static PythonArgParser parser({ | |||
| 924 | "new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
| 925 | }); | |||
| 926 | ||||
| 927 | ParsedArgs<4> parsed_args; | |||
| 928 | auto r = parser.parse(args, kwargs, parsed_args); | |||
| 929 | if (r.idx == 0) { | |||
  | ||||
| 930 | PyObject* data = r.pyobject(0); | |||
| 931 | if (THPVariable_Check(data)) { | |||
| 932 | auto ret = PyErr_WarnEx(PyExc_UserWarning, | |||
| 933 | "To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() " | |||
| 934 | "or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).", 1); | |||
| 935 | if (ret != 0) throw python_error(); | |||
| 936 | } | |||
| 937 | ||||
| 938 | bool args_requires_grad = r.toBool(3); | |||
| 939 | auto new_tensor = new_from_data_copy( | |||
| 940 | typeIdWithDefault(r, 2, dispatch_key), | |||
| 941 | r.scalartypeWithDefault(1, scalar_type), | |||
| 942 | r.deviceOptional(2), | |||
| 943 | data); | |||
| 944 | new_tensor.detach_(); // ensure new_tensor a leaf node | |||
| 945 | new_tensor.set_requires_grad(args_requires_grad); | |||
| 946 | return new_tensor; | |||
| 947 | } | |||
| 948 | throw std::runtime_error("new_tensor(): invalid arguments"); | |||
| 949 | } | |||
| 950 | ||||
| 951 | }} // namespace torch::utils | 
| 1 | #ifndef PySequence_GetItem | 
| 2 | struct _object; | 
| 3 | typedef struct _object PyObject; | 
| 4 | PyObject* clang_analyzer_PyObject_New_Reference(); | 
| 5 | PyObject* PySequence_GetItem(PyObject *o, Py_ssize_t i) { | 
| 6 | return clang_analyzer_PyObject_New_Reference(); | 
| 7 | } | 
| 8 | #else | 
| 9 | #warning "API PySequence_GetItem is defined as a macro." | 
| 10 | #endif |