Bug Summary

File:build/../torch/csrc/Module.cpp
Warning:line 592, column 28
PyObject ownership leak with reference count of 1

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name Module.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-output=html -analyzer-checker=python -analyzer-disable-checker=deadcode -analyzer-config prune-paths=true,suppress-c++-stdlib=true,suppress-inlined-defensive-checks=false,suppress-null-return-paths=false,crosscheck-with-z3=true,model-path=/opt/pyrefcon/lib/pyrefcon/models/models -analyzer-config experimental-enable-naive-ctu-analysis=true,ctu-dir=/tmp/pyrefcon/pytorch/csa-scan,ctu-index-name=/tmp/pyrefcon/pytorch/csa-scan/externalDefMap.txt,ctu-invocation-list=/tmp/pyrefcon/pytorch/csa-scan/invocations.yaml,display-ctu-progress=false -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fno-rounding-math -ffp-exception-behavior=ignore -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/tmp/pyrefcon/pytorch/build -resource-dir /opt/pyrefcon/lib/clang/13.0.0 -isystem third_party/gloo -isystem ../cmake/../third_party/gloo -isystem ../cmake/../third_party/googletest/googlemock/include -isystem ../cmake/../third_party/googletest/googletest/include -isystem ../third_party/protobuf/src -isystem ../third_party/gemmlowp -isystem ../third_party/neon2sse -isystem ../third_party/XNNPACK/include -isystem ../third_party -isystem ../cmake/../third_party/eigen -isystem /opt/pyrefcon/lib/pyrefcon/models/python3.8 -isystem /usr/lib/python3/dist-packages/numpy/core/include -isystem ../cmake/../third_party/pybind11/include -isystem /usr/lib/x86_64-linux-gnu/openmpi/include/openmpi -isystem /usr/lib/x86_64-linux-gnu/openmpi/include -isystem ../third_party/ideep/mkl-dnn/include -isystem ../third_party/ideep/include -D BUILDING_TESTS -D FMT_HEADER_ONLY=1 -D HAVE_MALLOC_USABLE_SIZE=1 -D HAVE_MMAP=1 -D HAVE_SHM_OPEN=1 -D HAVE_SHM_UNLINK=1 -D MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -D ONNXIFI_ENABLE_EXT=1 -D ONNX_ML=1 -D ONNX_NAMESPACE=onnx_torch -D THP_BUILD_MAIN_LIB -D USE_C10D -D USE_C10D_GLOO -D USE_C10D_MPI -D USE_DISTRIBUTED -D USE_EXTERNAL_MZCRC -D USE_NUMPY -D USE_RPC -D USE_TENSORPIPE -D USE_VALGRIND -D _FILE_OFFSET_BITS=64 -D torch_python_EXPORTS -I aten/src -I ../aten/src -I . -I ../ -I ../cmake/../third_party/benchmark/include -I caffe2/contrib/aten -I ../third_party/onnx -I third_party/onnx -I ../third_party/foxi -I third_party/foxi -I ../torch/.. -I ../torch/../aten/src -I ../torch/../aten/src/TH -I caffe2/aten/src -I third_party -I ../torch/../third_party/valgrind-headers -I ../torch/../third_party/gloo -I ../torch/../third_party/onnx -I ../torch/csrc -I ../torch/csrc/api/include -I ../torch/lib -I ../torch/lib/libshm -I ../torch/csrc/distributed -I ../torch/csrc/api -I ../c10/.. -I third_party/ideep/mkl-dnn/include -I ../third_party/ideep/mkl-dnn/src/../include -I ../torch/lib/libshm/../../../torch/lib -I ../third_party/fmt/include -D USE_PTHREADPOOL -D NDEBUG -D USE_KINETO -D LIBKINETO_NOCUPTI -D USE_FBGEMM -D USE_QNNPACK -D USE_PYTORCH_QNNPACK -D USE_XNNPACK -D SYMBOLICATE_MOBILE_DEBUG_HANDLE -D HAVE_AVX_CPU_DEFINITION -D HAVE_AVX2_CPU_DEFINITION -D NDEBUG -D NDEBUG -D CAFFE2_USE_GLOO -D HAVE_GCC_GET_CPUID -D USE_AVX -D USE_AVX2 -D TH_HAVE_THREAD -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /opt/pyrefcon/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -Wno-unused-but-set-variable -Wno-maybe-uninitialized -Werror=format -Werror=cast-function-type -Wno-stringop-overflow -Wno-write-strings -Wno-strict-aliasing -Wno-cast-function-type -w -std=gnu++14 -fdeprecated-macro -fdebug-compilation-dir=/tmp/pyrefcon/pytorch/build -ferror-limit 19 -fvisibility-inlines-hidden -fopenmp -fopenmp-cuda-parallel-target-regions -pthread -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -faligned-allocation -fcolor-diagnostics -vectorize-loops -vectorize-slp -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/pyrefcon/pytorch/csa-scan/reports -x c++ ../torch/csrc/Module.cpp

../torch/csrc/Module.cpp

1#include <torch/csrc/python_headers.h>
2#include <sys/types.h>
3
4#ifndef _MSC_VER
5#include <sys/socket.h>
6#endif
7
8#include <ATen/ATen.h>
9#include <ATen/DLConvertor.h>
10#include <ATen/ExpandUtils.h>
11#include <ATen/Parallel.h>
12#include <ATen/Utils.h>
13#include <ATen/VmapMode.h>
14#include <ATen/dlpack.h>
15#include <ATen/core/Vitals.h>
16#include <TH/TH.h>
17#include <c10/util/Logging.h>
18#include <c10/util/irange.h>
19#include <cstdlib>
20#include <libshm.h>
21#include <pybind11/pybind11.h>
22#include <pybind11/stl.h>
23#include <unordered_map>
24
25#include <torch/csrc/THP.h>
26#include <torch/csrc/DynamicTypes.h>
27#include <torch/csrc/Device.h>
28#include <torch/csrc/Stream.h>
29#include <torch/csrc/Dtype.h>
30#include <torch/csrc/DataLoader.h>
31#include <torch/csrc/Generator.h>
32#include <torch/csrc/Layout.h>
33#include <torch/csrc/MemoryFormat.h>
34#include <torch/csrc/QScheme.h>
35#include <torch/csrc/TypeInfo.h>
36#include <torch/csrc/autograd/python_nn_functions.h>
37#include <torch/csrc/autograd/python_fft_functions.h>
38#include <torch/csrc/autograd/python_linalg_functions.h>
39#include <torch/csrc/autograd/python_special_functions.h>
40#include <torch/csrc/autograd/python_legacy_variable.h>
41#include <torch/csrc/autograd/python_variable.h>
42#include <torch/csrc/multiprocessing/init.h>
43#include <torch/csrc/tensor/python_tensor.h>
44#include <torch/csrc/utils/disable_torch_function.h>
45#include <torch/csrc/utils/tensor_dtypes.h>
46#include <torch/csrc/utils/python_compat.h>
47#include <torch/csrc/utils/python_strings.h>
48#include <torch/csrc/utils/tensor_layouts.h>
49#include <torch/csrc/utils/tensor_memoryformats.h>
50#include <torch/csrc/utils/tensor_qschemes.h>
51#include <torch/csrc/utils/tensor_numpy.h>
52#include <torch/csrc/utils/python_dispatch.h>
53#include <torch/csrc/utils/crash_handler.h>
54#include <torch/csrc/jit/python/python_tracer.h>
55#include <torch/csrc/jit/python/init.h>
56#include <torch/csrc/jit/python/python_ir.h>
57#include <torch/csrc/fx/fx_init.h>
58#include <torch/csrc/onnx/init.h>
59#include <torch/csrc/utils/init.h>
60#include <torch/csrc/utils/crash_handler.h>
61#include <torch/csrc/api/include/torch/python/init.h>
62
63#ifdef USE_DISTRIBUTED1
64#ifdef USE_C10D1
65#include <torch/csrc/distributed/autograd/python_autograd.h>
66#include <torch/csrc/distributed/c10d/c10d.h>
67#include <torch/csrc/distributed/rpc/rpc.h>
68#include <torch/csrc/distributed/rpc/testing/testing.h>
69#endif
70#endif
71
72#if defined(USE_MLCOMPUTE)
73#include <mlc/torch_mlc/csrc/MLCInit.h>
74#endif
75
76#if defined(USE_VALGRIND1)
77#include <callgrind.h>
78#endif
79
80namespace py = pybind11;
81
82// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
83PyObject* module;
84
85// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
86THPGenerator *THPDefaultCPUGenerator = nullptr;
87
88////////////////////////////////////////////////////////////////////////////////
89////////////////////////////////////////////////////////////////////////////////
90
91static PyObject * THPModule_initNames(PyObject *self, PyObject *arg)
92{
93 static std::vector<std::string> names;
94
95 THPObjectPtr types(PySequence_Fast(arg, "expected a sequence"));
96 if (!types) return nullptr;
97
98 // NOLINTNEXTLINE(bugprone-branch-clone)
99 auto num_classes = PySequence_Fast_GET_SIZE(types.get())(((((((PyObject*)(types.get()))->ob_type))->tp_flags &
((1UL << 25))) != 0) ? ((((PyVarObject*)(types.get()))
->ob_size)) : (((PyVarObject*)(((PyTupleObject *)(types.get
()))))->ob_size))
;
100 names.reserve(names.size() + num_classes);
101 for (Py_ssize_t i = 0; i < num_classes; i++) {
102 PyObject* obj = PySequence_Fast_GET_ITEM(types.get(), i)(((((((PyObject*)(types.get()))->ob_type))->tp_flags &
((1UL << 25))) != 0) ? (((PyListObject *)(types.get())
)->ob_item[i]) : (((PyTupleObject *)(types.get()))->ob_item
[i]))
;
103 THPUtils_assert(PyType_Check(obj), "expected a PyTypeObject")if ((__builtin_expect((!(((((((PyObject*)(obj))->ob_type))
->tp_flags & ((1UL << 31))) != 0))), (0)))) { THPUtils_setError
("expected a PyTypeObject"); return nullptr; }
;
104 PyTypeObject* type = (PyTypeObject*)obj;
105
106 THPObjectPtr module_name(PyObject_GetAttrString(obj, "__module__"));
107 if (!module_name) return nullptr;
108 THPUtils_assert(THPUtils_checkString(module_name.get()),if ((__builtin_expect((!(THPUtils_checkString(module_name.get
()))), (0)))) { THPUtils_setError("expected __module__ to be a string"
); return nullptr; }
109 "expected __module__ to be a string")if ((__builtin_expect((!(THPUtils_checkString(module_name.get
()))), (0)))) { THPUtils_setError("expected __module__ to be a string"
); return nullptr; }
;
110 std::string name = THPUtils_unpackString(module_name.get());
111 names.push_back(name + "." + type->tp_name);
112 type->tp_name = names.back().c_str();
113 }
114 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
115}
116//
117// Callback for python part. Used for additional initialization of python classes
118static PyObject * THPModule_initExtension(PyObject *_unused, PyObject *shm_manager_path)
119{
120 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
121 if (!THPUtils_checkString(shm_manager_path)) {
122 THPUtils_setError("initialization error - expected bytes/string object as shm_manager_path!");
123 return nullptr;
124 }
125 torch::utils::initializeLayouts();
126 torch::utils::initializeMemoryFormats();
127 torch::utils::initializeQSchemes();
128 torch::utils::initializeDtypes();
129 torch::tensors::initialize_python_bindings();
130 std::string path = THPUtils_unpackString(shm_manager_path);
131 libshm_init(path.c_str());
132
133 auto module = THPObjectPtr(PyImport_ImportModule("torch"));
134 if (!module) throw python_error();
135
136 THPDoubleStorage_postInit(module);
137 THPFloatStorage_postInit(module);
138 THPHalfStorage_postInit(module);
139 THPLongStorage_postInit(module);
140 THPIntStorage_postInit(module);
141 THPShortStorage_postInit(module);
142 THPCharStorage_postInit(module);
143 THPByteStorage_postInit(module);
144 THPBoolStorage_postInit(module);
145 THPQUInt8Storage_postInit(module);
146 THPQUInt4x2Storage_postInit(module);
147 THPQInt8Storage_postInit(module);
148 THPQInt32Storage_postInit(module);
149 THPBFloat16Storage_postInit(module);
150 THPComplexDoubleStorage_postInit(module);
151 THPComplexFloatStorage_postInit(module);
152 THPAutograd_initFunctions();
153 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
154 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
155}
156
157// The idea behind these two functions is to make it easy to test if we are
158// built with ASAN: they're designed not to crash if ASAN is not enabled, but
159// to trigger ASAN if it is enabled. This lets us run a "canary" tests which
160// checks if our build environment is misconfigured.
161
162static PyObject * THPModule_crashIfCsrcASAN(PyObject *module, PyObject *arg) {
163 THPUtils_assert(THPUtils_checkLong(arg), "crash_if_csrc_asan expects an int, "if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("crash_if_csrc_asan expects an int, " "but got %s", ((((PyObject
*)(arg))->ob_type)->tp_name)); return nullptr; }
164 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("crash_if_csrc_asan expects an int, " "but got %s", ((((PyObject
*)(arg))->ob_type)->tp_name)); return nullptr; }
;
165 //NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays, modernize-avoid-c-arrays)
166 volatile char x[3];
167 x[THPUtils_unpackInt(arg)] = 0;
168 //NOLINTNEXTLINE(clang-analyzer-core.CallAndMessage)
169 return THPUtils_packInt32(x[0]);
170}
171
172static PyObject * THPModule_crashIfCsrcUBSAN(PyObject *module, PyObject *arg) {
173 THPUtils_assert(THPUtils_checkLong(arg), "crash_if_csrc_ubsan expects an int, "if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("crash_if_csrc_ubsan expects an int, " "but got %s", ((((PyObject
*)(arg))->ob_type)->tp_name)); return nullptr; }
174 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("crash_if_csrc_ubsan expects an int, " "but got %s", ((((PyObject
*)(arg))->ob_type)->tp_name)); return nullptr; }
;
175 int32_t x = THPUtils_unpackInt(arg);
176 double y = 1.0 / x;
177 return THPUtils_packInt32((int)y);
178}
179
180static PyObject * THPModule_crashIfATenASAN(PyObject *module, PyObject *arg) {
181 THPUtils_assert(THPUtils_checkLong(arg), "crash_if_aten_asan expects an int, "if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("crash_if_aten_asan expects an int, " "but got %s", ((((PyObject
*)(arg))->ob_type)->tp_name)); return nullptr; }
182 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("crash_if_aten_asan expects an int, " "but got %s", ((((PyObject
*)(arg))->ob_type)->tp_name)); return nullptr; }
;
183 return THPUtils_packInt32(at::_crash_if_asan(THPUtils_unpackInt(arg)));
184}
185
186static PyObject * THPModule_getNumThreads(PyObject *module, PyObject *noargs)
187{
188 return THPUtils_packInt32(at::get_num_threads());
189}
190
191static PyObject * THPModule_setNumThreads(PyObject *module, PyObject *arg)
192{
193 THPUtils_assert(THPUtils_checkLong(arg), "set_num_threads expects an int, "if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("set_num_threads expects an int, " "but got %s", ((((PyObject
*)(arg))->ob_type)->tp_name)); return nullptr; }
194 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("set_num_threads expects an int, " "but got %s", ((((PyObject
*)(arg))->ob_type)->tp_name)); return nullptr; }
;
195 int nthreads = (int)THPUtils_unpackLong(arg);
196 THPUtils_assert(nthreads > 0, "set_num_threads expects a positive integer")if ((__builtin_expect((!(nthreads > 0)), (0)))) { THPUtils_setError
("set_num_threads expects a positive integer"); return nullptr
; }
;
197 at::set_num_threads(nthreads);
198 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
199}
200
201static PyObject * THPModule_getNumInteropThreads(PyObject *module, PyObject *noargs)
202{
203 return THPUtils_packInt32(at::get_num_interop_threads());
204}
205
206static PyObject * THPModule_setNumInteropThreads(PyObject *module, PyObject *arg)
207{
208 THPUtils_assert(THPUtils_checkLong(arg), "set_num_interop_threads expects an int, "if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("set_num_interop_threads expects an int, " "but got %s", (((
(PyObject*)(arg))->ob_type)->tp_name)); return nullptr;
}
209 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("set_num_interop_threads expects an int, " "but got %s", (((
(PyObject*)(arg))->ob_type)->tp_name)); return nullptr;
}
;
210 int nthreads = (int)THPUtils_unpackLong(arg);
211 THPUtils_assert(nthreads > 0, "set_num_interop_threads expects a positive integer")if ((__builtin_expect((!(nthreads > 0)), (0)))) { THPUtils_setError
("set_num_interop_threads expects a positive integer"); return
nullptr; }
;
212 at::set_num_interop_threads(nthreads);
213 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
214}
215
216PyObject * THPModule_setDefaultTensorType(PyObject *_unused, PyObject *type)
217{
218 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
219 torch::tensors::py_set_default_tensor_type(type);
220 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
221 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
222}
223
224PyObject * THPModule_setDefaultDtype(PyObject *_unused, PyObject *dtype)
225{
226 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
227 torch::tensors::py_set_default_dtype(dtype);
228 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
229 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
230}
231
232PyObject *THPModule_addDocStr(PyObject *_unused, PyObject *args)
233{
234 // adds a __doc__ string to a function, similar to numpy's arr_add_docstring
235 static std::vector<std::string> all_docs;
236 PyObject *obj = nullptr;
237 PyObject *doc_obj = nullptr;
238 if (!PyArg_ParseTuple(args, "OO", &obj, &doc_obj)) {
239 return nullptr;
240 }
241
242 const char* doc_str = "<invalid string>";
243 if (THPUtils_checkString(doc_obj)) {
244 all_docs.push_back(THPUtils_unpackString(doc_obj));
245 doc_str = all_docs.back().c_str();
246 }
247
248 if (Py_TYPE(obj)(((PyObject*)(obj))->ob_type) == &PyCFunction_Type) {
249 PyCFunctionObject* f = (PyCFunctionObject *)obj;
250 if (f->m_ml->ml_doc) {
251 return PyErr_Format(PyExc_RuntimeError,
252 "function '%s' already has a docstring", f->m_ml->ml_name);
253 }
254 f->m_ml->ml_doc = doc_str;
255 } else if (strcmp(Py_TYPE(obj)(((PyObject*)(obj))->ob_type)->tp_name, "method_descriptor") == 0) {
256 PyMethodDescrObject* m = (PyMethodDescrObject *)obj;
257 if (m->d_method->ml_doc) {
258 return PyErr_Format(PyExc_RuntimeError,
259 "method '%s' already has a docstring", m->d_method->ml_name);
260 }
261 m->d_method->ml_doc = doc_str;
262 } else if (strcmp(Py_TYPE(obj)(((PyObject*)(obj))->ob_type)->tp_name, "getset_descriptor") == 0) {
263 //NOLINTNEXTLINE(cppcoreguidelines-pro-type-cstyle-cast)
264 PyGetSetDescrObject* m = (PyGetSetDescrObject *)obj;
265 if (m->d_getset->doc) {
266 //NOLINTNEXTLINE(cppcoreguidelines-pro-type-vararg)
267 return PyErr_Format(PyExc_RuntimeError,
268 "attribute '%s' already has a docstring", m->d_getset->name);
269 }
270 // This field is not const for python < 3.7 yet the content is
271 // never modified.
272 //NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
273 m->d_getset->doc = const_cast<char *>(doc_str);
274 } else if (Py_TYPE(obj)(((PyObject*)(obj))->ob_type) == &PyType_Type) {
275 PyTypeObject* t = (PyTypeObject *)obj;
276 if (t->tp_doc) {
277 return PyErr_Format(PyExc_RuntimeError,
278 "Type '%s' already has a docstring", t->tp_name);
279 }
280 t->tp_doc = doc_str;
281 } else {
282 return PyErr_Format(PyExc_TypeError,
283 "don't know how to add docstring to type '%s'", Py_TYPE(obj)(((PyObject*)(obj))->ob_type)->tp_name);
284 }
285
286 Py_INCREF(obj)_Py_INCREF(((PyObject*)(obj)));
287 return obj;
288}
289
290
291PyObject *THPModule_inferSize(PyObject *_unused, PyObject *args)
292{
293 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
294 Py_ssize_t num_args = args ? (Py_ssize_t) PyTuple_Size(args) : 0;
295 THPUtils_assert(num_args == 2, "expected exactly 2 arguments")if ((__builtin_expect((!(num_args == 2)), (0)))) { THPUtils_setError
("expected exactly 2 arguments"); return nullptr; }
;
296 PyObject *arg1 = PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0]);
297 THPUtils_assert(THPSize_Check(arg1), "expected a torch.Size as argument 1")if ((__builtin_expect((!(((((PyObject*)(arg1))->ob_type) ==
&THPSizeType))), (0)))) { THPUtils_setError("expected a torch.Size as argument 1"
); return nullptr; }
;
298 PyObject *arg2 = PyTuple_GET_ITEM(args, 1)(((PyTupleObject *)(args))->ob_item[1]);
299 THPUtils_assert(THPSize_Check(arg2), "expected a torch.Size as argument 2")if ((__builtin_expect((!(((((PyObject*)(arg2))->ob_type) ==
&THPSizeType))), (0)))) { THPUtils_setError("expected a torch.Size as argument 2"
); return nullptr; }
;
300
301 auto size1 = THPUtils_unpackLongs(arg1);
302 auto size2 = THPUtils_unpackLongs(arg2);
303 auto sizes = at::infer_size(size1, size2);
304 return THPSize_NewFromSizes(sizes.size(), sizes.data());
305 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
306}
307
308static PyObject *THPModule_setBackcompatBroadcastWarn(PyObject *module, PyObject *arg) {
309 THPUtils_assert(PyBool_Check(arg), "set_backcompat_broadcast_warn expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_backcompat_broadcast_warn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
310 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_backcompat_broadcast_warn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
311 setBackCompatBroadcastWarn(arg == Py_True((PyObject *) &_Py_TrueStruct));
312 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
313}
314
315static PyObject *THPModule_getBackcompatBroadcastWarn(PyObject *module, PyObject *noargs)
316{
317 if (getBackCompatBroadcastWarn()) Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
318 else Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
319}
320
321static PyObject *THPModule_setBackcompatKeepdimWarn(PyObject *module, PyObject *arg) {
322 THPUtils_assert(PyBool_Check(arg), "set_backcompat_keepdim_warn expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_backcompat_keepdim_warn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
323 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_backcompat_keepdim_warn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
324 setBackCompatKeepdimWarn(arg == Py_True((PyObject *) &_Py_TrueStruct));
325 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
326}
327
328static PyObject *THPModule_getBackcompatKeepdimWarn(PyObject *module, PyObject *noargs)
329{
330 if (getBackCompatKeepdimWarn()) Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
331 else Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
332}
333
334PyObject *THPModule_hasDistributed(PyObject *_unused, PyObject *noargs)
335{
336#ifdef USE_DISTRIBUTED1
337 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
338#else
339 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
340#endif
341}
342
343static PyObject *THPModule_showConfig(PyObject *module, PyObject *noargs)
344{
345 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
346 return THPUtils_packString(at::show_config());
347 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
348}
349
350static PyObject *THPModule_cxxFlags(PyObject *module, PyObject *noargs)
351{
352 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
353 return THPUtils_packString(at::get_cxx_flags());
354 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
355}
356
357static PyObject *THPModule_parallelInfo(PyObject *module, PyObject *noargs)
358{
359 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
360 return THPUtils_packString(at::get_parallel_info());
361 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
362}
363
364void DLPack_Capsule_Destructor(PyObject* data) {
365 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
366 DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
367 if (dlMTensor) {
368 // the dlMTensor has not been consumed, call deleter ourselves
369 // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
370 dlMTensor->deleter(const_cast<DLManagedTensor*>(dlMTensor));
371 } else {
372 // the dlMTensor has been consumed
373 // PyCapsule_GetPointer has set an error indicator
374 PyErr_Clear();
375 }
376 END_HANDLE_TH_ERRORS_RET()} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return; } catch
(const c10::IndexError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_IndexError
, torch::processErrorMsg(msg)); return; } catch (const c10::ValueError
& e) { auto msg = torch::get_cpp_stacktraces_enabled() ? e
.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return; } catch (const c10::TypeError
& e) { auto msg = torch::get_cpp_stacktraces_enabled() ? e
.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return; } catch (const c10::NotImplementedError
& e) { auto msg = torch::get_cpp_stacktraces_enabled() ? e
.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return; } catch (const c10::Error
& e) { auto msg = torch::get_cpp_stacktraces_enabled() ? e
.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return; } catch (torch::PyTorchError
& e) { auto msg = torch::processErrorMsg(e.what()); PyErr_SetString
(e.python_type(), msg); return; } catch (const std::exception
& e) { auto msg = torch::processErrorMsg(e.what()); PyErr_SetString
(PyExc_RuntimeError, msg); return; }
377}
378
379PyObject *THPModule_toDLPack(PyObject *_unused, PyObject *data)
380{
381 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
382 THPUtils_assert(THPVariable_Check(data), "data must be a Tensor")if ((__builtin_expect((!(THPVariable_Check(data))), (0)))) { THPUtils_setError
("data must be a Tensor"); return nullptr; }
;
383 DLManagedTensor* dlMTensor = at::toDLPack(THPVariable_Unpack(data));
384 return PyCapsule_New(dlMTensor, "dltensor", DLPack_Capsule_Destructor);
385 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
386}
387
388PyObject *THPModule_fromDLPack(PyObject *_unused, PyObject *data)
389{
390 using namespace torch::autograd;
391 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
392 DLManagedTensor * dlMTensor = (DLManagedTensor *)PyCapsule_GetPointer(data, "dltensor");
393 THPUtils_assert(dlMTensor, "from_dlpack received an invalid capsule. "if ((__builtin_expect((!(dlMTensor)), (0)))) { THPUtils_setError
("from_dlpack received an invalid capsule. " "Note that DLTensor capsules can be consumed only once, "
"so you might have already constructed a tensor from it once."
); return nullptr; }
394 "Note that DLTensor capsules can be consumed only once, "if ((__builtin_expect((!(dlMTensor)), (0)))) { THPUtils_setError
("from_dlpack received an invalid capsule. " "Note that DLTensor capsules can be consumed only once, "
"so you might have already constructed a tensor from it once."
); return nullptr; }
395 "so you might have already constructed a tensor from it once.")if ((__builtin_expect((!(dlMTensor)), (0)))) { THPUtils_setError
("from_dlpack received an invalid capsule. " "Note that DLTensor capsules can be consumed only once, "
"so you might have already constructed a tensor from it once."
); return nullptr; }
396 // atensor steals the ownership of the underlying storage. It also passes a
397 // destructor function that will be called when the underlying storage goes
398 // out of scope. When the destructor is called, the dlMTensor is destructed too.
399 auto atensor = at::fromDLPack(dlMTensor);
400
401 // Make sure this capsule will never be used again.
402 PyCapsule_SetName(data, "used_dltensor");
403
404 // It is possible that the call to at::fromDLPack is the very first
405 // call to create a Tensor in PyTorch. If so, then _lazy_init has
406 // not been called, and the attempt to call createPyObject will fail
407 // because cuda ATen types have not been registered in Python yet.
408 // so if we have a cuda tensor, then we need to make sure
409 // we have called _lazy_init here
410 if(atensor.is_cuda()) {
411 py::module::import("torch.cuda").attr("init")();
412 }
413 return THPVariable_Wrap(std::move(atensor));
414 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
415}
416
417PyObject *THPModule_setAllowTF32CuDNN(PyObject *_unused, PyObject *arg)
418{
419 THPUtils_assert(PyBool_Check(arg), "set_allow_tf32_cublas expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_allow_tf32_cublas expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
420 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_allow_tf32_cublas expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
421 at::globalContext().setAllowTF32CuDNN(arg == Py_True((PyObject *) &_Py_TrueStruct));
422 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
423}
424
425PyObject *THPModule_allowTF32CuDNN(PyObject *_unused, PyObject *noargs)
426{
427 if (at::globalContext().allowTF32CuDNN()) Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
428 else Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
429}
430
431PyObject *THPModule_setUserEnabledCuDNN(PyObject *_unused, PyObject *arg)
432{
433 THPUtils_assert(PyBool_Check(arg), "set_enabled_cudnn expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_enabled_cudnn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
434 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_enabled_cudnn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
435 at::globalContext().setUserEnabledCuDNN(arg == Py_True((PyObject *) &_Py_TrueStruct));
436 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
437}
438
439PyObject *THPModule_userEnabledCuDNN(PyObject *_unused, PyObject *noargs)
440{
441 if (at::globalContext().userEnabledCuDNN()) Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
442 else Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
443}
444
445PyObject *THPModule_setUserEnabledMkldnn(PyObject *_unused, PyObject *arg)
446{
447 THPUtils_assert(PyBool_Check(arg), "set_enabled_mkldnn expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_enabled_mkldnn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
448 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_enabled_mkldnn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
449 at::globalContext().setUserEnabledMkldnn(arg == Py_True((PyObject *) &_Py_TrueStruct));
450 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
451}
452
453PyObject *THPModule_userEnabledMkldnn(PyObject *_unused, PyObject *noargs)
454{
455 if (at::globalContext().userEnabledMkldnn()) Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
456 else Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
457}
458
459PyObject *THPModule_setDeterministicCuDNN(PyObject *_unused, PyObject *arg)
460{
461 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
462 THPUtils_assert(PyBool_Check(arg), "set_deterministic_cudnn expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_deterministic_cudnn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
463 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_deterministic_cudnn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
464 at::globalContext().setDeterministicCuDNN(arg == Py_True((PyObject *) &_Py_TrueStruct));
465 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
466 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
467}
468
469PyObject *THPModule_deterministicCuDNN(PyObject *_unused, PyObject *noargs)
470{
471 if (at::globalContext().deterministicCuDNN()) Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
472 else Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
473}
474
475PyObject *THPModule_setDeterministicAlgorithms(PyObject *_unused, PyObject *arg)
476{
477 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
478 THPUtils_assert(PyBool_Check(arg), "use_deterministic_algorithms expects a "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("use_deterministic_algorithms expects a "
"bool, but got %s", ((((PyObject*)(arg))->ob_type)->tp_name
)); return nullptr; }
479 "bool, but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("use_deterministic_algorithms expects a "
"bool, but got %s", ((((PyObject*)(arg))->ob_type)->tp_name
)); return nullptr; }
;
480 at::globalContext().setDeterministicAlgorithms(arg == Py_True((PyObject *) &_Py_TrueStruct));
481 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
482 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
483}
484
485PyObject *THPModule_deterministicAlgorithms(PyObject *_unused, PyObject *noargs)
486{
487 if (at::globalContext().deterministicAlgorithms()) {
488 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
489 }
490 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
491}
492
493PyObject *THPModule_setWarnAlways(PyObject *_unused, PyObject *arg)
494{
495 THPUtils_assert(PyBool_Check(arg), "setWarnOnlyOnce expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("setWarnOnlyOnce expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
496 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("setWarnOnlyOnce expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
497 c10::Warning::set_warnAlways(arg == Py_True((PyObject *) &_Py_TrueStruct));
498 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
499}
500
501PyObject *THPModule_warnAlways(PyObject *_unused, PyObject *noargs)
502{
503 if (c10::Warning::get_warnAlways()) {
504 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
505 }
506 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
507}
508
509PyObject *THPModule_setBenchmarkCuDNN(PyObject *_unused, PyObject *arg)
510{
511 THPUtils_assert(PyBool_Check(arg), "set_benchmark_cudnn expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_benchmark_cudnn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
512 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_benchmark_cudnn expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
513#ifdef __HIP_PLATFORM_HCC__
514 if (arg == Py_False((PyObject *) &_Py_FalseStruct)) {
515 TORCH_WARN_ONCE("Disabling benchmark mode for MIOpen is NOT supported. Overriding value to True")if (::c10::Warning::get_warnAlways()) { ::c10::Warning::warn(
{__func__, "../torch/csrc/Module.cpp", static_cast<uint32_t
>(515)}, ::c10::str("Disabling benchmark mode for MIOpen is NOT supported. Overriding value to True"
), false); } else { __attribute__((__unused__)) static const auto
torch_warn_once_11 = [&] { ::c10::Warning::warn( {__func__
, "../torch/csrc/Module.cpp", static_cast<uint32_t>(515
)}, ::c10::str("Disabling benchmark mode for MIOpen is NOT supported. Overriding value to True"
), false); return true; }(); }
;
516 arg = Py_True((PyObject *) &_Py_TrueStruct);
517 }
518#endif
519 at::globalContext().setBenchmarkCuDNN(arg == Py_True((PyObject *) &_Py_TrueStruct));
520 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
521}
522
523PyObject *THPModule_benchmarkCuDNN(PyObject *_unused, PyObject *noargs)
524{
525 if (at::globalContext().benchmarkCuDNN()) {
526 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
527 }
528 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
529}
530
531PyObject *THPModule_setAllowTF32CuBLAS(PyObject *_unused, PyObject *arg)
532{
533 THPUtils_assert(PyBool_Check(arg), "set_allow_tf32_cublas expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_allow_tf32_cublas expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
534 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("set_allow_tf32_cublas expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
535 at::globalContext().setAllowTF32CuBLAS(arg == Py_True((PyObject *) &_Py_TrueStruct));
536 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
537}
538
539PyObject *THPModule_allowTF32CuBLAS(PyObject *_unused, PyObject *noargs)
540{
541 if (at::globalContext().allowTF32CuBLAS()) {
542 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
543 }
544 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
545}
546
547PyObject *THPModule_setFlushDenormal(PyObject *_unused, PyObject *arg) {
548 THPUtils_assert(PyBool_Check(arg), "flush_denormal expects a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("flush_denormal expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
549 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("flush_denormal expects a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
550 if (!at::globalContext().setFlushDenormal(arg == Py_True((PyObject *) &_Py_TrueStruct))) {
551 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
552 };
553 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
554}
555
556PyObject *THPModule_getDefaultDtype(PyObject *_unused, PyObject *arg) {
557 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
558 auto scalar_type = torch::tensors::get_default_scalar_type();
559 auto dtype = (PyObject*)torch::getTHPDtype(scalar_type);
560 Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype)));
561 return dtype;
562 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
563}
564
565PyObject *THPModule_getDefaultDevice(PyObject *_unused, PyObject *arg) {
566 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
567 return THPUtils_packString(
568 c10::DeviceTypeName(dispatchKeyToDeviceType(torch::tensors::get_default_dispatch_key()),
569 /*lower_case=*/true));
570 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
571}
572
573PyObject *THPModule_setQEngine(PyObject */* unused */, PyObject *arg)
574{
575 THPUtils_assert(THPUtils_checkLong(arg), "set_qengine expects an int, "if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("set_qengine expects an int, " "but got %s", ((((PyObject*)(
arg))->ob_type)->tp_name)); return nullptr; }
576 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(THPUtils_checkLong(arg))), (0)))) { THPUtils_setError
("set_qengine expects an int, " "but got %s", ((((PyObject*)(
arg))->ob_type)->tp_name)); return nullptr; }
;
577 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
578 auto qengine = static_cast<int>(THPUtils_unpackLong(arg));
579 at::globalContext().setQEngine(static_cast<at::QEngine>(qengine));
580 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
581 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
582}
583
584PyObject *THPModule_qEngine(PyObject *_unused, PyObject *noargs)
585{
586 return THPUtils_packInt64(static_cast<int>(at::globalContext().qEngine()));
587}
588
589PyObject *THPModule_supportedQEngines(PyObject *_unused, PyObject *noargs)
590{
591 auto qengines = at::globalContext().supportedQEngines();
592 auto list = THPObjectPtr(PyList_New(qengines.size()));
1
Calling 'PyList_New'
3
Returning from 'PyList_New'
6
PyObject ownership leak with reference count of 1
593 for (const auto i : c10::irange(qengines.size())) {
594 PyObject *i64 = THPUtils_packInt64(static_cast<int>(qengines[i]));
595 if (!i64) {
4
Assuming 'i64' is null
5
Taking true branch
596 throw python_error();
597 }
598 PyList_SET_ITEM(list.get(), i, i64)PyList_SetItem(list.get(), i, i64);
599 }
600 return list.release();
601}
602
603PyObject *THPModule_isEnabledXNNPACK(PyObject *_unused, PyObject *noargs)
604{
605 if (at::globalContext().isXNNPACKAvailable()) Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
606 else Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
607}
608
609PyObject *THPModule_setDefaultMobileCPUAllocator(PyObject *_unused, PyObject *noargs)
610{
611 try {
612 at::globalContext().setDefaultMobileCPUAllocator();
613 } catch (c10::Error& e) {
614 THPUtils_setError(e.what());
615 }
616 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
617}
618
619PyObject *THPModule_unsetDefaultMobileCPUAllocator(PyObject *_unused, PyObject *noargs)
620{
621 try {
622 at::globalContext().unsetDefaultMobileCPUAllocator();
623 } catch (c10::Error& e) {
624 THPUtils_setError(e.what());
625 }
626 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
627}
628
629static PyObject * THPModule_vmapmode_increment_nesting(PyObject* _unused, PyObject *arg) {
630 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
631 return THPUtils_packInt64(at::impl::VmapMode::increment_nesting());
632 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
633}
634
635static PyObject * THPModule_vmapmode_decrement_nesting(PyObject* _unused, PyObject *arg) {
636 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
637 return THPUtils_packInt64(at::impl::VmapMode::decrement_nesting());
638 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
639}
640
641static PyObject * THPModule_set_display_vmap_fallback_warnings_mode(PyObject* _unused, PyObject *arg) {
642 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
643 THPUtils_assert(PyBool_Check(arg), "enabled must be a bool, "if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("enabled must be a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
644 "but got %s", THPUtils_typename(arg))if ((__builtin_expect((!(((((PyObject*)(arg))->ob_type) ==
&PyBool_Type))), (0)))) { THPUtils_setError("enabled must be a bool, "
"but got %s", ((((PyObject*)(arg))->ob_type)->tp_name)
); return nullptr; }
;
645 at::globalContext().setDisplayVmapFallbackWarnings(arg == Py_True((PyObject *) &_Py_TrueStruct));
646 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
647 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
648}
649
650static PyObject * THPModule_are_vmap_fallback_warnings_enabled(PyObject* _unused, PyObject *arg) {
651 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
652 if (at::globalContext().areVmapFallbackWarningsEnabled()) {
653 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
654 } else {
655 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
656 }
657 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
658}
659
660//NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays, cppcoreguidelines-avoid-non-const-global-variables, modernize-avoid-c-arrays)
661static PyMethodDef TorchMethods[] = {
662 {"_initExtension", THPModule_initExtension, METH_O0x0008, nullptr},
663 {"_autograd_init", THPAutograd_initExtension, METH_NOARGS0x0004, nullptr},
664 {"_add_docstr", THPModule_addDocStr, METH_VARARGS0x0001, nullptr},
665 {"_init_names", THPModule_initNames, METH_O0x0008, nullptr},
666 {"_has_distributed",THPModule_hasDistributed, METH_NOARGS0x0004, nullptr},
667 {"_set_default_tensor_type", THPModule_setDefaultTensorType, METH_O0x0008, nullptr},
668 {"_set_default_dtype", THPModule_setDefaultDtype, METH_O0x0008, nullptr},
669 {"_infer_size", THPModule_inferSize, METH_VARARGS0x0001, nullptr},
670 {"_crash_if_csrc_asan", THPModule_crashIfCsrcASAN, METH_O0x0008, nullptr},
671 {"_crash_if_csrc_ubsan", THPModule_crashIfCsrcUBSAN, METH_O0x0008, nullptr},
672 {"_crash_if_aten_asan", THPModule_crashIfATenASAN, METH_O0x0008, nullptr},
673 {"_show_config", THPModule_showConfig, METH_NOARGS0x0004, nullptr},
674 {"_cxx_flags", THPModule_cxxFlags, METH_NOARGS0x0004, nullptr},
675 {"_parallel_info", THPModule_parallelInfo, METH_NOARGS0x0004, nullptr},
676 {"_set_backcompat_broadcast_warn", THPModule_setBackcompatBroadcastWarn, METH_O0x0008, nullptr},
677 {"_get_backcompat_broadcast_warn", THPModule_getBackcompatBroadcastWarn, METH_NOARGS0x0004, nullptr},
678 {"_set_backcompat_keepdim_warn", THPModule_setBackcompatKeepdimWarn, METH_O0x0008, nullptr},
679 {"_get_backcompat_keepdim_warn", THPModule_getBackcompatKeepdimWarn, METH_NOARGS0x0004, nullptr},
680 {"get_num_threads", THPModule_getNumThreads, METH_NOARGS0x0004, nullptr},
681 {"set_num_threads", THPModule_setNumThreads, METH_O0x0008, nullptr},
682 {"get_num_interop_threads", THPModule_getNumInteropThreads, METH_NOARGS0x0004, nullptr},
683 {"set_num_interop_threads", THPModule_setNumInteropThreads, METH_O0x0008, nullptr},
684 {"_get_cudnn_enabled", THPModule_userEnabledCuDNN, METH_NOARGS0x0004, nullptr},
685 {"_set_cudnn_enabled", THPModule_setUserEnabledCuDNN, METH_O0x0008, nullptr},
686 {"_get_mkldnn_enabled", THPModule_userEnabledMkldnn, METH_NOARGS0x0004, nullptr},
687 {"_set_mkldnn_enabled", THPModule_setUserEnabledMkldnn, METH_O0x0008, nullptr},
688 {"_get_cudnn_allow_tf32", THPModule_allowTF32CuDNN, METH_NOARGS0x0004, nullptr},
689 {"_set_cudnn_allow_tf32", THPModule_setAllowTF32CuDNN, METH_O0x0008, nullptr},
690 {"_get_cudnn_benchmark", THPModule_benchmarkCuDNN, METH_NOARGS0x0004, nullptr},
691 {"_set_cudnn_benchmark", THPModule_setBenchmarkCuDNN, METH_O0x0008, nullptr},
692 {"_get_cudnn_deterministic", THPModule_deterministicCuDNN, METH_NOARGS0x0004, nullptr},
693 {"_set_cudnn_deterministic", THPModule_setDeterministicCuDNN, METH_O0x0008, nullptr},
694 {"_get_deterministic_algorithms", THPModule_deterministicAlgorithms, METH_NOARGS0x0004, nullptr},
695 {"_set_deterministic_algorithms", THPModule_setDeterministicAlgorithms, METH_O0x0008, nullptr},
696 {"_get_warnAlways", THPModule_warnAlways, METH_NOARGS0x0004, nullptr},
697 {"_set_warnAlways", THPModule_setWarnAlways, METH_O0x0008, nullptr},
698 {"_get_cublas_allow_tf32", THPModule_allowTF32CuBLAS, METH_NOARGS0x0004, nullptr},
699 {"_set_cublas_allow_tf32", THPModule_setAllowTF32CuBLAS, METH_O0x0008, nullptr},
700 {"_vmapmode_increment_nesting", THPModule_vmapmode_increment_nesting, METH_NOARGS0x0004, nullptr},
701 {"_vmapmode_decrement_nesting", THPModule_vmapmode_decrement_nesting, METH_NOARGS0x0004, nullptr},
702 {"_debug_only_display_vmap_fallback_warnings", THPModule_set_display_vmap_fallback_warnings_mode, METH_O0x0008, nullptr},
703 {"_debug_only_are_vmap_fallback_warnings_enabled", THPModule_are_vmap_fallback_warnings_enabled, METH_NOARGS0x0004, nullptr},
704 {"_to_dlpack", THPModule_toDLPack, METH_O0x0008, nullptr},
705 {"_from_dlpack", THPModule_fromDLPack, METH_O0x0008, nullptr},
706 {"set_flush_denormal", THPModule_setFlushDenormal, METH_O0x0008, nullptr},
707 {"get_default_dtype", THPModule_getDefaultDtype, METH_NOARGS0x0004, nullptr},
708 {"_get_default_device", THPModule_getDefaultDevice, METH_NOARGS0x0004, nullptr},
709 {"_get_qengine", THPModule_qEngine, METH_NOARGS0x0004, nullptr},
710 {"_set_qengine", THPModule_setQEngine, METH_O0x0008, nullptr},
711 {"_supported_qengines", THPModule_supportedQEngines, METH_NOARGS0x0004, nullptr},
712 {"_is_xnnpack_enabled", THPModule_isEnabledXNNPACK, METH_NOARGS0x0004, nullptr},
713 {"_set_default_mobile_cpu_allocator", THPModule_setDefaultMobileCPUAllocator, METH_NOARGS0x0004, nullptr},
714 {"_unset_default_mobile_cpu_allocator", THPModule_unsetDefaultMobileCPUAllocator, METH_NOARGS0x0004, nullptr},
715 {"_is_torch_function_enabled", THPModule_isEnabledTorchFunction, METH_NOARGS0x0004, nullptr},
716 {"_disabled_torch_function_impl", THPModule_disable_torch_function, METH_VARARGS0x0001, nullptr},
717 {"_has_torch_function", THPModule_has_torch_function, METH_O0x0008, nullptr},
718 {"_has_torch_function_unary", THPModule_has_torch_function_unary, METH_O0x0008, nullptr},
719 {"_has_torch_function_variadic", MAYBE_WRAP_FASTCALL(THPModule_has_torch_function_variadic)(PyCFunction)(void(*)(void))THPModule_has_torch_function_variadic, MAYBE_METH_FASTCALL0x0080, nullptr},
720 {nullptr, nullptr, 0, nullptr}
721};
722
723bool THCPDoubleStorage_init(PyObject *module);
724bool THCPFloatStorage_init(PyObject *module);
725bool THCPHalfStorage_init(PyObject *module);
726bool THCPLongStorage_init(PyObject *module);
727bool THCPIntStorage_init(PyObject *module);
728bool THCPShortStorage_init(PyObject *module);
729bool THCPCharStorage_init(PyObject *module);
730bool THCPByteStorage_init(PyObject *module);
731bool THCPBoolStorage_init(PyObject *module);
732bool THCPBFloat16Storage_init(PyObject *module);
733bool THCPComplexDoubleStorage_init(PyObject *module);
734bool THCPComplexFloatStorage_init(PyObject *module);
735
736void THCPStream_init(PyObject *module);
737void THCPEvent_init(PyObject *module);
738void THCPGraph_init(PyObject *module);
739
740#ifdef USE_CUDA
741PyMethodDef* THCPModule_methods();
742namespace torch { namespace cuda {
743
744void initModule(PyObject *module);
745
746}} // namespace torch::cuda
747#endif
748
749#ifdef USE_MLCOMPUTE
750PyMethodDef* ModuleMLC_methods();
751namespace torch { namespace mlc {
752
753void initBindings(PyObject *module);
754
755}} // namespace torch::mlc
756#endif
757
758bool THDPDoubleStorage_init(PyObject *module);
759bool THDPFloatStorage_init(PyObject *module);
760// TODO: fix
761//bool THDPHalfStorage_init(PyObject *module);
762bool THDPLongStorage_init(PyObject *module);
763bool THDPIntStorage_init(PyObject *module);
764bool THDPShortStorage_init(PyObject *module);
765bool THDPCharStorage_init(PyObject *module);
766bool THDPByteStorage_init(PyObject *module);
767bool THDPBoolStorage_init(PyObject *module);
768bool THDPBFloat16Storage_init(PyObject *module);
769bool THDPComplexDoubleStorage_init(PyObject *module);
770bool THDPComplexFloatStorage_init(PyObject *module);
771
772// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
773static std::vector<PyMethodDef> methods;
774
775// In Python we can't use the trick of C10_LOG_API_USAGE_ONCE
776// Guaranteed to be invoked from Python under GIL, no locking on map needed
777static void LogAPIUsageOnceFromPython(const std::string& event) {
778 static std::unordered_set<std::string> seen;
779 if (!seen.count(event)) {
780 seen.insert(event);
781 c10::LogAPIUsage(event);
782 }
783}
784
785// Weak reference to tensor, used to test a tensor isn't leaked
786class WeakTensorRef {
787 c10::weak_intrusive_ptr<c10::TensorImpl> weakref_;
788
789public:
790 WeakTensorRef(const at::Tensor& t):
791 weakref_(t.getIntrusivePtr()) {
792 }
793
794 bool expired() {
795 return weakref_.expired();
796 }
797};
798
799extern "C"
800#ifdef _WIN32
801__declspec(dllexport)
802#endif
803TORCH_API__attribute__((__visibility__("default"))) PyObject* initModule();
804// separate decl and defn for msvc error C2491
805PyObject* initModule() {
806 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
807 at::internal::lazy_init_num_threads();
808
809 C10_LOG_API_USAGE_ONCE("torch.python.import")__attribute__((__unused__)) static bool logFlag12 = ::c10::detail
::LogAPIUsageFakeReturn("torch.python.import");
;
810
811// NOLINTNEXTLINE(cppcoreguidelines-macro-usage)
812#define ASSERT_TRUE(cmd)if (!(cmd)) return nullptr if (!(cmd)) return nullptr
813
814 THPUtils_addPyMethodDefs(methods, TorchMethods);
815 THPUtils_addPyMethodDefs(methods, DataLoaderMethods);
816 THPUtils_addPyMethodDefs(methods, torch::autograd::python_functions());
817 THPUtils_addPyMethodDefs(methods, torch::multiprocessing::python_functions());
818#ifdef USE_CUDA
819 THPUtils_addPyMethodDefs(methods, THCPModule_methods());
820#endif
821#ifdef USE_MLCOMPUTE
822 THPUtils_addPyMethodDefs(methods, ModuleMLC_methods());
823#endif
824#if defined(USE_DISTRIBUTED1) && defined(USE_C10D1)
825 THPUtils_addPyMethodDefs(methods, torch::distributed::c10d::python_functions());
826#ifndef _WIN32
827 THPUtils_addPyMethodDefs(methods, torch::distributed::rpc::python_functions());
828 THPUtils_addPyMethodDefs(
829 methods, torch::distributed::autograd::python_functions());
830 THPUtils_addPyMethodDefs(methods, torch::distributed::rpc::testing::python_functions());
831#endif
832#endif
833
834 static struct PyModuleDef torchmodule = {
835 PyModuleDef_HEAD_INIT{ { 1, __null }, __null, 0, __null, },
836 "torch._C",
837 nullptr,
838 -1,
839 methods.data()
840 };
841 ASSERT_TRUE(module = PyModule_Create(&torchmodule))if (!(module = PyModule_Create2(&torchmodule, 1013))) return
nullptr
;
842 ASSERT_TRUE(THPGenerator_init(module))if (!(THPGenerator_init(module))) return nullptr;
843 ASSERT_TRUE(THPException_init(module))if (!(THPException_init(module))) return nullptr;
844 THPSize_init(module);
845 THPDtype_init(module);
846 THPDTypeInfo_init(module);
847 THPLayout_init(module);
848 THPMemoryFormat_init(module);
849 THPQScheme_init(module);
850 THPDevice_init(module);
851 THPStream_init(module);
852 ASSERT_TRUE(THPVariable_initModule(module))if (!(THPVariable_initModule(module))) return nullptr;
853 ASSERT_TRUE(THPFunction_initModule(module))if (!(THPFunction_initModule(module))) return nullptr;
854 ASSERT_TRUE(THPEngine_initModule(module))if (!(THPEngine_initModule(module))) return nullptr;
855 // NOTE: We need to be able to access OperatorExportTypes from ONNX for use in
856 // the export side of JIT, so this ONNX init needs to appear before the JIT
857 // init.
858 torch::onnx::initONNXBindings(module);
859 torch::jit::initJITBindings(module);
860 torch::fx::initFx(module);
861 torch::impl::dispatch::initDispatchBindings(module);
862 torch::throughput_benchmark::initThroughputBenchmarkBindings(module);
863 torch::crash_handler::initCrashHandlerBindings(module);
864 torch::autograd::initNNFunctions(module);
865 torch::autograd::initFFTFunctions(module);
866 torch::autograd::initLinalgFunctions(module);
867 torch::autograd::initSpecialFunctions(module);
868 torch::autograd::init_legacy_variable(module);
869 torch::python::init_bindings(module);
870#ifdef USE_CUDA
871 torch::cuda::initModule(module);
872#endif
873#ifdef USE_MLCOMPUTE
874 torch::mlc::init_bindings(module);
875#endif
876 ASSERT_TRUE(THPDoubleStorage_init(module))if (!(THPDoubleStorage_init(module))) return nullptr;
877 ASSERT_TRUE(THPFloatStorage_init(module))if (!(THPFloatStorage_init(module))) return nullptr;
878 ASSERT_TRUE(THPHalfStorage_init(module))if (!(THPHalfStorage_init(module))) return nullptr;
879 ASSERT_TRUE(THPLongStorage_init(module))if (!(THPLongStorage_init(module))) return nullptr;
880 ASSERT_TRUE(THPIntStorage_init(module))if (!(THPIntStorage_init(module))) return nullptr;
881 ASSERT_TRUE(THPShortStorage_init(module))if (!(THPShortStorage_init(module))) return nullptr;
882 ASSERT_TRUE(THPCharStorage_init(module))if (!(THPCharStorage_init(module))) return nullptr;
883 ASSERT_TRUE(THPByteStorage_init(module))if (!(THPByteStorage_init(module))) return nullptr;
884 ASSERT_TRUE(THPBoolStorage_init(module))if (!(THPBoolStorage_init(module))) return nullptr;
885 ASSERT_TRUE(THPQUInt8Storage_init(module))if (!(THPQUInt8Storage_init(module))) return nullptr;
886 ASSERT_TRUE(THPQInt8Storage_init(module))if (!(THPQInt8Storage_init(module))) return nullptr;
887 ASSERT_TRUE(THPQInt32Storage_init(module))if (!(THPQInt32Storage_init(module))) return nullptr;
888 ASSERT_TRUE(THPQUInt4x2Storage_init(module))if (!(THPQUInt4x2Storage_init(module))) return nullptr;
889 ASSERT_TRUE(THPBFloat16Storage_init(module))if (!(THPBFloat16Storage_init(module))) return nullptr;
890 ASSERT_TRUE(THPComplexDoubleStorage_init(module))if (!(THPComplexDoubleStorage_init(module))) return nullptr;
891 ASSERT_TRUE(THPComplexFloatStorage_init(module))if (!(THPComplexFloatStorage_init(module))) return nullptr;
892
893#ifdef USE_CUDA
894 // This will only initialise base classes and attach them to library namespace
895 // They won't be ready for real usage until importing cuda module, that will
896 // complete the process (but it defines Python classes before calling back into
897 // C, so these lines have to execute first)..
898 ASSERT_TRUE(THCPDoubleStorage_init(module))if (!(THCPDoubleStorage_init(module))) return nullptr;
899 ASSERT_TRUE(THCPFloatStorage_init(module))if (!(THCPFloatStorage_init(module))) return nullptr;
900 ASSERT_TRUE(THCPHalfStorage_init(module))if (!(THCPHalfStorage_init(module))) return nullptr;
901 ASSERT_TRUE(THCPLongStorage_init(module))if (!(THCPLongStorage_init(module))) return nullptr;
902 ASSERT_TRUE(THCPIntStorage_init(module))if (!(THCPIntStorage_init(module))) return nullptr;
903 ASSERT_TRUE(THCPShortStorage_init(module))if (!(THCPShortStorage_init(module))) return nullptr;
904 ASSERT_TRUE(THCPCharStorage_init(module))if (!(THCPCharStorage_init(module))) return nullptr;
905 ASSERT_TRUE(THCPByteStorage_init(module))if (!(THCPByteStorage_init(module))) return nullptr;
906 ASSERT_TRUE(THCPBoolStorage_init(module))if (!(THCPBoolStorage_init(module))) return nullptr;
907 ASSERT_TRUE(THCPBFloat16Storage_init(module))if (!(THCPBFloat16Storage_init(module))) return nullptr;
908 ASSERT_TRUE(THCPComplexDoubleStorage_init(module))if (!(THCPComplexDoubleStorage_init(module))) return nullptr;
909 ASSERT_TRUE(THCPComplexFloatStorage_init(module))if (!(THCPComplexFloatStorage_init(module))) return nullptr;
910
911 THCPStream_init(module);
912 THCPEvent_init(module);
913 THCPGraph_init(module);
914#endif
915
916 auto set_module_attr = [&](const char* name, PyObject* v, bool incref = true) {
917 // PyModule_AddObject steals reference
918 if (incref) {
919 Py_INCREF(v)_Py_INCREF(((PyObject*)(v)));
920 }
921 return PyModule_AddObject(module, name, v) == 0;
922 };
923
924#if defined(USE_CUDNN) || defined(__HIP_PLATFORM_HCC__)
925 PyObject *has_cudnn = Py_True((PyObject *) &_Py_TrueStruct);
926#else
927 PyObject *has_cudnn = Py_False((PyObject *) &_Py_FalseStruct);
928#endif
929 ASSERT_TRUE(set_module_attr("has_cudnn", has_cudnn))if (!(set_module_attr("has_cudnn", has_cudnn))) return nullptr;
930
931 // force ATen to initialize because it handles
932 // setting up TH Errors so that they throw C++ exceptions
933 at::init();
934
935 // Automatically translate errors thrown from pybind11 functions
936 py::register_exception_translator([](std::exception_ptr e) { // NOLINT
937 if (torch::crash_handler::is_enabled_on_exceptions()) {
938 torch::crash_handler::write_minidump();
939 }
940
941 try {
942 if (e) {
943 std::rethrow_exception(e);
944 }
945 }
946 CATCH_TH_ERRORS()catch (python_error & e) { e.restore(); ; } catch (const c10
::IndexError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_IndexError
, torch::processErrorMsg(msg)); ; } catch (const c10::ValueError
& e) { auto msg = torch::get_cpp_stacktraces_enabled() ? e
.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); ; } catch (const c10::TypeError
& e) { auto msg = torch::get_cpp_stacktraces_enabled() ? e
.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); ; } catch (const c10::NotImplementedError
& e) { auto msg = torch::get_cpp_stacktraces_enabled() ? e
.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); ; } catch (const c10::Error&
e) { auto msg = torch::get_cpp_stacktraces_enabled() ? e.what
() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); ; } catch (torch::PyTorchError
& e) { auto msg = torch::processErrorMsg(e.what()); PyErr_SetString
(e.python_type(), msg); ; }
947 });
948
949 auto py_module = py::reinterpret_borrow<py::module>(module);
950 py_module.def("_demangle", &c10::demangle);
951 py_module.def("_log_api_usage_once", &LogAPIUsageOnceFromPython);
952
953 py_module.def("vitals_enabled", &at::vitals::torchVitalEnabled);
954 py_module.def("set_vital", [](const std::string &vital, const std::string &attr, const std::string value){
955 return at::vitals::VitalsAPI.setVital(vital, attr, value);
956 });
957 py_module.def("read_vitals", [](){
958 return at::vitals::VitalsAPI.readVitals();
959 });
960
961 py_module.def(
962 "init_num_threads",
963 torch::wrap_pybind_function(at::init_num_threads),
964 R"(
965init_num_threads()
966
967Initializes the number of parallel threads used on the current thread.
968
969Call this whenever a new thread is created in order to propagate values from
970:func:`torch.set_num_threads` onto the new thread.
971)");
972
973 ASSERT_TRUE(set_module_attr("has_openmp", at::hasOpenMP() ? Py_True : Py_False))if (!(set_module_attr("has_openmp", at::hasOpenMP() ? ((PyObject
*) &_Py_TrueStruct) : ((PyObject *) &_Py_FalseStruct
)))) return nullptr
;
974 ASSERT_TRUE(set_module_attr("has_mkl", at::hasMKL() ? Py_True : Py_False))if (!(set_module_attr("has_mkl", at::hasMKL() ? ((PyObject *)
&_Py_TrueStruct) : ((PyObject *) &_Py_FalseStruct)))
) return nullptr
;
975 ASSERT_TRUE(set_module_attr("has_lapack", at::hasLAPACK() ? Py_True : Py_False))if (!(set_module_attr("has_lapack", at::hasLAPACK() ? ((PyObject
*) &_Py_TrueStruct) : ((PyObject *) &_Py_FalseStruct
)))) return nullptr
;
976
977 py_module.def(
978 "_valgrind_supported_platform", [](){
979 #if defined(USE_VALGRIND1)
980 return true;
981 #else
982 return false;
983 #endif
984 }
985 );
986
987 py_module.def(
988 "_valgrind_toggle", [](){
989 #if defined(USE_VALGRIND1)
990 CALLGRIND_TOGGLE_COLLECTdo { (void) __extension__ ({ volatile unsigned long int _zzq_args
[6]; volatile unsigned long int _zzq_result; _zzq_args[0] = (
unsigned long int)((VG_USERREQ__TOGGLE_COLLECT)); _zzq_args[1
] = (unsigned long int)((0)); _zzq_args[2] = (unsigned long int
)((0)); _zzq_args[3] = (unsigned long int)((0)); _zzq_args[4]
= (unsigned long int)((0)); _zzq_args[5] = (unsigned long int
)((0)); __asm__ volatile("rolq $3, %%rdi ; rolq $13, %%rdi\n\t"
"rolq $61, %%rdi ; rolq $51, %%rdi\n\t" "xchgq %%rbx,%%rbx" :
"=d" (_zzq_result) : "a" (&_zzq_args[0]), "0" (0) : "cc"
, "memory" ); _zzq_result; }); } while (0)
;
991 #else
992 TORCH_CHECK(false, "Valgrind is not supported.")if ((__builtin_expect(static_cast<bool>(!(false)), 0)))
{ ::c10::detail::torchCheckFail( __func__, "../torch/csrc/Module.cpp"
, static_cast<uint32_t>(992), (::c10::detail::torchCheckMsgImpl
( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, "
"please report an enhancement request to PyTorch.)", "Valgrind is not supported."
))); }
;
993 #endif
994 }
995 );
996
997 py_module.def(
998 "_valgrind_toggle_and_dump_stats", [](){
999 #if defined(USE_VALGRIND1)
1000 // NB: If we don't toggle collect around dump stats, callgrind_annotate
1001 // won't process the results correctly. Specifically,
1002 // `callgrind_annotate --inclusive=no` will be almost completely empty.
1003 CALLGRIND_TOGGLE_COLLECTdo { (void) __extension__ ({ volatile unsigned long int _zzq_args
[6]; volatile unsigned long int _zzq_result; _zzq_args[0] = (
unsigned long int)((VG_USERREQ__TOGGLE_COLLECT)); _zzq_args[1
] = (unsigned long int)((0)); _zzq_args[2] = (unsigned long int
)((0)); _zzq_args[3] = (unsigned long int)((0)); _zzq_args[4]
= (unsigned long int)((0)); _zzq_args[5] = (unsigned long int
)((0)); __asm__ volatile("rolq $3, %%rdi ; rolq $13, %%rdi\n\t"
"rolq $61, %%rdi ; rolq $51, %%rdi\n\t" "xchgq %%rbx,%%rbx" :
"=d" (_zzq_result) : "a" (&_zzq_args[0]), "0" (0) : "cc"
, "memory" ); _zzq_result; }); } while (0)
;
1004 CALLGRIND_DUMP_STATSdo { (void) __extension__ ({ volatile unsigned long int _zzq_args
[6]; volatile unsigned long int _zzq_result; _zzq_args[0] = (
unsigned long int)((VG_USERREQ__DUMP_STATS)); _zzq_args[1] = (
unsigned long int)((0)); _zzq_args[2] = (unsigned long int)((
0)); _zzq_args[3] = (unsigned long int)((0)); _zzq_args[4] = (
unsigned long int)((0)); _zzq_args[5] = (unsigned long int)((
0)); __asm__ volatile("rolq $3, %%rdi ; rolq $13, %%rdi\n\t"
"rolq $61, %%rdi ; rolq $51, %%rdi\n\t" "xchgq %%rbx,%%rbx" :
"=d" (_zzq_result) : "a" (&_zzq_args[0]), "0" (0) : "cc"
, "memory" ); _zzq_result; }); } while (0)
;
1005 #else
1006 TORCH_CHECK(false, "Valgrind is not supported.")if ((__builtin_expect(static_cast<bool>(!(false)), 0)))
{ ::c10::detail::torchCheckFail( __func__, "../torch/csrc/Module.cpp"
, static_cast<uint32_t>(1006), (::c10::detail::torchCheckMsgImpl
( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, "
"please report an enhancement request to PyTorch.)", "Valgrind is not supported."
))); }
;
1007 #endif
1008 }
1009 );
1010
1011 py::class_<WeakTensorRef>(py_module, "_WeakTensorRef")
1012 .def(py::init([](py::object tensor) {
1013 return WeakTensorRef(THPVariable_Unpack(tensor.ptr()));
1014 }))
1015 .def("expired", &WeakTensorRef::expired);
1016
1017#ifdef USE_CUDA
1018 PyObject *has_cuda = Py_True((PyObject *) &_Py_TrueStruct);
1019#else
1020 PyObject *has_cuda = Py_False((PyObject *) &_Py_FalseStruct);
1021#endif
1022#ifdef USE_MLCOMPUTE
1023 PyObject *has_mlc = Py_True((PyObject *) &_Py_TrueStruct);
1024#else
1025 PyObject *has_mlc = Py_False((PyObject *) &_Py_FalseStruct);
1026#endif
1027
1028 ASSERT_TRUE(set_module_attr("has_mlc", has_mlc))if (!(set_module_attr("has_mlc", has_mlc))) return nullptr;
1029
1030 ASSERT_TRUE(set_module_attr("has_cuda", has_cuda))if (!(set_module_attr("has_cuda", has_cuda))) return nullptr;
1031
1032 ASSERT_TRUE(set_module_attr("has_mkldnn", at::hasMKLDNN() ? Py_True : Py_False))if (!(set_module_attr("has_mkldnn", at::hasMKLDNN() ? ((PyObject
*) &_Py_TrueStruct) : ((PyObject *) &_Py_FalseStruct
)))) return nullptr
;
1033
1034#ifdef _GLIBCXX_USE_CXX11_ABI1
1035 ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", _GLIBCXX_USE_CXX11_ABI ? Py_True : Py_False))if (!(set_module_attr("_GLIBCXX_USE_CXX11_ABI", 1 ? ((PyObject
*) &_Py_TrueStruct) : ((PyObject *) &_Py_FalseStruct
)))) return nullptr
;
1036#else
1037 ASSERT_TRUE(set_module_attr("_GLIBCXX_USE_CXX11_ABI", Py_False))if (!(set_module_attr("_GLIBCXX_USE_CXX11_ABI", ((PyObject *)
&_Py_FalseStruct)))) return nullptr
;
1038#endif
1039
1040// See note [Pybind11 ABI constants]
1041#define SET_STR_DEFINE(name) \
1042 ASSERT_TRUE(set_module_attr("_" # name, THPUtils_packString(name)))if (!(set_module_attr("_" # name, THPUtils_packString(name)))
) return nullptr
1043
1044#ifdef PYBIND11_COMPILER_TYPE"_clang"
1045 SET_STR_DEFINE(PYBIND11_COMPILER_TYPE"_clang");
1046#else
1047 ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_COMPILER_TYPE), Py_None))if (!(set_module_attr("_" "\"_clang\"", (&_Py_NoneStruct)
))) return nullptr
;
1048#endif
1049
1050#ifdef PYBIND11_STDLIB"_libstdcpp"
1051 SET_STR_DEFINE(PYBIND11_STDLIB"_libstdcpp");
1052#else
1053 ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_STDLIB), Py_None))if (!(set_module_attr("_" "\"_libstdcpp\"", (&_Py_NoneStruct
)))) return nullptr
;
1054#endif
1055
1056#ifdef PYBIND11_BUILD_ABI"_cxxabi" "1002"
1057 SET_STR_DEFINE(PYBIND11_BUILD_ABI"_cxxabi" "1002");
1058#else
1059 ASSERT_TRUE(set_module_attr("_" C10_STRINGIZE(PYBIND11_BUILD_ABI), Py_None))if (!(set_module_attr("_" "\"_cxxabi\" \"1002\"", (&_Py_NoneStruct
)))) return nullptr
;
1060#endif
1061#undef SET_STR_DEFINE
1062
1063 const auto& defaultGenerator = at::detail::getDefaultCPUGenerator();
1064 THPDefaultCPUGenerator = (THPGenerator*)THPGenerator_initDefaultGenerator(defaultGenerator);
1065 // This reference is meant to be given away, so no need to incref here.
1066 ASSERT_TRUE(set_module_attr("default_generator", (PyObject*)THPDefaultCPUGenerator, /* incref= */ false))if (!(set_module_attr("default_generator", (PyObject*)THPDefaultCPUGenerator
, false))) return nullptr
;
1067 ASSERT_TRUE(set_module_attr("DisableTorchFunction", (PyObject*)THPModule_DisableTorchFunctionType(), /* incref= */ false))if (!(set_module_attr("DisableTorchFunction", (PyObject*)THPModule_DisableTorchFunctionType
(), false))) return nullptr
;
1068 torch::set_disabled_torch_function_impl(PyObject_GetAttrString(module, "_disabled_torch_function_impl"));
1069 ASSERT_TRUE(torch::disabled_torch_function_impl() != nullptr)if (!(torch::disabled_torch_function_impl() != nullptr)) return
nullptr
;
1070 return module;
1071 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
1072}
1073
1074// Checks that the _C shared library isn't initialized multiple times. This
1075// can happen if the same csrc files are compiled into multiple shared
1076// libraries.
1077inline void pytorch_duplicate_guard() {
1078 static int initialized = 0;
1079 if (initialized) {
1080 fprintf(stderrstderr, "pytorch: _C shared library re-initialized\n");
1081 abort();
1082 }
1083 initialized = 1;
1084;}
1085
1086struct call_duplicate_guard {
1087 call_duplicate_guard() { pytorch_duplicate_guard(); }
1088};
1089
1090// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
1091static call_duplicate_guard _call_duplicate_guard;

/opt/pyrefcon/lib/pyrefcon/models/models/PyList_New.model

1#ifndef PyList_New
2struct _object;
3typedef struct _object PyObject;
4PyObject* clang_analyzer_PyObject_New_Reference();
5PyObject* PyList_New(Py_ssize_t len) {
6 return clang_analyzer_PyObject_New_Reference();
2
Setting reference count to 1
7}
8#else
9#warning "API PyList_New is defined as a macro."
10#endif