File: | build/../torch/csrc/utils/tensor_new.cpp |
Warning: | line 620, column 15 PyObject ownership leak with reference count of 1 |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | #include <torch/csrc/python_headers.h> | |||
2 | #include <torch/csrc/utils/tensor_new.h> | |||
3 | ||||
4 | #include <pybind11/pybind11.h> | |||
5 | #include <torch/csrc/DynamicTypes.h> | |||
6 | #include <torch/csrc/Exceptions.h> | |||
7 | #include <torch/csrc/Size.h> | |||
8 | #include <torch/csrc/autograd/variable.h> | |||
9 | #include <torch/csrc/utils/cuda_lazy_init.h> | |||
10 | #include <torch/csrc/utils/numpy_stub.h> | |||
11 | #include <torch/csrc/utils/python_arg_parser.h> | |||
12 | #include <torch/csrc/utils/python_numbers.h> | |||
13 | #include <torch/csrc/utils/python_scalars.h> | |||
14 | #include <torch/csrc/utils/python_strings.h> | |||
15 | #include <torch/csrc/utils/tensor_numpy.h> | |||
16 | #include <torch/csrc/autograd/generated/variable_factories.h> | |||
17 | ||||
18 | #include <ATen/ATen.h> | |||
19 | #include <ATen/InitialTensorOptions.h> | |||
20 | #include <ATen/NamedTensorUtils.h> | |||
21 | #include <ATen/TracerMode.h> | |||
22 | #include <c10/core/Backend.h> | |||
23 | #include <c10/core/Layout.h> | |||
24 | #include <c10/util/Exception.h> | |||
25 | #include <c10/util/irange.h> | |||
26 | #include <c10/util/Optional.h> | |||
27 | ||||
28 | #include <stdexcept> | |||
29 | #include <vector> | |||
30 | ||||
31 | using at::Backend; | |||
32 | using at::Device; | |||
33 | using at::IntArrayRef; | |||
34 | using at::kCPU; | |||
35 | using at::kCUDA; | |||
36 | using at::kLong; | |||
37 | using at::kInt; | |||
38 | using at::Scalar; | |||
39 | using at::ScalarType; | |||
40 | using at::Storage; | |||
41 | using at::Tensor; | |||
42 | using at::TensorOptions; | |||
43 | using at::Type; | |||
44 | using c10::optional; | |||
45 | ||||
46 | namespace torch { namespace utils { | |||
47 | namespace { | |||
48 | const int MAX_DIMS = 128; | |||
49 | ||||
50 | TensorOptions build_options(c10::TensorOptions options, at::ScalarType scalar_type, const c10::optional<Device>& device=c10::nullopt) { | |||
51 | options = options.dtype(scalar_type); | |||
52 | if (device.has_value()) { | |||
53 | return options.device(device); | |||
54 | } | |||
55 | return options; | |||
56 | } | |||
57 | ||||
58 | void maybe_initialize_cuda(const Device device) { | |||
59 | if (device.is_cuda()) { | |||
60 | torch::utils::cuda_lazy_init(); | |||
61 | } | |||
62 | } | |||
63 | ||||
64 | // NB: It appears there is some consistency invariant between options and device, where | |||
65 | // if device is non-empty, its type must be consistent with the device type in | |||
66 | // options. | |||
67 | // TODO: Refactor this so we just pass everything in via options | |||
68 | ||||
69 | Tensor dispatch_ones(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) { | |||
70 | maybe_initialize_cuda(options.device()); | |||
71 | pybind11::gil_scoped_release no_gil; | |||
72 | return torch::ones(sizes, build_options(options, scalar_type, device)); | |||
73 | } | |||
74 | ||||
75 | Tensor new_with_sizes(c10::TensorOptions options, at::ScalarType scalar_type, const optional<Device>& device, IntArrayRef sizes) { | |||
76 | maybe_initialize_cuda(options.device()); | |||
77 | pybind11::gil_scoped_release no_gil; | |||
78 | return torch::empty(sizes, build_options(options, scalar_type, device)); | |||
79 | } | |||
80 | ||||
81 | Tensor new_with_storage(c10::TensorOptions options, at::ScalarType scalar_type, Storage storage) { | |||
82 | auto tensor = at::empty({}, build_options(options, scalar_type)); | |||
83 | tensor.set_(std::move(storage)); | |||
84 | return tensor; | |||
85 | } | |||
86 | ||||
87 | Tensor new_with_tensor(c10::TensorOptions options, at::ScalarType scalar_type, const Tensor& other) { | |||
88 | options = options.dtype(scalar_type); | |||
89 | TORCH_CHECK_TYPE(other.options().type_equal(options), "expected ",if ((__builtin_expect(static_cast<bool>(!(other.options ().type_equal(options))), 0))) { throw ::c10::TypeError( {__func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(90)}, (::c10::detail::torchCheckMsgImpl( "Expected " "other.options().type_equal(options)" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "expected " , options, " (got ", other.options(), ")"))); } | |||
90 | options, " (got ", other.options(), ")")if ((__builtin_expect(static_cast<bool>(!(other.options ().type_equal(options))), 0))) { throw ::c10::TypeError( {__func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(90)}, (::c10::detail::torchCheckMsgImpl( "Expected " "other.options().type_equal(options)" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "expected " , options, " (got ", other.options(), ")"))); }; | |||
91 | return other.alias(); | |||
92 | } | |||
93 | ||||
94 | std::vector<int64_t> compute_sizes(PyObject* seq) { | |||
95 | std::vector<int64_t> sizes; | |||
96 | THPObjectPtr handle; | |||
97 | while (PySequence_Check(seq)) { | |||
98 | auto length = PySequence_LengthPySequence_Size(seq); | |||
99 | if (length < 0) throw python_error(); | |||
100 | sizes.push_back(length); | |||
101 | if (sizes.size() > MAX_DIMS) { | |||
102 | throw ValueError("too many dimensions '%s'", Py_TYPE(seq)(((PyObject*)(seq))->ob_type)->tp_name); | |||
103 | } | |||
104 | if (length == 0) break; | |||
105 | handle = THPObjectPtr(PySequence_GetItem(seq, 0)); | |||
106 | if (!handle) { | |||
107 | throw ValueError("could not determine the shape of object type '%s'", Py_TYPE(seq)(((PyObject*)(seq))->ob_type)->tp_name); | |||
108 | } | |||
109 | seq = handle.get(); | |||
110 | } | |||
111 | ||||
112 | return sizes; | |||
113 | } | |||
114 | ||||
115 | ScalarType infer_scalar_type(PyObject *obj) { | |||
116 | #ifdef USE_NUMPY1 | |||
117 | if (is_numpy_available()) { | |||
118 | if (PyArray_Check(obj)((((PyObject*)(obj))->ob_type) == (&(*(PyTypeObject *) __numpy_array_api[2])) || PyType_IsSubtype((((PyObject*)(obj) )->ob_type), (&(*(PyTypeObject *)__numpy_array_api[2]) )))) { | |||
119 | return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*)obj)); | |||
120 | } | |||
121 | if (PyArray_CheckScalar(obj)((((((PyObject*)(obj))->ob_type) == (&(*(PyTypeObject * )__numpy_array_api[10])) || PyType_IsSubtype((((PyObject*)(obj ))->ob_type), (&(*(PyTypeObject *)__numpy_array_api[10 ]))))) || (((((PyObject*)(obj))->ob_type) == (&(*(PyTypeObject *)__numpy_array_api[2])) || PyType_IsSubtype((((PyObject*)(obj ))->ob_type), (&(*(PyTypeObject *)__numpy_array_api[2] )))) && (PyArray_NDIM((PyArrayObject *)obj) == 0)))) { | |||
122 | THPObjectPtr arr(PyArray_FromScalar(*(PyObject * (*)(PyObject *, PyArray_Descr *)) __numpy_array_api [61])(obj, nullptr)); | |||
123 | return numpy_dtype_to_aten(PyArray_TYPE((PyArrayObject*) arr.get())); | |||
124 | } | |||
125 | } | |||
126 | #endif | |||
127 | if (PyFloat_Check(obj)((((PyObject*)(obj))->ob_type) == (&PyFloat_Type) || PyType_IsSubtype ((((PyObject*)(obj))->ob_type), (&PyFloat_Type)))) { | |||
128 | // this is always guaranteed to be a floating-point type, and makes it more | |||
129 | // convenient to write e.g. torch.tensor(0.) than torch.tensor(0., dtype=torch.Tensor.dtype). | |||
130 | return torch::tensors::get_default_scalar_type(); | |||
131 | } | |||
132 | if (THPUtils_checkLong(obj)) { | |||
133 | return ScalarType::Long; | |||
134 | } | |||
135 | if (PyBool_Check(obj)((((PyObject*)(obj))->ob_type) == &PyBool_Type)) { | |||
136 | return ScalarType::Bool; | |||
137 | } | |||
138 | if (PyComplex_Check(obj)((((PyObject*)(obj))->ob_type) == (&PyComplex_Type) || PyType_IsSubtype((((PyObject*)(obj))->ob_type), (&PyComplex_Type )))) { | |||
139 | switch (torch::tensors::get_default_scalar_type()) { | |||
140 | case ScalarType::Float: return ScalarType::ComplexFloat; | |||
141 | case ScalarType::Double: return ScalarType::ComplexDouble; | |||
142 | default: TORCH_CHECK(false, "invalid default scalar type for complex")if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(142), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "invalid default scalar type for complex" ))); }; | |||
143 | } | |||
144 | } | |||
145 | if (THPVariable_Check(obj)) { | |||
146 | const auto& var = THPVariable_Unpack(obj); | |||
147 | return var.scalar_type(); | |||
148 | } | |||
149 | if (THPUtils_checkString(obj)) { | |||
150 | throw TypeError("new(): invalid data type '%s'", Py_TYPE(obj)(((PyObject*)(obj))->ob_type)->tp_name); | |||
151 | } | |||
152 | if (PySequence_Check(obj)) { | |||
153 | c10::optional<ScalarType> scalarType; | |||
154 | auto length = PySequence_LengthPySequence_Size(obj); | |||
155 | if (length < 0) throw python_error(); | |||
156 | // match NumPy semantics, except use default tensor type instead of double. | |||
157 | if (length == 0) return torch::tensors::get_default_scalar_type(); | |||
158 | for (const auto i : c10::irange(length)) { | |||
159 | THPObjectPtr handle(PySequence_GetItem(obj, i)); | |||
160 | if (!handle) throw python_error(); | |||
161 | auto cur_item = handle.get(); | |||
162 | if (cur_item == obj) throw TypeError("new(): self-referential lists are incompatible"); | |||
163 | ScalarType item_scalarType = infer_scalar_type(cur_item); | |||
164 | scalarType = (scalarType) ? | |||
165 | at::promoteTypes(*scalarType, item_scalarType) : item_scalarType; | |||
166 | if (scalarType == ScalarType::ComplexDouble) { | |||
167 | // this won't change (unless we hit undefined, but that will fail later). | |||
168 | return *scalarType; | |||
169 | } | |||
170 | } | |||
171 | return *scalarType; | |||
172 | } | |||
173 | AT_ERROR("Could not infer dtype of ", Py_TYPE(obj)->tp_name)do { ::c10::detail::deprecated_AT_ERROR(); if ((__builtin_expect (static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(173), (::c10::detail::torchCheckMsgImpl( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", ::c10:: str("Could not infer dtype of ", (((PyObject*)(obj))->ob_type )->tp_name)))); }; } while (false); | |||
174 | } | |||
175 | ||||
176 | void recursive_store(char* data, IntArrayRef sizes, IntArrayRef strides, int64_t dim, | |||
177 | ScalarType scalarType, int elementSize, PyObject* obj) { | |||
178 | int64_t ndim = sizes.size(); | |||
179 | if (dim == ndim) { | |||
180 | torch::utils::store_scalar(data, scalarType, obj); | |||
181 | return; | |||
182 | } | |||
183 | ||||
184 | auto n = sizes[dim]; | |||
185 | auto seq = THPObjectPtr(PySequence_Fast(obj, "not a sequence")); | |||
186 | if (!seq) throw python_error(); | |||
187 | // NOLINTNEXTLINE(bugprone-branch-clone) | |||
188 | auto seq_size = PySequence_Fast_GET_SIZE(seq.get())(((((((PyObject*)(seq.get()))->ob_type))->tp_flags & ((1UL << 25))) != 0) ? ((((PyVarObject*)(seq.get()))-> ob_size)) : (((PyVarObject*)(((PyTupleObject *)(seq.get())))) ->ob_size)); | |||
189 | if (seq_size != n) { | |||
190 | throw ValueError("expected sequence of length %lld at dim %lld (got %lld)", | |||
191 | (long long)n, (long long)dim, (long long)seq_size); | |||
192 | } | |||
193 | ||||
194 | PyObject** items = PySequence_Fast_ITEMS(seq.get())(((((((PyObject*)(seq.get()))->ob_type))->tp_flags & ((1UL << 25))) != 0) ? ((PyListObject *)(seq.get()))-> ob_item : ((PyTupleObject *)(seq.get()))->ob_item); | |||
195 | for(const auto i : c10::irange(n)) { | |||
196 | recursive_store(data, sizes, strides, dim + 1, scalarType, elementSize, items[i]); | |||
197 | data += strides[dim] * elementSize; | |||
198 | } | |||
199 | } | |||
200 | ||||
201 | Tensor internal_new_from_data( | |||
202 | c10::TensorOptions options, | |||
203 | at::ScalarType scalar_type, | |||
204 | c10::optional<Device> device_opt, | |||
205 | PyObject* data, | |||
206 | bool copy_variables, | |||
207 | bool copy_numpy, | |||
208 | bool type_inference, | |||
209 | bool pin_memory = false) { | |||
210 | ||||
211 | if (THPUtils_checkString(data)) { | |||
212 | throw TypeError("new(): invalid data type '%s'", Py_TYPE(data)(((PyObject*)(data))->ob_type)->tp_name); | |||
213 | } | |||
214 | ||||
215 | if (THPVariable_Check(data)) { | |||
216 | TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from a variable")if ((__builtin_expect(static_cast<bool>(!(!pin_memory)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(216), (::c10::detail::torchCheckMsgImpl ( "Expected " "!pin_memory" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Can't pin tensor constructed from a variable" ))); }; | |||
217 | // TODO: use MaybeOwned | |||
218 | auto var = THPVariable_Unpack(data); | |||
219 | if (copy_variables) { | |||
220 | var = var.detach(); | |||
221 | } | |||
222 | // infer the scalar type and device type; it's not expected to infer the layout since these constructors | |||
223 | // are defined per-layout-type (e.g. tensor vs sparse_coo_tensor). | |||
224 | const auto& inferred_scalar_type = type_inference ? var.scalar_type() : scalar_type; | |||
225 | auto device = device_opt.has_value() ? *device_opt : var.device(); | |||
226 | pybind11::gil_scoped_release no_gil; | |||
227 | maybe_initialize_cuda(device); | |||
228 | return var.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_variables); | |||
229 | } | |||
230 | ||||
231 | #ifdef USE_NUMPY1 | |||
232 | if (PyObject_HasAttrString(data, "__cuda_array_interface__")) { | |||
233 | TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from __cuda_array_interface__")if ((__builtin_expect(static_cast<bool>(!(!pin_memory)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(233), (::c10::detail::torchCheckMsgImpl ( "Expected " "!pin_memory" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Can't pin tensor constructed from __cuda_array_interface__" ))); }; | |||
234 | auto tensor = tensor_from_cuda_array_interface(data); | |||
235 | const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type; | |||
236 | auto device = device_opt.has_value() ? *device_opt : options.device(); | |||
237 | pybind11::gil_scoped_release no_gil; | |||
238 | maybe_initialize_cuda(device); | |||
239 | return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy); | |||
240 | } | |||
241 | ||||
242 | if (is_numpy_available() && PyArray_Check(data)((((PyObject*)(data))->ob_type) == (&(*(PyTypeObject * )__numpy_array_api[2])) || PyType_IsSubtype((((PyObject*)(data ))->ob_type), (&(*(PyTypeObject *)__numpy_array_api[2] ))))) { | |||
243 | TORCH_CHECK(!pin_memory, "Can't pin tensor constructed from numpy")if ((__builtin_expect(static_cast<bool>(!(!pin_memory)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(243), (::c10::detail::torchCheckMsgImpl ( "Expected " "!pin_memory" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Can't pin tensor constructed from numpy" ))); }; | |||
244 | auto tensor = tensor_from_numpy(data, /*warn_if_not_writeable=*/!copy_numpy); | |||
245 | const auto& inferred_scalar_type = type_inference ? tensor.scalar_type() : scalar_type; | |||
246 | auto device = device_opt.has_value() ? *device_opt : options.device(); | |||
247 | pybind11::gil_scoped_release no_gil; | |||
248 | maybe_initialize_cuda(device); | |||
249 | return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/copy_numpy); | |||
250 | } | |||
251 | #endif | |||
252 | ||||
253 | auto sizes = compute_sizes(data); | |||
254 | ScalarType inferred_scalar_type = type_inference ? infer_scalar_type(data) : scalar_type; | |||
255 | // This exists to prevent us from tracing the call to empty(). The actual | |||
256 | // autograd code doesn't really matter, because requires_grad is always false | |||
257 | // here. | |||
258 | Tensor tensor; | |||
259 | { | |||
260 | at::AutoDispatchBelowADInplaceOrView guard; // TODO: remove | |||
261 | at::tracer::impl::NoTracerDispatchMode tracer_guard; | |||
262 | tensor = at::empty(sizes, at::initialTensorOptions().dtype(inferred_scalar_type).pinned_memory(pin_memory)); | |||
263 | recursive_store( | |||
264 | (char*)tensor.data_ptr(), tensor.sizes(), tensor.strides(), 0, | |||
265 | inferred_scalar_type, tensor.dtype().itemsize(), data); | |||
266 | } | |||
267 | auto device = device_opt.has_value() ? *device_opt : options.device(); | |||
268 | pybind11::gil_scoped_release no_gil; | |||
269 | maybe_initialize_cuda(device); | |||
270 | // However, it is VERY important that we trace the to() call here (even | |||
271 | // though the reason this is important is a hack). Without *some* factory | |||
272 | // function call that is traced at construction time, we will consider | |||
273 | // a tensor constant as originating from "outside" the trace, and if you | |||
274 | // try to return it directly we will fail with the error saying no | |||
275 | // "no observable data dependence". In an ideal world, we wouldn't trace | |||
276 | // a to() call but I need to think harder about what exactly we should trace | |||
277 | // in this case. | |||
278 | return tensor.to(device, inferred_scalar_type, /*non_blocking=*/false, /*copy=*/false); | |||
279 | } | |||
280 | ||||
281 | Tensor new_from_data_copy( | |||
282 | c10::TensorOptions options, | |||
283 | at::ScalarType scalar_type, | |||
284 | c10::optional<Device> device, | |||
285 | PyObject* data) { | |||
286 | return internal_new_from_data(options, scalar_type, device, data, | |||
287 | /*copy_variables=*/true, /*copy_numpy=*/true, | |||
288 | /*type_inference=*/false); | |||
289 | } | |||
290 | ||||
291 | Tensor legacy_new_from_sequence( | |||
292 | c10::TensorOptions options, | |||
293 | at::ScalarType scalar_type, | |||
294 | c10::optional<Device> device, | |||
295 | PyObject* data) { | |||
296 | if (!PySequence_Check(data)) { | |||
297 | throw TypeError("new(): data must be a sequence (got %s)", Py_TYPE(data)(((PyObject*)(data))->ob_type)->tp_name); | |||
298 | } | |||
299 | return internal_new_from_data(options, scalar_type, device, data, | |||
300 | /*copy_variables=*/false, /*copy_numpy=*/false, | |||
301 | /*type_inference=*/false); | |||
302 | } | |||
303 | ||||
304 | // "base" here refers to the Tensor type on which the function was invoked, e.g.: | |||
305 | // in x.new(y), 'x' is the base. | |||
306 | // TODO: Rewrite this using dispatchKeyToTensorOptions | |||
307 | void check_base_legacy_new(c10::DispatchKey dispatch_key, at::Layout expected_layout) { | |||
308 | if (expected_layout == c10::kStrided) { | |||
309 | TORCH_CHECK(if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
310 | dispatch_key == c10::DispatchKey::CPU ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
311 | dispatch_key == c10::DispatchKey::CUDA ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
312 | dispatch_key == c10::DispatchKey::HIP ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
313 | dispatch_key == c10::DispatchKey::XLA ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
314 | dispatch_key == c10::DispatchKey::XPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
315 | "new(): expected DispatchKey: ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
316 | c10::DispatchKey::CPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
317 | " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
318 | c10::DispatchKey::CUDA,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
319 | " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
320 | c10::DispatchKey::HIP,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
321 | " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
322 | c10::DispatchKey::XLA,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
323 | " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
324 | c10::DispatchKey::XPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
325 | " but got: ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); } | |||
326 | dispatch_key)if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10 ::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU)) , 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(326), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::CPU || dispatch_key == c10::DispatchKey::CUDA || dispatch_key == c10::DispatchKey::HIP || dispatch_key == c10::DispatchKey::XLA || dispatch_key == c10::DispatchKey::XPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::CPU, " or ", c10::DispatchKey::CUDA, " or " , c10::DispatchKey::HIP, " or ", c10::DispatchKey::XLA, " or " , c10::DispatchKey::XPU, " but got: ", dispatch_key))); }; | |||
327 | } else if(expected_layout == c10::kSparse) { | |||
328 | // NOTE: no sparse XLA | |||
329 | TORCH_CHECK(if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
330 | dispatch_key == c10::DispatchKey::SparseCPU ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
331 | dispatch_key == c10::DispatchKey::SparseCUDA ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
332 | dispatch_key == c10::DispatchKey::SparseHIP ||if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
333 | dispatch_key == c10::DispatchKey::SparseXPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
334 | "new(): expected DispatchKey: ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
335 | c10::DispatchKey::SparseCPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
336 | " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
337 | c10::DispatchKey::SparseCUDA,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
338 | " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
339 | c10::DispatchKey::SparseHIP,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
340 | " or ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
341 | c10::DispatchKey::SparseXPU,if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
342 | " but got: ",if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); } | |||
343 | dispatch_key)if ((__builtin_expect(static_cast<bool>(!(dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey ::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU)), 0))) { ::c10:: detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(343), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatch_key == c10::DispatchKey::SparseCPU || dispatch_key == c10::DispatchKey::SparseCUDA || dispatch_key == c10::DispatchKey::SparseHIP || dispatch_key == c10::DispatchKey::SparseXPU" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "new(): expected DispatchKey: " , c10::DispatchKey::SparseCPU, " or ", c10::DispatchKey::SparseCUDA , " or ", c10::DispatchKey::SparseHIP, " or ", c10::DispatchKey ::SparseXPU, " but got: ", dispatch_key))); }; | |||
344 | } else { | |||
345 | TORCH_INTERNAL_ASSERT(false, "unexpected layout")if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(345), "false" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "345" ", please report a bug to PyTorch. " , c10::str("unexpected layout")); }; | |||
346 | } | |||
347 | } | |||
348 | ||||
349 | // TODO: Make this accept options instead of dispatch key | |||
350 | void check_legacy_ctor_device(c10::DispatchKey dispatch_key, c10::optional<Device> device) { | |||
351 | if (device.has_value()) { | |||
352 | TORCH_CHECK(dispatchKeyToDeviceType(dispatch_key) == device.value().type(),if ((__builtin_expect(static_cast<bool>(!(dispatchKeyToDeviceType (dispatch_key) == device.value().type())), 0))) { ::c10::detail ::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(354), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatchKeyToDeviceType(dispatch_key) == device.value().type()" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "legacy constructor expects device type: " , dispatchKeyToDeviceType(dispatch_key), " but device type: " , device.value().type(), " was passed"))); } | |||
353 | "legacy constructor expects device type: ", dispatchKeyToDeviceType(dispatch_key),if ((__builtin_expect(static_cast<bool>(!(dispatchKeyToDeviceType (dispatch_key) == device.value().type())), 0))) { ::c10::detail ::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(354), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatchKeyToDeviceType(dispatch_key) == device.value().type()" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "legacy constructor expects device type: " , dispatchKeyToDeviceType(dispatch_key), " but device type: " , device.value().type(), " was passed"))); } | |||
354 | " but device type: ", device.value().type(), " was passed")if ((__builtin_expect(static_cast<bool>(!(dispatchKeyToDeviceType (dispatch_key) == device.value().type())), 0))) { ::c10::detail ::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(354), (::c10::detail::torchCheckMsgImpl ( "Expected " "dispatchKeyToDeviceType(dispatch_key) == device.value().type()" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "legacy constructor expects device type: " , dispatchKeyToDeviceType(dispatch_key), " but device type: " , device.value().type(), " was passed"))); }; | |||
355 | } | |||
356 | } | |||
357 | ||||
358 | Tensor legacy_sparse_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
359 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
360 | static PythonArgParser parser({ | |||
361 | "new(*, Device? device=None)", | |||
362 | "new(*, int64_t cdata)|hidden", | |||
363 | "new(Tensor indices, Tensor values, *, Device? device=None)", | |||
364 | "new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)", | |||
365 | "new(IntArrayRef size, *, Device? device=None)", | |||
366 | }); | |||
367 | ParsedArgs<4> parsed_args; | |||
368 | auto r = parser.parse(args, kwargs, parsed_args); | |||
369 | if (r.idx == 0) { | |||
370 | auto deviceOptional = r.deviceOptional(0); | |||
371 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
372 | return at::empty({0}, build_options(options, scalar_type, deviceOptional)); | |||
373 | } else if (r.idx == 1) { | |||
374 | auto cdata = reinterpret_cast<void*>(r.toInt64(0)); | |||
375 | return at::unsafeTensorFromTH(cdata, true); | |||
376 | } else if (r.idx == 2) { | |||
377 | auto deviceOptional = r.deviceOptional(2); | |||
378 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
379 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
380 | return at::sparse_coo_tensor(r.tensor(0), r.tensor(1)); | |||
381 | } else if (r.idx == 3) { | |||
382 | auto deviceOptional = r.deviceOptional(3); | |||
383 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
384 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
385 | return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); | |||
386 | } else if (r.idx == 4) { | |||
387 | PyObject* arg = r.pyobject(0); | |||
388 | auto deviceOptional = r.deviceOptional(1); | |||
389 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
390 | if (!THPSize_Check(arg)((((PyObject*)(arg))->ob_type) == &THPSizeType) && PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size) >= 1 && arg == PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0])) { | |||
391 | // new(sequence) binds to this signature but should be treated differently | |||
392 | // unless the sequences is a torch.Size | |||
393 | throw TypeError("torch.SparseTensor(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \ | |||
394 | "or construct a strided tensor and convert it to sparse via to_sparse."); | |||
395 | } | |||
396 | return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0)); | |||
397 | } | |||
398 | throw std::runtime_error("new(): invalid arguments"); | |||
399 | } | |||
400 | ||||
401 | Tensor legacy_sparse_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
402 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
403 | static PythonArgParser parser({ | |||
404 | "new(*, Device? device=None)", | |||
405 | "new(*, int64_t cdata)|hidden", | |||
406 | "new(Tensor indices, Tensor values, *, Device? device=None)", | |||
407 | "new(Tensor indices, Tensor values, IntArrayRef size, *, Device? device=None)", | |||
408 | "new(IntArrayRef size, *, Device? device=None)", | |||
409 | }); | |||
410 | check_base_legacy_new(dispatch_key, c10::kSparse); | |||
411 | ParsedArgs<5> parsed_args; | |||
412 | auto r = parser.parse(args, kwargs, parsed_args); | |||
413 | if (r.idx == 0) { | |||
414 | auto deviceOptional = r.deviceOptional(0); | |||
415 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
416 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
417 | return at::empty({0}, build_options(options, scalar_type)); | |||
418 | } else if (r.idx == 1) { | |||
419 | auto cdata = reinterpret_cast<void*>(r.toInt64(0)); | |||
420 | return at::unsafeTensorFromTH(cdata, true); | |||
421 | } else if (r.idx == 2) { | |||
422 | // Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't | |||
423 | // have a device (we should infer it). | |||
424 | auto deviceOptional = r.deviceOptional(2); | |||
425 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
426 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
427 | return at::sparse_coo_tensor(r.tensor(0), r.tensor(1)); | |||
428 | } else if (r.idx == 3) { | |||
429 | // Note: this signature doesn't have a dtype, even though it has a device; it probably shouldn't | |||
430 | // have a device (we should infer it). | |||
431 | auto deviceOptional = r.deviceOptional(3); | |||
432 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
433 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
434 | return at::sparse_coo_tensor(r.tensor(0), r.tensor(1), r.intlist(2)); | |||
435 | } else if (r.idx == 4) { | |||
436 | PyObject* arg = r.pyobject(0); | |||
437 | auto deviceOptional = r.deviceOptional(1); | |||
438 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
439 | if (!THPSize_Check(arg)((((PyObject*)(arg))->ob_type) == &THPSizeType) && PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size) >= 1 && arg == PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0])) { | |||
440 | // new(sequence) binds to this signature but should be treated differently | |||
441 | // unless the sequences is a torch.Size | |||
442 | throw TypeError("SparseTensor.new(sequence) only accepts sizes. Please use torch.sparse_coo_tensor() " \ | |||
443 | "or construct a strided tensor and convert it to sparse via to_sparse."); | |||
444 | } | |||
445 | return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0)); | |||
446 | } | |||
447 | throw std::runtime_error("new(): invalid arguments"); | |||
448 | } | |||
449 | ||||
450 | // NB: device_idx here is NOT a DeviceIndex, but index into PythonArgs | |||
451 | c10::TensorOptions typeIdWithDefault(PythonArgs& r, int64_t device_idx, c10::DispatchKey dispatch_key) { | |||
452 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
453 | if (!r.isNone(device_idx)) { | |||
454 | // TODO: This line doesn't seem to be exercised at all in tests | |||
455 | options = options.device(r.device(device_idx).type()); | |||
456 | } | |||
457 | return options; | |||
458 | } | |||
459 | ||||
460 | } // namespace | |||
461 | ||||
462 | Tensor legacy_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
463 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
464 | static PythonArgParser parser({ | |||
465 | "new(*, Device? device=None)", | |||
466 | "new(Storage storage)", | |||
467 | "new(*, int64_t cdata)|hidden", | |||
468 | "new(Tensor other)", | |||
469 | "new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor matching with IntArrayRef, PyObject* | |||
470 | "new(IntArrayRef size, *, Device? device=None)", | |||
471 | "new(PyObject* data, *, Device? device=None)", | |||
472 | }); | |||
473 | ||||
474 | if (isSparse(dispatchKeyToBackend(dispatch_key))) { | |||
475 | return legacy_sparse_tensor_ctor(dispatch_key, scalar_type, args, kwargs); | |||
476 | } | |||
477 | ||||
478 | ParsedArgs<2> parsed_args; | |||
479 | auto r = parser.parse(args, kwargs, parsed_args); | |||
480 | if (r.idx == 0) { | |||
481 | auto deviceOptional = r.deviceOptional(0); | |||
482 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
483 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
484 | return at::empty({0}, build_options(options, scalar_type)); | |||
485 | } else if (r.idx == 1) { | |||
486 | THPObjectPtr dtype_attr(PyObject_GetAttrString(r.pyobject(0), "dtype")); | |||
487 | if (!dtype_attr) throw python_error(); | |||
488 | at::ScalarType storage_scalar_type = reinterpret_cast<THPDtype*>( | |||
489 | dtype_attr.get())->scalar_type; | |||
490 | TORCH_CHECK(if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
491 | storage_scalar_type == scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
492 | "Expected Storage of type ",if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
493 | scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
494 | " but got type ",if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
495 | storage_scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
496 | " for argument 1 'storage'")if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(496), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }; | |||
497 | return new_with_storage(options, scalar_type, r.storage(0)); | |||
498 | } else if (r.idx == 2) { | |||
499 | auto cdata = reinterpret_cast<void*>(r.toInt64(0)); | |||
500 | return at::unsafeTensorFromTH(cdata, true); | |||
501 | } else if (r.idx == 3) { | |||
502 | return new_with_tensor(options, scalar_type, r.tensor(0)); | |||
503 | } else if (r.idx == 4) { | |||
504 | TORCH_CHECK(false, "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " \if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(505), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " "is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead." ))); } | |||
505 | "is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead.")if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(505), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Legacy tensor constructor of the form torch.Tensor(tensor, device=device) " "is not supported. Use torch.tensor(...) or torch.as_tensor(...) instead." ))); }; | |||
506 | } else if (r.idx == 5) { | |||
507 | PyObject* arg = r.pyobject(0); | |||
508 | auto deviceOptional = r.deviceOptional(1); | |||
509 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
510 | if (!THPSize_Check(arg)((((PyObject*)(arg))->ob_type) == &THPSizeType) && PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size) >= 1 && arg == PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0])) { | |||
511 | // new(sequence) binds to this signature but should be treated differently | |||
512 | // unless the sequences is a torch.Size | |||
513 | return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0)); | |||
514 | } | |||
515 | return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0)); | |||
516 | } else if (r.idx == 6) { | |||
517 | auto deviceOptional = r.deviceOptional(1); | |||
518 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
519 | return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0)); | |||
520 | } | |||
521 | throw std::runtime_error("new(): invalid arguments"); | |||
522 | } | |||
523 | ||||
524 | Tensor legacy_tensor_new(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
525 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
526 | static PythonArgParser parser({ | |||
527 | "new(*, Device? device=None)", | |||
528 | "new(Storage storage)", | |||
529 | "new(*, int64_t cdata)|hidden", | |||
530 | "new(Tensor other)", // this doesn't have a dtype/device because it creates an alias. | |||
531 | "new(Tensor other, *, Device? device=None)|hidden", // prevent Tensor matching with IntArrayRef, PyObject* | |||
532 | "new(IntArrayRef size, *, Device? device=None)", | |||
533 | "new(PyObject* data, *, Device? device=None)", | |||
534 | }); | |||
535 | ||||
536 | if (isSparse(dispatchKeyToBackend(dispatch_key))) { | |||
537 | return legacy_sparse_tensor_new(dispatch_key, scalar_type, args, kwargs); | |||
538 | } | |||
539 | ||||
540 | check_base_legacy_new(dispatch_key, c10::kStrided); | |||
541 | ParsedArgs<3> parsed_args; | |||
542 | auto r = parser.parse(args, kwargs, parsed_args); | |||
543 | if (r.idx == 0) { | |||
544 | auto deviceOptional = r.deviceOptional(0); | |||
545 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
546 | at::OptionalDeviceGuard device_guard(deviceOptional); | |||
547 | return at::empty({0}, build_options(options, scalar_type)); | |||
548 | } else if (r.idx == 1) { | |||
549 | THPObjectPtr dtype_attr(PyObject_GetAttrString(r.pyobject(0), "dtype")); | |||
550 | if (!dtype_attr) throw python_error(); | |||
551 | at::ScalarType storage_scalar_type = reinterpret_cast<THPDtype*>( | |||
552 | dtype_attr.get())->scalar_type; | |||
553 | TORCH_CHECK(if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
554 | storage_scalar_type == scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
555 | "Expected Storage of type ",if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
556 | scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
557 | " but got type ",if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
558 | storage_scalar_type,if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); } | |||
559 | " for argument 1 'storage'")if ((__builtin_expect(static_cast<bool>(!(storage_scalar_type == scalar_type)), 0))) { ::c10::detail::torchCheckFail( __func__ , "../torch/csrc/utils/tensor_new.cpp", static_cast<uint32_t >(559), (::c10::detail::torchCheckMsgImpl( "Expected " "storage_scalar_type == scalar_type" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Expected Storage of type " , scalar_type, " but got type ", storage_scalar_type, " for argument 1 'storage'" ))); }; | |||
560 | return new_with_storage(options, scalar_type, r.storage(0)); | |||
561 | } else if (r.idx == 2) { | |||
562 | auto cdata = reinterpret_cast<void*>(r.toInt64(0)); | |||
563 | return at::unsafeTensorFromTH(cdata, true); | |||
564 | } else if (r.idx == 3) { | |||
565 | return new_with_tensor(options, scalar_type, r.tensor(0)); | |||
566 | } else if (r.idx == 4) { | |||
567 | TORCH_CHECK(false, "Legacy tensor new of the form tensor.new(tensor, device=device) " \if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(568), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Legacy tensor new of the form tensor.new(tensor, device=device) " "is not supported. Use torch.as_tensor(...) instead."))); } | |||
568 | "is not supported. Use torch.as_tensor(...) instead.")if ((__builtin_expect(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(568), (::c10::detail::torchCheckMsgImpl ( "Expected " "false" " to be true, but got false. " "(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)", "Legacy tensor new of the form tensor.new(tensor, device=device) " "is not supported. Use torch.as_tensor(...) instead."))); }; | |||
569 | } else if (r.idx == 5) { | |||
570 | PyObject* arg = r.pyobject(0); | |||
571 | auto deviceOptional = r.deviceOptional(1); | |||
572 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
573 | if (!THPSize_Check(arg)((((PyObject*)(arg))->ob_type) == &THPSizeType) && PyTuple_GET_SIZE(args)(((PyVarObject*)(((PyTupleObject *)(args))))->ob_size) >= 1 && arg == PyTuple_GET_ITEM(args, 0)(((PyTupleObject *)(args))->ob_item[0])) { | |||
574 | // new(sequence) binds to this signature but should be treated differently | |||
575 | // unless the sequences is a torch.Size | |||
576 | return legacy_new_from_sequence(options, scalar_type, deviceOptional, r.pyobject(0)); | |||
577 | } | |||
578 | return new_with_sizes(options, scalar_type, r.deviceOptional(1), r.intlist(0)); | |||
579 | } else if (r.idx == 6) { | |||
580 | auto deviceOptional = r.deviceOptional(1); | |||
581 | check_legacy_ctor_device(dispatch_key, deviceOptional); | |||
582 | return legacy_new_from_sequence(options, scalar_type, r.deviceOptional(1), r.pyobject(0)); | |||
583 | } | |||
584 | throw std::runtime_error("new(): invalid arguments"); | |||
585 | } | |||
586 | ||||
587 | Tensor indexing_tensor_from_data( | |||
588 | c10::TensorOptions options, | |||
589 | at::ScalarType scalar_type, | |||
590 | c10::optional<Device> device, | |||
591 | PyObject* data) { | |||
592 | // Specific to tensor indexing, converts an indexing list to an | |||
593 | // indexing tensor (type Byte or Long) | |||
594 | ScalarType inferred_scalar_type = infer_scalar_type(data); | |||
595 | if (inferred_scalar_type == ScalarType::Byte || inferred_scalar_type == ScalarType::Bool) { | |||
596 | return internal_new_from_data(options, inferred_scalar_type, device, data, | |||
597 | /*copy_variables=*/false, /*copy_numpy=*/false, | |||
598 | /*type_inference=*/false); | |||
599 | } else { | |||
600 | return internal_new_from_data(options, scalar_type, device, data, | |||
601 | /*copy_variables=*/false, /*copy_numpy=*/false, | |||
602 | /*type_inference=*/false); | |||
603 | } | |||
604 | } | |||
605 | ||||
606 | Tensor sparse_csr_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
607 | TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparseCsr( dispatchKeyToBackend(dispatch_key)))), 0))) { ::c10::detail:: torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(607), "!isSparseCsr(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "607" ", please report a bug to PyTorch. ", c10::str()); }; | |||
| ||||
608 | TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparse(dispatchKeyToBackend (dispatch_key)))), 0))) { ::c10::detail::torchInternalAssertFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(608), "!isSparse(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "608" ", please report a bug to PyTorch. ", c10::str()); }; | |||
609 | static PythonArgParser parser({ | |||
610 | "sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)", | |||
611 | "sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, *, ScalarType dtype=None, Layout? layout=None, Device? device=None, bool pin_memory=False, bool requires_grad=False)", | |||
612 | }); | |||
613 | const int NUM_ARGS = 9, CROW_INDICES_ARG = 0, COL_INDICES_ARG = 1, VALUES_ARG = 2; | |||
614 | ParsedArgs<NUM_ARGS> parsed_args; | |||
615 | auto r = parser.parse(args, kwargs, parsed_args); | |||
616 | auto safe_get_attr_string = [](PyObject *o, const char *attr_name) -> PyObject* { | |||
617 | // Clear error indicator if attribute does not exists. | |||
618 | // Otherwise subsequent Python C API calls might return bogus values. | |||
619 | // See https://github.com/pytorch/pytorch/issues/58520 for more details | |||
620 | auto rc = PyObject_GetAttrString(o, attr_name); | |||
| ||||
621 | if (!rc) { | |||
622 | if (!PyErr_ExceptionMatches(PyExc_AttributeError)) { | |||
623 | throw python_error(); | |||
624 | } | |||
625 | // Warning: a wrong attribute error may be suppressed here | |||
626 | PyErr_Clear(); | |||
627 | } | |||
628 | return rc; | |||
629 | }; | |||
630 | THPObjectPtr crow_indices_dtype_attr(safe_get_attr_string(r.pyobject(CROW_INDICES_ARG), "dtype")); | |||
631 | THPObjectPtr col_indices_dtype_attr(safe_get_attr_string(r.pyobject(COL_INDICES_ARG), "dtype")); | |||
632 | at::ScalarType crow_indices_scalar_type = crow_indices_dtype_attr ? reinterpret_cast<THPDtype*>( | |||
633 | crow_indices_dtype_attr.get())->scalar_type : kInt; | |||
634 | at::ScalarType col_indices_scalar_type = col_indices_dtype_attr ? reinterpret_cast<THPDtype*>( | |||
635 | col_indices_dtype_attr.get())->scalar_type : kInt; | |||
636 | ||||
637 | if (r.idx == 0) { | |||
638 | const int SIZE_ARRAY_ARG = 3, TYPE_INFERENCE_ARG = 4, DEVICE_TYPE_ARG = 6, REQ_GRAD_ARG = 8; | |||
639 | bool type_inference = r.isNone(TYPE_INFERENCE_ARG); | |||
640 | const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key); | |||
641 | const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type); | |||
642 | at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG)); | |||
643 | ||||
644 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), | |||
645 | r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true, | |||
646 | /*type_inference=*/type_inference); | |||
647 | Tensor crow_indices = internal_new_from_data(values.options(), | |||
648 | crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(CROW_INDICES_ARG), | |||
649 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
650 | /*type_inference=*/true); | |||
651 | Tensor col_indices = internal_new_from_data(values.options(), | |||
652 | col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), r.pyobject(COL_INDICES_ARG), | |||
653 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
654 | /*type_inference=*/true); | |||
655 | ||||
656 | return at::sparse_csr_tensor(crow_indices, col_indices, values, r.intlist(SIZE_ARRAY_ARG), | |||
657 | values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG)); | |||
658 | } else if (r.idx == 1) { | |||
659 | const int TYPE_INFERENCE_ARG = 3, DEVICE_TYPE_ARG = 5, REQ_GRAD_ARG = 7; | |||
660 | bool type_inference = r.isNone(TYPE_INFERENCE_ARG); | |||
661 | const auto inferred_options = typeIdWithDefault(r, DEVICE_TYPE_ARG, dispatch_key); | |||
662 | const auto inferred_scalar_type = r.scalartypeWithDefault(TYPE_INFERENCE_ARG, scalar_type); | |||
663 | at::OptionalDeviceGuard device_guard(r.deviceOptional(DEVICE_TYPE_ARG)); | |||
664 | ||||
665 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), | |||
666 | r.pyobject(VALUES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true, | |||
667 | /*type_inference=*/type_inference); | |||
668 | Tensor crow_indices = internal_new_from_data(values.options(), | |||
669 | crow_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), | |||
670 | r.pyobject(CROW_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true, | |||
671 | /*type_inference=*/true); | |||
672 | Tensor col_indices = internal_new_from_data(values.options(), col_indices_scalar_type, r.deviceOptional(DEVICE_TYPE_ARG), | |||
673 | r.pyobject(COL_INDICES_ARG), /*copy_variables=*/false, /*copy_numpy=*/true, | |||
674 | /*type_inference=*/true); | |||
675 | return at::sparse_csr_tensor(crow_indices, col_indices, values, | |||
676 | values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(REQ_GRAD_ARG)); | |||
677 | } | |||
678 | throw std::runtime_error("sparse_csr_tensor(): invalid arguments"); | |||
679 | } | |||
680 | ||||
681 | Tensor _sparse_csr_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
682 | TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparseCsr( dispatchKeyToBackend(dispatch_key)))), 0))) { ::c10::detail:: torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(682), "!isSparseCsr(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "682" ", please report a bug to PyTorch. ", c10::str()); }; | |||
683 | TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparse(dispatchKeyToBackend (dispatch_key)))), 0))) { ::c10::detail::torchInternalAssertFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(683), "!isSparse(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "683" ", please report a bug to PyTorch. ", c10::str()); }; | |||
684 | enum { | |||
685 | ARG_CROW_INDICES = 0, | |||
686 | ARG_COL_INDICES, | |||
687 | ARG_VALUES, | |||
688 | ARG_SIZE, | |||
689 | ARG_TYPE, | |||
690 | ARG_DEVICE, | |||
691 | ARG_REQUIRES_GRAD, | |||
692 | ARGS_COUNT | |||
693 | }; | |||
694 | static PythonArgParser parser({ | |||
695 | "_sparse_csr_tensor_unsafe(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
696 | }); | |||
697 | ||||
698 | ParsedArgs<ARGS_COUNT> parsed_args; | |||
699 | auto r = parser.parse(args, kwargs, parsed_args); | |||
700 | bool type_inference = r.isNone(ARG_TYPE); | |||
701 | const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key); | |||
702 | const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type); | |||
703 | at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE)); | |||
704 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES), | |||
705 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
706 | /*type_inference=*/type_inference); | |||
707 | ||||
708 | Tensor crow_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_CROW_INDICES), | |||
709 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
710 | /*type_inference=*/true); | |||
711 | ||||
712 | Tensor col_indices = internal_new_from_data(values.options(), kInt, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_COL_INDICES), | |||
713 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
714 | /*type_inference=*/true); | |||
715 | ||||
716 | return at::_sparse_csr_tensor_unsafe(crow_indices, col_indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparseCsr)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD)); | |||
717 | } | |||
718 | ||||
719 | // Note [Ensuring sparse values and indices match devices] | |||
720 | // ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ | |||
721 | // In all places where we construct indices, we read out options from values | |||
722 | // (rather than use inferred_options). Why? This handles the case when | |||
723 | // values is a CUDA tensor, but indices is a non-Tensor value (and the device | |||
724 | // argument is not set). Example: | |||
725 | // | |||
726 | // torch.sparse_coo_tensor(([0, 1],), self.empty(2, 0).cuda(), (4, 0)) | |||
727 | // | |||
728 | // Sparse tensors require both indices and values to live on the same device. | |||
729 | // If values lives on CUDA, we can infer where the indices should live, and | |||
730 | // should accept even ordinary index sequences (and just make sure we write them | |||
731 | // into the correct device). values is the ONLY way we know that the index | |||
732 | // tensor should go to CUDA, so we have to get the information in somehow. | |||
733 | // | |||
734 | // This code is kind of jank. For one, the dtype in options is silently ignored | |||
735 | // by internal_new_from_data. Also, in classic janky code style, it used to | |||
736 | // not work quite right: if values lives on "cuda:1", before all we said was | |||
737 | // "this needs to be CUDA" and indices would be allocated on the wrong tensor. | |||
738 | // Options is more right and gets this correct. | |||
739 | ||||
740 | Tensor sparse_coo_tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
741 | TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparse(dispatchKeyToBackend (dispatch_key)))), 0))) { ::c10::detail::torchInternalAssertFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(741), "!isSparse(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "741" ", please report a bug to PyTorch. ", c10::str()); }; | |||
742 | TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparseCsr( dispatchKeyToBackend(dispatch_key)))), 0))) { ::c10::detail:: torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(742), "!isSparseCsr(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "742" ", please report a bug to PyTorch. ", c10::str()); }; | |||
743 | static PythonArgParser parser({ | |||
744 | "sparse_coo_tensor(PyObject* indices, PyObject* values, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
745 | "sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
746 | "sparse_coo_tensor(IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
747 | }); | |||
748 | ||||
749 | ParsedArgs<6> parsed_args; | |||
750 | auto r = parser.parse(args, kwargs, parsed_args); | |||
751 | if (r.idx == 0) { | |||
752 | bool type_inference = r.isNone(2); | |||
753 | const auto inferred_options = typeIdWithDefault(r, 3, dispatch_key); | |||
754 | const auto inferred_scalar_type = r.scalartypeWithDefault(2, scalar_type); | |||
755 | at::OptionalDeviceGuard device_guard(r.deviceOptional(3)); | |||
756 | // if no dtype provided, infer type based on value type. | |||
757 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(3), r.pyobject(1), | |||
758 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
759 | /*type_inference=*/type_inference); | |||
760 | // See Note [Ensuring sparse values and indices match devices] | |||
761 | Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(3), r.pyobject(0), | |||
762 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
763 | /*type_inference=*/false); | |||
764 | return at::sparse_coo_tensor(indices, values, values.options().layout(at::kSparse)).set_requires_grad(r.toBool(4)); | |||
765 | } else if (r.idx == 1) { | |||
766 | bool type_inference = r.isNone(3); | |||
767 | const auto inferred_options = typeIdWithDefault(r, 4, dispatch_key); | |||
768 | const auto inferred_scalar_type = r.scalartypeWithDefault(3, scalar_type); | |||
769 | at::OptionalDeviceGuard device_guard(r.deviceOptional(4)); | |||
770 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(4), r.pyobject(1), | |||
771 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
772 | /*type_inference=*/type_inference); | |||
773 | // See Note [Ensuring sparse values and indices match devices] | |||
774 | Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(4), r.pyobject(0), | |||
775 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
776 | /*type_inference=*/false); | |||
777 | return at::sparse_coo_tensor(indices, values, r.intlist(2), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(5)); | |||
778 | } else if (r.idx == 2) { | |||
779 | const auto inferred_options = typeIdWithDefault(r, 2, dispatch_key); | |||
780 | const auto inferred_scalar_type = r.scalartypeWithDefault(1, scalar_type); | |||
781 | at::OptionalDeviceGuard device_guard(r.deviceOptional(2)); | |||
782 | return at::sparse_coo_tensor(r.intlist(0), inferred_options.dtype(inferred_scalar_type).layout(at::kSparse)).set_requires_grad(r.toBool(3)); | |||
783 | } | |||
784 | throw std::runtime_error("sparse_coo_tensor(): invalid arguments"); | |||
785 | } | |||
786 | ||||
787 | Tensor _sparse_coo_tensor_unsafe_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
788 | TORCH_INTERNAL_ASSERT(!isSparse(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparse(dispatchKeyToBackend (dispatch_key)))), 0))) { ::c10::detail::torchInternalAssertFail ( __func__, "../torch/csrc/utils/tensor_new.cpp", static_cast <uint32_t>(788), "!isSparse(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "788" ", please report a bug to PyTorch. ", c10::str()); }; | |||
789 | TORCH_INTERNAL_ASSERT(!isSparseCsr(dispatchKeyToBackend(dispatch_key)))if ((__builtin_expect(static_cast<bool>(!(!isSparseCsr( dispatchKeyToBackend(dispatch_key)))), 0))) { ::c10::detail:: torchInternalAssertFail( __func__, "../torch/csrc/utils/tensor_new.cpp" , static_cast<uint32_t>(789), "!isSparseCsr(dispatchKeyToBackend(dispatch_key))" "INTERNAL ASSERT FAILED at " "\"../torch/csrc/utils/tensor_new.cpp\"" ":" "789" ", please report a bug to PyTorch. ", c10::str()); }; | |||
790 | enum { | |||
791 | ARG_INDICES = 0, | |||
792 | ARG_VALUES, | |||
793 | ARG_SIZE, | |||
794 | ARG_TYPE, | |||
795 | ARG_DEVICE, | |||
796 | ARG_REQUIRES_GRAD, | |||
797 | ARGS_COUNT | |||
798 | }; | |||
799 | static PythonArgParser parser({ | |||
800 | "_sparse_coo_tensor_unsafe(PyObject* indices, PyObject* values, IntArrayRef size, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
801 | }); | |||
802 | ||||
803 | ParsedArgs<ARGS_COUNT> parsed_args; | |||
804 | auto r = parser.parse(args, kwargs, parsed_args); | |||
805 | bool type_inference = r.isNone(ARG_TYPE); | |||
806 | const auto inferred_options = typeIdWithDefault(r, ARG_DEVICE, dispatch_key); | |||
807 | const auto inferred_scalar_type = r.scalartypeWithDefault(ARG_TYPE, scalar_type); | |||
808 | at::OptionalDeviceGuard device_guard(r.deviceOptional(ARG_DEVICE)); | |||
809 | Tensor values = internal_new_from_data(inferred_options, inferred_scalar_type, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_VALUES), | |||
810 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
811 | /*type_inference=*/type_inference); | |||
812 | // See Note [Ensuring sparse values and indices match devices] | |||
813 | Tensor indices = internal_new_from_data(values.options(), kLong, r.deviceOptional(ARG_DEVICE), r.pyobject(ARG_INDICES), | |||
814 | /*copy_variables=*/false, /*copy_numpy=*/true, | |||
815 | /*type_inference=*/false); | |||
816 | return at::_sparse_coo_tensor_unsafe(indices, values, r.intlist(ARG_SIZE), values.options().layout(at::kSparse)).set_requires_grad(r.toBool(ARG_REQUIRES_GRAD)); | |||
817 | } | |||
818 | ||||
819 | void _validate_sparse_coo_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
820 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
821 | static PythonArgParser parser({ | |||
822 | "_validate_sparse_coo_tensor(PyObject* indices, PyObject* values, IntArrayRef size)", | |||
823 | }); | |||
824 | ||||
825 | ParsedArgs<3> parsed_args; | |||
826 | auto r = parser.parse(args, kwargs, parsed_args); | |||
827 | Tensor values = internal_new_from_data( | |||
828 | options, scalar_type, c10::nullopt, r.pyobject(1), | |||
829 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true); | |||
830 | // See Note [Ensuring sparse values and indices match devices] | |||
831 | Tensor indices = internal_new_from_data( | |||
832 | values.options(), kLong, c10::nullopt, r.pyobject(0), | |||
833 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/false); | |||
834 | at::native::_validate_sparse_coo_tensor_args(indices, values, r.intlist(2)); | |||
835 | } | |||
836 | ||||
837 | ||||
838 | void _validate_sparse_csr_tensor_args(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
839 | auto options = dispatchKeyToTensorOptions(dispatch_key); | |||
840 | static PythonArgParser parser({ | |||
841 | "_validate_sparse_csr_tensor(PyObject* crow_indices, PyObject* col_indices, PyObject* values, IntArrayRef size)", | |||
842 | }); | |||
843 | ||||
844 | ParsedArgs<4> parsed_args; | |||
845 | auto r = parser.parse(args, kwargs, parsed_args); | |||
846 | Tensor values = internal_new_from_data( | |||
847 | options, scalar_type, c10::nullopt, r.pyobject(2), | |||
848 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true); | |||
849 | // See Note [Ensuring sparse values and indices match devices] | |||
850 | Tensor crow_indices = internal_new_from_data( | |||
851 | values.options(), kInt, c10::nullopt, r.pyobject(0), | |||
852 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true); | |||
853 | Tensor col_indices = internal_new_from_data( | |||
854 | values.options(), kInt, c10::nullopt, r.pyobject(1), | |||
855 | /*copy_variables=*/false, /*copy_numpy=*/true, /*type_inference=*/true); | |||
856 | ||||
857 | at::native::_validate_sparse_csr_tensor_args(crow_indices, col_indices, values, r.intlist(3)); | |||
858 | } | |||
859 | ||||
860 | Tensor tensor_ctor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
861 | static PythonArgParser parser({ | |||
862 | "tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool pin_memory=False, bool requires_grad=False, DimnameList? names=None)", | |||
863 | }); | |||
864 | ||||
865 | constexpr int ctor_num_args = 6; | |||
866 | ParsedArgs<ctor_num_args> parsed_args; | |||
867 | auto r = parser.parse(args, kwargs, parsed_args); | |||
868 | if (r.idx == 0) { | |||
869 | PyObject* data = r.pyobject(0); | |||
870 | if (THPVariable_Check(data)) { | |||
871 | auto ret = PyErr_WarnEx(PyExc_UserWarning, | |||
872 | "To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() " | |||
873 | "or sourceTensor.clone().detach().requires_grad_(True), rather than torch.tensor(sourceTensor).", 1); | |||
874 | if (ret != 0) throw python_error(); | |||
875 | } | |||
876 | ||||
877 | bool type_inference = r.isNone(1); | |||
878 | bool pin_memory = r.toBool(3); | |||
879 | bool args_requires_grad = r.toBool(4); | |||
880 | auto new_tensor = internal_new_from_data( | |||
881 | typeIdWithDefault(r, 2, dispatch_key), | |||
882 | r.scalartypeWithDefault(1, scalar_type), | |||
883 | r.deviceOptional(2), | |||
884 | data, | |||
885 | /*copy_variables=*/true, | |||
886 | /*copy_numpy=*/true, | |||
887 | /*type_inference=*/type_inference, | |||
888 | pin_memory); | |||
889 | auto names = r.toDimnameListOptional(5); | |||
890 | if (names) { | |||
891 | at::namedinference::propagate_names(new_tensor, *names, /*validate_names=*/true); | |||
892 | } | |||
893 | new_tensor.detach_(); // ensure new_tensor a leaf node | |||
894 | new_tensor.set_requires_grad(args_requires_grad); | |||
895 | return new_tensor; | |||
896 | } | |||
897 | throw std::runtime_error("tensor(): invalid arguments"); | |||
898 | } | |||
899 | ||||
900 | Tensor as_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
901 | // TODO: add requires_grad once we decide on semantics for sharing data. | |||
902 | static PythonArgParser parser({ | |||
903 | "as_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None)", | |||
904 | }); | |||
905 | ||||
906 | ParsedArgs<3> parsed_args; | |||
907 | auto r = parser.parse(args, kwargs, parsed_args); | |||
908 | if (r.idx == 0) { | |||
909 | bool type_inference = r.isNone(1); | |||
910 | return internal_new_from_data( | |||
911 | typeIdWithDefault(r, 2, dispatch_key), | |||
912 | r.scalartypeWithDefault(1, scalar_type), | |||
913 | r.deviceOptional(2), | |||
914 | r.pyobject(0), | |||
915 | /*copy_variables=*/false, | |||
916 | /*copy_numpy=*/false, | |||
917 | /*type_inference=*/type_inference); | |||
918 | } | |||
919 | throw std::runtime_error("tensor(): invalid arguments"); | |||
920 | } | |||
921 | ||||
922 | Tensor new_tensor(c10::DispatchKey dispatch_key, at::ScalarType scalar_type, PyObject* args, PyObject* kwargs) { | |||
923 | static PythonArgParser parser({ | |||
924 | "new_tensor(PyObject* data, *, ScalarType dtype=None, Device? device=None, bool requires_grad=False)", | |||
925 | }); | |||
926 | ||||
927 | ParsedArgs<4> parsed_args; | |||
928 | auto r = parser.parse(args, kwargs, parsed_args); | |||
929 | if (r.idx == 0) { | |||
930 | PyObject* data = r.pyobject(0); | |||
931 | if (THPVariable_Check(data)) { | |||
932 | auto ret = PyErr_WarnEx(PyExc_UserWarning, | |||
933 | "To copy construct from a tensor, it is recommended to use sourceTensor.clone().detach() " | |||
934 | "or sourceTensor.clone().detach().requires_grad_(True), rather than tensor.new_tensor(sourceTensor).", 1); | |||
935 | if (ret != 0) throw python_error(); | |||
936 | } | |||
937 | ||||
938 | bool args_requires_grad = r.toBool(3); | |||
939 | auto new_tensor = new_from_data_copy( | |||
940 | typeIdWithDefault(r, 2, dispatch_key), | |||
941 | r.scalartypeWithDefault(1, scalar_type), | |||
942 | r.deviceOptional(2), | |||
943 | data); | |||
944 | new_tensor.detach_(); // ensure new_tensor a leaf node | |||
945 | new_tensor.set_requires_grad(args_requires_grad); | |||
946 | return new_tensor; | |||
947 | } | |||
948 | throw std::runtime_error("new_tensor(): invalid arguments"); | |||
949 | } | |||
950 | ||||
951 | }} // namespace torch::utils |
1 | #ifndef PyObject_GetAttrString |
2 | struct _object; |
3 | typedef struct _object PyObject; |
4 | PyObject* clang_analyzer_PyObject_New_Reference(); |
5 | PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name) { |
6 | return clang_analyzer_PyObject_New_Reference(); |
7 | } |
8 | #else |
9 | #warning "API PyObject_GetAttrString is defined as a macro." |
10 | #endif |