Bug Summary

File:build/../torch/csrc/tensor/python_tensor.cpp
Warning:line 219, column 24
PyObject ownership leak with reference count of 1

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name python_tensor.cpp -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=cplusplus -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-output=html -analyzer-checker=python -analyzer-disable-checker=deadcode -analyzer-config prune-paths=true,suppress-c++-stdlib=true,suppress-inlined-defensive-checks=false,suppress-null-return-paths=false,crosscheck-with-z3=true,model-path=/opt/pyrefcon/lib/pyrefcon/models/models -analyzer-config experimental-enable-naive-ctu-analysis=true,ctu-dir=/tmp/pyrefcon/pytorch/csa-scan,ctu-index-name=/tmp/pyrefcon/pytorch/csa-scan/externalDefMap.txt,ctu-invocation-list=/tmp/pyrefcon/pytorch/csa-scan/invocations.yaml,display-ctu-progress=false -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -relaxed-aliasing -fno-rounding-math -ffp-exception-behavior=ignore -mconstructor-aliases -munwind-tables -target-cpu x86-64 -tune-cpu generic -debugger-tuning=gdb -fcoverage-compilation-dir=/tmp/pyrefcon/pytorch/build -resource-dir /opt/pyrefcon/lib/clang/13.0.0 -isystem third_party/gloo -isystem ../cmake/../third_party/gloo -isystem ../cmake/../third_party/googletest/googlemock/include -isystem ../cmake/../third_party/googletest/googletest/include -isystem ../third_party/protobuf/src -isystem ../third_party/gemmlowp -isystem ../third_party/neon2sse -isystem ../third_party/XNNPACK/include -isystem ../third_party -isystem ../cmake/../third_party/eigen -isystem /opt/pyrefcon/lib/pyrefcon/models/python3.8 -isystem /usr/lib/python3/dist-packages/numpy/core/include -isystem ../cmake/../third_party/pybind11/include -isystem /usr/lib/x86_64-linux-gnu/openmpi/include/openmpi -isystem /usr/lib/x86_64-linux-gnu/openmpi/include -isystem ../third_party/ideep/mkl-dnn/include -isystem ../third_party/ideep/include -D BUILDING_TESTS -D FMT_HEADER_ONLY=1 -D HAVE_MALLOC_USABLE_SIZE=1 -D HAVE_MMAP=1 -D HAVE_SHM_OPEN=1 -D HAVE_SHM_UNLINK=1 -D MINIZ_DISABLE_ZIP_READER_CRC32_CHECKS -D ONNXIFI_ENABLE_EXT=1 -D ONNX_ML=1 -D ONNX_NAMESPACE=onnx_torch -D THP_BUILD_MAIN_LIB -D USE_C10D -D USE_C10D_GLOO -D USE_C10D_MPI -D USE_DISTRIBUTED -D USE_EXTERNAL_MZCRC -D USE_NUMPY -D USE_RPC -D USE_TENSORPIPE -D USE_VALGRIND -D _FILE_OFFSET_BITS=64 -D torch_python_EXPORTS -I aten/src -I ../aten/src -I . -I ../ -I ../cmake/../third_party/benchmark/include -I caffe2/contrib/aten -I ../third_party/onnx -I third_party/onnx -I ../third_party/foxi -I third_party/foxi -I ../torch/.. -I ../torch/../aten/src -I ../torch/../aten/src/TH -I caffe2/aten/src -I third_party -I ../torch/../third_party/valgrind-headers -I ../torch/../third_party/gloo -I ../torch/../third_party/onnx -I ../torch/csrc -I ../torch/csrc/api/include -I ../torch/lib -I ../torch/lib/libshm -I ../torch/csrc/distributed -I ../torch/csrc/api -I ../c10/.. -I third_party/ideep/mkl-dnn/include -I ../third_party/ideep/mkl-dnn/src/../include -I ../torch/lib/libshm/../../../torch/lib -I ../third_party/fmt/include -D USE_PTHREADPOOL -D NDEBUG -D USE_KINETO -D LIBKINETO_NOCUPTI -D USE_FBGEMM -D USE_QNNPACK -D USE_PYTORCH_QNNPACK -D USE_XNNPACK -D SYMBOLICATE_MOBILE_DEBUG_HANDLE -D HAVE_AVX_CPU_DEFINITION -D HAVE_AVX2_CPU_DEFINITION -D NDEBUG -D NDEBUG -D CAFFE2_USE_GLOO -D HAVE_GCC_GET_CPUID -D USE_AVX -D USE_AVX2 -D TH_HAVE_THREAD -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/x86_64-linux-gnu/c++/10 -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../include/c++/10/backward -internal-isystem /opt/pyrefcon/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O3 -Wno-narrowing -Wall -Wextra -Werror=return-type -Wno-missing-field-initializers -Wno-type-limits -Wno-array-bounds -Wno-unknown-pragmas -Wno-sign-compare -Wno-unused-parameter -Wno-unused-variable -Wno-unused-function -Wno-unused-result -Wno-unused-local-typedefs -Wno-strict-overflow -Wno-strict-aliasing -Wno-error=deprecated-declarations -Wno-stringop-overflow -Wno-psabi -Wno-error=pedantic -Wno-error=redundant-decls -Wno-error=old-style-cast -Wno-unused-but-set-variable -Wno-maybe-uninitialized -Werror=format -Werror=cast-function-type -Wno-stringop-overflow -Wno-write-strings -Wno-strict-aliasing -w -std=gnu++14 -fdeprecated-macro -fdebug-compilation-dir=/tmp/pyrefcon/pytorch/build -ferror-limit 19 -fvisibility-inlines-hidden -fopenmp -fopenmp-cuda-parallel-target-regions -pthread -fgnuc-version=4.2.1 -fcxx-exceptions -fexceptions -faligned-allocation -fcolor-diagnostics -vectorize-loops -vectorize-slp -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/pyrefcon/pytorch/csa-scan/reports -x c++ ../torch/csrc/tensor/python_tensor.cpp

../torch/csrc/tensor/python_tensor.cpp

1#include <torch/csrc/tensor/python_tensor.h>
2
3#include <structmember.h>
4#include <pybind11/pybind11.h>
5
6#include <torch/csrc/Dtype.h>
7#include <torch/csrc/DynamicTypes.h>
8#include <torch/csrc/Exceptions.h>
9#include <torch/csrc/Layout.h>
10#include <torch/csrc/autograd/variable.h>
11#include <torch/csrc/autograd/python_variable.h>
12#include <torch/csrc/autograd/generated/VariableType.h>
13#include <torch/csrc/autograd/utils/wrap_outputs.h>
14#include <torch/csrc/utils/cuda_enabled.h>
15#include <torch/csrc/utils/cuda_lazy_init.h>
16#include <torch/csrc/utils/python_strings.h>
17#include <torch/csrc/utils/tensor_new.h>
18#include <torch/csrc/utils/tensor_types.h>
19
20#include <ATen/ATen.h>
21
22#include <sstream>
23#include <string>
24#include <type_traits>
25#include <vector>
26
27namespace torch { namespace tensors {
28
29using namespace at;
30using namespace torch::autograd;
31
32struct PyTensorType {
33 PyTypeObject py_type;
34 THPDtype* dtype;
35 THPLayout* layout;
36 bool is_cuda;
37 // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-magic-numbers,modernize-avoid-c-arrays)
38 char name[64];
39 int backend;
40 int scalar_type;
41
42 Backend get_backend() const {
43 return static_cast<Backend>(backend);
44 }
45
46 DispatchKey get_dispatch_key() const {
47 return backendToDispatchKey(static_cast<Backend>(backend));
48 }
49
50 ScalarType get_scalar_type() const {
51 return static_cast<ScalarType>(scalar_type);
52 }
53};
54
55static_assert(std::is_standard_layout<PyTensorType>::value, "PyTensorType must be standard layout");
56
57// This is always an instance of VariableType
58// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
59static PyTensorType* default_tensor_type;
60
61static void py_bind_tensor_types(const std::vector<PyTensorType*>& tensor_types);
62
63static TypeError unavailable_type(const PyTensorType& type) {
64 return TypeError("type %s not available. Torch not compiled with CUDA enabled.", type.name);
65}
66
67static PyObject* Tensor_new(PyTypeObject *type, PyObject *args, PyObject *kwargs) {
68 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
69 auto& tensor_type = *((PyTensorType*)type);
70 if (tensor_type.is_cuda && !torch::utils::cuda_enabled()) {
71 throw unavailable_type(tensor_type);
72 }
73 return THPVariable_Wrap(torch::utils::legacy_tensor_ctor(tensor_type.get_dispatch_key(), tensor_type.get_scalar_type(), args, kwargs));
74 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
75}
76
77// TODO: Deprecate this instancecheck entirely. It's here to make
78// instanceof(t, torch.FloatTensor) work, but we are not going to keep
79// adding torch.QuantizedIntTensor classes for every new tensor type
80// we add...
81static PyObject* Tensor_instancecheck(PyObject* _self, PyObject* arg) {
82 HANDLE_TH_ERRORStry { torch::PyWarningHandler __enforce_warning_buffer; try {
83 auto self = (PyTensorType*)_self;
84 if (THPVariable_Check(arg)) {
85 const auto& var = THPVariable_Unpack(arg);
86 // NB: This is a little unfortunate, in that if I do an isinstance check
87 // against torch.cuda.FloatTensor, this will immediately initialize CUDA.
88 // I originally thought that it would not be possible for aten_type_ to
89 // be nullptr if you had a tensor of some type, in which case you can
90 // skip initializing aten_type(), but TestAutograd.test_type_conversions
91 // seems to violate this property (for whatever reason.)
92 //
93 // TODO: Stop using legacyExtractDispatchKey here (probably need to build
94 // in instanceof checking to Tensor class itself)
95 if (legacyExtractDispatchKey(var.key_set()) == self->get_dispatch_key() &&
96 var.scalar_type() == static_cast<ScalarType>(self->scalar_type)) {
97 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
98 }
99 }
100 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
101 END_HANDLE_TH_ERRORS} catch(...) { __enforce_warning_buffer.set_in_exception(); throw
; } } catch (python_error & e) { e.restore(); return nullptr
; } catch (const c10::IndexError& e) { auto msg = torch::
get_cpp_stacktraces_enabled() ? e.what() : e.what_without_backtrace
(); PyErr_SetString(PyExc_IndexError, torch::processErrorMsg(
msg)); return nullptr; } catch (const c10::ValueError& e)
{ auto msg = torch::get_cpp_stacktraces_enabled() ? e.what()
: e.what_without_backtrace(); PyErr_SetString(PyExc_ValueError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::TypeError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_TypeError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::NotImplementedError& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_NotImplementedError
, torch::processErrorMsg(msg)); return nullptr; } catch (const
c10::Error& e) { auto msg = torch::get_cpp_stacktraces_enabled
() ? e.what() : e.what_without_backtrace(); PyErr_SetString(PyExc_RuntimeError
, torch::processErrorMsg(msg)); return nullptr; } catch (torch
::PyTorchError & e) { auto msg = torch::processErrorMsg(e
.what()); PyErr_SetString(e.python_type(), msg); return nullptr
; } catch (const std::exception& e) { auto msg = torch::processErrorMsg
(e.what()); PyErr_SetString(PyExc_RuntimeError, msg); return nullptr
; }
102}
103
104PyObject *Tensor_dtype(PyTensorType* self, void *unused) {
105 return torch::autograd::utils::wrap(self->dtype);
106}
107
108PyObject *Tensor_layout(PyTensorType* self, void *unused) {
109 return torch::autograd::utils::wrap(self->layout);
110}
111
112PyObject *Tensor_is_cuda(PyTensorType* self, void *unused) {
113 if (self->is_cuda) {
114 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
115 } else {
116 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
117 }
118}
119
120PyObject *Tensor_is_sparse(PyTensorType *self, void *unused) {
121 if (self->layout->layout == at::Layout::Strided) {
122 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
123 } else {
124 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
125 }
126}
127
128PyObject *Tensor_is_sparse_csr(PyTensorType *self, void *unused) {
129 if (self->layout->layout == at::Layout::SparseCsr) {
130 Py_RETURN_TRUEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_TrueStruct
)))), ((PyObject *) &_Py_TrueStruct)
;
131 } else {
132 Py_RETURN_FALSEreturn _Py_INCREF(((PyObject*)(((PyObject *) &_Py_FalseStruct
)))), ((PyObject *) &_Py_FalseStruct)
;
133 }
134}
135
136// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
137static struct PyMethodDef metaclass_methods[] = {
138 {"__instancecheck__", Tensor_instancecheck, METH_O0x0008, nullptr},
139 {nullptr}
140};
141
142typedef PyObject *(*getter)(PyObject *, void *);
143
144// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,cppcoreguidelines-avoid-non-const-global-variables,modernize-avoid-c-arrays)
145static struct PyGetSetDef metaclass_properties[] = {
146 {"dtype", (getter)Tensor_dtype, nullptr, nullptr, nullptr},
147 {"layout", (getter)Tensor_layout, nullptr, nullptr, nullptr},
148 {"is_cuda", (getter)Tensor_is_cuda, nullptr, nullptr, nullptr},
149 {"is_sparse", (getter)Tensor_is_sparse, nullptr, nullptr, nullptr},
150 {"is_sparse_csr",(getter)Tensor_is_sparse_csr, nullptr, nullptr, nullptr},
151 {nullptr}
152};
153
154// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
155static PyTypeObject metaclass = {
156 PyVarObject_HEAD_INIT(nullptr, 0){ { 1, nullptr }, 0 },
157 "torch.tensortype", /* tp_name */
158 sizeof(PyTypeObject) /* tp_basicsize */
159};
160
161static void py_initialize_metaclass(PyTypeObject& metaclass) {
162 metaclass.tp_flags = Py_TPFLAGS_DEFAULT( 0 | (1UL << 18) | 0) | Py_TPFLAGS_BASETYPE(1UL << 10);
163 metaclass.tp_methods = metaclass_methods;
164 metaclass.tp_getset = metaclass_properties;
165 metaclass.tp_base = &PyType_Type;
166 if (PyType_Ready(&metaclass) < 0) {
167 throw python_error();
168 }
169}
170
171// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
172static PyTypeObject tensor_type_prototype = {
173 PyVarObject_HEAD_INIT(&metaclass, 0){ { 1, &metaclass }, 0 },
174 nullptr, /* tp_name */
175 sizeof(PyTensorType) /* tp_basicsize */
176};
177
178static void py_initialize_tensor_type(PyTypeObject& type, const char* name, PyObject* tp_dict) {
179 // NOTE: we don't use the typical static declaration of PyTypeObject because
180 // we need to initialize as many types as there are VariableType instances.
181 // We copy the basic object fields from a prototype definition and initialize
182 // the remaining fields below.
183 memcpy(&type, &tensor_type_prototype, sizeof(PyTypeObject));
184 // Subclassing from torch.<ScalarType>Tensor isn't supported.
185 // (Py_TPFLAGS_BASETYPE omitted). Subclassing torch.Tensor still allowed.
186 type.tp_flags = Py_TPFLAGS_DEFAULT( 0 | (1UL << 18) | 0);
187 type.tp_name = name;
188 type.tp_new = Tensor_new;
189 if (PyType_Ready(&type) < 0) {
190 throw python_error();
191 }
192 if (PyDict_Merge(type.tp_dict, tp_dict, 0) < 0) {
193 throw python_error();
194 }
195}
196
197static const char* get_module(Backend backend) {
198 switch (backend) {
199 case Backend::CPU: return "torch";
200 case Backend::CUDA: return "torch.cuda";
201 case Backend::SparseCPU: return "torch.sparse";
202 case Backend::SparseCUDA: return "torch.cuda.sparse";
203 default: AT_ERROR("invalid backend: ", toString(backend))do { ::c10::detail::deprecated_AT_ERROR(); if ((__builtin_expect
(static_cast<bool>(!(false)), 0))) { ::c10::detail::torchCheckFail
( __func__, "../torch/csrc/tensor/python_tensor.cpp", static_cast
<uint32_t>(203), (::c10::detail::torchCheckMsgImpl( "Expected "
"false" " to be true, but got false. " "(Could this error message be improved? If so, "
"please report an enhancement request to PyTorch.)", ::c10::
str("invalid backend: ", toString(backend))))); }; } while (false
)
;
204 }
205}
206
207static std::string get_name(Backend backend, ScalarType scalarType) {
208 std::ostringstream ss;
209 ss << get_module(backend) << "." << toString(scalarType) << "Tensor";
210 return ss.str();
211}
212
213static THPObjectPtr get_storage_obj(PyTensorType* type) {
214 auto module_name = get_module(type->get_backend());
215 auto module_obj = THPObjectPtr(PyImport_ImportModule(module_name));
216 if (!module_obj) throw python_error();
9
Assuming the condition is false
10
Taking false branch
217
218 auto storage_name = std::string(toString(type->get_scalar_type())) + "Storage";
219 THPObjectPtr storage(PyObject_GetAttrString(module_obj.get(), storage_name.c_str()));
11
Calling 'PyObject_GetAttrString'
13
Returning from 'PyObject_GetAttrString'
19
PyObject ownership leak with reference count of 1
220 if (!storage.get()) {
14
Assuming the condition is false
15
Taking false branch
221 throw TypeError("couldn't find storage object %s", storage_name.c_str());
222 }
223 return storage;
224}
225
226static void set_type(PyTensorType& type_obj, Backend backend, ScalarType scalarType) {
227 // This field is lazily initialized from backend and scalar_type
228 type_obj.backend = static_cast<int>(backend);
229 type_obj.scalar_type = static_cast<int>(scalarType);
230 type_obj.layout = torch::getTHPLayout(layout_from_backend(backend));
231 type_obj.dtype = torch::getTHPDtype(scalarType);
232 type_obj.is_cuda = (backend == at::Backend::CUDA || backend == at::Backend::SparseCUDA);
233}
234
235static void set_name(PyTensorType& type_obj, const std::string& name) {
236 size_t n = sizeof(type_obj.name);
237 strncpy(type_obj.name, name.c_str(), n);
238 type_obj.name[n - 1] = '\0';
239}
240
241static THPObjectPtr get_tensor_dict() {
242 auto torch = THPObjectPtr(PyImport_ImportModule("torch"));
243 if (!torch) throw python_error();
244
245 auto tensor_class = THPObjectPtr(PyObject_GetAttrString(torch, "Tensor"));
246 if (!tensor_class) throw python_error();
247
248 auto tensor_type = (PyTypeObject*)tensor_class.get();
249 TORCH_CHECK(tensor_type->tp_base, "missing base type for Tensor")if ((__builtin_expect(static_cast<bool>(!(tensor_type->
tp_base)), 0))) { ::c10::detail::torchCheckFail( __func__, "../torch/csrc/tensor/python_tensor.cpp"
, static_cast<uint32_t>(249), (::c10::detail::torchCheckMsgImpl
( "Expected " "tensor_type->tp_base" " to be true, but got false. "
"(Could this error message be improved? If so, " "please report an enhancement request to PyTorch.)"
, "missing base type for Tensor"))); }
;
250
251 auto res = THPObjectPtr(PyDict_New());
252 if (!res) throw python_error();
253
254 if (PyDict_Merge(res.get(), tensor_type->tp_dict, 0) < 0) {
255 throw python_error();
256 }
257 if (PyDict_Merge(res.get(), tensor_type->tp_base->tp_dict, 0) < 0) {
258 throw python_error();
259 }
260
261 return res;
262}
263
264// A note about the lifetime of the various PyTensorType: normally
265// PyTypeObject instances are statically allocated, but we want to create them
266// dynamically at init time, because their exact number depends on
267// torch::utils::all_declared_types(). The memory for each PyTensorType is
268// allocated by initialize_aten_types() and never freed: technically it's a
269// leak, but it's not a problem since we want them to be alive for the whole time
270// of the process anyway.
271//
272// An alternative is to use a std::vector<PyTensorType> instead, and let
273// std::vector to manage the lifetime of its items. This is problematic
274// though, because it means that the memory of PyTensorType is deallocated at
275// some point during the exit: if by chance we have another global destructor
276// and/or atexit() function which tries to access the PyTensorTypes, we risk
277// an use-after-free error. This happens for example if we embed CPython and
278// call Py_Finalize inside an atexit() function which was registered before
279// importing torch.
280// NOLINTNEXTLINE(cppcoreguidelines-avoid-non-const-global-variables)
281static std::vector<PyTensorType*> tensor_types;
282
283void set_default_tensor_type(PyTensorType* type) {
284 if (!at::isFloatingType(type->get_scalar_type())) {
4
Taking false branch
285 throw TypeError("only floating-point types are supported as the default type");
286 }
287 if (type->get_backend() == Backend::Undefined) {
5
Assuming the condition is false
6
Taking false branch
288 throw TypeError("default type cannot be undefined");
289 }
290 if (isSparse(type->get_backend())) {
7
Taking false branch
291 throw TypeError("only dense types are supported as the default type");
292 }
293
294 // get the storage first, so if it doesn't exist we don't change the default tensor type
295 THPObjectPtr storage = get_storage_obj(type);
8
Calling 'get_storage_obj'
16
Returning from 'get_storage_obj'
296 // NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
297 default_tensor_type = type;
298 at::set_default_dtype(scalarTypeToTypeMeta(type->get_scalar_type()));
299
300 auto torch_module = THPObjectPtr(PyImport_ImportModule("torch"));
301 if (!torch_module) throw python_error();
17
Assuming the condition is true
18
Taking true branch
302
303 if (PyObject_SetAttrString(torch_module.get(), "Storage", storage) != 0) {
304 // technically, we should undo the change of default tensor type.
305 throw python_error();
306 }
307}
308
309static void initialize_aten_types(std::vector<PyTensorType*>& tensor_types) {
310 // includes CUDA types even when PyTorch is not built with CUDA
311 auto declared_types = torch::utils::all_declared_types();
312 tensor_types.resize(declared_types.size());
313
314 for (size_t i = 0, end = declared_types.size(); i != end; i++) {
315 tensor_types[i] = new PyTensorType();
316 auto& tensor_type = *tensor_types[i];
317 Backend backend = declared_types[i].first;
318 ScalarType scalar_type = declared_types[i].second;
319 set_type(tensor_type, backend, scalar_type);
320 set_name(tensor_type, get_name(backend, scalar_type));
321
322 // Use torch.float32 as the default tensor type
323 if (backend == Backend::CPU && scalar_type == at::kFloat) {
324 set_default_tensor_type(&tensor_type);
325 }
326 }
327}
328
329void initialize_python_bindings() {
330 // Initialize the at::Type* pointers, name, and properties of the PyTensorType
331 // vector. After this call, the vector must not be resized.
332 initialize_aten_types(tensor_types);
333
334 // Initialize the Python metaclass for the torch.FloatTensor, etc. types.
335 // The metaclass handles __instancecheck__ checks and binds the dtype property
336 // on the type objects.
337 py_initialize_metaclass(metaclass);
338
339 // Get the tp_dict of the Variable class. We copy function definitions
340 // onto each Tensor type object so that they can be accessed via e.g.
341 // `torch.FloatTensor.add`.
342 auto tensor_dict = get_tensor_dict();
343
344 // Initialize each Python type object torch.FloatTensor, torch.DoubleTensor, etc.
345 for (auto& tensor_type : tensor_types) {
346 py_initialize_tensor_type(tensor_type->py_type, tensor_type->name, tensor_dict.get());
347 }
348
349 // Add the type objects to their corresponding modules. e.g. torch.FloatTensor
350 // is added to the `torch` module as `FloatTensor`. Also add all the type
351 // objects to the set torch._tensor_classes.
352 py_bind_tensor_types(tensor_types);
353}
354
355static void py_bind_tensor_types(const std::vector<PyTensorType*>& tensor_types) {
356 auto torch_module = THPObjectPtr(PyImport_ImportModule("torch"));
357 if (!torch_module) throw python_error();
358
359 auto tensor_classes = THPObjectPtr(PyObject_GetAttrString(torch_module.get(), "_tensor_classes"));
360 if (!tensor_classes) throw python_error();
361
362 for (auto& tensor_type : tensor_types) {
363 auto name = std::string(tensor_type->name);
364 auto idx = name.rfind('.');
365 auto type_name = name.substr(idx + 1);
366 auto module_name = name.substr(0, idx);
367
368 auto module_obj = THPObjectPtr(PyImport_ImportModule(module_name.c_str()));
369 if (!module_obj) throw python_error();
370
371 PyObject* type_obj = (PyObject*)tensor_type;
372 Py_INCREF(type_obj)_Py_INCREF(((PyObject*)(type_obj)));
373 if (PyModule_AddObject(module_obj.get(), type_name.c_str(), type_obj) < 0) {
374 throw python_error();
375 }
376 if (PySet_Add(tensor_classes.get(), type_obj) < 0) {
377 throw python_error();
378 }
379 }
380}
381
382static bool PyTensorType_Check(PyObject* obj) {
383 auto it = std::find_if(tensor_types.begin(), tensor_types.end(),
384 [obj](PyTensorType *x) {
385 return (PyObject*)x == obj;
386 });
387 return it != tensor_types.end();
388}
389
390void py_set_default_tensor_type(PyObject* obj) {
391 // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
392 PyTensorType *type;
393 if (PyTensorType_Check(obj)) {
394 type = (PyTensorType*)obj;
395 } else {
396 throw TypeError("invalid type object");
397 }
398 if (type->is_cuda && !torch::utils::cuda_enabled()) {
399 throw unavailable_type(*type);
400 }
401 set_default_tensor_type(type);
402}
403
404void py_set_default_dtype(PyObject* obj) {
405 if (THPDtype_Check(obj)) {
1
Assuming the condition is true
2
Taking true branch
406 auto scalar_type = ((THPDtype*)obj)->scalar_type;
407 auto backend = default_tensor_type->get_backend();
408 auto it = std::find_if(tensor_types.begin(), tensor_types.end(),
409 [backend, scalar_type](PyTensorType *x) {
410 return x->get_backend() == backend && x->get_scalar_type() == scalar_type;
411 });
412 set_default_tensor_type(*it);
3
Calling 'set_default_tensor_type'
413 } else {
414 throw TypeError("invalid dtype object");
415 }
416}
417
418c10::DispatchKey get_default_dispatch_key() {
419 AT_ASSERT(default_tensor_type)do { ::c10::detail::deprecated_AT_ASSERT(); if ((__builtin_expect
(static_cast<bool>(!(default_tensor_type)), 0))) { ::c10
::detail::torchInternalAssertFail( __func__, "../torch/csrc/tensor/python_tensor.cpp"
, static_cast<uint32_t>(419), "default_tensor_type" "INTERNAL ASSERT FAILED at "
"\"../torch/csrc/tensor/python_tensor.cpp\"" ":" "419" ", please report a bug to PyTorch. "
, c10::str()); }; } while (false)
;
420 return default_tensor_type->get_dispatch_key();
421}
422
423ScalarType get_default_scalar_type() {
424 return typeMetaToScalarType(get_default_dtype());
425}
426
427}} // namespace torch::tensors

/opt/pyrefcon/lib/pyrefcon/models/models/PyObject_GetAttrString.model

1#ifndef PyObject_GetAttrString
2struct _object;
3typedef struct _object PyObject;
4PyObject* clang_analyzer_PyObject_New_Reference();
5PyObject* PyObject_GetAttrString(PyObject *o, const char *attr_name) {
6 return clang_analyzer_PyObject_New_Reference();
12
Setting reference count to 1
7}
8#else
9#warning "API PyObject_GetAttrString is defined as a macro."
10#endif