| File: | numpy/core/src/umath/ufunc_object.c |
| Warning: | line 1532, column 22 PyObject ownership leak with reference count of 1 |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | ||||
| 2 | * Python Universal Functions Object -- Math for all types, plus fast | ||||
| 3 | * arrays math | ||||
| 4 | * | ||||
| 5 | * Full description | ||||
| 6 | * | ||||
| 7 | * This supports mathematical (and Boolean) functions on arrays and other python | ||||
| 8 | * objects. Math on large arrays of basic C types is rather efficient. | ||||
| 9 | * | ||||
| 10 | * Travis E. Oliphant 2005, 2006 oliphant@ee.byu.edu (oliphant.travis@ieee.org) | ||||
| 11 | * Brigham Young University | ||||
| 12 | * | ||||
| 13 | * based on the | ||||
| 14 | * | ||||
| 15 | * Original Implementation: | ||||
| 16 | * Copyright (c) 1995, 1996, 1997 Jim Hugunin, hugunin@mit.edu | ||||
| 17 | * | ||||
| 18 | * with inspiration and code from | ||||
| 19 | * Numarray | ||||
| 20 | * Space Science Telescope Institute | ||||
| 21 | * J. Todd Miller | ||||
| 22 | * Perry Greenfield | ||||
| 23 | * Rick White | ||||
| 24 | * | ||||
| 25 | */ | ||||
| 26 | #define _UMATHMODULE | ||||
| 27 | #define _MULTIARRAYMODULE | ||||
| 28 | #define NPY_NO_DEPRECATED_API0x0000000E NPY_API_VERSION0x0000000E | ||||
| 29 | |||||
| 30 | #include "Python.h" | ||||
| 31 | #include "stddef.h" | ||||
| 32 | |||||
| 33 | #include "npy_config.h" | ||||
| 34 | #include "npy_pycompat.h" | ||||
| 35 | #include "npy_argparse.h" | ||||
| 36 | |||||
| 37 | #include "numpy/arrayobject.h" | ||||
| 38 | #include "numpy/ufuncobject.h" | ||||
| 39 | #include "numpy/arrayscalars.h" | ||||
| 40 | #include "lowlevel_strided_loops.h" | ||||
| 41 | #include "ufunc_type_resolution.h" | ||||
| 42 | #include "reduction.h" | ||||
| 43 | #include "mem_overlap.h" | ||||
| 44 | |||||
| 45 | #include "ufunc_object.h" | ||||
| 46 | #include "override.h" | ||||
| 47 | #include "npy_import.h" | ||||
| 48 | #include "extobj.h" | ||||
| 49 | #include "common.h" | ||||
| 50 | #include "dtypemeta.h" | ||||
| 51 | #include "numpyos.h" | ||||
| 52 | |||||
| 53 | /********** PRINTF DEBUG TRACING **************/ | ||||
| 54 | #define NPY_UF_DBG_TRACING0 0 | ||||
| 55 | |||||
| 56 | #if NPY_UF_DBG_TRACING0 | ||||
| 57 | #define NPY_UF_DBG_PRINT(s) {printf("%s", s)__printf_chk (2 - 1, "%s", s);fflush(stdoutstdout);} | ||||
| 58 | #define NPY_UF_DBG_PRINT1(s, p1) {printf((s), (p1))__printf_chk (2 - 1, (s), (p1));fflush(stdoutstdout);} | ||||
| 59 | #define NPY_UF_DBG_PRINT2(s, p1, p2) {printf(s, p1, p2)__printf_chk (2 - 1, s, p1, p2);fflush(stdoutstdout);} | ||||
| 60 | #define NPY_UF_DBG_PRINT3(s, p1, p2, p3) {printf(s, p1, p2, p3)__printf_chk (2 - 1, s, p1, p2, p3);fflush(stdoutstdout);} | ||||
| 61 | #else | ||||
| 62 | #define NPY_UF_DBG_PRINT(s) | ||||
| 63 | #define NPY_UF_DBG_PRINT1(s, p1) | ||||
| 64 | #define NPY_UF_DBG_PRINT2(s, p1, p2) | ||||
| 65 | #define NPY_UF_DBG_PRINT3(s, p1, p2, p3) | ||||
| 66 | #endif | ||||
| 67 | /**********************************************/ | ||||
| 68 | |||||
| 69 | typedef struct { | ||||
| 70 | PyObject *in; /* The input arguments to the ufunc, a tuple */ | ||||
| 71 | PyObject *out; /* The output arguments, a tuple. If no non-None outputs are | ||||
| 72 | provided, then this is NULL. */ | ||||
| 73 | } ufunc_full_args; | ||||
| 74 | |||||
| 75 | /* C representation of the context argument to __array_wrap__ */ | ||||
| 76 | typedef struct { | ||||
| 77 | PyUFuncObject *ufunc; | ||||
| 78 | ufunc_full_args args; | ||||
| 79 | int out_i; | ||||
| 80 | } _ufunc_context; | ||||
| 81 | |||||
| 82 | /* Get the arg tuple to pass in the context argument to __array_wrap__ and | ||||
| 83 | * __array_prepare__. | ||||
| 84 | * | ||||
| 85 | * Output arguments are only passed if at least one is non-None. | ||||
| 86 | */ | ||||
| 87 | static PyObject * | ||||
| 88 | _get_wrap_prepare_args(ufunc_full_args full_args) { | ||||
| 89 | if (full_args.out == NULL((void*)0)) { | ||||
| 90 | Py_INCREF(full_args.in)_Py_INCREF(((PyObject*)(full_args.in))); | ||||
| 91 | return full_args.in; | ||||
| 92 | } | ||||
| 93 | else { | ||||
| 94 | return PySequence_Concat(full_args.in, full_args.out); | ||||
| 95 | } | ||||
| 96 | } | ||||
| 97 | |||||
| 98 | /* ---------------------------------------------------------------- */ | ||||
| 99 | |||||
| 100 | static PyObject * | ||||
| 101 | prepare_input_arguments_for_outer(PyObject *args, PyUFuncObject *ufunc); | ||||
| 102 | |||||
| 103 | |||||
| 104 | /*UFUNC_API*/ | ||||
| 105 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 106 | PyUFunc_getfperr(void) | ||||
| 107 | { | ||||
| 108 | /* | ||||
| 109 | * non-clearing get was only added in 1.9 so this function always cleared | ||||
| 110 | * keep it so just in case third party code relied on the clearing | ||||
| 111 | */ | ||||
| 112 | char param = 0; | ||||
| 113 | return npy_clear_floatstatus_barrier(¶m); | ||||
| 114 | } | ||||
| 115 | |||||
| 116 | #define HANDLEIT(NAME, str) {if (retstatus & NPY_FPE_##NAME) { \ | ||||
| 117 | handle = errmask & UFUNC_MASK_##NAME; \ | ||||
| 118 | if (handle && \ | ||||
| 119 | _error_handler(handle >> UFUNC_SHIFT_##NAME, \ | ||||
| 120 | errobj, str, retstatus, first) < 0) \ | ||||
| 121 | return -1; \ | ||||
| 122 | }} | ||||
| 123 | |||||
| 124 | /*UFUNC_API*/ | ||||
| 125 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 126 | PyUFunc_handlefperr(int errmask, PyObject *errobj, int retstatus, int *first) | ||||
| 127 | { | ||||
| 128 | int handle; | ||||
| 129 | if (errmask && retstatus) { | ||||
| 130 | HANDLEIT(DIVIDEBYZERO, "divide by zero"); | ||||
| 131 | HANDLEIT(OVERFLOW, "overflow"); | ||||
| 132 | HANDLEIT(UNDERFLOW, "underflow"); | ||||
| 133 | HANDLEIT(INVALID, "invalid value"); | ||||
| 134 | } | ||||
| 135 | return 0; | ||||
| 136 | } | ||||
| 137 | |||||
| 138 | #undef HANDLEIT | ||||
| 139 | |||||
| 140 | |||||
| 141 | /*UFUNC_API*/ | ||||
| 142 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 143 | PyUFunc_checkfperr(int errmask, PyObject *errobj, int *first) | ||||
| 144 | { | ||||
| 145 | /* clearing is done for backward compatibility */ | ||||
| 146 | int retstatus; | ||||
| 147 | retstatus = npy_clear_floatstatus_barrier((char*)&retstatus); | ||||
| 148 | |||||
| 149 | return PyUFunc_handlefperr(errmask, errobj, retstatus, first); | ||||
| 150 | } | ||||
| 151 | |||||
| 152 | |||||
| 153 | /* Checking the status flag clears it */ | ||||
| 154 | /*UFUNC_API*/ | ||||
| 155 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) void | ||||
| 156 | PyUFunc_clearfperr() | ||||
| 157 | { | ||||
| 158 | char param = 0; | ||||
| 159 | npy_clear_floatstatus_barrier(¶m); | ||||
| 160 | } | ||||
| 161 | |||||
| 162 | /* | ||||
| 163 | * This function analyzes the input arguments and determines an appropriate | ||||
| 164 | * method (__array_prepare__ or __array_wrap__) function to call, taking it | ||||
| 165 | * from the input with the highest priority. Return NULL if no argument | ||||
| 166 | * defines the method. | ||||
| 167 | */ | ||||
| 168 | static PyObject* | ||||
| 169 | _find_array_method(PyObject *args, PyObject *method_name) | ||||
| 170 | { | ||||
| 171 | int i, n_methods; | ||||
| 172 | PyObject *obj; | ||||
| 173 | PyObject *with_method[NPY_MAXARGS32], *methods[NPY_MAXARGS32]; | ||||
| 174 | PyObject *method = NULL((void*)0); | ||||
| 175 | |||||
| 176 | n_methods = 0; | ||||
| 177 | for (i = 0; i < PyTuple_GET_SIZE(args)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(args))))-> ob_size); i++) { | ||||
| 178 | obj = PyTuple_GET_ITEM(args, i)((((void) (0)), (PyTupleObject *)(args))->ob_item[i]); | ||||
| 179 | if (PyArray_CheckExact(obj)(((PyObject*)(obj))->ob_type == &PyArray_Type) || PyArray_IsAnyScalar(obj)((((((PyObject*)(obj))->ob_type) == (&PyGenericArrType_Type ) || PyType_IsSubtype((((PyObject*)(obj))->ob_type), (& PyGenericArrType_Type)))) || ((((((PyObject*)(obj))->ob_type ) == (&PyFloat_Type) || PyType_IsSubtype((((PyObject*)(obj ))->ob_type), (&PyFloat_Type))) || ((((PyObject*)(obj) )->ob_type) == (&PyComplex_Type) || PyType_IsSubtype(( ((PyObject*)(obj))->ob_type), (&PyComplex_Type))) || ( (((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 24))) != 0) || ((((PyObject*)(obj))->ob_type) == &PyBool_Type )) || ((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL << 27))) != 0) || ((((((PyObject*)(obj))->ob_type ))->tp_flags & ((1UL << 28))) != 0)))) { | ||||
| 180 | continue; | ||||
| 181 | } | ||||
| 182 | method = PyObject_GetAttr(obj, method_name); | ||||
| 183 | if (method) { | ||||
| 184 | if (PyCallable_Check(method)) { | ||||
| 185 | with_method[n_methods] = obj; | ||||
| 186 | methods[n_methods] = method; | ||||
| 187 | ++n_methods; | ||||
| 188 | } | ||||
| 189 | else { | ||||
| 190 | Py_DECREF(method)_Py_DECREF(((PyObject*)(method))); | ||||
| 191 | method = NULL((void*)0); | ||||
| 192 | } | ||||
| 193 | } | ||||
| 194 | else { | ||||
| 195 | PyErr_Clear(); | ||||
| 196 | } | ||||
| 197 | } | ||||
| 198 | if (n_methods > 0) { | ||||
| 199 | /* If we have some methods defined, find the one of highest priority */ | ||||
| 200 | method = methods[0]; | ||||
| 201 | if (n_methods > 1) { | ||||
| 202 | double maxpriority = PyArray_GetPriority(with_method[0], | ||||
| 203 | NPY_PRIORITY0.0); | ||||
| 204 | for (i = 1; i < n_methods; ++i) { | ||||
| 205 | double priority = PyArray_GetPriority(with_method[i], | ||||
| 206 | NPY_PRIORITY0.0); | ||||
| 207 | if (priority > maxpriority) { | ||||
| 208 | maxpriority = priority; | ||||
| 209 | Py_DECREF(method)_Py_DECREF(((PyObject*)(method))); | ||||
| 210 | method = methods[i]; | ||||
| 211 | } | ||||
| 212 | else { | ||||
| 213 | Py_DECREF(methods[i])_Py_DECREF(((PyObject*)(methods[i]))); | ||||
| 214 | } | ||||
| 215 | } | ||||
| 216 | } | ||||
| 217 | } | ||||
| 218 | return method; | ||||
| 219 | } | ||||
| 220 | |||||
| 221 | /* | ||||
| 222 | * Returns an incref'ed pointer to the proper __array_prepare__/__array_wrap__ | ||||
| 223 | * method for a ufunc output argument, given the output argument `obj`, and the | ||||
| 224 | * method chosen from the inputs `input_method`. | ||||
| 225 | */ | ||||
| 226 | static PyObject * | ||||
| 227 | _get_output_array_method(PyObject *obj, PyObject *method, | ||||
| 228 | PyObject *input_method) { | ||||
| 229 | if (obj != Py_None(&_Py_NoneStruct)) { | ||||
| 230 | PyObject *ometh; | ||||
| 231 | |||||
| 232 | if (PyArray_CheckExact(obj)(((PyObject*)(obj))->ob_type == &PyArray_Type)) { | ||||
| 233 | /* | ||||
| 234 | * No need to wrap regular arrays - None signals to not call | ||||
| 235 | * wrap/prepare at all | ||||
| 236 | */ | ||||
| 237 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | ||||
| 238 | } | ||||
| 239 | |||||
| 240 | ometh = PyObject_GetAttr(obj, method); | ||||
| 241 | if (ometh == NULL((void*)0)) { | ||||
| 242 | PyErr_Clear(); | ||||
| 243 | } | ||||
| 244 | else if (!PyCallable_Check(ometh)) { | ||||
| 245 | Py_DECREF(ometh)_Py_DECREF(((PyObject*)(ometh))); | ||||
| 246 | } | ||||
| 247 | else { | ||||
| 248 | /* Use the wrap/prepare method of the output if it's callable */ | ||||
| 249 | return ometh; | ||||
| 250 | } | ||||
| 251 | } | ||||
| 252 | |||||
| 253 | /* Fall back on the input's wrap/prepare */ | ||||
| 254 | Py_XINCREF(input_method)_Py_XINCREF(((PyObject*)(input_method))); | ||||
| 255 | return input_method; | ||||
| 256 | } | ||||
| 257 | |||||
| 258 | /* | ||||
| 259 | * This function analyzes the input arguments | ||||
| 260 | * and determines an appropriate __array_prepare__ function to call | ||||
| 261 | * for the outputs. | ||||
| 262 | * | ||||
| 263 | * If an output argument is provided, then it is prepped | ||||
| 264 | * with its own __array_prepare__ not with the one determined by | ||||
| 265 | * the input arguments. | ||||
| 266 | * | ||||
| 267 | * if the provided output argument is already an ndarray, | ||||
| 268 | * the prepping function is None (which means no prepping will | ||||
| 269 | * be done --- not even PyArray_Return). | ||||
| 270 | * | ||||
| 271 | * A NULL is placed in output_prep for outputs that | ||||
| 272 | * should just have PyArray_Return called. | ||||
| 273 | */ | ||||
| 274 | static void | ||||
| 275 | _find_array_prepare(ufunc_full_args args, | ||||
| 276 | PyObject **output_prep, int nout) | ||||
| 277 | { | ||||
| 278 | int i; | ||||
| 279 | PyObject *prep; | ||||
| 280 | |||||
| 281 | /* | ||||
| 282 | * Determine the prepping function given by the input arrays | ||||
| 283 | * (could be NULL). | ||||
| 284 | */ | ||||
| 285 | prep = _find_array_method(args.in, npy_um_str_array_prepare); | ||||
| 286 | /* | ||||
| 287 | * For all the output arrays decide what to do. | ||||
| 288 | * | ||||
| 289 | * 1) Use the prep function determined from the input arrays | ||||
| 290 | * This is the default if the output array is not | ||||
| 291 | * passed in. | ||||
| 292 | * | ||||
| 293 | * 2) Use the __array_prepare__ method of the output object. | ||||
| 294 | * This is special cased for | ||||
| 295 | * exact ndarray so that no PyArray_Return is | ||||
| 296 | * done in that case. | ||||
| 297 | */ | ||||
| 298 | if (args.out == NULL((void*)0)) { | ||||
| 299 | for (i = 0; i < nout; i++) { | ||||
| 300 | Py_XINCREF(prep)_Py_XINCREF(((PyObject*)(prep))); | ||||
| 301 | output_prep[i] = prep; | ||||
| 302 | } | ||||
| 303 | } | ||||
| 304 | else { | ||||
| 305 | for (i = 0; i < nout; i++) { | ||||
| 306 | output_prep[i] = _get_output_array_method( | ||||
| 307 | PyTuple_GET_ITEM(args.out, i)((((void) (0)), (PyTupleObject *)(args.out))->ob_item[i]), npy_um_str_array_prepare, prep); | ||||
| 308 | } | ||||
| 309 | } | ||||
| 310 | Py_XDECREF(prep)_Py_XDECREF(((PyObject*)(prep))); | ||||
| 311 | return; | ||||
| 312 | } | ||||
| 313 | |||||
| 314 | #define NPY_UFUNC_DEFAULT_INPUT_FLAGS0x00020000 | 0x00100000 | 0x40000000 \ | ||||
| 315 | NPY_ITER_READONLY0x00020000 | \ | ||||
| 316 | NPY_ITER_ALIGNED0x00100000 | \ | ||||
| 317 | NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE0x40000000 | ||||
| 318 | |||||
| 319 | #define NPY_UFUNC_DEFAULT_OUTPUT_FLAGS0x00100000 | 0x01000000 | 0x08000000 | 0x02000000 | 0x40000000 \ | ||||
| 320 | NPY_ITER_ALIGNED0x00100000 | \ | ||||
| 321 | NPY_ITER_ALLOCATE0x01000000 | \ | ||||
| 322 | NPY_ITER_NO_BROADCAST0x08000000 | \ | ||||
| 323 | NPY_ITER_NO_SUBTYPE0x02000000 | \ | ||||
| 324 | NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE0x40000000 | ||||
| 325 | |||||
| 326 | /* Called at module initialization to set the matmul ufunc output flags */ | ||||
| 327 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 328 | set_matmul_flags(PyObject *d) | ||||
| 329 | { | ||||
| 330 | PyObject *matmul = _PyDict_GetItemStringWithError(d, "matmul"); | ||||
| 331 | if (matmul == NULL((void*)0)) { | ||||
| 332 | return -1; | ||||
| 333 | } | ||||
| 334 | /* | ||||
| 335 | * The default output flag NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE allows | ||||
| 336 | * perfectly overlapping input and output (in-place operations). While | ||||
| 337 | * correct for the common mathematical operations, this assumption is | ||||
| 338 | * incorrect in the general case and specifically in the case of matmul. | ||||
| 339 | * | ||||
| 340 | * NPY_ITER_UPDATEIFCOPY is added by default in | ||||
| 341 | * PyUFunc_GeneralizedFunction, which is the variant called for gufuncs | ||||
| 342 | * with a signature | ||||
| 343 | * | ||||
| 344 | * Enabling NPY_ITER_WRITEONLY can prevent a copy in some cases. | ||||
| 345 | */ | ||||
| 346 | ((PyUFuncObject *)matmul)->op_flags[2] = (NPY_ITER_WRITEONLY0x00040000 | | ||||
| 347 | NPY_ITER_UPDATEIFCOPY0x00800000 | | ||||
| 348 | NPY_UFUNC_DEFAULT_OUTPUT_FLAGS0x00100000 | 0x01000000 | 0x08000000 | 0x02000000 | 0x40000000) & | ||||
| 349 | ~NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE0x40000000; | ||||
| 350 | return 0; | ||||
| 351 | } | ||||
| 352 | |||||
| 353 | |||||
| 354 | /* | ||||
| 355 | * Set per-operand flags according to desired input or output flags. | ||||
| 356 | * op_flags[i] for i in input (as determined by ufunc->nin) will be | ||||
| 357 | * merged with op_in_flags, perhaps overriding per-operand flags set | ||||
| 358 | * in previous stages. | ||||
| 359 | * op_flags[i] for i in output will be set to op_out_flags only if previously | ||||
| 360 | * unset. | ||||
| 361 | * The input flag behavior preserves backward compatibility, while the | ||||
| 362 | * output flag behaviour is the "correct" one for maximum flexibility. | ||||
| 363 | */ | ||||
| 364 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) void | ||||
| 365 | _ufunc_setup_flags(PyUFuncObject *ufunc, npy_uint32 op_in_flags, | ||||
| 366 | npy_uint32 op_out_flags, npy_uint32 *op_flags) | ||||
| 367 | { | ||||
| 368 | int nin = ufunc->nin; | ||||
| 369 | int nout = ufunc->nout; | ||||
| 370 | int nop = nin + nout, i; | ||||
| 371 | /* Set up the flags */ | ||||
| 372 | for (i = 0; i < nin; ++i) { | ||||
| 373 | op_flags[i] = ufunc->op_flags[i] | op_in_flags; | ||||
| 374 | /* | ||||
| 375 | * If READWRITE flag has been set for this operand, | ||||
| 376 | * then clear default READONLY flag | ||||
| 377 | */ | ||||
| 378 | if (op_flags[i] & (NPY_ITER_READWRITE0x00010000 | NPY_ITER_WRITEONLY0x00040000)) { | ||||
| 379 | op_flags[i] &= ~NPY_ITER_READONLY0x00020000; | ||||
| 380 | } | ||||
| 381 | } | ||||
| 382 | for (i = nin; i < nop; ++i) { | ||||
| 383 | op_flags[i] = ufunc->op_flags[i] ? ufunc->op_flags[i] : op_out_flags; | ||||
| 384 | } | ||||
| 385 | } | ||||
| 386 | |||||
| 387 | /* | ||||
| 388 | * This function analyzes the input arguments | ||||
| 389 | * and determines an appropriate __array_wrap__ function to call | ||||
| 390 | * for the outputs. | ||||
| 391 | * | ||||
| 392 | * If an output argument is provided, then it is wrapped | ||||
| 393 | * with its own __array_wrap__ not with the one determined by | ||||
| 394 | * the input arguments. | ||||
| 395 | * | ||||
| 396 | * if the provided output argument is already an array, | ||||
| 397 | * the wrapping function is None (which means no wrapping will | ||||
| 398 | * be done --- not even PyArray_Return). | ||||
| 399 | * | ||||
| 400 | * A NULL is placed in output_wrap for outputs that | ||||
| 401 | * should just have PyArray_Return called. | ||||
| 402 | */ | ||||
| 403 | static void | ||||
| 404 | _find_array_wrap(ufunc_full_args args, npy_bool subok, | ||||
| 405 | PyObject **output_wrap, int nin, int nout) | ||||
| 406 | { | ||||
| 407 | int i; | ||||
| 408 | PyObject *wrap = NULL((void*)0); | ||||
| 409 | |||||
| 410 | /* | ||||
| 411 | * If a 'subok' parameter is passed and isn't True, don't wrap but put None | ||||
| 412 | * into slots with out arguments which means return the out argument | ||||
| 413 | */ | ||||
| 414 | if (!subok) { | ||||
| 415 | goto handle_out; | ||||
| 416 | } | ||||
| 417 | |||||
| 418 | /* | ||||
| 419 | * Determine the wrapping function given by the input arrays | ||||
| 420 | * (could be NULL). | ||||
| 421 | */ | ||||
| 422 | wrap = _find_array_method(args.in, npy_um_str_array_wrap); | ||||
| 423 | |||||
| 424 | /* | ||||
| 425 | * For all the output arrays decide what to do. | ||||
| 426 | * | ||||
| 427 | * 1) Use the wrap function determined from the input arrays | ||||
| 428 | * This is the default if the output array is not | ||||
| 429 | * passed in. | ||||
| 430 | * | ||||
| 431 | * 2) Use the __array_wrap__ method of the output object | ||||
| 432 | * passed in. -- this is special cased for | ||||
| 433 | * exact ndarray so that no PyArray_Return is | ||||
| 434 | * done in that case. | ||||
| 435 | */ | ||||
| 436 | handle_out: | ||||
| 437 | if (args.out == NULL((void*)0)) { | ||||
| 438 | for (i = 0; i < nout; i++) { | ||||
| 439 | Py_XINCREF(wrap)_Py_XINCREF(((PyObject*)(wrap))); | ||||
| 440 | output_wrap[i] = wrap; | ||||
| 441 | } | ||||
| 442 | } | ||||
| 443 | else { | ||||
| 444 | for (i = 0; i < nout; i++) { | ||||
| 445 | output_wrap[i] = _get_output_array_method( | ||||
| 446 | PyTuple_GET_ITEM(args.out, i)((((void) (0)), (PyTupleObject *)(args.out))->ob_item[i]), npy_um_str_array_wrap, wrap); | ||||
| 447 | } | ||||
| 448 | } | ||||
| 449 | |||||
| 450 | Py_XDECREF(wrap)_Py_XDECREF(((PyObject*)(wrap))); | ||||
| 451 | } | ||||
| 452 | |||||
| 453 | |||||
| 454 | /* | ||||
| 455 | * Apply the __array_wrap__ function with the given array and content. | ||||
| 456 | * | ||||
| 457 | * Interprets wrap=None and wrap=NULL as intended by _find_array_wrap | ||||
| 458 | * | ||||
| 459 | * Steals a reference to obj and wrap. | ||||
| 460 | * Pass context=NULL to indicate there is no context. | ||||
| 461 | */ | ||||
| 462 | static PyObject * | ||||
| 463 | _apply_array_wrap( | ||||
| 464 | PyObject *wrap, PyArrayObject *obj, _ufunc_context const *context) { | ||||
| 465 | if (wrap == NULL((void*)0)) { | ||||
| 466 | /* default behavior */ | ||||
| 467 | return PyArray_Return(obj); | ||||
| 468 | } | ||||
| 469 | else if (wrap == Py_None(&_Py_NoneStruct)) { | ||||
| 470 | Py_DECREF(wrap)_Py_DECREF(((PyObject*)(wrap))); | ||||
| 471 | return (PyObject *)obj; | ||||
| 472 | } | ||||
| 473 | else { | ||||
| 474 | PyObject *res; | ||||
| 475 | PyObject *py_context = NULL((void*)0); | ||||
| 476 | |||||
| 477 | /* Convert the context object to a tuple, if present */ | ||||
| 478 | if (context == NULL((void*)0)) { | ||||
| 479 | py_context = Py_None(&_Py_NoneStruct); | ||||
| 480 | Py_INCREF(py_context)_Py_INCREF(((PyObject*)(py_context))); | ||||
| 481 | } | ||||
| 482 | else { | ||||
| 483 | PyObject *args_tup; | ||||
| 484 | /* Call the method with appropriate context */ | ||||
| 485 | args_tup = _get_wrap_prepare_args(context->args); | ||||
| 486 | if (args_tup == NULL((void*)0)) { | ||||
| 487 | goto fail; | ||||
| 488 | } | ||||
| 489 | py_context = Py_BuildValue("OOi", | ||||
| 490 | context->ufunc, args_tup, context->out_i); | ||||
| 491 | Py_DECREF(args_tup)_Py_DECREF(((PyObject*)(args_tup))); | ||||
| 492 | if (py_context == NULL((void*)0)) { | ||||
| 493 | goto fail; | ||||
| 494 | } | ||||
| 495 | } | ||||
| 496 | /* try __array_wrap__(obj, context) */ | ||||
| 497 | res = PyObject_CallFunctionObjArgs(wrap, obj, py_context, NULL((void*)0)); | ||||
| 498 | Py_DECREF(py_context)_Py_DECREF(((PyObject*)(py_context))); | ||||
| 499 | |||||
| 500 | /* try __array_wrap__(obj) if the context argument is not accepted */ | ||||
| 501 | if (res == NULL((void*)0) && PyErr_ExceptionMatches(PyExc_TypeError)) { | ||||
| 502 | PyErr_Clear(); | ||||
| 503 | res = PyObject_CallFunctionObjArgs(wrap, obj, NULL((void*)0)); | ||||
| 504 | } | ||||
| 505 | Py_DECREF(wrap)_Py_DECREF(((PyObject*)(wrap))); | ||||
| 506 | Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj))); | ||||
| 507 | return res; | ||||
| 508 | fail: | ||||
| 509 | Py_DECREF(wrap)_Py_DECREF(((PyObject*)(wrap))); | ||||
| 510 | Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj))); | ||||
| 511 | return NULL((void*)0); | ||||
| 512 | } | ||||
| 513 | } | ||||
| 514 | |||||
| 515 | |||||
| 516 | /*UFUNC_API | ||||
| 517 | * | ||||
| 518 | * On return, if errobj is populated with a non-NULL value, the caller | ||||
| 519 | * owns a new reference to errobj. | ||||
| 520 | */ | ||||
| 521 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 522 | PyUFunc_GetPyValues(char *name, int *bufsize, int *errmask, PyObject **errobj) | ||||
| 523 | { | ||||
| 524 | PyObject *ref = get_global_ext_obj(); | ||||
| 525 | |||||
| 526 | return _extract_pyvals(ref, name, bufsize, errmask, errobj); | ||||
| 527 | } | ||||
| 528 | |||||
| 529 | /* Return the position of next non-white-space char in the string */ | ||||
| 530 | static int | ||||
| 531 | _next_non_white_space(const char* str, int offset) | ||||
| 532 | { | ||||
| 533 | int ret = offset; | ||||
| 534 | while (str[ret] == ' ' || str[ret] == '\t') { | ||||
| 535 | ret++; | ||||
| 536 | } | ||||
| 537 | return ret; | ||||
| 538 | } | ||||
| 539 | |||||
| 540 | static int | ||||
| 541 | _is_alpha_underscore(char ch) | ||||
| 542 | { | ||||
| 543 | return (ch >= 'A' && ch <= 'Z') || (ch >= 'a' && ch <= 'z') || ch == '_'; | ||||
| 544 | } | ||||
| 545 | |||||
| 546 | static int | ||||
| 547 | _is_alnum_underscore(char ch) | ||||
| 548 | { | ||||
| 549 | return _is_alpha_underscore(ch) || (ch >= '0' && ch <= '9'); | ||||
| 550 | } | ||||
| 551 | |||||
| 552 | /* | ||||
| 553 | * Convert a string into a number | ||||
| 554 | */ | ||||
| 555 | static npy_intp | ||||
| 556 | _get_size(const char* str) | ||||
| 557 | { | ||||
| 558 | char *stop; | ||||
| 559 | npy_longlong size = NumPyOS_strtoll(str, &stop, 10); | ||||
| 560 | |||||
| 561 | if (stop == str || _is_alpha_underscore(*stop)) { | ||||
| 562 | /* not a well formed number */ | ||||
| 563 | return -1; | ||||
| 564 | } | ||||
| 565 | if (size >= NPY_MAX_INTP9223372036854775807L || size <= NPY_MIN_INTP(-9223372036854775807L -1L)) { | ||||
| 566 | /* len(str) too long */ | ||||
| 567 | return -1; | ||||
| 568 | } | ||||
| 569 | return size; | ||||
| 570 | } | ||||
| 571 | |||||
| 572 | /* | ||||
| 573 | * Return the ending position of a variable name including optional modifier | ||||
| 574 | */ | ||||
| 575 | static int | ||||
| 576 | _get_end_of_name(const char* str, int offset) | ||||
| 577 | { | ||||
| 578 | int ret = offset; | ||||
| 579 | while (_is_alnum_underscore(str[ret])) { | ||||
| 580 | ret++; | ||||
| 581 | } | ||||
| 582 | if (str[ret] == '?') { | ||||
| 583 | ret ++; | ||||
| 584 | } | ||||
| 585 | return ret; | ||||
| 586 | } | ||||
| 587 | |||||
| 588 | /* | ||||
| 589 | * Returns 1 if the dimension names pointed by s1 and s2 are the same, | ||||
| 590 | * otherwise returns 0. | ||||
| 591 | */ | ||||
| 592 | static int | ||||
| 593 | _is_same_name(const char* s1, const char* s2) | ||||
| 594 | { | ||||
| 595 | while (_is_alnum_underscore(*s1) && _is_alnum_underscore(*s2)) { | ||||
| 596 | if (*s1 != *s2) { | ||||
| 597 | return 0; | ||||
| 598 | } | ||||
| 599 | s1++; | ||||
| 600 | s2++; | ||||
| 601 | } | ||||
| 602 | return !_is_alnum_underscore(*s1) && !_is_alnum_underscore(*s2); | ||||
| 603 | } | ||||
| 604 | |||||
| 605 | /* | ||||
| 606 | * Sets core_num_dim_ix, core_num_dims, core_dim_ixs, core_offsets, | ||||
| 607 | * and core_signature in PyUFuncObject "ufunc". Returns 0 unless an | ||||
| 608 | * error occurred. | ||||
| 609 | */ | ||||
| 610 | static int | ||||
| 611 | _parse_signature(PyUFuncObject *ufunc, const char *signature) | ||||
| 612 | { | ||||
| 613 | size_t len; | ||||
| 614 | char const **var_names; | ||||
| 615 | int nd = 0; /* number of dimension of the current argument */ | ||||
| 616 | int cur_arg = 0; /* index into core_num_dims&core_offsets */ | ||||
| 617 | int cur_core_dim = 0; /* index into core_dim_ixs */ | ||||
| 618 | int i = 0; | ||||
| 619 | char *parse_error = NULL((void*)0); | ||||
| 620 | |||||
| 621 | if (signature == NULL((void*)0)) { | ||||
| 622 | PyErr_SetString(PyExc_RuntimeError, | ||||
| 623 | "_parse_signature with NULL signature"); | ||||
| 624 | return -1; | ||||
| 625 | } | ||||
| 626 | len = strlen(signature); | ||||
| 627 | ufunc->core_signature = PyArray_mallocPyMem_RawMalloc(sizeof(char) * (len+1)); | ||||
| 628 | if (ufunc->core_signature) { | ||||
| 629 | strcpy(ufunc->core_signature, signature); | ||||
| 630 | } | ||||
| 631 | /* Allocate sufficient memory to store pointers to all dimension names */ | ||||
| 632 | var_names = PyArray_mallocPyMem_RawMalloc(sizeof(char const*) * len); | ||||
| 633 | if (var_names == NULL((void*)0)) { | ||||
| 634 | PyErr_NoMemory(); | ||||
| 635 | return -1; | ||||
| 636 | } | ||||
| 637 | |||||
| 638 | ufunc->core_enabled = 1; | ||||
| 639 | ufunc->core_num_dim_ix = 0; | ||||
| 640 | ufunc->core_num_dims = PyArray_mallocPyMem_RawMalloc(sizeof(int) * ufunc->nargs); | ||||
| 641 | ufunc->core_offsets = PyArray_mallocPyMem_RawMalloc(sizeof(int) * ufunc->nargs); | ||||
| 642 | /* The next three items will be shrunk later */ | ||||
| 643 | ufunc->core_dim_ixs = PyArray_mallocPyMem_RawMalloc(sizeof(int) * len); | ||||
| 644 | ufunc->core_dim_sizes = PyArray_mallocPyMem_RawMalloc(sizeof(npy_intp) * len); | ||||
| 645 | ufunc->core_dim_flags = PyArray_mallocPyMem_RawMalloc(sizeof(npy_uint32) * len); | ||||
| 646 | |||||
| 647 | if (ufunc->core_num_dims == NULL((void*)0) || ufunc->core_dim_ixs == NULL((void*)0) || | ||||
| 648 | ufunc->core_offsets == NULL((void*)0) || | ||||
| 649 | ufunc->core_dim_sizes == NULL((void*)0) || | ||||
| 650 | ufunc->core_dim_flags == NULL((void*)0)) { | ||||
| 651 | PyErr_NoMemory(); | ||||
| 652 | goto fail; | ||||
| 653 | } | ||||
| 654 | for (size_t j = 0; j < len; j++) { | ||||
| 655 | ufunc->core_dim_flags[j] = 0; | ||||
| 656 | } | ||||
| 657 | |||||
| 658 | i = _next_non_white_space(signature, 0); | ||||
| 659 | while (signature[i] != '\0') { | ||||
| 660 | /* loop over input/output arguments */ | ||||
| 661 | if (cur_arg == ufunc->nin) { | ||||
| 662 | /* expect "->" */ | ||||
| 663 | if (signature[i] != '-' || signature[i+1] != '>') { | ||||
| 664 | parse_error = "expect '->'"; | ||||
| 665 | goto fail; | ||||
| 666 | } | ||||
| 667 | i = _next_non_white_space(signature, i + 2); | ||||
| 668 | } | ||||
| 669 | |||||
| 670 | /* | ||||
| 671 | * parse core dimensions of one argument, | ||||
| 672 | * e.g. "()", "(i)", or "(i,j)" | ||||
| 673 | */ | ||||
| 674 | if (signature[i] != '(') { | ||||
| 675 | parse_error = "expect '('"; | ||||
| 676 | goto fail; | ||||
| 677 | } | ||||
| 678 | i = _next_non_white_space(signature, i + 1); | ||||
| 679 | while (signature[i] != ')') { | ||||
| 680 | /* loop over core dimensions */ | ||||
| 681 | int ix, i_end; | ||||
| 682 | npy_intp frozen_size; | ||||
| 683 | npy_bool can_ignore; | ||||
| 684 | |||||
| 685 | if (signature[i] == '\0') { | ||||
| 686 | parse_error = "unexpected end of signature string"; | ||||
| 687 | goto fail; | ||||
| 688 | } | ||||
| 689 | /* | ||||
| 690 | * Is this a variable or a fixed size dimension? | ||||
| 691 | */ | ||||
| 692 | if (_is_alpha_underscore(signature[i])) { | ||||
| 693 | frozen_size = -1; | ||||
| 694 | } | ||||
| 695 | else { | ||||
| 696 | frozen_size = (npy_intp)_get_size(signature + i); | ||||
| 697 | if (frozen_size <= 0) { | ||||
| 698 | parse_error = "expect dimension name or non-zero frozen size"; | ||||
| 699 | goto fail; | ||||
| 700 | } | ||||
| 701 | } | ||||
| 702 | /* Is this dimension flexible? */ | ||||
| 703 | i_end = _get_end_of_name(signature, i); | ||||
| 704 | can_ignore = (i_end > 0 && signature[i_end - 1] == '?'); | ||||
| 705 | /* | ||||
| 706 | * Determine whether we already saw this dimension name, | ||||
| 707 | * get its index, and set its properties | ||||
| 708 | */ | ||||
| 709 | for(ix = 0; ix < ufunc->core_num_dim_ix; ix++) { | ||||
| 710 | if (frozen_size > 0 ? | ||||
| 711 | frozen_size == ufunc->core_dim_sizes[ix] : | ||||
| 712 | _is_same_name(signature + i, var_names[ix])) { | ||||
| 713 | break; | ||||
| 714 | } | ||||
| 715 | } | ||||
| 716 | /* | ||||
| 717 | * If a new dimension, store its properties; if old, check consistency. | ||||
| 718 | */ | ||||
| 719 | if (ix == ufunc->core_num_dim_ix) { | ||||
| 720 | ufunc->core_num_dim_ix++; | ||||
| 721 | var_names[ix] = signature + i; | ||||
| 722 | ufunc->core_dim_sizes[ix] = frozen_size; | ||||
| 723 | if (frozen_size < 0) { | ||||
| 724 | ufunc->core_dim_flags[ix] |= UFUNC_CORE_DIM_SIZE_INFERRED0x0002; | ||||
| 725 | } | ||||
| 726 | if (can_ignore) { | ||||
| 727 | ufunc->core_dim_flags[ix] |= UFUNC_CORE_DIM_CAN_IGNORE0x0004; | ||||
| 728 | } | ||||
| 729 | } else { | ||||
| 730 | if (can_ignore && !(ufunc->core_dim_flags[ix] & | ||||
| 731 | UFUNC_CORE_DIM_CAN_IGNORE0x0004)) { | ||||
| 732 | parse_error = "? cannot be used, name already seen without ?"; | ||||
| 733 | goto fail; | ||||
| 734 | } | ||||
| 735 | if (!can_ignore && (ufunc->core_dim_flags[ix] & | ||||
| 736 | UFUNC_CORE_DIM_CAN_IGNORE0x0004)) { | ||||
| 737 | parse_error = "? must be used, name already seen with ?"; | ||||
| 738 | goto fail; | ||||
| 739 | } | ||||
| 740 | } | ||||
| 741 | ufunc->core_dim_ixs[cur_core_dim] = ix; | ||||
| 742 | cur_core_dim++; | ||||
| 743 | nd++; | ||||
| 744 | i = _next_non_white_space(signature, i_end); | ||||
| 745 | if (signature[i] != ',' && signature[i] != ')') { | ||||
| 746 | parse_error = "expect ',' or ')'"; | ||||
| 747 | goto fail; | ||||
| 748 | } | ||||
| 749 | if (signature[i] == ',') | ||||
| 750 | { | ||||
| 751 | i = _next_non_white_space(signature, i + 1); | ||||
| 752 | if (signature[i] == ')') { | ||||
| 753 | parse_error = "',' must not be followed by ')'"; | ||||
| 754 | goto fail; | ||||
| 755 | } | ||||
| 756 | } | ||||
| 757 | } | ||||
| 758 | ufunc->core_num_dims[cur_arg] = nd; | ||||
| 759 | ufunc->core_offsets[cur_arg] = cur_core_dim-nd; | ||||
| 760 | cur_arg++; | ||||
| 761 | nd = 0; | ||||
| 762 | |||||
| 763 | i = _next_non_white_space(signature, i + 1); | ||||
| 764 | if (cur_arg != ufunc->nin && cur_arg != ufunc->nargs) { | ||||
| 765 | /* | ||||
| 766 | * The list of input arguments (or output arguments) was | ||||
| 767 | * only read partially | ||||
| 768 | */ | ||||
| 769 | if (signature[i] != ',') { | ||||
| 770 | parse_error = "expect ','"; | ||||
| 771 | goto fail; | ||||
| 772 | } | ||||
| 773 | i = _next_non_white_space(signature, i + 1); | ||||
| 774 | } | ||||
| 775 | } | ||||
| 776 | if (cur_arg != ufunc->nargs) { | ||||
| 777 | parse_error = "incomplete signature: not all arguments found"; | ||||
| 778 | goto fail; | ||||
| 779 | } | ||||
| 780 | ufunc->core_dim_ixs = PyArray_reallocPyMem_RawRealloc(ufunc->core_dim_ixs, | ||||
| 781 | sizeof(int) * cur_core_dim); | ||||
| 782 | ufunc->core_dim_sizes = PyArray_reallocPyMem_RawRealloc( | ||||
| 783 | ufunc->core_dim_sizes, | ||||
| 784 | sizeof(npy_intp) * ufunc->core_num_dim_ix); | ||||
| 785 | ufunc->core_dim_flags = PyArray_reallocPyMem_RawRealloc( | ||||
| 786 | ufunc->core_dim_flags, | ||||
| 787 | sizeof(npy_uint32) * ufunc->core_num_dim_ix); | ||||
| 788 | |||||
| 789 | /* check for trivial core-signature, e.g. "(),()->()" */ | ||||
| 790 | if (cur_core_dim == 0) { | ||||
| 791 | ufunc->core_enabled = 0; | ||||
| 792 | } | ||||
| 793 | PyArray_freePyMem_RawFree((void*)var_names); | ||||
| 794 | return 0; | ||||
| 795 | |||||
| 796 | fail: | ||||
| 797 | PyArray_freePyMem_RawFree((void*)var_names); | ||||
| 798 | if (parse_error) { | ||||
| 799 | PyErr_Format(PyExc_ValueError, | ||||
| 800 | "%s at position %d in \"%s\"", | ||||
| 801 | parse_error, i, signature); | ||||
| 802 | } | ||||
| 803 | return -1; | ||||
| 804 | } | ||||
| 805 | |||||
| 806 | /* | ||||
| 807 | * Checks if 'obj' is a valid output array for a ufunc, i.e. it is | ||||
| 808 | * either None or a writeable array, increments its reference count | ||||
| 809 | * and stores a pointer to it in 'store'. Returns 0 on success, sets | ||||
| 810 | * an exception and returns -1 on failure. | ||||
| 811 | */ | ||||
| 812 | static int | ||||
| 813 | _set_out_array(PyObject *obj, PyArrayObject **store) | ||||
| 814 | { | ||||
| 815 | if (obj == Py_None(&_Py_NoneStruct)) { | ||||
| 816 | /* Translate None to NULL */ | ||||
| 817 | return 0; | ||||
| 818 | } | ||||
| 819 | if (PyArray_Check(obj)((((PyObject*)(obj))->ob_type) == (&PyArray_Type) || PyType_IsSubtype ((((PyObject*)(obj))->ob_type), (&PyArray_Type)))) { | ||||
| 820 | /* If it's an array, store it */ | ||||
| 821 | if (PyArray_FailUnlessWriteable((PyArrayObject *)obj, | ||||
| 822 | "output array") < 0) { | ||||
| 823 | return -1; | ||||
| 824 | } | ||||
| 825 | Py_INCREF(obj)_Py_INCREF(((PyObject*)(obj))); | ||||
| 826 | *store = (PyArrayObject *)obj; | ||||
| 827 | |||||
| 828 | return 0; | ||||
| 829 | } | ||||
| 830 | PyErr_SetString(PyExc_TypeError, "return arrays must be of ArrayType"); | ||||
| 831 | |||||
| 832 | return -1; | ||||
| 833 | } | ||||
| 834 | |||||
| 835 | /********* GENERIC UFUNC USING ITERATOR *********/ | ||||
| 836 | |||||
| 837 | /* | ||||
| 838 | * Produce a name for the ufunc, if one is not already set | ||||
| 839 | * This is used in the PyUFunc_handlefperr machinery, and in error messages | ||||
| 840 | */ | ||||
| 841 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) const char* | ||||
| 842 | ufunc_get_name_cstr(PyUFuncObject *ufunc) { | ||||
| 843 | return ufunc->name ? ufunc->name : "<unnamed ufunc>"; | ||||
| 844 | } | ||||
| 845 | |||||
| 846 | |||||
| 847 | /* | ||||
| 848 | * Converters for use in parsing of keywords arguments. | ||||
| 849 | */ | ||||
| 850 | static int | ||||
| 851 | _subok_converter(PyObject *obj, npy_bool *subok) | ||||
| 852 | { | ||||
| 853 | if (PyBool_Check(obj)((((PyObject*)(obj))->ob_type) == &PyBool_Type)) { | ||||
| 854 | *subok = (obj == Py_True((PyObject *) &_Py_TrueStruct)); | ||||
| 855 | return NPY_SUCCEED1; | ||||
| 856 | } | ||||
| 857 | else { | ||||
| 858 | PyErr_SetString(PyExc_TypeError, | ||||
| 859 | "'subok' must be a boolean"); | ||||
| 860 | return NPY_FAIL0; | ||||
| 861 | } | ||||
| 862 | } | ||||
| 863 | |||||
| 864 | static int | ||||
| 865 | _keepdims_converter(PyObject *obj, int *keepdims) | ||||
| 866 | { | ||||
| 867 | if (PyBool_Check(obj)((((PyObject*)(obj))->ob_type) == &PyBool_Type)) { | ||||
| 868 | *keepdims = (obj == Py_True((PyObject *) &_Py_TrueStruct)); | ||||
| 869 | return NPY_SUCCEED1; | ||||
| 870 | } | ||||
| 871 | else { | ||||
| 872 | PyErr_SetString(PyExc_TypeError, | ||||
| 873 | "'keepdims' must be a boolean"); | ||||
| 874 | return NPY_FAIL0; | ||||
| 875 | } | ||||
| 876 | } | ||||
| 877 | |||||
| 878 | static int | ||||
| 879 | _wheremask_converter(PyObject *obj, PyArrayObject **wheremask) | ||||
| 880 | { | ||||
| 881 | /* | ||||
| 882 | * Optimization: where=True is the same as no where argument. | ||||
| 883 | * This lets us document True as the default. | ||||
| 884 | */ | ||||
| 885 | if (obj == Py_True((PyObject *) &_Py_TrueStruct)) { | ||||
| 886 | return NPY_SUCCEED1; | ||||
| 887 | } | ||||
| 888 | else { | ||||
| 889 | PyArray_Descr *dtype = PyArray_DescrFromType(NPY_BOOL); | ||||
| 890 | if (dtype == NULL((void*)0)) { | ||||
| 891 | return NPY_FAIL0; | ||||
| 892 | } | ||||
| 893 | /* PyArray_FromAny steals reference to dtype, even on failure */ | ||||
| 894 | *wheremask = (PyArrayObject *)PyArray_FromAny(obj, dtype, 0, 0, 0, NULL((void*)0)); | ||||
| 895 | if ((*wheremask) == NULL((void*)0)) { | ||||
| 896 | return NPY_FAIL0; | ||||
| 897 | } | ||||
| 898 | return NPY_SUCCEED1; | ||||
| 899 | } | ||||
| 900 | } | ||||
| 901 | |||||
| 902 | |||||
| 903 | /* | ||||
| 904 | * Due to the array override, do the actual parameter conversion | ||||
| 905 | * only in this step. This function takes the reference objects and | ||||
| 906 | * parses them into the desired values. | ||||
| 907 | * This function cleans up after itself and NULLs references on error, | ||||
| 908 | * however, the caller has to ensure that `out_op[0:nargs]` and `out_whermeask` | ||||
| 909 | * are NULL initialized. | ||||
| 910 | */ | ||||
| 911 | static int | ||||
| 912 | convert_ufunc_arguments(PyUFuncObject *ufunc, | ||||
| 913 | ufunc_full_args full_args, PyArrayObject **out_op, | ||||
| 914 | PyObject *order_obj, NPY_ORDER *out_order, | ||||
| 915 | PyObject *casting_obj, NPY_CASTING *out_casting, | ||||
| 916 | PyObject *subok_obj, npy_bool *out_subok, | ||||
| 917 | PyObject *where_obj, PyArrayObject **out_wheremask, /* PyArray of bool */ | ||||
| 918 | PyObject *keepdims_obj, int *out_keepdims) | ||||
| 919 | { | ||||
| 920 | int nin = ufunc->nin; | ||||
| 921 | int nout = ufunc->nout; | ||||
| 922 | int nop = ufunc->nargs; | ||||
| 923 | PyObject *obj; | ||||
| 924 | |||||
| 925 | /* Convert and fill in input arguments */ | ||||
| 926 | for (int i = 0; i < nin; i++) { | ||||
| 927 | obj = PyTuple_GET_ITEM(full_args.in, i)((((void) (0)), (PyTupleObject *)(full_args.in))->ob_item[ i]); | ||||
| 928 | |||||
| 929 | if (PyArray_Check(obj)((((PyObject*)(obj))->ob_type) == (&PyArray_Type) || PyType_IsSubtype ((((PyObject*)(obj))->ob_type), (&PyArray_Type)))) { | ||||
| 930 | PyArrayObject *obj_a = (PyArrayObject *)obj; | ||||
| 931 | out_op[i] = (PyArrayObject *)PyArray_FromArray(obj_a, NULL((void*)0), 0); | ||||
| 932 | } | ||||
| 933 | else { | ||||
| 934 | out_op[i] = (PyArrayObject *)PyArray_FromAny(obj, | ||||
| 935 | NULL((void*)0), 0, 0, 0, NULL((void*)0)); | ||||
| 936 | } | ||||
| 937 | |||||
| 938 | if (out_op[i] == NULL((void*)0)) { | ||||
| 939 | goto fail; | ||||
| 940 | } | ||||
| 941 | } | ||||
| 942 | |||||
| 943 | /* Convert and fill in output arguments */ | ||||
| 944 | if (full_args.out != NULL((void*)0)) { | ||||
| 945 | for (int i = 0; i < nout; i++) { | ||||
| 946 | obj = PyTuple_GET_ITEM(full_args.out, i)((((void) (0)), (PyTupleObject *)(full_args.out))->ob_item [i]); | ||||
| 947 | if (_set_out_array(obj, out_op + i + nin) < 0) { | ||||
| 948 | goto fail; | ||||
| 949 | } | ||||
| 950 | } | ||||
| 951 | } | ||||
| 952 | |||||
| 953 | /* | ||||
| 954 | * Convert most arguments manually here, since it is easier to handle | ||||
| 955 | * the ufunc override if we first parse only to objects. | ||||
| 956 | */ | ||||
| 957 | if (where_obj && !_wheremask_converter(where_obj, out_wheremask)) { | ||||
| 958 | goto fail; | ||||
| 959 | } | ||||
| 960 | if (keepdims_obj && !_keepdims_converter(keepdims_obj, out_keepdims)) { | ||||
| 961 | goto fail; | ||||
| 962 | } | ||||
| 963 | if (casting_obj && !PyArray_CastingConverter(casting_obj, out_casting)) { | ||||
| 964 | goto fail; | ||||
| 965 | } | ||||
| 966 | if (order_obj && !PyArray_OrderConverter(order_obj, out_order)) { | ||||
| 967 | goto fail; | ||||
| 968 | } | ||||
| 969 | if (subok_obj && !_subok_converter(subok_obj, out_subok)) { | ||||
| 970 | goto fail; | ||||
| 971 | } | ||||
| 972 | return 0; | ||||
| 973 | |||||
| 974 | fail: | ||||
| 975 | if (out_wheremask != NULL((void*)0)) { | ||||
| 976 | Py_XSETREF(*out_wheremask, NULL)do { PyObject *_py_tmp = ((PyObject*)(*out_wheremask)); (*out_wheremask ) = (((void*)0)); _Py_XDECREF(((PyObject*)(_py_tmp))); } while (0); | ||||
| 977 | } | ||||
| 978 | for (int i = 0; i < nop; i++) { | ||||
| 979 | Py_XSETREF(out_op[i], NULL)do { PyObject *_py_tmp = ((PyObject*)(out_op[i])); (out_op[i] ) = (((void*)0)); _Py_XDECREF(((PyObject*)(_py_tmp))); } while (0); | ||||
| 980 | } | ||||
| 981 | return -1; | ||||
| 982 | } | ||||
| 983 | |||||
| 984 | /* | ||||
| 985 | * This checks whether a trivial loop is ok, | ||||
| 986 | * making copies of scalar and one dimensional operands if that will | ||||
| 987 | * help. | ||||
| 988 | * | ||||
| 989 | * Returns 1 if a trivial loop is ok, 0 if it is not, and | ||||
| 990 | * -1 if there is an error. | ||||
| 991 | */ | ||||
| 992 | static int | ||||
| 993 | check_for_trivial_loop(PyUFuncObject *ufunc, | ||||
| 994 | PyArrayObject **op, | ||||
| 995 | PyArray_Descr **dtype, | ||||
| 996 | npy_intp buffersize) | ||||
| 997 | { | ||||
| 998 | npy_intp i, nin = ufunc->nin, nop = nin + ufunc->nout; | ||||
| 999 | |||||
| 1000 | for (i = 0; i < nop; ++i) { | ||||
| 1001 | /* | ||||
| 1002 | * If the dtype doesn't match, or the array isn't aligned, | ||||
| 1003 | * indicate that the trivial loop can't be done. | ||||
| 1004 | */ | ||||
| 1005 | if (op[i] != NULL((void*)0) && | ||||
| 1006 | (!PyArray_ISALIGNED(op[i])PyArray_CHKFLAGS((op[i]), 0x0100) || | ||||
| 1007 | !PyArray_EquivTypes(dtype[i], PyArray_DESCR(op[i])) | ||||
| 1008 | )) { | ||||
| 1009 | /* | ||||
| 1010 | * If op[j] is a scalar or small one dimensional | ||||
| 1011 | * array input, make a copy to keep the opportunity | ||||
| 1012 | * for a trivial loop. | ||||
| 1013 | */ | ||||
| 1014 | if (i < nin && (PyArray_NDIM(op[i]) == 0 || | ||||
| 1015 | (PyArray_NDIM(op[i]) == 1 && | ||||
| 1016 | PyArray_DIM(op[i],0) <= buffersize))) { | ||||
| 1017 | PyArrayObject *tmp; | ||||
| 1018 | Py_INCREF(dtype[i])_Py_INCREF(((PyObject*)(dtype[i]))); | ||||
| 1019 | tmp = (PyArrayObject *) | ||||
| 1020 | PyArray_CastToType(op[i], dtype[i], 0); | ||||
| 1021 | if (tmp == NULL((void*)0)) { | ||||
| 1022 | return -1; | ||||
| 1023 | } | ||||
| 1024 | Py_DECREF(op[i])_Py_DECREF(((PyObject*)(op[i]))); | ||||
| 1025 | op[i] = tmp; | ||||
| 1026 | } | ||||
| 1027 | else { | ||||
| 1028 | return 0; | ||||
| 1029 | } | ||||
| 1030 | } | ||||
| 1031 | } | ||||
| 1032 | |||||
| 1033 | return 1; | ||||
| 1034 | } | ||||
| 1035 | |||||
| 1036 | |||||
| 1037 | /* | ||||
| 1038 | * Calls the given __array_prepare__ function on the operand *op, | ||||
| 1039 | * substituting it in place if a new array is returned and matches | ||||
| 1040 | * the old one. | ||||
| 1041 | * | ||||
| 1042 | * This requires that the dimensions, strides and data type remain | ||||
| 1043 | * exactly the same, which may be more strict than before. | ||||
| 1044 | */ | ||||
| 1045 | static int | ||||
| 1046 | prepare_ufunc_output(PyUFuncObject *ufunc, | ||||
| 1047 | PyArrayObject **op, | ||||
| 1048 | PyObject *arr_prep, | ||||
| 1049 | ufunc_full_args full_args, | ||||
| 1050 | int i) | ||||
| 1051 | { | ||||
| 1052 | if (arr_prep != NULL((void*)0) && arr_prep != Py_None(&_Py_NoneStruct)) { | ||||
| 1053 | PyObject *res; | ||||
| 1054 | PyArrayObject *arr; | ||||
| 1055 | PyObject *args_tup; | ||||
| 1056 | |||||
| 1057 | /* Call with the context argument */ | ||||
| 1058 | args_tup = _get_wrap_prepare_args(full_args); | ||||
| 1059 | if (args_tup == NULL((void*)0)) { | ||||
| 1060 | return -1; | ||||
| 1061 | } | ||||
| 1062 | res = PyObject_CallFunction( | ||||
| 1063 | arr_prep, "O(OOi)", *op, ufunc, args_tup, i); | ||||
| 1064 | Py_DECREF(args_tup)_Py_DECREF(((PyObject*)(args_tup))); | ||||
| 1065 | |||||
| 1066 | if (res == NULL((void*)0)) { | ||||
| 1067 | return -1; | ||||
| 1068 | } | ||||
| 1069 | else if (!PyArray_Check(res)((((PyObject*)(res))->ob_type) == (&PyArray_Type) || PyType_IsSubtype ((((PyObject*)(res))->ob_type), (&PyArray_Type)))) { | ||||
| 1070 | PyErr_SetString(PyExc_TypeError, | ||||
| 1071 | "__array_prepare__ must return an " | ||||
| 1072 | "ndarray or subclass thereof"); | ||||
| 1073 | Py_DECREF(res)_Py_DECREF(((PyObject*)(res))); | ||||
| 1074 | return -1; | ||||
| 1075 | } | ||||
| 1076 | arr = (PyArrayObject *)res; | ||||
| 1077 | |||||
| 1078 | /* If the same object was returned, nothing to do */ | ||||
| 1079 | if (arr == *op) { | ||||
| 1080 | Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr))); | ||||
| 1081 | } | ||||
| 1082 | /* If the result doesn't match, throw an error */ | ||||
| 1083 | else if (PyArray_NDIM(arr) != PyArray_NDIM(*op) || | ||||
| 1084 | !PyArray_CompareLists(PyArray_DIMS(arr), | ||||
| 1085 | PyArray_DIMS(*op), | ||||
| 1086 | PyArray_NDIM(arr)) || | ||||
| 1087 | !PyArray_CompareLists(PyArray_STRIDES(arr), | ||||
| 1088 | PyArray_STRIDES(*op), | ||||
| 1089 | PyArray_NDIM(arr)) || | ||||
| 1090 | !PyArray_EquivTypes(PyArray_DESCR(arr), | ||||
| 1091 | PyArray_DESCR(*op))) { | ||||
| 1092 | PyErr_SetString(PyExc_TypeError, | ||||
| 1093 | "__array_prepare__ must return an " | ||||
| 1094 | "ndarray or subclass thereof which is " | ||||
| 1095 | "otherwise identical to its input"); | ||||
| 1096 | Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr))); | ||||
| 1097 | return -1; | ||||
| 1098 | } | ||||
| 1099 | /* Replace the op value */ | ||||
| 1100 | else { | ||||
| 1101 | Py_DECREF(*op)_Py_DECREF(((PyObject*)(*op))); | ||||
| 1102 | *op = arr; | ||||
| 1103 | } | ||||
| 1104 | } | ||||
| 1105 | |||||
| 1106 | return 0; | ||||
| 1107 | } | ||||
| 1108 | |||||
| 1109 | |||||
| 1110 | /* | ||||
| 1111 | * Check whether a trivial loop is possible and call the innerloop if it is. | ||||
| 1112 | * A trivial loop is defined as one where a single strided inner-loop call | ||||
| 1113 | * is possible. | ||||
| 1114 | * | ||||
| 1115 | * This function only supports a single output (due to the overlap check). | ||||
| 1116 | * It always accepts 0-D arrays and will broadcast them. The function | ||||
| 1117 | * cannot broadcast any other array (as it requires a single stride). | ||||
| 1118 | * The function accepts all 1-D arrays, and N-D arrays that are either all | ||||
| 1119 | * C- or all F-contiguous. | ||||
| 1120 | * | ||||
| 1121 | * Returns -2 if a trivial loop is not possible, 0 on success and -1 on error. | ||||
| 1122 | */ | ||||
| 1123 | static NPY_INLINEinline int | ||||
| 1124 | try_trivial_single_output_loop(PyUFuncObject *ufunc, | ||||
| 1125 | PyArrayObject *op[], PyArray_Descr *dtypes[], | ||||
| 1126 | NPY_ORDER order, PyObject *arr_prep[], ufunc_full_args full_args, | ||||
| 1127 | PyUFuncGenericFunction innerloop, void *innerloopdata) | ||||
| 1128 | { | ||||
| 1129 | int nin = ufunc->nin; | ||||
| 1130 | int nop = nin + 1; | ||||
| 1131 | assert(ufunc->nout == 1)((void) (0)); | ||||
| 1132 | |||||
| 1133 | /* The order of all N-D contiguous operands, can be fixed by `order` */ | ||||
| 1134 | int operation_order = 0; | ||||
| 1135 | if (order == NPY_CORDER) { | ||||
| 1136 | operation_order = NPY_ARRAY_C_CONTIGUOUS0x0001; | ||||
| 1137 | } | ||||
| 1138 | else if (order == NPY_FORTRANORDER) { | ||||
| 1139 | operation_order = NPY_ARRAY_F_CONTIGUOUS0x0002; | ||||
| 1140 | } | ||||
| 1141 | |||||
| 1142 | int operation_ndim = 0; | ||||
| 1143 | npy_intp *operation_shape = NULL((void*)0); | ||||
| 1144 | npy_intp fixed_strides[NPY_MAXARGS32]; | ||||
| 1145 | |||||
| 1146 | for (int iop = 0; iop < nop; iop++) { | ||||
| 1147 | if (op[iop] == NULL((void*)0)) { | ||||
| 1148 | /* The out argument may be NULL (and only that one); fill later */ | ||||
| 1149 | assert(iop == nin)((void) (0)); | ||||
| 1150 | continue; | ||||
| 1151 | } | ||||
| 1152 | |||||
| 1153 | int op_ndim = PyArray_NDIM(op[iop]); | ||||
| 1154 | |||||
| 1155 | /* Special case 0-D since we can handle broadcasting using a 0-stride */ | ||||
| 1156 | if (op_ndim == 0) { | ||||
| 1157 | fixed_strides[iop] = 0; | ||||
| 1158 | continue; | ||||
| 1159 | } | ||||
| 1160 | |||||
| 1161 | /* First non 0-D op: fix dimensions, shape (order is fixed later) */ | ||||
| 1162 | if (operation_ndim == 0) { | ||||
| 1163 | operation_ndim = op_ndim; | ||||
| 1164 | operation_shape = PyArray_SHAPE(op[iop]); | ||||
| 1165 | } | ||||
| 1166 | else if (op_ndim != operation_ndim) { | ||||
| 1167 | return -2; /* dimension mismatch (except 0-d ops) */ | ||||
| 1168 | } | ||||
| 1169 | else if (!PyArray_CompareLists( | ||||
| 1170 | operation_shape, PyArray_DIMS(op[iop]), op_ndim)) { | ||||
| 1171 | return -2; /* shape mismatch */ | ||||
| 1172 | } | ||||
| 1173 | |||||
| 1174 | if (op_ndim == 1) { | ||||
| 1175 | fixed_strides[iop] = PyArray_STRIDES(op[iop])[0]; | ||||
| 1176 | } | ||||
| 1177 | else { | ||||
| 1178 | fixed_strides[iop] = PyArray_ITEMSIZE(op[iop]); /* contiguous */ | ||||
| 1179 | |||||
| 1180 | /* This op must match the operation order (and be contiguous) */ | ||||
| 1181 | int op_order = (PyArray_FLAGS(op[iop]) & | ||||
| 1182 | (NPY_ARRAY_C_CONTIGUOUS0x0001|NPY_ARRAY_F_CONTIGUOUS0x0002)); | ||||
| 1183 | if (op_order == 0) { | ||||
| 1184 | return -2; /* N-dimensional op must be contiguous */ | ||||
| 1185 | } | ||||
| 1186 | else if (operation_order == 0) { | ||||
| 1187 | operation_order = op_order; /* op fixes order */ | ||||
| 1188 | } | ||||
| 1189 | else if (operation_order != op_order) { | ||||
| 1190 | return -2; | ||||
| 1191 | } | ||||
| 1192 | } | ||||
| 1193 | } | ||||
| 1194 | |||||
| 1195 | if (op[nin] == NULL((void*)0)) { | ||||
| 1196 | Py_INCREF(dtypes[nin])_Py_INCREF(((PyObject*)(dtypes[nin]))); | ||||
| 1197 | op[nin] = (PyArrayObject *) PyArray_NewFromDescr(&PyArray_Type, | ||||
| 1198 | dtypes[nin], operation_ndim, operation_shape, | ||||
| 1199 | NULL((void*)0), NULL((void*)0), operation_order==NPY_ARRAY_F_CONTIGUOUS0x0002, NULL((void*)0)); | ||||
| 1200 | if (op[nin] == NULL((void*)0)) { | ||||
| 1201 | return -1; | ||||
| 1202 | } | ||||
| 1203 | fixed_strides[nin] = dtypes[nin]->elsize; | ||||
| 1204 | } | ||||
| 1205 | else { | ||||
| 1206 | /* If any input overlaps with the output, we use the full path. */ | ||||
| 1207 | for (int iop = 0; iop < nin; iop++) { | ||||
| 1208 | if (!PyArray_EQUIVALENTLY_ITERABLE_OVERLAP_OK( | ||||
| 1209 | op[iop], op[nin], | ||||
| 1210 | PyArray_TRIVIALLY_ITERABLE_OP_READ1, | ||||
| 1211 | PyArray_TRIVIALLY_ITERABLE_OP_NOREAD0)) { | ||||
| 1212 | return -2; | ||||
| 1213 | } | ||||
| 1214 | } | ||||
| 1215 | /* Check self-overlap (non 1-D are contiguous, perfect overlap is OK) */ | ||||
| 1216 | if (operation_ndim == 1 && | ||||
| 1217 | PyArray_STRIDES(op[nin])[0] < PyArray_ITEMSIZE(op[nin]) && | ||||
| 1218 | PyArray_STRIDES(op[nin])[0] != 0) { | ||||
| 1219 | return -2; | ||||
| 1220 | } | ||||
| 1221 | } | ||||
| 1222 | |||||
| 1223 | /* Call the __prepare_array__ if necessary */ | ||||
| 1224 | if (prepare_ufunc_output(ufunc, &op[nin], | ||||
| 1225 | arr_prep[0], full_args, 0) < 0) { | ||||
| 1226 | return -1; | ||||
| 1227 | } | ||||
| 1228 | |||||
| 1229 | /* | ||||
| 1230 | * We can use the trivial (single inner-loop call) optimization | ||||
| 1231 | * and `fixed_strides` holds the strides for that call. | ||||
| 1232 | */ | ||||
| 1233 | char *data[NPY_MAXARGS32]; | ||||
| 1234 | npy_intp count = PyArray_MultiplyList(operation_shape, operation_ndim); | ||||
| 1235 | int needs_api = 0; | ||||
| 1236 | NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);; | ||||
| 1237 | |||||
| 1238 | for (int iop = 0; iop < nop; iop++) { | ||||
| 1239 | data[iop] = PyArray_BYTES(op[iop]); | ||||
| 1240 | needs_api |= PyDataType_REFCHK(dtypes[iop])(((dtypes[iop])->flags & (0x01)) == (0x01)); | ||||
| 1241 | } | ||||
| 1242 | |||||
| 1243 | if (!needs_api) { | ||||
| 1244 | NPY_BEGIN_THREADS_THRESHOLDED(count)do { if ((count) > 500) { _save = PyEval_SaveThread();} } while (0);; | ||||
| 1245 | } | ||||
| 1246 | |||||
| 1247 | innerloop(data, &count, fixed_strides, innerloopdata); | ||||
| 1248 | |||||
| 1249 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 1250 | return 0; | ||||
| 1251 | } | ||||
| 1252 | |||||
| 1253 | |||||
| 1254 | static int | ||||
| 1255 | iterator_loop(PyUFuncObject *ufunc, | ||||
| 1256 | PyArrayObject **op, | ||||
| 1257 | PyArray_Descr **dtype, | ||||
| 1258 | NPY_ORDER order, | ||||
| 1259 | npy_intp buffersize, | ||||
| 1260 | PyObject **arr_prep, | ||||
| 1261 | ufunc_full_args full_args, | ||||
| 1262 | PyUFuncGenericFunction innerloop, | ||||
| 1263 | void *innerloopdata, | ||||
| 1264 | npy_uint32 *op_flags) | ||||
| 1265 | { | ||||
| 1266 | npy_intp i, nin = ufunc->nin, nout = ufunc->nout; | ||||
| 1267 | npy_intp nop = nin + nout; | ||||
| 1268 | NpyIter *iter; | ||||
| 1269 | char *baseptrs[NPY_MAXARGS32]; | ||||
| 1270 | |||||
| 1271 | NpyIter_IterNextFunc *iternext; | ||||
| 1272 | char **dataptr; | ||||
| 1273 | npy_intp *stride; | ||||
| 1274 | npy_intp *count_ptr; | ||||
| 1275 | int needs_api; | ||||
| 1276 | |||||
| 1277 | PyArrayObject **op_it; | ||||
| 1278 | npy_uint32 iter_flags; | ||||
| 1279 | |||||
| 1280 | NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);; | ||||
| 1281 | |||||
| 1282 | iter_flags = ufunc->iter_flags | | ||||
| 1283 | NPY_ITER_EXTERNAL_LOOP0x00000008 | | ||||
| 1284 | NPY_ITER_REFS_OK0x00000020 | | ||||
| 1285 | NPY_ITER_ZEROSIZE_OK0x00000040 | | ||||
| 1286 | NPY_ITER_BUFFERED0x00000200 | | ||||
| 1287 | NPY_ITER_GROWINNER0x00000400 | | ||||
| 1288 | NPY_ITER_DELAY_BUFALLOC0x00000800 | | ||||
| 1289 | NPY_ITER_COPY_IF_OVERLAP0x00002000; | ||||
| 1290 | |||||
| 1291 | /* Call the __array_prepare__ functions for already existing output arrays. | ||||
| 1292 | * Do this before creating the iterator, as the iterator may UPDATEIFCOPY | ||||
| 1293 | * some of them. | ||||
| 1294 | */ | ||||
| 1295 | for (i = 0; i < nout; ++i) { | ||||
| 1296 | if (op[nin+i] == NULL((void*)0)) { | ||||
| 1297 | continue; | ||||
| 1298 | } | ||||
| 1299 | if (prepare_ufunc_output(ufunc, &op[nin+i], | ||||
| 1300 | arr_prep[i], full_args, i) < 0) { | ||||
| 1301 | return -1; | ||||
| 1302 | } | ||||
| 1303 | } | ||||
| 1304 | |||||
| 1305 | /* | ||||
| 1306 | * Allocate the iterator. Because the types of the inputs | ||||
| 1307 | * were already checked, we use the casting rule 'unsafe' which | ||||
| 1308 | * is faster to calculate. | ||||
| 1309 | */ | ||||
| 1310 | iter = NpyIter_AdvancedNew(nop, op, | ||||
| 1311 | iter_flags, | ||||
| 1312 | order, NPY_UNSAFE_CASTING, | ||||
| 1313 | op_flags, dtype, | ||||
| 1314 | -1, NULL((void*)0), NULL((void*)0), buffersize); | ||||
| 1315 | if (iter == NULL((void*)0)) { | ||||
| 1316 | return -1; | ||||
| 1317 | } | ||||
| 1318 | |||||
| 1319 | /* Copy any allocated outputs */ | ||||
| 1320 | op_it = NpyIter_GetOperandArray(iter); | ||||
| 1321 | for (i = 0; i < nout; ++i) { | ||||
| 1322 | if (op[nin+i] == NULL((void*)0)) { | ||||
| 1323 | op[nin+i] = op_it[nin+i]; | ||||
| 1324 | Py_INCREF(op[nin+i])_Py_INCREF(((PyObject*)(op[nin+i]))); | ||||
| 1325 | |||||
| 1326 | /* Call the __array_prepare__ functions for the new array */ | ||||
| 1327 | if (prepare_ufunc_output(ufunc, &op[nin+i], | ||||
| 1328 | arr_prep[i], full_args, i) < 0) { | ||||
| 1329 | NpyIter_Deallocate(iter); | ||||
| 1330 | return -1; | ||||
| 1331 | } | ||||
| 1332 | |||||
| 1333 | /* | ||||
| 1334 | * In case __array_prepare__ returned a different array, put the | ||||
| 1335 | * results directly there, ignoring the array allocated by the | ||||
| 1336 | * iterator. | ||||
| 1337 | * | ||||
| 1338 | * Here, we assume the user-provided __array_prepare__ behaves | ||||
| 1339 | * sensibly and doesn't return an array overlapping in memory | ||||
| 1340 | * with other operands --- the op[nin+i] array passed to it is newly | ||||
| 1341 | * allocated and doesn't have any overlap. | ||||
| 1342 | */ | ||||
| 1343 | baseptrs[nin+i] = PyArray_BYTES(op[nin+i]); | ||||
| 1344 | } | ||||
| 1345 | else { | ||||
| 1346 | baseptrs[nin+i] = PyArray_BYTES(op_it[nin+i]); | ||||
| 1347 | } | ||||
| 1348 | } | ||||
| 1349 | |||||
| 1350 | /* Only do the loop if the iteration size is non-zero */ | ||||
| 1351 | if (NpyIter_GetIterSize(iter) != 0) { | ||||
| 1352 | /* Reset the iterator with the base pointers from possible __array_prepare__ */ | ||||
| 1353 | for (i = 0; i < nin; ++i) { | ||||
| 1354 | baseptrs[i] = PyArray_BYTES(op_it[i]); | ||||
| 1355 | } | ||||
| 1356 | if (NpyIter_ResetBasePointers(iter, baseptrs, NULL((void*)0)) != NPY_SUCCEED1) { | ||||
| 1357 | NpyIter_Deallocate(iter); | ||||
| 1358 | return -1; | ||||
| 1359 | } | ||||
| 1360 | |||||
| 1361 | /* Get the variables needed for the loop */ | ||||
| 1362 | iternext = NpyIter_GetIterNext(iter, NULL((void*)0)); | ||||
| 1363 | if (iternext == NULL((void*)0)) { | ||||
| 1364 | NpyIter_Deallocate(iter); | ||||
| 1365 | return -1; | ||||
| 1366 | } | ||||
| 1367 | dataptr = NpyIter_GetDataPtrArray(iter); | ||||
| 1368 | stride = NpyIter_GetInnerStrideArray(iter); | ||||
| 1369 | count_ptr = NpyIter_GetInnerLoopSizePtr(iter); | ||||
| 1370 | needs_api = NpyIter_IterationNeedsAPI(iter); | ||||
| 1371 | |||||
| 1372 | NPY_BEGIN_THREADS_NDITER(iter)do { if (!NpyIter_IterationNeedsAPI(iter)) { do { if ((NpyIter_GetIterSize (iter)) > 500) { _save = PyEval_SaveThread();} } while (0) ;; } } while(0); | ||||
| 1373 | |||||
| 1374 | /* Execute the loop */ | ||||
| 1375 | do { | ||||
| 1376 | NPY_UF_DBG_PRINT1("iterator loop count %d\n", (int)*count_ptr); | ||||
| 1377 | innerloop(dataptr, count_ptr, stride, innerloopdata); | ||||
| 1378 | } while (!(needs_api && PyErr_Occurred()) && iternext(iter)); | ||||
| 1379 | |||||
| 1380 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 1381 | } | ||||
| 1382 | /* | ||||
| 1383 | * Currently `innerloop` may leave an error set, in this case | ||||
| 1384 | * NpyIter_Deallocate will always return an error as well. | ||||
| 1385 | */ | ||||
| 1386 | if (NpyIter_Deallocate(iter) == NPY_FAIL0) { | ||||
| 1387 | return -1; | ||||
| 1388 | } | ||||
| 1389 | return 0; | ||||
| 1390 | } | ||||
| 1391 | |||||
| 1392 | /* | ||||
| 1393 | * ufunc - the ufunc to call | ||||
| 1394 | * trivial_loop_ok - 1 if no alignment, data conversion, etc required | ||||
| 1395 | * op - the operands (ufunc->nin + ufunc->nout of them) | ||||
| 1396 | * dtypes - the dtype of each operand | ||||
| 1397 | * order - the loop execution order/output memory order | ||||
| 1398 | * buffersize - how big of a buffer to use | ||||
| 1399 | * arr_prep - the __array_prepare__ functions for the outputs | ||||
| 1400 | * full_args - the original input, output PyObject * | ||||
| 1401 | * op_flags - per-operand flags, a combination of NPY_ITER_* constants | ||||
| 1402 | */ | ||||
| 1403 | static int | ||||
| 1404 | execute_legacy_ufunc_loop(PyUFuncObject *ufunc, | ||||
| 1405 | int trivial_loop_ok, | ||||
| 1406 | PyArrayObject **op, | ||||
| 1407 | PyArray_Descr **dtypes, | ||||
| 1408 | NPY_ORDER order, | ||||
| 1409 | npy_intp buffersize, | ||||
| 1410 | PyObject **arr_prep, | ||||
| 1411 | ufunc_full_args full_args, | ||||
| 1412 | npy_uint32 *op_flags) | ||||
| 1413 | { | ||||
| 1414 | PyUFuncGenericFunction innerloop; | ||||
| 1415 | void *innerloopdata; | ||||
| 1416 | int needs_api = 0; | ||||
| 1417 | |||||
| 1418 | if (ufunc->legacy_inner_loop_selector(ufunc, dtypes, | ||||
| 1419 | &innerloop, &innerloopdata, &needs_api) < 0) { | ||||
| 1420 | return -1; | ||||
| 1421 | } | ||||
| 1422 | |||||
| 1423 | /* First check for the trivial cases that don't need an iterator */ | ||||
| 1424 | if (trivial_loop_ok && ufunc->nout == 1) { | ||||
| 1425 | int fast_path_result = try_trivial_single_output_loop(ufunc, | ||||
| 1426 | op, dtypes, order, arr_prep, full_args, | ||||
| 1427 | innerloop, innerloopdata); | ||||
| 1428 | if (fast_path_result != -2) { | ||||
| 1429 | return fast_path_result; | ||||
| 1430 | } | ||||
| 1431 | } | ||||
| 1432 | |||||
| 1433 | /* | ||||
| 1434 | * If no trivial loop matched, an iterator is required to | ||||
| 1435 | * resolve broadcasting, etc | ||||
| 1436 | */ | ||||
| 1437 | NPY_UF_DBG_PRINT("iterator loop\n"); | ||||
| 1438 | if (iterator_loop(ufunc, op, dtypes, order, | ||||
| 1439 | buffersize, arr_prep, full_args, | ||||
| 1440 | innerloop, innerloopdata, op_flags) < 0) { | ||||
| 1441 | return -1; | ||||
| 1442 | } | ||||
| 1443 | |||||
| 1444 | return 0; | ||||
| 1445 | } | ||||
| 1446 | |||||
| 1447 | /* | ||||
| 1448 | * nin - number of inputs | ||||
| 1449 | * nout - number of outputs | ||||
| 1450 | * wheremask - if not NULL, the 'where=' parameter to the ufunc. | ||||
| 1451 | * op - the operands (nin + nout of them) | ||||
| 1452 | * order - the loop execution order/output memory order | ||||
| 1453 | * buffersize - how big of a buffer to use | ||||
| 1454 | * arr_prep - the __array_prepare__ functions for the outputs | ||||
| 1455 | * innerloop - the inner loop function | ||||
| 1456 | * innerloopdata - data to pass to the inner loop | ||||
| 1457 | */ | ||||
| 1458 | static int | ||||
| 1459 | execute_fancy_ufunc_loop(PyUFuncObject *ufunc, | ||||
| 1460 | PyArrayObject *wheremask, | ||||
| 1461 | PyArrayObject **op, | ||||
| 1462 | PyArray_Descr **dtypes, | ||||
| 1463 | NPY_ORDER order, | ||||
| 1464 | npy_intp buffersize, | ||||
| 1465 | PyObject **arr_prep, | ||||
| 1466 | ufunc_full_args full_args, | ||||
| 1467 | npy_uint32 *op_flags) | ||||
| 1468 | { | ||||
| 1469 | int i, nin = ufunc->nin, nout = ufunc->nout; | ||||
| 1470 | int nop = nin + nout; | ||||
| 1471 | NpyIter *iter; | ||||
| 1472 | int needs_api; | ||||
| 1473 | |||||
| 1474 | NpyIter_IterNextFunc *iternext; | ||||
| 1475 | char **dataptr; | ||||
| 1476 | npy_intp *strides; | ||||
| 1477 | npy_intp *countptr; | ||||
| 1478 | |||||
| 1479 | PyArrayObject **op_it; | ||||
| 1480 | npy_uint32 iter_flags; | ||||
| 1481 | |||||
| 1482 | for (i = nin; i < nop; ++i) { | ||||
| |||||
| 1483 | op_flags[i] |= (op[i] != NULL((void*)0) ? NPY_ITER_READWRITE0x00010000 : NPY_ITER_WRITEONLY0x00040000); | ||||
| 1484 | } | ||||
| 1485 | |||||
| 1486 | if (wheremask != NULL((void*)0)) { | ||||
| 1487 | op_flags[nop] = NPY_ITER_READONLY0x00020000 | NPY_ITER_ARRAYMASK0x20000000; | ||||
| 1488 | } | ||||
| 1489 | |||||
| 1490 | NPY_UF_DBG_PRINT("Making iterator\n"); | ||||
| 1491 | |||||
| 1492 | iter_flags = ufunc->iter_flags | | ||||
| 1493 | NPY_ITER_EXTERNAL_LOOP0x00000008 | | ||||
| 1494 | NPY_ITER_REFS_OK0x00000020 | | ||||
| 1495 | NPY_ITER_ZEROSIZE_OK0x00000040 | | ||||
| 1496 | NPY_ITER_BUFFERED0x00000200 | | ||||
| 1497 | NPY_ITER_GROWINNER0x00000400 | | ||||
| 1498 | NPY_ITER_COPY_IF_OVERLAP0x00002000; | ||||
| 1499 | |||||
| 1500 | /* | ||||
| 1501 | * Allocate the iterator. Because the types of the inputs | ||||
| 1502 | * were already checked, we use the casting rule 'unsafe' which | ||||
| 1503 | * is faster to calculate. | ||||
| 1504 | */ | ||||
| 1505 | iter = NpyIter_AdvancedNew(nop + ((wheremask
| ||||
| 1506 | iter_flags, | ||||
| 1507 | order, NPY_UNSAFE_CASTING, | ||||
| 1508 | op_flags, dtypes, | ||||
| 1509 | -1, NULL((void*)0), NULL((void*)0), buffersize); | ||||
| 1510 | if (iter == NULL((void*)0)) { | ||||
| 1511 | return -1; | ||||
| 1512 | } | ||||
| 1513 | |||||
| 1514 | NPY_UF_DBG_PRINT("Made iterator\n"); | ||||
| 1515 | |||||
| 1516 | needs_api = NpyIter_IterationNeedsAPI(iter); | ||||
| 1517 | |||||
| 1518 | /* Call the __array_prepare__ functions where necessary */ | ||||
| 1519 | op_it = NpyIter_GetOperandArray(iter); | ||||
| 1520 | for (i = nin; i
| ||||
| 1521 | PyArrayObject *op_tmp, *orig_op_tmp; | ||||
| 1522 | |||||
| 1523 | /* | ||||
| 1524 | * The array can be allocated by the iterator -- it is placed in op[i] | ||||
| 1525 | * and returned to the caller, and this needs an extra incref. | ||||
| 1526 | */ | ||||
| 1527 | if (op[i] == NULL((void*)0)) { | ||||
| 1528 | op_tmp = op_it[i]; | ||||
| 1529 | Py_INCREF(op_tmp)_Py_INCREF(((PyObject*)(op_tmp))); | ||||
| 1530 | } | ||||
| 1531 | else { | ||||
| 1532 | op_tmp = op[i]; | ||||
| |||||
| 1533 | } | ||||
| 1534 | |||||
| 1535 | /* prepare_ufunc_output may decref & replace the pointer */ | ||||
| 1536 | orig_op_tmp = op_tmp; | ||||
| 1537 | Py_INCREF(op_tmp)_Py_INCREF(((PyObject*)(op_tmp))); | ||||
| 1538 | |||||
| 1539 | if (prepare_ufunc_output(ufunc, &op_tmp, | ||||
| 1540 | arr_prep[i], full_args, i) < 0) { | ||||
| 1541 | NpyIter_Deallocate(iter); | ||||
| 1542 | return -1; | ||||
| 1543 | } | ||||
| 1544 | |||||
| 1545 | /* Validate that the prepare_ufunc_output didn't mess with pointers */ | ||||
| 1546 | if (PyArray_BYTES(op_tmp) != PyArray_BYTES(orig_op_tmp)) { | ||||
| 1547 | PyErr_SetString(PyExc_ValueError, | ||||
| 1548 | "The __array_prepare__ functions modified the data " | ||||
| 1549 | "pointer addresses in an invalid fashion"); | ||||
| 1550 | Py_DECREF(op_tmp)_Py_DECREF(((PyObject*)(op_tmp))); | ||||
| 1551 | NpyIter_Deallocate(iter); | ||||
| 1552 | return -1; | ||||
| 1553 | } | ||||
| 1554 | |||||
| 1555 | /* | ||||
| 1556 | * Put the updated operand back and undo the DECREF above. If | ||||
| 1557 | * COPY_IF_OVERLAP made a temporary copy, the output will be copied | ||||
| 1558 | * by UPDATEIFCOPY even if op[i] was changed by prepare_ufunc_output. | ||||
| 1559 | */ | ||||
| 1560 | op[i] = op_tmp; | ||||
| 1561 | Py_DECREF(op_tmp)_Py_DECREF(((PyObject*)(op_tmp))); | ||||
| 1562 | } | ||||
| 1563 | |||||
| 1564 | /* Only do the loop if the iteration size is non-zero */ | ||||
| 1565 | if (NpyIter_GetIterSize(iter) != 0) { | ||||
| 1566 | PyUFunc_MaskedStridedInnerLoopFunc *innerloop; | ||||
| 1567 | NpyAuxData *innerloopdata; | ||||
| 1568 | npy_intp fixed_strides[2*NPY_MAXARGS32]; | ||||
| 1569 | PyArray_Descr **iter_dtypes; | ||||
| 1570 | NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);; | ||||
| 1571 | |||||
| 1572 | /* | ||||
| 1573 | * Get the inner loop, with the possibility of specialization | ||||
| 1574 | * based on the fixed strides. | ||||
| 1575 | */ | ||||
| 1576 | NpyIter_GetInnerFixedStrideArray(iter, fixed_strides); | ||||
| 1577 | iter_dtypes = NpyIter_GetDescrArray(iter); | ||||
| 1578 | if (ufunc->masked_inner_loop_selector(ufunc, dtypes, | ||||
| 1579 | wheremask != NULL((void*)0) ? iter_dtypes[nop] | ||||
| 1580 | : iter_dtypes[nop + nin], | ||||
| 1581 | fixed_strides, | ||||
| 1582 | wheremask != NULL((void*)0) ? fixed_strides[nop] | ||||
| 1583 | : fixed_strides[nop + nin], | ||||
| 1584 | &innerloop, &innerloopdata, &needs_api) < 0) { | ||||
| 1585 | NpyIter_Deallocate(iter); | ||||
| 1586 | return -1; | ||||
| 1587 | } | ||||
| 1588 | |||||
| 1589 | /* Get the variables needed for the loop */ | ||||
| 1590 | iternext = NpyIter_GetIterNext(iter, NULL((void*)0)); | ||||
| 1591 | if (iternext == NULL((void*)0)) { | ||||
| 1592 | NpyIter_Deallocate(iter); | ||||
| 1593 | return -1; | ||||
| 1594 | } | ||||
| 1595 | dataptr = NpyIter_GetDataPtrArray(iter); | ||||
| 1596 | strides = NpyIter_GetInnerStrideArray(iter); | ||||
| 1597 | countptr = NpyIter_GetInnerLoopSizePtr(iter); | ||||
| 1598 | needs_api = NpyIter_IterationNeedsAPI(iter); | ||||
| 1599 | |||||
| 1600 | NPY_BEGIN_THREADS_NDITER(iter)do { if (!NpyIter_IterationNeedsAPI(iter)) { do { if ((NpyIter_GetIterSize (iter)) > 500) { _save = PyEval_SaveThread();} } while (0) ;; } } while(0); | ||||
| 1601 | |||||
| 1602 | NPY_UF_DBG_PRINT("Actual inner loop:\n"); | ||||
| 1603 | /* Execute the loop */ | ||||
| 1604 | do { | ||||
| 1605 | NPY_UF_DBG_PRINT1("iterator loop count %d\n", (int)*countptr); | ||||
| 1606 | innerloop(dataptr, strides, | ||||
| 1607 | dataptr[nop], strides[nop], | ||||
| 1608 | *countptr, innerloopdata); | ||||
| 1609 | } while (!(needs_api && PyErr_Occurred()) && iternext(iter)); | ||||
| 1610 | |||||
| 1611 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 1612 | |||||
| 1613 | NPY_AUXDATA_FREE(innerloopdata)do { if ((innerloopdata) != ((void*)0)) { (innerloopdata)-> free(innerloopdata); } } while(0); | ||||
| 1614 | } | ||||
| 1615 | |||||
| 1616 | return NpyIter_Deallocate(iter); | ||||
| 1617 | } | ||||
| 1618 | |||||
| 1619 | |||||
| 1620 | /* | ||||
| 1621 | * Validate that operands have enough dimensions, accounting for | ||||
| 1622 | * possible flexible dimensions that may be absent. | ||||
| 1623 | */ | ||||
| 1624 | static int | ||||
| 1625 | _validate_num_dims(PyUFuncObject *ufunc, PyArrayObject **op, | ||||
| 1626 | npy_uint32 *core_dim_flags, | ||||
| 1627 | int *op_core_num_dims) { | ||||
| 1628 | int i, j; | ||||
| 1629 | int nin = ufunc->nin; | ||||
| 1630 | int nop = ufunc->nargs; | ||||
| 1631 | |||||
| 1632 | for (i = 0; i < nop; i++) { | ||||
| 1633 | if (op[i] != NULL((void*)0)) { | ||||
| 1634 | int op_ndim = PyArray_NDIM(op[i]); | ||||
| 1635 | |||||
| 1636 | if (op_ndim < op_core_num_dims[i]) { | ||||
| 1637 | int core_offset = ufunc->core_offsets[i]; | ||||
| 1638 | /* We've too few, but some dimensions might be flexible */ | ||||
| 1639 | for (j = core_offset; | ||||
| 1640 | j < core_offset + ufunc->core_num_dims[i]; j++) { | ||||
| 1641 | int core_dim_index = ufunc->core_dim_ixs[j]; | ||||
| 1642 | if ((core_dim_flags[core_dim_index] & | ||||
| 1643 | UFUNC_CORE_DIM_CAN_IGNORE0x0004)) { | ||||
| 1644 | int i1, j1, k; | ||||
| 1645 | /* | ||||
| 1646 | * Found a dimension that can be ignored. Flag that | ||||
| 1647 | * it is missing, and unflag that it can be ignored, | ||||
| 1648 | * since we are doing so already. | ||||
| 1649 | */ | ||||
| 1650 | core_dim_flags[core_dim_index] |= UFUNC_CORE_DIM_MISSING0x00040000; | ||||
| 1651 | core_dim_flags[core_dim_index] ^= UFUNC_CORE_DIM_CAN_IGNORE0x0004; | ||||
| 1652 | /* | ||||
| 1653 | * Reduce the number of core dimensions for all | ||||
| 1654 | * operands that use this one (including ours), | ||||
| 1655 | * and check whether we're now OK. | ||||
| 1656 | */ | ||||
| 1657 | for (i1 = 0, k=0; i1 < nop; i1++) { | ||||
| 1658 | for (j1 = 0; j1 < ufunc->core_num_dims[i1]; j1++) { | ||||
| 1659 | if (ufunc->core_dim_ixs[k++] == core_dim_index) { | ||||
| 1660 | op_core_num_dims[i1]--; | ||||
| 1661 | } | ||||
| 1662 | } | ||||
| 1663 | } | ||||
| 1664 | if (op_ndim == op_core_num_dims[i]) { | ||||
| 1665 | break; | ||||
| 1666 | } | ||||
| 1667 | } | ||||
| 1668 | } | ||||
| 1669 | if (op_ndim < op_core_num_dims[i]) { | ||||
| 1670 | PyErr_Format(PyExc_ValueError, | ||||
| 1671 | "%s: %s operand %d does not have enough " | ||||
| 1672 | "dimensions (has %d, gufunc core with " | ||||
| 1673 | "signature %s requires %d)", | ||||
| 1674 | ufunc_get_name_cstr(ufunc), | ||||
| 1675 | i < nin ? "Input" : "Output", | ||||
| 1676 | i < nin ? i : i - nin, PyArray_NDIM(op[i]), | ||||
| 1677 | ufunc->core_signature, op_core_num_dims[i]); | ||||
| 1678 | return -1; | ||||
| 1679 | } | ||||
| 1680 | } | ||||
| 1681 | } | ||||
| 1682 | } | ||||
| 1683 | return 0; | ||||
| 1684 | } | ||||
| 1685 | |||||
| 1686 | /* | ||||
| 1687 | * Check whether any of the outputs of a gufunc has core dimensions. | ||||
| 1688 | */ | ||||
| 1689 | static int | ||||
| 1690 | _has_output_coredims(PyUFuncObject *ufunc) { | ||||
| 1691 | int i; | ||||
| 1692 | for (i = ufunc->nin; i < ufunc->nin + ufunc->nout; ++i) { | ||||
| 1693 | if (ufunc->core_num_dims[i] > 0) { | ||||
| 1694 | return 1; | ||||
| 1695 | } | ||||
| 1696 | } | ||||
| 1697 | return 0; | ||||
| 1698 | } | ||||
| 1699 | |||||
| 1700 | /* | ||||
| 1701 | * Check whether the gufunc can be used with axis, i.e., that there is only | ||||
| 1702 | * a single, shared core dimension (which means that operands either have | ||||
| 1703 | * that dimension, or have no core dimensions). Returns 0 if all is fine, | ||||
| 1704 | * and sets an error and returns -1 if not. | ||||
| 1705 | */ | ||||
| 1706 | static int | ||||
| 1707 | _check_axis_support(PyUFuncObject *ufunc) { | ||||
| 1708 | if (ufunc->core_num_dim_ix != 1) { | ||||
| 1709 | PyErr_Format(PyExc_TypeError, | ||||
| 1710 | "%s: axis can only be used with a single shared core " | ||||
| 1711 | "dimension, not with the %d distinct ones implied by " | ||||
| 1712 | "signature %s.", | ||||
| 1713 | ufunc_get_name_cstr(ufunc), | ||||
| 1714 | ufunc->core_num_dim_ix, | ||||
| 1715 | ufunc->core_signature); | ||||
| 1716 | return -1; | ||||
| 1717 | } | ||||
| 1718 | return 0; | ||||
| 1719 | } | ||||
| 1720 | |||||
| 1721 | /* | ||||
| 1722 | * Check whether the gufunc can be used with keepdims, i.e., that all its | ||||
| 1723 | * input arguments have the same number of core dimension, and all output | ||||
| 1724 | * arguments have no core dimensions. Returns 0 if all is fine, and sets | ||||
| 1725 | * an error and returns -1 if not. | ||||
| 1726 | */ | ||||
| 1727 | static int | ||||
| 1728 | _check_keepdims_support(PyUFuncObject *ufunc) { | ||||
| 1729 | int i; | ||||
| 1730 | int nin = ufunc->nin, nout = ufunc->nout; | ||||
| 1731 | int input_core_dims = ufunc->core_num_dims[0]; | ||||
| 1732 | for (i = 1; i < nin + nout; i++) { | ||||
| 1733 | if (ufunc->core_num_dims[i] != (i < nin ? input_core_dims : 0)) { | ||||
| 1734 | PyErr_Format(PyExc_TypeError, | ||||
| 1735 | "%s does not support keepdims: its signature %s requires " | ||||
| 1736 | "%s %d to have %d core dimensions, but keepdims can only " | ||||
| 1737 | "be used when all inputs have the same number of core " | ||||
| 1738 | "dimensions and all outputs have no core dimensions.", | ||||
| 1739 | ufunc_get_name_cstr(ufunc), | ||||
| 1740 | ufunc->core_signature, | ||||
| 1741 | i < nin ? "input" : "output", | ||||
| 1742 | i < nin ? i : i - nin, | ||||
| 1743 | ufunc->core_num_dims[i]); | ||||
| 1744 | return -1; | ||||
| 1745 | } | ||||
| 1746 | } | ||||
| 1747 | return 0; | ||||
| 1748 | } | ||||
| 1749 | |||||
| 1750 | /* | ||||
| 1751 | * Interpret a possible axes keyword argument, using it to fill the remap_axis | ||||
| 1752 | * array which maps default to actual axes for each operand, indexed as | ||||
| 1753 | * as remap_axis[iop][iaxis]. The default axis order has first all broadcast | ||||
| 1754 | * axes and then the core axes the gufunc operates on. | ||||
| 1755 | * | ||||
| 1756 | * Returns 0 on success, and -1 on failure | ||||
| 1757 | */ | ||||
| 1758 | static int | ||||
| 1759 | _parse_axes_arg(PyUFuncObject *ufunc, int op_core_num_dims[], PyObject *axes, | ||||
| 1760 | PyArrayObject **op, int broadcast_ndim, int **remap_axis) { | ||||
| 1761 | int nin = ufunc->nin; | ||||
| 1762 | int nop = ufunc->nargs; | ||||
| 1763 | int iop, list_size; | ||||
| 1764 | |||||
| 1765 | if (!PyList_Check(axes)((((((PyObject*)(axes))->ob_type))->tp_flags & ((1UL << 25))) != 0)) { | ||||
| 1766 | PyErr_SetString(PyExc_TypeError, "axes should be a list."); | ||||
| 1767 | return -1; | ||||
| 1768 | } | ||||
| 1769 | list_size = PyList_Size(axes); | ||||
| 1770 | if (list_size != nop) { | ||||
| 1771 | if (list_size != nin || _has_output_coredims(ufunc)) { | ||||
| 1772 | PyErr_Format(PyExc_ValueError, | ||||
| 1773 | "axes should be a list with an entry for all " | ||||
| 1774 | "%d inputs and outputs; entries for outputs can only " | ||||
| 1775 | "be omitted if none of them has core axes.", | ||||
| 1776 | nop); | ||||
| 1777 | return -1; | ||||
| 1778 | } | ||||
| 1779 | for (iop = nin; iop < nop; iop++) { | ||||
| 1780 | remap_axis[iop] = NULL((void*)0); | ||||
| 1781 | } | ||||
| 1782 | } | ||||
| 1783 | for (iop = 0; iop < list_size; ++iop) { | ||||
| 1784 | int op_ndim, op_ncore, op_nbroadcast; | ||||
| 1785 | int have_seen_axis[NPY_MAXDIMS32] = {0}; | ||||
| 1786 | PyObject *op_axes_tuple, *axis_item; | ||||
| 1787 | int axis, op_axis; | ||||
| 1788 | |||||
| 1789 | op_ncore = op_core_num_dims[iop]; | ||||
| 1790 | if (op[iop] != NULL((void*)0)) { | ||||
| 1791 | op_ndim = PyArray_NDIM(op[iop]); | ||||
| 1792 | op_nbroadcast = op_ndim - op_ncore; | ||||
| 1793 | } | ||||
| 1794 | else { | ||||
| 1795 | op_nbroadcast = broadcast_ndim; | ||||
| 1796 | op_ndim = broadcast_ndim + op_ncore; | ||||
| 1797 | } | ||||
| 1798 | /* | ||||
| 1799 | * Get axes tuple for operand. If not a tuple already, make it one if | ||||
| 1800 | * there is only one axis (its content is checked later). | ||||
| 1801 | */ | ||||
| 1802 | op_axes_tuple = PyList_GET_ITEM(axes, iop)(((PyListObject *)(axes))->ob_item[iop]); | ||||
| 1803 | if (PyTuple_Check(op_axes_tuple)((((((PyObject*)(op_axes_tuple))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | ||||
| 1804 | if (PyTuple_Size(op_axes_tuple) != op_ncore) { | ||||
| 1805 | if (op_ncore == 1) { | ||||
| 1806 | PyErr_Format(PyExc_ValueError, | ||||
| 1807 | "axes item %d should be a tuple with a " | ||||
| 1808 | "single element, or an integer", iop); | ||||
| 1809 | } | ||||
| 1810 | else { | ||||
| 1811 | PyErr_Format(PyExc_ValueError, | ||||
| 1812 | "axes item %d should be a tuple with %d " | ||||
| 1813 | "elements", iop, op_ncore); | ||||
| 1814 | } | ||||
| 1815 | return -1; | ||||
| 1816 | } | ||||
| 1817 | Py_INCREF(op_axes_tuple)_Py_INCREF(((PyObject*)(op_axes_tuple))); | ||||
| 1818 | } | ||||
| 1819 | else if (op_ncore == 1) { | ||||
| 1820 | op_axes_tuple = PyTuple_Pack(1, op_axes_tuple); | ||||
| 1821 | if (op_axes_tuple == NULL((void*)0)) { | ||||
| 1822 | return -1; | ||||
| 1823 | } | ||||
| 1824 | } | ||||
| 1825 | else { | ||||
| 1826 | PyErr_Format(PyExc_TypeError, "axes item %d should be a tuple", | ||||
| 1827 | iop); | ||||
| 1828 | return -1; | ||||
| 1829 | } | ||||
| 1830 | /* | ||||
| 1831 | * Now create the remap, starting with the core dimensions, and then | ||||
| 1832 | * adding the remaining broadcast axes that are to be iterated over. | ||||
| 1833 | */ | ||||
| 1834 | for (axis = op_nbroadcast; axis < op_ndim; axis++) { | ||||
| 1835 | axis_item = PyTuple_GET_ITEM(op_axes_tuple, axis - op_nbroadcast)((((void) (0)), (PyTupleObject *)(op_axes_tuple))->ob_item [axis - op_nbroadcast]); | ||||
| 1836 | op_axis = PyArray_PyIntAsInt(axis_item); | ||||
| 1837 | if (error_converting(op_axis)(((op_axis) == -1) && PyErr_Occurred()) || | ||||
| 1838 | (check_and_adjust_axis(&op_axis, op_ndim) < 0)) { | ||||
| 1839 | Py_DECREF(op_axes_tuple)_Py_DECREF(((PyObject*)(op_axes_tuple))); | ||||
| 1840 | return -1; | ||||
| 1841 | } | ||||
| 1842 | if (have_seen_axis[op_axis]) { | ||||
| 1843 | PyErr_Format(PyExc_ValueError, | ||||
| 1844 | "axes item %d has value %d repeated", | ||||
| 1845 | iop, op_axis); | ||||
| 1846 | Py_DECREF(op_axes_tuple)_Py_DECREF(((PyObject*)(op_axes_tuple))); | ||||
| 1847 | return -1; | ||||
| 1848 | } | ||||
| 1849 | have_seen_axis[op_axis] = 1; | ||||
| 1850 | remap_axis[iop][axis] = op_axis; | ||||
| 1851 | } | ||||
| 1852 | Py_DECREF(op_axes_tuple)_Py_DECREF(((PyObject*)(op_axes_tuple))); | ||||
| 1853 | /* | ||||
| 1854 | * Fill the op_nbroadcast=op_ndim-op_ncore axes not yet set, | ||||
| 1855 | * using have_seen_axis to skip over entries set above. | ||||
| 1856 | */ | ||||
| 1857 | for (axis = 0, op_axis = 0; axis < op_nbroadcast; axis++) { | ||||
| 1858 | while (have_seen_axis[op_axis]) { | ||||
| 1859 | op_axis++; | ||||
| 1860 | } | ||||
| 1861 | remap_axis[iop][axis] = op_axis++; | ||||
| 1862 | } | ||||
| 1863 | /* | ||||
| 1864 | * Check whether we are actually remapping anything. Here, | ||||
| 1865 | * op_axis can only equal axis if all broadcast axes were the same | ||||
| 1866 | * (i.e., the while loop above was never entered). | ||||
| 1867 | */ | ||||
| 1868 | if (axis == op_axis) { | ||||
| 1869 | while (axis < op_ndim && remap_axis[iop][axis] == axis) { | ||||
| 1870 | axis++; | ||||
| 1871 | } | ||||
| 1872 | } | ||||
| 1873 | if (axis == op_ndim) { | ||||
| 1874 | remap_axis[iop] = NULL((void*)0); | ||||
| 1875 | } | ||||
| 1876 | } /* end of for(iop) loop over operands */ | ||||
| 1877 | return 0; | ||||
| 1878 | } | ||||
| 1879 | |||||
| 1880 | /* | ||||
| 1881 | * Simplified version of the above, using axis to fill the remap_axis | ||||
| 1882 | * array, which maps default to actual axes for each operand, indexed as | ||||
| 1883 | * as remap_axis[iop][iaxis]. The default axis order has first all broadcast | ||||
| 1884 | * axes and then the core axes the gufunc operates on. | ||||
| 1885 | * | ||||
| 1886 | * Returns 0 on success, and -1 on failure | ||||
| 1887 | */ | ||||
| 1888 | static int | ||||
| 1889 | _parse_axis_arg(PyUFuncObject *ufunc, const int core_num_dims[], PyObject *axis, | ||||
| 1890 | PyArrayObject **op, int broadcast_ndim, int **remap_axis) { | ||||
| 1891 | int nop = ufunc->nargs; | ||||
| 1892 | int iop, axis_int; | ||||
| 1893 | |||||
| 1894 | axis_int = PyArray_PyIntAsInt(axis); | ||||
| 1895 | if (error_converting(axis_int)(((axis_int) == -1) && PyErr_Occurred())) { | ||||
| 1896 | return -1; | ||||
| 1897 | } | ||||
| 1898 | |||||
| 1899 | for (iop = 0; iop < nop; ++iop) { | ||||
| 1900 | int axis, op_ndim, op_axis; | ||||
| 1901 | |||||
| 1902 | /* _check_axis_support ensures core_num_dims is 0 or 1 */ | ||||
| 1903 | if (core_num_dims[iop] == 0) { | ||||
| 1904 | remap_axis[iop] = NULL((void*)0); | ||||
| 1905 | continue; | ||||
| 1906 | } | ||||
| 1907 | if (op[iop]) { | ||||
| 1908 | op_ndim = PyArray_NDIM(op[iop]); | ||||
| 1909 | } | ||||
| 1910 | else { | ||||
| 1911 | op_ndim = broadcast_ndim + 1; | ||||
| 1912 | } | ||||
| 1913 | op_axis = axis_int; /* ensure we don't modify axis_int */ | ||||
| 1914 | if (check_and_adjust_axis(&op_axis, op_ndim) < 0) { | ||||
| 1915 | return -1; | ||||
| 1916 | } | ||||
| 1917 | /* Are we actually remapping away from last axis? */ | ||||
| 1918 | if (op_axis == op_ndim - 1) { | ||||
| 1919 | remap_axis[iop] = NULL((void*)0); | ||||
| 1920 | continue; | ||||
| 1921 | } | ||||
| 1922 | remap_axis[iop][op_ndim - 1] = op_axis; | ||||
| 1923 | for (axis = 0; axis < op_axis; axis++) { | ||||
| 1924 | remap_axis[iop][axis] = axis; | ||||
| 1925 | } | ||||
| 1926 | for (axis = op_axis; axis < op_ndim - 1; axis++) { | ||||
| 1927 | remap_axis[iop][axis] = axis + 1; | ||||
| 1928 | } | ||||
| 1929 | } /* end of for(iop) loop over operands */ | ||||
| 1930 | return 0; | ||||
| 1931 | } | ||||
| 1932 | |||||
| 1933 | #define REMAP_AXIS(iop, axis)((remap_axis != ((void*)0) && remap_axis[iop] != ((void *)0))? remap_axis[iop][axis] : axis) ((remap_axis != NULL((void*)0) && \ | ||||
| 1934 | remap_axis[iop] != NULL((void*)0))? \ | ||||
| 1935 | remap_axis[iop][axis] : axis) | ||||
| 1936 | |||||
| 1937 | /* | ||||
| 1938 | * Validate the core dimensions of all the operands, and collect all of | ||||
| 1939 | * the labelled core dimensions into 'core_dim_sizes'. | ||||
| 1940 | * | ||||
| 1941 | * Returns 0 on success, and -1 on failure | ||||
| 1942 | * | ||||
| 1943 | * The behavior has been changed in NumPy 1.16.0, and the following | ||||
| 1944 | * requirements must be fulfilled or an error will be raised: | ||||
| 1945 | * * Arguments, both input and output, must have at least as many | ||||
| 1946 | * dimensions as the corresponding number of core dimensions. In | ||||
| 1947 | * versions before 1.10, 1's were prepended to the shape as needed. | ||||
| 1948 | * * Core dimensions with same labels must have exactly matching sizes. | ||||
| 1949 | * In versions before 1.10, core dimensions of size 1 would broadcast | ||||
| 1950 | * against other core dimensions with the same label. | ||||
| 1951 | * * All core dimensions must have their size specified by a passed in | ||||
| 1952 | * input or output argument. In versions before 1.10, core dimensions in | ||||
| 1953 | * an output argument that were not specified in an input argument, | ||||
| 1954 | * and whose size could not be inferred from a passed in output | ||||
| 1955 | * argument, would have their size set to 1. | ||||
| 1956 | * * Core dimensions may be fixed, new in NumPy 1.16 | ||||
| 1957 | */ | ||||
| 1958 | static int | ||||
| 1959 | _get_coredim_sizes(PyUFuncObject *ufunc, PyArrayObject **op, | ||||
| 1960 | const int *op_core_num_dims, npy_uint32 *core_dim_flags, | ||||
| 1961 | npy_intp *core_dim_sizes, int **remap_axis) { | ||||
| 1962 | int i; | ||||
| 1963 | int nin = ufunc->nin; | ||||
| 1964 | int nout = ufunc->nout; | ||||
| 1965 | int nop = nin + nout; | ||||
| 1966 | |||||
| 1967 | for (i = 0; i < nop; ++i) { | ||||
| 1968 | if (op[i] != NULL((void*)0)) { | ||||
| 1969 | int idim; | ||||
| 1970 | int dim_offset = ufunc->core_offsets[i]; | ||||
| 1971 | int core_start_dim = PyArray_NDIM(op[i]) - op_core_num_dims[i]; | ||||
| 1972 | int dim_delta = 0; | ||||
| 1973 | |||||
| 1974 | /* checked before this routine gets called */ | ||||
| 1975 | assert(core_start_dim >= 0)((void) (0)); | ||||
| 1976 | |||||
| 1977 | /* | ||||
| 1978 | * Make sure every core dimension exactly matches all other core | ||||
| 1979 | * dimensions with the same label. Note that flexible dimensions | ||||
| 1980 | * may have been removed at this point, if so, they are marked | ||||
| 1981 | * with UFUNC_CORE_DIM_MISSING. | ||||
| 1982 | */ | ||||
| 1983 | for (idim = 0; idim < ufunc->core_num_dims[i]; ++idim) { | ||||
| 1984 | int core_index = dim_offset + idim; | ||||
| 1985 | int core_dim_index = ufunc->core_dim_ixs[core_index]; | ||||
| 1986 | npy_intp core_dim_size = core_dim_sizes[core_dim_index]; | ||||
| 1987 | npy_intp op_dim_size; | ||||
| 1988 | |||||
| 1989 | /* can only happen if flexible; dimension missing altogether */ | ||||
| 1990 | if (core_dim_flags[core_dim_index] & UFUNC_CORE_DIM_MISSING0x00040000) { | ||||
| 1991 | op_dim_size = 1; | ||||
| 1992 | dim_delta++; /* for indexing in dimensions */ | ||||
| 1993 | } | ||||
| 1994 | else { | ||||
| 1995 | op_dim_size = PyArray_DIM(op[i], | ||||
| 1996 | REMAP_AXIS(i, core_start_dim + idim - dim_delta)((remap_axis != ((void*)0) && remap_axis[i] != ((void *)0))? remap_axis[i][core_start_dim + idim - dim_delta] : core_start_dim + idim - dim_delta)); | ||||
| 1997 | } | ||||
| 1998 | if (core_dim_sizes[core_dim_index] < 0) { | ||||
| 1999 | core_dim_sizes[core_dim_index] = op_dim_size; | ||||
| 2000 | } | ||||
| 2001 | else if (op_dim_size != core_dim_size) { | ||||
| 2002 | PyErr_Format(PyExc_ValueError, | ||||
| 2003 | "%s: %s operand %d has a mismatch in its " | ||||
| 2004 | "core dimension %d, with gufunc " | ||||
| 2005 | "signature %s (size %zd is different " | ||||
| 2006 | "from %zd)", | ||||
| 2007 | ufunc_get_name_cstr(ufunc), i < nin ? "Input" : "Output", | ||||
| 2008 | i < nin ? i : i - nin, idim - dim_delta, | ||||
| 2009 | ufunc->core_signature, op_dim_size, | ||||
| 2010 | core_dim_sizes[core_dim_index]); | ||||
| 2011 | return -1; | ||||
| 2012 | } | ||||
| 2013 | } | ||||
| 2014 | } | ||||
| 2015 | } | ||||
| 2016 | |||||
| 2017 | /* | ||||
| 2018 | * Make sure no core dimension is unspecified. | ||||
| 2019 | */ | ||||
| 2020 | for (i = nin; i < nop; ++i) { | ||||
| 2021 | int idim; | ||||
| 2022 | int dim_offset = ufunc->core_offsets[i]; | ||||
| 2023 | |||||
| 2024 | for (idim = 0; idim < ufunc->core_num_dims[i]; ++idim) { | ||||
| 2025 | int core_dim_index = ufunc->core_dim_ixs[dim_offset + idim]; | ||||
| 2026 | |||||
| 2027 | /* check all cases where the size has not yet been set */ | ||||
| 2028 | if (core_dim_sizes[core_dim_index] < 0) { | ||||
| 2029 | /* | ||||
| 2030 | * Oops, this dimension was never specified | ||||
| 2031 | * (can only happen if output op not given) | ||||
| 2032 | */ | ||||
| 2033 | PyErr_Format(PyExc_ValueError, | ||||
| 2034 | "%s: Output operand %d has core dimension %d " | ||||
| 2035 | "unspecified, with gufunc signature %s", | ||||
| 2036 | ufunc_get_name_cstr(ufunc), i - nin, idim, | ||||
| 2037 | ufunc->core_signature); | ||||
| 2038 | return -1; | ||||
| 2039 | } | ||||
| 2040 | } | ||||
| 2041 | } | ||||
| 2042 | |||||
| 2043 | return 0; | ||||
| 2044 | } | ||||
| 2045 | |||||
| 2046 | /* | ||||
| 2047 | * Returns a new reference | ||||
| 2048 | * TODO: store a reference in the ufunc object itself, rather than | ||||
| 2049 | * constructing one each time | ||||
| 2050 | */ | ||||
| 2051 | static PyObject * | ||||
| 2052 | _get_identity(PyUFuncObject *ufunc, npy_bool *reorderable) { | ||||
| 2053 | switch(ufunc->identity) { | ||||
| 2054 | case PyUFunc_One1: | ||||
| 2055 | *reorderable = 1; | ||||
| 2056 | return PyLong_FromLong(1); | ||||
| 2057 | |||||
| 2058 | case PyUFunc_Zero0: | ||||
| 2059 | *reorderable = 1; | ||||
| 2060 | return PyLong_FromLong(0); | ||||
| 2061 | |||||
| 2062 | case PyUFunc_MinusOne2: | ||||
| 2063 | *reorderable = 1; | ||||
| 2064 | return PyLong_FromLong(-1); | ||||
| 2065 | |||||
| 2066 | case PyUFunc_ReorderableNone-2: | ||||
| 2067 | *reorderable = 1; | ||||
| 2068 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | ||||
| 2069 | |||||
| 2070 | case PyUFunc_None-1: | ||||
| 2071 | *reorderable = 0; | ||||
| 2072 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | ||||
| 2073 | |||||
| 2074 | case PyUFunc_IdentityValue-3: | ||||
| 2075 | *reorderable = 1; | ||||
| 2076 | Py_INCREF(ufunc->identity_value)_Py_INCREF(((PyObject*)(ufunc->identity_value))); | ||||
| 2077 | return ufunc->identity_value; | ||||
| 2078 | |||||
| 2079 | default: | ||||
| 2080 | PyErr_Format(PyExc_ValueError, | ||||
| 2081 | "ufunc %s has an invalid identity", ufunc_get_name_cstr(ufunc)); | ||||
| 2082 | return NULL((void*)0); | ||||
| 2083 | } | ||||
| 2084 | } | ||||
| 2085 | |||||
| 2086 | /* | ||||
| 2087 | * Copy over parts of the ufunc structure that may need to be | ||||
| 2088 | * changed during execution. Returns 0 on success; -1 otherwise. | ||||
| 2089 | */ | ||||
| 2090 | static int | ||||
| 2091 | _initialize_variable_parts(PyUFuncObject *ufunc, | ||||
| 2092 | int op_core_num_dims[], | ||||
| 2093 | npy_intp core_dim_sizes[], | ||||
| 2094 | npy_uint32 core_dim_flags[]) { | ||||
| 2095 | int i; | ||||
| 2096 | |||||
| 2097 | for (i = 0; i < ufunc->nargs; i++) { | ||||
| 2098 | op_core_num_dims[i] = ufunc->core_num_dims[i]; | ||||
| 2099 | } | ||||
| 2100 | for (i = 0; i < ufunc->core_num_dim_ix; i++) { | ||||
| 2101 | core_dim_sizes[i] = ufunc->core_dim_sizes[i]; | ||||
| 2102 | core_dim_flags[i] = ufunc->core_dim_flags[i]; | ||||
| 2103 | } | ||||
| 2104 | return 0; | ||||
| 2105 | } | ||||
| 2106 | |||||
| 2107 | static int | ||||
| 2108 | PyUFunc_GeneralizedFunctionInternal(PyUFuncObject *ufunc, PyArrayObject **op, | ||||
| 2109 | ufunc_full_args full_args, PyObject *type_tup, PyObject *extobj, | ||||
| 2110 | NPY_CASTING casting, NPY_ORDER order, npy_bool subok, | ||||
| 2111 | PyObject *axis, PyObject *axes, int keepdims) | ||||
| 2112 | { | ||||
| 2113 | int nin, nout; | ||||
| 2114 | int i, j, idim, nop; | ||||
| 2115 | const char *ufunc_name; | ||||
| 2116 | int retval; | ||||
| 2117 | int needs_api = 0; | ||||
| 2118 | |||||
| 2119 | PyArray_Descr *dtypes[NPY_MAXARGS32]; | ||||
| 2120 | |||||
| 2121 | /* Use remapped axes for generalized ufunc */ | ||||
| 2122 | int broadcast_ndim, iter_ndim; | ||||
| 2123 | int op_core_num_dims[NPY_MAXARGS32]; | ||||
| 2124 | int op_axes_arrays[NPY_MAXARGS32][NPY_MAXDIMS32]; | ||||
| 2125 | int *op_axes[NPY_MAXARGS32]; | ||||
| 2126 | npy_uint32 core_dim_flags[NPY_MAXARGS32]; | ||||
| 2127 | |||||
| 2128 | npy_uint32 op_flags[NPY_MAXARGS32]; | ||||
| 2129 | npy_intp iter_shape[NPY_MAXARGS32]; | ||||
| 2130 | NpyIter *iter = NULL((void*)0); | ||||
| 2131 | npy_uint32 iter_flags; | ||||
| 2132 | npy_intp total_problem_size; | ||||
| 2133 | |||||
| 2134 | /* These parameters come from extobj= or from a TLS global */ | ||||
| 2135 | int buffersize = 0, errormask = 0; | ||||
| 2136 | |||||
| 2137 | /* The selected inner loop */ | ||||
| 2138 | PyUFuncGenericFunction innerloop = NULL((void*)0); | ||||
| 2139 | void *innerloopdata = NULL((void*)0); | ||||
| 2140 | /* The dimensions which get passed to the inner loop */ | ||||
| 2141 | npy_intp inner_dimensions[NPY_MAXDIMS32+1]; | ||||
| 2142 | /* The strides which get passed to the inner loop */ | ||||
| 2143 | npy_intp *inner_strides = NULL((void*)0); | ||||
| 2144 | |||||
| 2145 | /* The sizes of the core dimensions (# entries is ufunc->core_num_dim_ix) */ | ||||
| 2146 | npy_intp *core_dim_sizes = inner_dimensions + 1; | ||||
| 2147 | int core_dim_ixs_size; | ||||
| 2148 | /* swapping around of axes */ | ||||
| 2149 | int *remap_axis_memory = NULL((void*)0); | ||||
| 2150 | int **remap_axis = NULL((void*)0); | ||||
| 2151 | /* The __array_prepare__ function to call for each output */ | ||||
| 2152 | PyObject *arr_prep[NPY_MAXARGS32]; | ||||
| 2153 | |||||
| 2154 | nin = ufunc->nin; | ||||
| 2155 | nout = ufunc->nout; | ||||
| 2156 | nop = nin + nout; | ||||
| 2157 | |||||
| 2158 | ufunc_name = ufunc_get_name_cstr(ufunc); | ||||
| 2159 | |||||
| 2160 | NPY_UF_DBG_PRINT1("\nEvaluating ufunc %s\n", ufunc_name); | ||||
| 2161 | |||||
| 2162 | /* Initialize all dtypes and __array_prepare__ call-backs to NULL */ | ||||
| 2163 | for (i = 0; i < nop; ++i) { | ||||
| 2164 | dtypes[i] = NULL((void*)0); | ||||
| 2165 | arr_prep[i] = NULL((void*)0); | ||||
| 2166 | } | ||||
| 2167 | /* Initialize possibly variable parts to the values from the ufunc */ | ||||
| 2168 | retval = _initialize_variable_parts(ufunc, op_core_num_dims, | ||||
| 2169 | core_dim_sizes, core_dim_flags); | ||||
| 2170 | if (retval < 0) { | ||||
| 2171 | goto fail; | ||||
| 2172 | } | ||||
| 2173 | |||||
| 2174 | /* | ||||
| 2175 | * If keepdims was passed in (and thus changed from the initial value | ||||
| 2176 | * on top), check the gufunc is suitable, i.e., that its inputs share | ||||
| 2177 | * the same number of core dimensions, and its outputs have none. | ||||
| 2178 | */ | ||||
| 2179 | if (keepdims != -1) { | ||||
| 2180 | retval = _check_keepdims_support(ufunc); | ||||
| 2181 | if (retval < 0) { | ||||
| 2182 | goto fail; | ||||
| 2183 | } | ||||
| 2184 | } | ||||
| 2185 | if (axis != NULL((void*)0)) { | ||||
| 2186 | retval = _check_axis_support(ufunc); | ||||
| 2187 | if (retval < 0) { | ||||
| 2188 | goto fail; | ||||
| 2189 | } | ||||
| 2190 | } | ||||
| 2191 | /* | ||||
| 2192 | * If keepdims is set and true, which means all input dimensions are | ||||
| 2193 | * the same, signal that all output dimensions will be the same too. | ||||
| 2194 | */ | ||||
| 2195 | if (keepdims == 1) { | ||||
| 2196 | int num_dims = op_core_num_dims[0]; | ||||
| 2197 | for (i = nin; i < nop; ++i) { | ||||
| 2198 | op_core_num_dims[i] = num_dims; | ||||
| 2199 | } | ||||
| 2200 | } | ||||
| 2201 | else { | ||||
| 2202 | /* keepdims was not set or was false; no adjustment necessary */ | ||||
| 2203 | keepdims = 0; | ||||
| 2204 | } | ||||
| 2205 | /* | ||||
| 2206 | * Check that operands have the minimum dimensions required. | ||||
| 2207 | * (Just checks core; broadcast dimensions are tested by the iterator.) | ||||
| 2208 | */ | ||||
| 2209 | retval = _validate_num_dims(ufunc, op, core_dim_flags, | ||||
| 2210 | op_core_num_dims); | ||||
| 2211 | if (retval < 0) { | ||||
| 2212 | goto fail; | ||||
| 2213 | } | ||||
| 2214 | /* | ||||
| 2215 | * Figure out the number of iteration dimensions, which | ||||
| 2216 | * is the broadcast result of all the non-core dimensions. | ||||
| 2217 | * (We do allow outputs to broadcast inputs currently, if they are given. | ||||
| 2218 | * This is in line with what normal ufuncs do.) | ||||
| 2219 | */ | ||||
| 2220 | broadcast_ndim = 0; | ||||
| 2221 | for (i = 0; i < nop; ++i) { | ||||
| 2222 | if (op[i] == NULL((void*)0)) { | ||||
| 2223 | continue; | ||||
| 2224 | } | ||||
| 2225 | int n = PyArray_NDIM(op[i]) - op_core_num_dims[i]; | ||||
| 2226 | if (n > broadcast_ndim) { | ||||
| 2227 | broadcast_ndim = n; | ||||
| 2228 | } | ||||
| 2229 | } | ||||
| 2230 | |||||
| 2231 | /* Possibly remap axes. */ | ||||
| 2232 | if (axes != NULL((void*)0) || axis != NULL((void*)0)) { | ||||
| 2233 | assert(!(axes != NULL && axis != NULL))((void) (0)); | ||||
| 2234 | |||||
| 2235 | remap_axis = PyArray_mallocPyMem_RawMalloc(sizeof(remap_axis[0]) * nop); | ||||
| 2236 | remap_axis_memory = PyArray_mallocPyMem_RawMalloc(sizeof(remap_axis_memory[0]) * | ||||
| 2237 | nop * NPY_MAXDIMS32); | ||||
| 2238 | if (remap_axis == NULL((void*)0) || remap_axis_memory == NULL((void*)0)) { | ||||
| 2239 | PyErr_NoMemory(); | ||||
| 2240 | goto fail; | ||||
| 2241 | } | ||||
| 2242 | for (i=0; i < nop; i++) { | ||||
| 2243 | remap_axis[i] = remap_axis_memory + i * NPY_MAXDIMS32; | ||||
| 2244 | } | ||||
| 2245 | if (axis) { | ||||
| 2246 | retval = _parse_axis_arg(ufunc, op_core_num_dims, axis, op, | ||||
| 2247 | broadcast_ndim, remap_axis); | ||||
| 2248 | } | ||||
| 2249 | else { | ||||
| 2250 | retval = _parse_axes_arg(ufunc, op_core_num_dims, axes, op, | ||||
| 2251 | broadcast_ndim, remap_axis); | ||||
| 2252 | } | ||||
| 2253 | if(retval < 0) { | ||||
| 2254 | goto fail; | ||||
| 2255 | } | ||||
| 2256 | } | ||||
| 2257 | |||||
| 2258 | /* Collect the lengths of the labelled core dimensions */ | ||||
| 2259 | retval = _get_coredim_sizes(ufunc, op, op_core_num_dims, core_dim_flags, | ||||
| 2260 | core_dim_sizes, remap_axis); | ||||
| 2261 | if(retval < 0) { | ||||
| 2262 | goto fail; | ||||
| 2263 | } | ||||
| 2264 | /* | ||||
| 2265 | * Figure out the number of iterator creation dimensions, | ||||
| 2266 | * which is the broadcast dimensions + all the core dimensions of | ||||
| 2267 | * the outputs, so that the iterator can allocate those output | ||||
| 2268 | * dimensions following the rules of order='F', for example. | ||||
| 2269 | */ | ||||
| 2270 | iter_ndim = broadcast_ndim; | ||||
| 2271 | for (i = nin; i < nop; ++i) { | ||||
| 2272 | iter_ndim += op_core_num_dims[i]; | ||||
| 2273 | } | ||||
| 2274 | if (iter_ndim > NPY_MAXDIMS32) { | ||||
| 2275 | PyErr_Format(PyExc_ValueError, | ||||
| 2276 | "too many dimensions for generalized ufunc %s", | ||||
| 2277 | ufunc_name); | ||||
| 2278 | retval = -1; | ||||
| 2279 | goto fail; | ||||
| 2280 | } | ||||
| 2281 | |||||
| 2282 | /* Fill in the initial part of 'iter_shape' */ | ||||
| 2283 | for (idim = 0; idim < broadcast_ndim; ++idim) { | ||||
| 2284 | iter_shape[idim] = -1; | ||||
| 2285 | } | ||||
| 2286 | |||||
| 2287 | /* Fill in op_axes for all the operands */ | ||||
| 2288 | j = broadcast_ndim; | ||||
| 2289 | for (i = 0; i < nop; ++i) { | ||||
| 2290 | int n; | ||||
| 2291 | |||||
| 2292 | if (op[i]) { | ||||
| 2293 | n = PyArray_NDIM(op[i]) - op_core_num_dims[i]; | ||||
| 2294 | } | ||||
| 2295 | else { | ||||
| 2296 | n = broadcast_ndim; | ||||
| 2297 | } | ||||
| 2298 | /* Broadcast all the unspecified dimensions normally */ | ||||
| 2299 | for (idim = 0; idim < broadcast_ndim; ++idim) { | ||||
| 2300 | if (idim >= broadcast_ndim - n) { | ||||
| 2301 | op_axes_arrays[i][idim] = | ||||
| 2302 | REMAP_AXIS(i, idim - (broadcast_ndim - n))((remap_axis != ((void*)0) && remap_axis[i] != ((void *)0))? remap_axis[i][idim - (broadcast_ndim - n)] : idim - (broadcast_ndim - n)); | ||||
| 2303 | } | ||||
| 2304 | else { | ||||
| 2305 | op_axes_arrays[i][idim] = -1; | ||||
| 2306 | } | ||||
| 2307 | } | ||||
| 2308 | |||||
| 2309 | /* | ||||
| 2310 | * Any output core dimensions shape should be ignored, so we add | ||||
| 2311 | * it as a Reduce dimension (which can be broadcast with the rest). | ||||
| 2312 | * These will be removed before the actual iteration for gufuncs. | ||||
| 2313 | */ | ||||
| 2314 | for (idim = broadcast_ndim; idim < iter_ndim; ++idim) { | ||||
| 2315 | op_axes_arrays[i][idim] = NPY_ITER_REDUCTION_AXIS(-1)(-1 + (1 << ((4 * 8) - 2))); | ||||
| 2316 | } | ||||
| 2317 | |||||
| 2318 | /* Except for when it belongs to this output */ | ||||
| 2319 | if (i >= nin) { | ||||
| 2320 | int dim_offset = ufunc->core_offsets[i]; | ||||
| 2321 | int num_removed = 0; | ||||
| 2322 | /* | ||||
| 2323 | * Fill in 'iter_shape' and 'op_axes' for the core dimensions | ||||
| 2324 | * of this output. Here, we have to be careful: if keepdims | ||||
| 2325 | * was used, then the axes are not real core dimensions, but | ||||
| 2326 | * are being added back for broadcasting, so their size is 1. | ||||
| 2327 | * If the axis was removed, we should skip altogether. | ||||
| 2328 | */ | ||||
| 2329 | if (keepdims) { | ||||
| 2330 | for (idim = 0; idim < op_core_num_dims[i]; ++idim) { | ||||
| 2331 | iter_shape[j] = 1; | ||||
| 2332 | op_axes_arrays[i][j] = REMAP_AXIS(i, n + idim)((remap_axis != ((void*)0) && remap_axis[i] != ((void *)0))? remap_axis[i][n + idim] : n + idim); | ||||
| 2333 | ++j; | ||||
| 2334 | } | ||||
| 2335 | } | ||||
| 2336 | else { | ||||
| 2337 | for (idim = 0; idim < ufunc->core_num_dims[i]; ++idim) { | ||||
| 2338 | int core_index = dim_offset + idim; | ||||
| 2339 | int core_dim_index = ufunc->core_dim_ixs[core_index]; | ||||
| 2340 | if ((core_dim_flags[core_dim_index] & | ||||
| 2341 | UFUNC_CORE_DIM_MISSING0x00040000)) { | ||||
| 2342 | /* skip it */ | ||||
| 2343 | num_removed++; | ||||
| 2344 | continue; | ||||
| 2345 | } | ||||
| 2346 | iter_shape[j] = core_dim_sizes[ufunc->core_dim_ixs[core_index]]; | ||||
| 2347 | op_axes_arrays[i][j] = REMAP_AXIS(i, n + idim - num_removed)((remap_axis != ((void*)0) && remap_axis[i] != ((void *)0))? remap_axis[i][n + idim - num_removed] : n + idim - num_removed ); | ||||
| 2348 | ++j; | ||||
| 2349 | } | ||||
| 2350 | } | ||||
| 2351 | } | ||||
| 2352 | |||||
| 2353 | op_axes[i] = op_axes_arrays[i]; | ||||
| 2354 | } | ||||
| 2355 | |||||
| 2356 | #if NPY_UF_DBG_TRACING0 | ||||
| 2357 | printf("iter shapes:")__printf_chk (2 - 1, "iter shapes:"); | ||||
| 2358 | for (j=0; j < iter_ndim; j++) { | ||||
| 2359 | printf(" %ld", iter_shape[j])__printf_chk (2 - 1, " %ld", iter_shape[j]); | ||||
| 2360 | } | ||||
| 2361 | printf("\n")__printf_chk (2 - 1, "\n"); | ||||
| 2362 | #endif | ||||
| 2363 | |||||
| 2364 | /* Get the buffersize and errormask */ | ||||
| 2365 | if (_get_bufsize_errmask(extobj, ufunc_name, &buffersize, &errormask) < 0) { | ||||
| 2366 | retval = -1; | ||||
| 2367 | goto fail; | ||||
| 2368 | } | ||||
| 2369 | |||||
| 2370 | NPY_UF_DBG_PRINT("Finding inner loop\n"); | ||||
| 2371 | |||||
| 2372 | |||||
| 2373 | retval = ufunc->type_resolver(ufunc, casting, | ||||
| 2374 | op, type_tup, dtypes); | ||||
| 2375 | if (retval < 0) { | ||||
| 2376 | goto fail; | ||||
| 2377 | } | ||||
| 2378 | /* | ||||
| 2379 | * We don't write to all elements, and the iterator may make | ||||
| 2380 | * UPDATEIFCOPY temporary copies. The output arrays (unless they are | ||||
| 2381 | * allocated by the iterator itself) must be considered READWRITE by the | ||||
| 2382 | * iterator, so that the elements we don't write to are copied to the | ||||
| 2383 | * possible temporary array. | ||||
| 2384 | */ | ||||
| 2385 | _ufunc_setup_flags(ufunc, NPY_ITER_COPY0x00400000 | NPY_UFUNC_DEFAULT_INPUT_FLAGS0x00020000 | 0x00100000 | 0x40000000, | ||||
| 2386 | NPY_ITER_UPDATEIFCOPY0x00800000 | | ||||
| 2387 | NPY_ITER_WRITEONLY0x00040000 | | ||||
| 2388 | NPY_UFUNC_DEFAULT_OUTPUT_FLAGS0x00100000 | 0x01000000 | 0x08000000 | 0x02000000 | 0x40000000, | ||||
| 2389 | op_flags); | ||||
| 2390 | /* For the generalized ufunc, we get the loop right away too */ | ||||
| 2391 | retval = ufunc->legacy_inner_loop_selector(ufunc, dtypes, | ||||
| 2392 | &innerloop, &innerloopdata, &needs_api); | ||||
| 2393 | if (retval < 0) { | ||||
| 2394 | goto fail; | ||||
| 2395 | } | ||||
| 2396 | |||||
| 2397 | #if NPY_UF_DBG_TRACING0 | ||||
| 2398 | printf("input types:\n")__printf_chk (2 - 1, "input types:\n"); | ||||
| 2399 | for (i = 0; i < nin; ++i) { | ||||
| 2400 | PyObject_Print((PyObject *)dtypes[i], stdoutstdout, 0); | ||||
| 2401 | printf(" ")__printf_chk (2 - 1, " "); | ||||
| 2402 | } | ||||
| 2403 | printf("\noutput types:\n")__printf_chk (2 - 1, "\noutput types:\n"); | ||||
| 2404 | for (i = nin; i < nop; ++i) { | ||||
| 2405 | PyObject_Print((PyObject *)dtypes[i], stdoutstdout, 0); | ||||
| 2406 | printf(" ")__printf_chk (2 - 1, " "); | ||||
| 2407 | } | ||||
| 2408 | printf("\n")__printf_chk (2 - 1, "\n"); | ||||
| 2409 | #endif | ||||
| 2410 | |||||
| 2411 | if (subok) { | ||||
| 2412 | /* | ||||
| 2413 | * Get the appropriate __array_prepare__ function to call | ||||
| 2414 | * for each output | ||||
| 2415 | */ | ||||
| 2416 | _find_array_prepare(full_args, arr_prep, nout); | ||||
| 2417 | } | ||||
| 2418 | |||||
| 2419 | /* | ||||
| 2420 | * Set up the iterator per-op flags. For generalized ufuncs, we | ||||
| 2421 | * can't do buffering, so must COPY or UPDATEIFCOPY. | ||||
| 2422 | */ | ||||
| 2423 | |||||
| 2424 | iter_flags = ufunc->iter_flags | | ||||
| 2425 | NPY_ITER_MULTI_INDEX0x00000004 | | ||||
| 2426 | NPY_ITER_REFS_OK0x00000020 | | ||||
| 2427 | NPY_ITER_ZEROSIZE_OK0x00000040 | | ||||
| 2428 | NPY_ITER_COPY_IF_OVERLAP0x00002000; | ||||
| 2429 | |||||
| 2430 | /* Create the iterator */ | ||||
| 2431 | iter = NpyIter_AdvancedNew(nop, op, iter_flags, | ||||
| 2432 | order, NPY_UNSAFE_CASTING, op_flags, | ||||
| 2433 | dtypes, iter_ndim, | ||||
| 2434 | op_axes, iter_shape, 0); | ||||
| 2435 | if (iter == NULL((void*)0)) { | ||||
| 2436 | retval = -1; | ||||
| 2437 | goto fail; | ||||
| 2438 | } | ||||
| 2439 | |||||
| 2440 | /* Fill in any allocated outputs */ | ||||
| 2441 | { | ||||
| 2442 | PyArrayObject **operands = NpyIter_GetOperandArray(iter); | ||||
| 2443 | for (i = nin; i < nop; ++i) { | ||||
| 2444 | if (op[i] == NULL((void*)0)) { | ||||
| 2445 | op[i] = operands[i]; | ||||
| 2446 | Py_INCREF(op[i])_Py_INCREF(((PyObject*)(op[i]))); | ||||
| 2447 | } | ||||
| 2448 | } | ||||
| 2449 | } | ||||
| 2450 | /* | ||||
| 2451 | * Set up the inner strides array. Because we're not doing | ||||
| 2452 | * buffering, the strides are fixed throughout the looping. | ||||
| 2453 | */ | ||||
| 2454 | core_dim_ixs_size = 0; | ||||
| 2455 | for (i = 0; i < nop; ++i) { | ||||
| 2456 | core_dim_ixs_size += ufunc->core_num_dims[i]; | ||||
| 2457 | } | ||||
| 2458 | inner_strides = (npy_intp *)PyArray_mallocPyMem_RawMalloc( | ||||
| 2459 | NPY_SIZEOF_INTP8 * (nop+core_dim_ixs_size)); | ||||
| 2460 | if (inner_strides == NULL((void*)0)) { | ||||
| 2461 | PyErr_NoMemory(); | ||||
| 2462 | retval = -1; | ||||
| 2463 | goto fail; | ||||
| 2464 | } | ||||
| 2465 | /* Copy the strides after the first nop */ | ||||
| 2466 | idim = nop; | ||||
| 2467 | for (i = 0; i < nop; ++i) { | ||||
| 2468 | /* | ||||
| 2469 | * Need to use the arrays in the iterator, not op, because | ||||
| 2470 | * a copy with a different-sized type may have been made. | ||||
| 2471 | */ | ||||
| 2472 | PyArrayObject *arr = NpyIter_GetOperandArray(iter)[i]; | ||||
| 2473 | npy_intp *shape = PyArray_SHAPE(arr); | ||||
| 2474 | npy_intp *strides = PyArray_STRIDES(arr); | ||||
| 2475 | /* | ||||
| 2476 | * Could be negative if flexible dims are used, but not for | ||||
| 2477 | * keepdims, since those dimensions are allocated in arr. | ||||
| 2478 | */ | ||||
| 2479 | int core_start_dim = PyArray_NDIM(arr) - op_core_num_dims[i]; | ||||
| 2480 | int num_removed = 0; | ||||
| 2481 | int dim_offset = ufunc->core_offsets[i]; | ||||
| 2482 | |||||
| 2483 | for (j = 0; j < ufunc->core_num_dims[i]; ++j) { | ||||
| 2484 | int core_dim_index = ufunc->core_dim_ixs[dim_offset + j]; | ||||
| 2485 | /* | ||||
| 2486 | * Force zero stride when the shape is 1 (always the case for | ||||
| 2487 | * for missing dimensions), so that broadcasting works right. | ||||
| 2488 | */ | ||||
| 2489 | if (core_dim_flags[core_dim_index] & UFUNC_CORE_DIM_MISSING0x00040000) { | ||||
| 2490 | num_removed++; | ||||
| 2491 | inner_strides[idim++] = 0; | ||||
| 2492 | } | ||||
| 2493 | else { | ||||
| 2494 | int remapped_axis = REMAP_AXIS(i, core_start_dim + j - num_removed)((remap_axis != ((void*)0) && remap_axis[i] != ((void *)0))? remap_axis[i][core_start_dim + j - num_removed] : core_start_dim + j - num_removed); | ||||
| 2495 | if (shape[remapped_axis] != 1) { | ||||
| 2496 | inner_strides[idim++] = strides[remapped_axis]; | ||||
| 2497 | } else { | ||||
| 2498 | inner_strides[idim++] = 0; | ||||
| 2499 | } | ||||
| 2500 | } | ||||
| 2501 | } | ||||
| 2502 | } | ||||
| 2503 | |||||
| 2504 | total_problem_size = NpyIter_GetIterSize(iter); | ||||
| 2505 | if (total_problem_size < 0) { | ||||
| 2506 | /* | ||||
| 2507 | * Only used for threading, if negative (this means that it is | ||||
| 2508 | * larger then ssize_t before axes removal) assume that the actual | ||||
| 2509 | * problem is large enough to be threaded usefully. | ||||
| 2510 | */ | ||||
| 2511 | total_problem_size = 1000; | ||||
| 2512 | } | ||||
| 2513 | |||||
| 2514 | /* Remove all the core output dimensions from the iterator */ | ||||
| 2515 | for (i = broadcast_ndim; i < iter_ndim; ++i) { | ||||
| 2516 | if (NpyIter_RemoveAxis(iter, broadcast_ndim) != NPY_SUCCEED1) { | ||||
| 2517 | retval = -1; | ||||
| 2518 | goto fail; | ||||
| 2519 | } | ||||
| 2520 | } | ||||
| 2521 | if (NpyIter_RemoveMultiIndex(iter) != NPY_SUCCEED1) { | ||||
| 2522 | retval = -1; | ||||
| 2523 | goto fail; | ||||
| 2524 | } | ||||
| 2525 | if (NpyIter_EnableExternalLoop(iter) != NPY_SUCCEED1) { | ||||
| 2526 | retval = -1; | ||||
| 2527 | goto fail; | ||||
| 2528 | } | ||||
| 2529 | |||||
| 2530 | /* | ||||
| 2531 | * The first nop strides are for the inner loop (but only can | ||||
| 2532 | * copy them after removing the core axes) | ||||
| 2533 | */ | ||||
| 2534 | memcpy(inner_strides, NpyIter_GetInnerStrideArray(iter), | ||||
| 2535 | NPY_SIZEOF_INTP8 * nop); | ||||
| 2536 | |||||
| 2537 | #if 0 | ||||
| 2538 | printf("strides: ")__printf_chk (2 - 1, "strides: "); | ||||
| 2539 | for (i = 0; i < nop+core_dim_ixs_size; ++i) { | ||||
| 2540 | printf("%d ", (int)inner_strides[i])__printf_chk (2 - 1, "%d ", (int)inner_strides[i]); | ||||
| 2541 | } | ||||
| 2542 | printf("\n")__printf_chk (2 - 1, "\n"); | ||||
| 2543 | #endif | ||||
| 2544 | |||||
| 2545 | /* Start with the floating-point exception flags cleared */ | ||||
| 2546 | npy_clear_floatstatus_barrier((char*)&iter); | ||||
| 2547 | |||||
| 2548 | NPY_UF_DBG_PRINT("Executing inner loop\n"); | ||||
| 2549 | |||||
| 2550 | if (NpyIter_GetIterSize(iter) != 0) { | ||||
| 2551 | /* Do the ufunc loop */ | ||||
| 2552 | NpyIter_IterNextFunc *iternext; | ||||
| 2553 | char **dataptr; | ||||
| 2554 | npy_intp *count_ptr; | ||||
| 2555 | NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);; | ||||
| 2556 | |||||
| 2557 | /* Get the variables needed for the loop */ | ||||
| 2558 | iternext = NpyIter_GetIterNext(iter, NULL((void*)0)); | ||||
| 2559 | if (iternext == NULL((void*)0)) { | ||||
| 2560 | retval = -1; | ||||
| 2561 | goto fail; | ||||
| 2562 | } | ||||
| 2563 | dataptr = NpyIter_GetDataPtrArray(iter); | ||||
| 2564 | count_ptr = NpyIter_GetInnerLoopSizePtr(iter); | ||||
| 2565 | needs_api = NpyIter_IterationNeedsAPI(iter); | ||||
| 2566 | |||||
| 2567 | if (!needs_api && !NpyIter_IterationNeedsAPI(iter)) { | ||||
| 2568 | NPY_BEGIN_THREADS_THRESHOLDED(total_problem_size)do { if ((total_problem_size) > 500) { _save = PyEval_SaveThread ();} } while (0);; | ||||
| 2569 | } | ||||
| 2570 | do { | ||||
| 2571 | inner_dimensions[0] = *count_ptr; | ||||
| 2572 | innerloop(dataptr, inner_dimensions, inner_strides, innerloopdata); | ||||
| 2573 | } while (!(needs_api && PyErr_Occurred()) && iternext(iter)); | ||||
| 2574 | |||||
| 2575 | if (!needs_api && !NpyIter_IterationNeedsAPI(iter)) { | ||||
| 2576 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 2577 | } | ||||
| 2578 | } | ||||
| 2579 | |||||
| 2580 | /* Check whether any errors occurred during the loop */ | ||||
| 2581 | if (PyErr_Occurred() || | ||||
| 2582 | _check_ufunc_fperr(errormask, extobj, ufunc_name) < 0) { | ||||
| 2583 | retval = -1; | ||||
| 2584 | goto fail; | ||||
| 2585 | } | ||||
| 2586 | |||||
| 2587 | PyArray_freePyMem_RawFree(inner_strides); | ||||
| 2588 | if (NpyIter_Deallocate(iter) < 0) { | ||||
| 2589 | retval = -1; | ||||
| 2590 | } | ||||
| 2591 | |||||
| 2592 | /* The caller takes ownership of all the references in op */ | ||||
| 2593 | for (i = 0; i < nop; ++i) { | ||||
| 2594 | Py_XDECREF(dtypes[i])_Py_XDECREF(((PyObject*)(dtypes[i]))); | ||||
| 2595 | Py_XDECREF(arr_prep[i])_Py_XDECREF(((PyObject*)(arr_prep[i]))); | ||||
| 2596 | } | ||||
| 2597 | PyArray_freePyMem_RawFree(remap_axis_memory); | ||||
| 2598 | PyArray_freePyMem_RawFree(remap_axis); | ||||
| 2599 | |||||
| 2600 | NPY_UF_DBG_PRINT1("Returning code %d\n", retval); | ||||
| 2601 | |||||
| 2602 | return retval; | ||||
| 2603 | |||||
| 2604 | fail: | ||||
| 2605 | NPY_UF_DBG_PRINT1("Returning failure code %d\n", retval); | ||||
| 2606 | PyArray_freePyMem_RawFree(inner_strides); | ||||
| 2607 | NpyIter_Deallocate(iter); | ||||
| 2608 | for (i = 0; i < nop; ++i) { | ||||
| 2609 | Py_XDECREF(dtypes[i])_Py_XDECREF(((PyObject*)(dtypes[i]))); | ||||
| 2610 | Py_XDECREF(arr_prep[i])_Py_XDECREF(((PyObject*)(arr_prep[i]))); | ||||
| 2611 | } | ||||
| 2612 | PyArray_freePyMem_RawFree(remap_axis_memory); | ||||
| 2613 | PyArray_freePyMem_RawFree(remap_axis); | ||||
| 2614 | return retval; | ||||
| 2615 | } | ||||
| 2616 | |||||
| 2617 | |||||
| 2618 | static int | ||||
| 2619 | PyUFunc_GenericFunctionInternal(PyUFuncObject *ufunc, PyArrayObject **op, | ||||
| 2620 | ufunc_full_args full_args, PyObject *type_tup, PyObject *extobj, | ||||
| 2621 | NPY_CASTING casting, NPY_ORDER order, npy_bool subok, | ||||
| 2622 | PyArrayObject *wheremask) | ||||
| 2623 | { | ||||
| 2624 | int nin, nout; | ||||
| 2625 | int i, nop; | ||||
| 2626 | const char *ufunc_name; | ||||
| 2627 | int retval = -1; | ||||
| 2628 | npy_uint32 op_flags[NPY_MAXARGS32]; | ||||
| 2629 | npy_intp default_op_out_flags; | ||||
| 2630 | |||||
| 2631 | PyArray_Descr *dtypes[NPY_MAXARGS32]; | ||||
| 2632 | |||||
| 2633 | /* These parameters come from extobj= or from a TLS global */ | ||||
| 2634 | int buffersize = 0, errormask = 0; | ||||
| 2635 | |||||
| 2636 | /* The __array_prepare__ function to call for each output */ | ||||
| 2637 | PyObject *arr_prep[NPY_MAXARGS32]; | ||||
| 2638 | |||||
| 2639 | int trivial_loop_ok = 0; | ||||
| 2640 | |||||
| 2641 | nin = ufunc->nin; | ||||
| 2642 | nout = ufunc->nout; | ||||
| 2643 | nop = nin + nout; | ||||
| 2644 | |||||
| 2645 | ufunc_name = ufunc_get_name_cstr(ufunc); | ||||
| 2646 | |||||
| 2647 | NPY_UF_DBG_PRINT1("\nEvaluating ufunc %s\n", ufunc_name); | ||||
| 2648 | |||||
| 2649 | /* Initialize all the dtypes and __array_prepare__ callbacks to NULL */ | ||||
| 2650 | for (i = 0; i < nop; ++i) { | ||||
| 2651 | dtypes[i] = NULL((void*)0); | ||||
| 2652 | arr_prep[i] = NULL((void*)0); | ||||
| 2653 | } | ||||
| 2654 | |||||
| 2655 | /* Get the buffersize and errormask */ | ||||
| 2656 | if (_get_bufsize_errmask(extobj, ufunc_name, &buffersize, &errormask) < 0) { | ||||
| 2657 | retval = -1; | ||||
| 2658 | goto fail; | ||||
| 2659 | } | ||||
| 2660 | |||||
| 2661 | NPY_UF_DBG_PRINT("Finding inner loop\n"); | ||||
| 2662 | |||||
| 2663 | retval = ufunc->type_resolver(ufunc, casting, | ||||
| 2664 | op, type_tup, dtypes); | ||||
| 2665 | if (retval < 0) { | ||||
| 2666 | goto fail; | ||||
| 2667 | } | ||||
| 2668 | |||||
| 2669 | if (wheremask != NULL((void*)0)) { | ||||
| 2670 | /* Set up the flags. */ | ||||
| 2671 | default_op_out_flags = NPY_ITER_NO_SUBTYPE0x02000000 | | ||||
| 2672 | NPY_ITER_WRITEMASKED0x10000000 | | ||||
| 2673 | NPY_UFUNC_DEFAULT_OUTPUT_FLAGS0x00100000 | 0x01000000 | 0x08000000 | 0x02000000 | 0x40000000; | ||||
| 2674 | _ufunc_setup_flags(ufunc, NPY_UFUNC_DEFAULT_INPUT_FLAGS0x00020000 | 0x00100000 | 0x40000000, | ||||
| 2675 | default_op_out_flags, op_flags); | ||||
| 2676 | } | ||||
| 2677 | else { | ||||
| 2678 | /* Set up the flags. */ | ||||
| 2679 | default_op_out_flags = NPY_ITER_WRITEONLY0x00040000 | | ||||
| 2680 | NPY_UFUNC_DEFAULT_OUTPUT_FLAGS0x00100000 | 0x01000000 | 0x08000000 | 0x02000000 | 0x40000000; | ||||
| 2681 | _ufunc_setup_flags(ufunc, NPY_UFUNC_DEFAULT_INPUT_FLAGS0x00020000 | 0x00100000 | 0x40000000, | ||||
| 2682 | default_op_out_flags, op_flags); | ||||
| 2683 | } | ||||
| 2684 | |||||
| 2685 | #if NPY_UF_DBG_TRACING0 | ||||
| 2686 | printf("input types:\n")__printf_chk (2 - 1, "input types:\n"); | ||||
| 2687 | for (i = 0; i < nin; ++i) { | ||||
| 2688 | PyObject_Print((PyObject *)dtypes[i], stdoutstdout, 0); | ||||
| 2689 | printf(" ")__printf_chk (2 - 1, " "); | ||||
| 2690 | } | ||||
| 2691 | printf("\noutput types:\n")__printf_chk (2 - 1, "\noutput types:\n"); | ||||
| 2692 | for (i = nin; i < nop; ++i) { | ||||
| 2693 | PyObject_Print((PyObject *)dtypes[i], stdoutstdout, 0); | ||||
| 2694 | printf(" ")__printf_chk (2 - 1, " "); | ||||
| 2695 | } | ||||
| 2696 | printf("\n")__printf_chk (2 - 1, "\n"); | ||||
| 2697 | #endif | ||||
| 2698 | |||||
| 2699 | if (subok) { | ||||
| 2700 | /* | ||||
| 2701 | * Get the appropriate __array_prepare__ function to call | ||||
| 2702 | * for each output | ||||
| 2703 | */ | ||||
| 2704 | _find_array_prepare(full_args, arr_prep, nout); | ||||
| 2705 | } | ||||
| 2706 | |||||
| 2707 | /* Do the ufunc loop */ | ||||
| 2708 | if (wheremask != NULL((void*)0)) { | ||||
| 2709 | NPY_UF_DBG_PRINT("Executing fancy inner loop\n"); | ||||
| 2710 | |||||
| 2711 | if (nop + 1 > NPY_MAXARGS32) { | ||||
| 2712 | PyErr_SetString(PyExc_ValueError, | ||||
| 2713 | "Too many operands when including where= parameter"); | ||||
| 2714 | return -1; | ||||
| 2715 | } | ||||
| 2716 | op[nop] = wheremask; | ||||
| 2717 | dtypes[nop] = NULL((void*)0); | ||||
| 2718 | |||||
| 2719 | /* Set up the flags */ | ||||
| 2720 | |||||
| 2721 | npy_clear_floatstatus_barrier((char*)&ufunc); | ||||
| 2722 | retval = execute_fancy_ufunc_loop(ufunc, wheremask, | ||||
| 2723 | op, dtypes, order, | ||||
| 2724 | buffersize, arr_prep, full_args, op_flags); | ||||
| 2725 | } | ||||
| 2726 | else { | ||||
| 2727 | NPY_UF_DBG_PRINT("Executing legacy inner loop\n"); | ||||
| 2728 | |||||
| 2729 | /* | ||||
| 2730 | * This checks whether a trivial loop is ok, making copies of | ||||
| 2731 | * scalar and one dimensional operands if that will help. | ||||
| 2732 | * Since it requires dtypes, it can only be called after | ||||
| 2733 | * ufunc->type_resolver | ||||
| 2734 | */ | ||||
| 2735 | trivial_loop_ok = check_for_trivial_loop(ufunc, op, dtypes, buffersize); | ||||
| 2736 | if (trivial_loop_ok < 0) { | ||||
| 2737 | goto fail; | ||||
| 2738 | } | ||||
| 2739 | |||||
| 2740 | /* check_for_trivial_loop on half-floats can overflow */ | ||||
| 2741 | npy_clear_floatstatus_barrier((char*)&ufunc); | ||||
| 2742 | |||||
| 2743 | retval = execute_legacy_ufunc_loop(ufunc, trivial_loop_ok, | ||||
| 2744 | op, dtypes, order, | ||||
| 2745 | buffersize, arr_prep, full_args, op_flags); | ||||
| 2746 | } | ||||
| 2747 | if (retval < 0) { | ||||
| 2748 | goto fail; | ||||
| 2749 | } | ||||
| 2750 | |||||
| 2751 | /* | ||||
| 2752 | * Check whether any errors occurred during the loop. The loops should | ||||
| 2753 | * indicate this in retval, but since the inner-loop currently does not | ||||
| 2754 | * report errors, this does not happen in all branches (at this time). | ||||
| 2755 | */ | ||||
| 2756 | if (PyErr_Occurred() || | ||||
| 2757 | _check_ufunc_fperr(errormask, extobj, ufunc_name) < 0) { | ||||
| 2758 | retval = -1; | ||||
| 2759 | goto fail; | ||||
| 2760 | } | ||||
| 2761 | |||||
| 2762 | |||||
| 2763 | /* The caller takes ownership of all the references in op */ | ||||
| 2764 | for (i = 0; i < nop; ++i) { | ||||
| 2765 | Py_XDECREF(dtypes[i])_Py_XDECREF(((PyObject*)(dtypes[i]))); | ||||
| 2766 | Py_XDECREF(arr_prep[i])_Py_XDECREF(((PyObject*)(arr_prep[i]))); | ||||
| 2767 | } | ||||
| 2768 | |||||
| 2769 | NPY_UF_DBG_PRINT("Returning success code 0\n"); | ||||
| 2770 | |||||
| 2771 | return 0; | ||||
| 2772 | |||||
| 2773 | fail: | ||||
| 2774 | NPY_UF_DBG_PRINT1("Returning failure code %d\n", retval); | ||||
| 2775 | for (i = 0; i < nop; ++i) { | ||||
| 2776 | Py_XDECREF(dtypes[i])_Py_XDECREF(((PyObject*)(dtypes[i]))); | ||||
| 2777 | Py_XDECREF(arr_prep[i])_Py_XDECREF(((PyObject*)(arr_prep[i]))); | ||||
| 2778 | } | ||||
| 2779 | |||||
| 2780 | return retval; | ||||
| 2781 | } | ||||
| 2782 | |||||
| 2783 | |||||
| 2784 | /*UFUNC_API*/ | ||||
| 2785 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 2786 | PyUFunc_GenericFunction(PyUFuncObject *NPY_UNUSED(ufunc)(__NPY_UNUSED_TAGGEDufunc) __attribute__ ((__unused__)), | ||||
| 2787 | PyObject *NPY_UNUSED(args)(__NPY_UNUSED_TAGGEDargs) __attribute__ ((__unused__)), PyObject *NPY_UNUSED(kwds)(__NPY_UNUSED_TAGGEDkwds) __attribute__ ((__unused__)), | ||||
| 2788 | PyArrayObject **NPY_UNUSED(op)(__NPY_UNUSED_TAGGEDop) __attribute__ ((__unused__))) | ||||
| 2789 | { | ||||
| 2790 | /* NumPy 1.21, 2020-03-29 */ | ||||
| 2791 | PyErr_SetString(PyExc_RuntimeError, | ||||
| 2792 | "The `PyUFunc_GenericFunction()` C-API function has been disabled. " | ||||
| 2793 | "Please use `PyObject_Call(ufunc, args, kwargs)`, which has " | ||||
| 2794 | "identical behaviour but allows subclass and `__array_ufunc__` " | ||||
| 2795 | "override handling and only returns the normal ufunc result."); | ||||
| 2796 | return -1; | ||||
| 2797 | } | ||||
| 2798 | |||||
| 2799 | |||||
| 2800 | /* | ||||
| 2801 | * Given the output type, finds the specified binary op. The | ||||
| 2802 | * ufunc must have nin==2 and nout==1. The function may modify | ||||
| 2803 | * otype if the given type isn't found. | ||||
| 2804 | * | ||||
| 2805 | * Returns 0 on success, -1 on failure. | ||||
| 2806 | */ | ||||
| 2807 | static int | ||||
| 2808 | get_binary_op_function(PyUFuncObject *ufunc, int *otype, | ||||
| 2809 | PyUFuncGenericFunction *out_innerloop, | ||||
| 2810 | void **out_innerloopdata) | ||||
| 2811 | { | ||||
| 2812 | int i; | ||||
| 2813 | |||||
| 2814 | NPY_UF_DBG_PRINT1("Getting binary op function for type number %d\n", | ||||
| 2815 | *otype); | ||||
| 2816 | |||||
| 2817 | /* If the type is custom and there are userloops, search for it here */ | ||||
| 2818 | if (ufunc->userloops != NULL((void*)0) && PyTypeNum_ISUSERDEF(*otype)(((*otype) >= NPY_USERDEF) && ((*otype) < NPY_USERDEF + NPY_NUMUSERTYPES))) { | ||||
| 2819 | PyObject *key, *obj; | ||||
| 2820 | key = PyLong_FromLong(*otype); | ||||
| 2821 | if (key == NULL((void*)0)) { | ||||
| 2822 | return -1; | ||||
| 2823 | } | ||||
| 2824 | obj = PyDict_GetItemWithError(ufunc->userloops, key); | ||||
| 2825 | Py_DECREF(key)_Py_DECREF(((PyObject*)(key))); | ||||
| 2826 | if (obj == NULL((void*)0) && PyErr_Occurred()) { | ||||
| 2827 | return -1; | ||||
| 2828 | } | ||||
| 2829 | else if (obj != NULL((void*)0)) { | ||||
| 2830 | PyUFunc_Loop1d *funcdata = PyCapsule_GetPointer(obj, NULL((void*)0)); | ||||
| 2831 | if (funcdata == NULL((void*)0)) { | ||||
| 2832 | return -1; | ||||
| 2833 | } | ||||
| 2834 | while (funcdata != NULL((void*)0)) { | ||||
| 2835 | int *types = funcdata->arg_types; | ||||
| 2836 | |||||
| 2837 | if (types[0] == *otype && types[1] == *otype && | ||||
| 2838 | types[2] == *otype) { | ||||
| 2839 | *out_innerloop = funcdata->func; | ||||
| 2840 | *out_innerloopdata = funcdata->data; | ||||
| 2841 | return 0; | ||||
| 2842 | } | ||||
| 2843 | |||||
| 2844 | funcdata = funcdata->next; | ||||
| 2845 | } | ||||
| 2846 | } | ||||
| 2847 | } | ||||
| 2848 | |||||
| 2849 | /* Search for a function with compatible inputs */ | ||||
| 2850 | for (i = 0; i < ufunc->ntypes; ++i) { | ||||
| 2851 | char *types = ufunc->types + i*ufunc->nargs; | ||||
| 2852 | |||||
| 2853 | NPY_UF_DBG_PRINT3("Trying loop with signature %d %d -> %d\n", | ||||
| 2854 | types[0], types[1], types[2]); | ||||
| 2855 | |||||
| 2856 | if (PyArray_CanCastSafely(*otype, types[0]) && | ||||
| 2857 | types[0] == types[1] && | ||||
| 2858 | (*otype == NPY_OBJECT || types[0] != NPY_OBJECT)) { | ||||
| 2859 | /* If the signature is "xx->x", we found the loop */ | ||||
| 2860 | if (types[2] == types[0]) { | ||||
| 2861 | *out_innerloop = ufunc->functions[i]; | ||||
| 2862 | *out_innerloopdata = ufunc->data[i]; | ||||
| 2863 | *otype = types[0]; | ||||
| 2864 | return 0; | ||||
| 2865 | } | ||||
| 2866 | /* | ||||
| 2867 | * Otherwise, we found the natural type of the reduction, | ||||
| 2868 | * replace otype and search again | ||||
| 2869 | */ | ||||
| 2870 | else { | ||||
| 2871 | *otype = types[2]; | ||||
| 2872 | break; | ||||
| 2873 | } | ||||
| 2874 | } | ||||
| 2875 | } | ||||
| 2876 | |||||
| 2877 | /* Search for the exact function */ | ||||
| 2878 | for (i = 0; i < ufunc->ntypes; ++i) { | ||||
| 2879 | char *types = ufunc->types + i*ufunc->nargs; | ||||
| 2880 | |||||
| 2881 | if (PyArray_CanCastSafely(*otype, types[0]) && | ||||
| 2882 | types[0] == types[1] && | ||||
| 2883 | types[1] == types[2] && | ||||
| 2884 | (*otype == NPY_OBJECT || types[0] != NPY_OBJECT)) { | ||||
| 2885 | /* Since the signature is "xx->x", we found the loop */ | ||||
| 2886 | *out_innerloop = ufunc->functions[i]; | ||||
| 2887 | *out_innerloopdata = ufunc->data[i]; | ||||
| 2888 | *otype = types[0]; | ||||
| 2889 | return 0; | ||||
| 2890 | } | ||||
| 2891 | } | ||||
| 2892 | |||||
| 2893 | return -1; | ||||
| 2894 | } | ||||
| 2895 | |||||
| 2896 | static int | ||||
| 2897 | reduce_type_resolver(PyUFuncObject *ufunc, PyArrayObject *arr, | ||||
| 2898 | PyArray_Descr *odtype, PyArray_Descr **out_dtype) | ||||
| 2899 | { | ||||
| 2900 | int i, retcode; | ||||
| 2901 | PyArrayObject *op[3] = {arr, arr, NULL((void*)0)}; | ||||
| 2902 | PyArray_Descr *dtypes[3] = {NULL((void*)0), NULL((void*)0), NULL((void*)0)}; | ||||
| 2903 | const char *ufunc_name = ufunc_get_name_cstr(ufunc); | ||||
| 2904 | PyObject *type_tup = NULL((void*)0); | ||||
| 2905 | |||||
| 2906 | *out_dtype = NULL((void*)0); | ||||
| 2907 | |||||
| 2908 | /* | ||||
| 2909 | * If odtype is specified, make a type tuple for the type | ||||
| 2910 | * resolution. | ||||
| 2911 | */ | ||||
| 2912 | if (odtype != NULL((void*)0)) { | ||||
| 2913 | type_tup = PyTuple_Pack(3, odtype, odtype, Py_None(&_Py_NoneStruct)); | ||||
| 2914 | if (type_tup == NULL((void*)0)) { | ||||
| 2915 | return -1; | ||||
| 2916 | } | ||||
| 2917 | } | ||||
| 2918 | |||||
| 2919 | /* Use the type resolution function to find our loop */ | ||||
| 2920 | retcode = ufunc->type_resolver( | ||||
| 2921 | ufunc, NPY_UNSAFE_CASTING, | ||||
| 2922 | op, type_tup, dtypes); | ||||
| 2923 | Py_DECREF(type_tup)_Py_DECREF(((PyObject*)(type_tup))); | ||||
| 2924 | if (retcode == -1) { | ||||
| 2925 | return -1; | ||||
| 2926 | } | ||||
| 2927 | else if (retcode == -2) { | ||||
| 2928 | PyErr_Format(PyExc_RuntimeError, | ||||
| 2929 | "type resolution returned NotImplemented to " | ||||
| 2930 | "reduce ufunc %s", ufunc_name); | ||||
| 2931 | return -1; | ||||
| 2932 | } | ||||
| 2933 | |||||
| 2934 | /* | ||||
| 2935 | * The first two type should be equivalent. Because of how | ||||
| 2936 | * reduce has historically behaved in NumPy, the return type | ||||
| 2937 | * could be different, and it is the return type on which the | ||||
| 2938 | * reduction occurs. | ||||
| 2939 | */ | ||||
| 2940 | if (!PyArray_EquivTypes(dtypes[0], dtypes[1])) { | ||||
| 2941 | for (i = 0; i < 3; ++i) { | ||||
| 2942 | Py_DECREF(dtypes[i])_Py_DECREF(((PyObject*)(dtypes[i]))); | ||||
| 2943 | } | ||||
| 2944 | PyErr_Format(PyExc_RuntimeError, | ||||
| 2945 | "could not find a type resolution appropriate for " | ||||
| 2946 | "reduce ufunc %s", ufunc_name); | ||||
| 2947 | return -1; | ||||
| 2948 | } | ||||
| 2949 | |||||
| 2950 | Py_DECREF(dtypes[0])_Py_DECREF(((PyObject*)(dtypes[0]))); | ||||
| 2951 | Py_DECREF(dtypes[1])_Py_DECREF(((PyObject*)(dtypes[1]))); | ||||
| 2952 | *out_dtype = dtypes[2]; | ||||
| 2953 | |||||
| 2954 | return 0; | ||||
| 2955 | } | ||||
| 2956 | |||||
| 2957 | static int | ||||
| 2958 | reduce_loop(NpyIter *iter, char **dataptrs, npy_intp const *strides, | ||||
| 2959 | npy_intp const *countptr, NpyIter_IterNextFunc *iternext, | ||||
| 2960 | int needs_api, npy_intp skip_first_count, void *data) | ||||
| 2961 | { | ||||
| 2962 | PyArray_Descr *dtypes[3], **iter_dtypes; | ||||
| 2963 | PyUFuncObject *ufunc = (PyUFuncObject *)data; | ||||
| 2964 | char *dataptrs_copy[3]; | ||||
| 2965 | npy_intp strides_copy[3]; | ||||
| 2966 | npy_bool masked; | ||||
| 2967 | |||||
| 2968 | /* The normal selected inner loop */ | ||||
| 2969 | PyUFuncGenericFunction innerloop = NULL((void*)0); | ||||
| 2970 | void *innerloopdata = NULL((void*)0); | ||||
| 2971 | |||||
| 2972 | NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);; | ||||
| 2973 | /* Get the number of operands, to determine whether "where" is used */ | ||||
| 2974 | masked = (NpyIter_GetNOp(iter) == 3); | ||||
| 2975 | |||||
| 2976 | /* Get the inner loop */ | ||||
| 2977 | iter_dtypes = NpyIter_GetDescrArray(iter); | ||||
| 2978 | dtypes[0] = iter_dtypes[0]; | ||||
| 2979 | dtypes[1] = iter_dtypes[1]; | ||||
| 2980 | dtypes[2] = iter_dtypes[0]; | ||||
| 2981 | if (ufunc->legacy_inner_loop_selector(ufunc, dtypes, | ||||
| 2982 | &innerloop, &innerloopdata, &needs_api) < 0) { | ||||
| 2983 | return -1; | ||||
| 2984 | } | ||||
| 2985 | |||||
| 2986 | NPY_BEGIN_THREADS_NDITER(iter)do { if (!NpyIter_IterationNeedsAPI(iter)) { do { if ((NpyIter_GetIterSize (iter)) > 500) { _save = PyEval_SaveThread();} } while (0) ;; } } while(0); | ||||
| 2987 | |||||
| 2988 | if (skip_first_count > 0) { | ||||
| 2989 | do { | ||||
| 2990 | npy_intp count = *countptr; | ||||
| 2991 | |||||
| 2992 | /* Skip any first-visit elements */ | ||||
| 2993 | if (NpyIter_IsFirstVisit(iter, 0)) { | ||||
| 2994 | if (strides[0] == 0) { | ||||
| 2995 | --count; | ||||
| 2996 | --skip_first_count; | ||||
| 2997 | dataptrs[1] += strides[1]; | ||||
| 2998 | } | ||||
| 2999 | else { | ||||
| 3000 | skip_first_count -= count; | ||||
| 3001 | count = 0; | ||||
| 3002 | } | ||||
| 3003 | } | ||||
| 3004 | |||||
| 3005 | /* Turn the two items into three for the inner loop */ | ||||
| 3006 | dataptrs_copy[0] = dataptrs[0]; | ||||
| 3007 | dataptrs_copy[1] = dataptrs[1]; | ||||
| 3008 | dataptrs_copy[2] = dataptrs[0]; | ||||
| 3009 | strides_copy[0] = strides[0]; | ||||
| 3010 | strides_copy[1] = strides[1]; | ||||
| 3011 | strides_copy[2] = strides[0]; | ||||
| 3012 | innerloop(dataptrs_copy, &count, | ||||
| 3013 | strides_copy, innerloopdata); | ||||
| 3014 | |||||
| 3015 | if (needs_api && PyErr_Occurred()) { | ||||
| 3016 | goto finish_loop; | ||||
| 3017 | } | ||||
| 3018 | |||||
| 3019 | /* Jump to the faster loop when skipping is done */ | ||||
| 3020 | if (skip_first_count == 0) { | ||||
| 3021 | if (iternext(iter)) { | ||||
| 3022 | break; | ||||
| 3023 | } | ||||
| 3024 | else { | ||||
| 3025 | goto finish_loop; | ||||
| 3026 | } | ||||
| 3027 | } | ||||
| 3028 | } while (iternext(iter)); | ||||
| 3029 | } | ||||
| 3030 | |||||
| 3031 | if (needs_api && PyErr_Occurred()) { | ||||
| 3032 | goto finish_loop; | ||||
| 3033 | } | ||||
| 3034 | |||||
| 3035 | do { | ||||
| 3036 | /* Turn the two items into three for the inner loop */ | ||||
| 3037 | dataptrs_copy[0] = dataptrs[0]; | ||||
| 3038 | dataptrs_copy[1] = dataptrs[1]; | ||||
| 3039 | dataptrs_copy[2] = dataptrs[0]; | ||||
| 3040 | strides_copy[0] = strides[0]; | ||||
| 3041 | strides_copy[1] = strides[1]; | ||||
| 3042 | strides_copy[2] = strides[0]; | ||||
| 3043 | |||||
| 3044 | if (!masked) { | ||||
| 3045 | innerloop(dataptrs_copy, countptr, | ||||
| 3046 | strides_copy, innerloopdata); | ||||
| 3047 | } | ||||
| 3048 | else { | ||||
| 3049 | npy_intp count = *countptr; | ||||
| 3050 | char *maskptr = dataptrs[2]; | ||||
| 3051 | npy_intp mask_stride = strides[2]; | ||||
| 3052 | /* Optimization for when the mask is broadcast */ | ||||
| 3053 | npy_intp n = mask_stride == 0 ? count : 1; | ||||
| 3054 | while (count) { | ||||
| 3055 | char mask = *maskptr; | ||||
| 3056 | maskptr += mask_stride; | ||||
| 3057 | while (n < count && mask == *maskptr) { | ||||
| 3058 | n++; | ||||
| 3059 | maskptr += mask_stride; | ||||
| 3060 | } | ||||
| 3061 | /* If mask set, apply inner loop on this contiguous region */ | ||||
| 3062 | if (mask) { | ||||
| 3063 | innerloop(dataptrs_copy, &n, | ||||
| 3064 | strides_copy, innerloopdata); | ||||
| 3065 | } | ||||
| 3066 | dataptrs_copy[0] += n * strides[0]; | ||||
| 3067 | dataptrs_copy[1] += n * strides[1]; | ||||
| 3068 | dataptrs_copy[2] = dataptrs_copy[0]; | ||||
| 3069 | count -= n; | ||||
| 3070 | n = 1; | ||||
| 3071 | } | ||||
| 3072 | } | ||||
| 3073 | } while (!(needs_api && PyErr_Occurred()) && iternext(iter)); | ||||
| 3074 | |||||
| 3075 | finish_loop: | ||||
| 3076 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 3077 | |||||
| 3078 | return (needs_api && PyErr_Occurred()) ? -1 : 0; | ||||
| 3079 | } | ||||
| 3080 | |||||
| 3081 | /* | ||||
| 3082 | * The implementation of the reduction operators with the new iterator | ||||
| 3083 | * turned into a bit of a long function here, but I think the design | ||||
| 3084 | * of this part needs to be changed to be more like einsum, so it may | ||||
| 3085 | * not be worth refactoring it too much. Consider this timing: | ||||
| 3086 | * | ||||
| 3087 | * >>> a = arange(10000) | ||||
| 3088 | * | ||||
| 3089 | * >>> timeit sum(a) | ||||
| 3090 | * 10000 loops, best of 3: 17 us per loop | ||||
| 3091 | * | ||||
| 3092 | * >>> timeit einsum("i->",a) | ||||
| 3093 | * 100000 loops, best of 3: 13.5 us per loop | ||||
| 3094 | * | ||||
| 3095 | * The axes must already be bounds-checked by the calling function, | ||||
| 3096 | * this function does not validate them. | ||||
| 3097 | */ | ||||
| 3098 | static PyArrayObject * | ||||
| 3099 | PyUFunc_Reduce(PyUFuncObject *ufunc, PyArrayObject *arr, PyArrayObject *out, | ||||
| 3100 | int naxes, int *axes, PyArray_Descr *odtype, int keepdims, | ||||
| 3101 | PyObject *initial, PyArrayObject *wheremask) | ||||
| 3102 | { | ||||
| 3103 | int iaxes, ndim; | ||||
| 3104 | npy_bool reorderable; | ||||
| 3105 | npy_bool axis_flags[NPY_MAXDIMS32]; | ||||
| 3106 | PyArray_Descr *dtype; | ||||
| 3107 | PyArrayObject *result; | ||||
| 3108 | PyObject *identity; | ||||
| 3109 | const char *ufunc_name = ufunc_get_name_cstr(ufunc); | ||||
| 3110 | /* These parameters come from a TLS global */ | ||||
| 3111 | int buffersize = 0, errormask = 0; | ||||
| 3112 | |||||
| 3113 | NPY_UF_DBG_PRINT1("\nEvaluating ufunc %s.reduce\n", ufunc_name); | ||||
| 3114 | |||||
| 3115 | ndim = PyArray_NDIM(arr); | ||||
| 3116 | |||||
| 3117 | /* Create an array of flags for reduction */ | ||||
| 3118 | memset(axis_flags, 0, ndim); | ||||
| 3119 | for (iaxes = 0; iaxes < naxes; ++iaxes) { | ||||
| 3120 | int axis = axes[iaxes]; | ||||
| 3121 | if (axis_flags[axis]) { | ||||
| 3122 | PyErr_SetString(PyExc_ValueError, | ||||
| 3123 | "duplicate value in 'axis'"); | ||||
| 3124 | return NULL((void*)0); | ||||
| 3125 | } | ||||
| 3126 | axis_flags[axis] = 1; | ||||
| 3127 | } | ||||
| 3128 | |||||
| 3129 | if (_get_bufsize_errmask(NULL((void*)0), "reduce", &buffersize, &errormask) < 0) { | ||||
| 3130 | return NULL((void*)0); | ||||
| 3131 | } | ||||
| 3132 | |||||
| 3133 | /* Get the identity */ | ||||
| 3134 | identity = _get_identity(ufunc, &reorderable); | ||||
| 3135 | if (identity == NULL((void*)0)) { | ||||
| 3136 | return NULL((void*)0); | ||||
| 3137 | } | ||||
| 3138 | |||||
| 3139 | /* Get the initial value */ | ||||
| 3140 | if (initial == NULL((void*)0)) { | ||||
| 3141 | initial = identity; | ||||
| 3142 | |||||
| 3143 | /* | ||||
| 3144 | * The identity for a dynamic dtype like | ||||
| 3145 | * object arrays can't be used in general | ||||
| 3146 | */ | ||||
| 3147 | if (initial != Py_None(&_Py_NoneStruct) && PyArray_ISOBJECT(arr)((PyArray_TYPE(arr)) == NPY_OBJECT) && PyArray_SIZE(arr)PyArray_MultiplyList(PyArray_DIMS(arr), PyArray_NDIM(arr)) != 0) { | ||||
| 3148 | Py_DECREF(initial)_Py_DECREF(((PyObject*)(initial))); | ||||
| 3149 | initial = Py_None(&_Py_NoneStruct); | ||||
| 3150 | Py_INCREF(initial)_Py_INCREF(((PyObject*)(initial))); | ||||
| 3151 | } | ||||
| 3152 | } else { | ||||
| 3153 | Py_DECREF(identity)_Py_DECREF(((PyObject*)(identity))); | ||||
| 3154 | Py_INCREF(initial)_Py_INCREF(((PyObject*)(initial))); /* match the reference count in the if above */ | ||||
| 3155 | } | ||||
| 3156 | |||||
| 3157 | /* Get the reduction dtype */ | ||||
| 3158 | if (reduce_type_resolver(ufunc, arr, odtype, &dtype) < 0) { | ||||
| 3159 | Py_DECREF(initial)_Py_DECREF(((PyObject*)(initial))); | ||||
| 3160 | return NULL((void*)0); | ||||
| 3161 | } | ||||
| 3162 | |||||
| 3163 | result = PyUFunc_ReduceWrapper(arr, out, wheremask, dtype, dtype, | ||||
| 3164 | NPY_UNSAFE_CASTING, | ||||
| 3165 | axis_flags, reorderable, | ||||
| 3166 | keepdims, | ||||
| 3167 | initial, | ||||
| 3168 | reduce_loop, | ||||
| 3169 | ufunc, buffersize, ufunc_name, errormask); | ||||
| 3170 | |||||
| 3171 | Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype))); | ||||
| 3172 | Py_DECREF(initial)_Py_DECREF(((PyObject*)(initial))); | ||||
| 3173 | return result; | ||||
| 3174 | } | ||||
| 3175 | |||||
| 3176 | |||||
| 3177 | static PyObject * | ||||
| 3178 | PyUFunc_Accumulate(PyUFuncObject *ufunc, PyArrayObject *arr, PyArrayObject *out, | ||||
| 3179 | int axis, int otype) | ||||
| 3180 | { | ||||
| 3181 | PyArrayObject *op[2]; | ||||
| 3182 | PyArray_Descr *op_dtypes[2] = {NULL((void*)0), NULL((void*)0)}; | ||||
| 3183 | int op_axes_arrays[2][NPY_MAXDIMS32]; | ||||
| 3184 | int *op_axes[2] = {op_axes_arrays[0], op_axes_arrays[1]}; | ||||
| 3185 | npy_uint32 op_flags[2]; | ||||
| 3186 | int idim, ndim, otype_final; | ||||
| 3187 | int needs_api, need_outer_iterator; | ||||
| 3188 | |||||
| 3189 | NpyIter *iter = NULL((void*)0), *iter_inner = NULL((void*)0); | ||||
| 3190 | |||||
| 3191 | /* The selected inner loop */ | ||||
| 3192 | PyUFuncGenericFunction innerloop = NULL((void*)0); | ||||
| 3193 | void *innerloopdata = NULL((void*)0); | ||||
| 3194 | |||||
| 3195 | const char *ufunc_name = ufunc_get_name_cstr(ufunc); | ||||
| 3196 | |||||
| 3197 | /* These parameters come from extobj= or from a TLS global */ | ||||
| 3198 | int buffersize = 0, errormask = 0; | ||||
| 3199 | |||||
| 3200 | NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);; | ||||
| 3201 | |||||
| 3202 | NPY_UF_DBG_PRINT1("\nEvaluating ufunc %s.accumulate\n", ufunc_name); | ||||
| 3203 | |||||
| 3204 | #if 0 | ||||
| 3205 | printf("Doing %s.accumulate on array with dtype : ", ufunc_name)__printf_chk (2 - 1, "Doing %s.accumulate on array with dtype : " , ufunc_name); | ||||
| 3206 | PyObject_Print((PyObject *)PyArray_DESCR(arr), stdoutstdout, 0); | ||||
| 3207 | printf("\n")__printf_chk (2 - 1, "\n"); | ||||
| 3208 | #endif | ||||
| 3209 | |||||
| 3210 | if (_get_bufsize_errmask(NULL((void*)0), "accumulate", &buffersize, &errormask) < 0) { | ||||
| 3211 | return NULL((void*)0); | ||||
| 3212 | } | ||||
| 3213 | |||||
| 3214 | /* Take a reference to out for later returning */ | ||||
| 3215 | Py_XINCREF(out)_Py_XINCREF(((PyObject*)(out))); | ||||
| 3216 | |||||
| 3217 | otype_final = otype; | ||||
| 3218 | if (get_binary_op_function(ufunc, &otype_final, | ||||
| 3219 | &innerloop, &innerloopdata) < 0) { | ||||
| 3220 | PyArray_Descr *dtype = PyArray_DescrFromType(otype); | ||||
| 3221 | PyErr_Format(PyExc_ValueError, | ||||
| 3222 | "could not find a matching type for %s.accumulate, " | ||||
| 3223 | "requested type has type code '%c'", | ||||
| 3224 | ufunc_name, dtype ? dtype->type : '-'); | ||||
| 3225 | Py_XDECREF(dtype)_Py_XDECREF(((PyObject*)(dtype))); | ||||
| 3226 | goto fail; | ||||
| 3227 | } | ||||
| 3228 | |||||
| 3229 | ndim = PyArray_NDIM(arr); | ||||
| 3230 | |||||
| 3231 | /* | ||||
| 3232 | * Set up the output data type, using the input's exact | ||||
| 3233 | * data type if the type number didn't change to preserve | ||||
| 3234 | * metadata | ||||
| 3235 | */ | ||||
| 3236 | if (PyArray_DESCR(arr)->type_num == otype_final) { | ||||
| 3237 | if (PyArray_ISNBO(PyArray_DESCR(arr)->byteorder)((PyArray_DESCR(arr)->byteorder) != '>')) { | ||||
| 3238 | op_dtypes[0] = PyArray_DESCR(arr); | ||||
| 3239 | Py_INCREF(op_dtypes[0])_Py_INCREF(((PyObject*)(op_dtypes[0]))); | ||||
| 3240 | } | ||||
| 3241 | else { | ||||
| 3242 | op_dtypes[0] = PyArray_DescrNewByteorder(PyArray_DESCR(arr), | ||||
| 3243 | NPY_NATIVE'='); | ||||
| 3244 | } | ||||
| 3245 | } | ||||
| 3246 | else { | ||||
| 3247 | op_dtypes[0] = PyArray_DescrFromType(otype_final); | ||||
| 3248 | } | ||||
| 3249 | if (op_dtypes[0] == NULL((void*)0)) { | ||||
| 3250 | goto fail; | ||||
| 3251 | } | ||||
| 3252 | |||||
| 3253 | #if NPY_UF_DBG_TRACING0 | ||||
| 3254 | printf("Found %s.accumulate inner loop with dtype : ", ufunc_name)__printf_chk (2 - 1, "Found %s.accumulate inner loop with dtype : " , ufunc_name); | ||||
| 3255 | PyObject_Print((PyObject *)op_dtypes[0], stdoutstdout, 0); | ||||
| 3256 | printf("\n")__printf_chk (2 - 1, "\n"); | ||||
| 3257 | #endif | ||||
| 3258 | |||||
| 3259 | /* Set up the op_axes for the outer loop */ | ||||
| 3260 | for (idim = 0; idim < ndim; ++idim) { | ||||
| 3261 | op_axes_arrays[0][idim] = idim; | ||||
| 3262 | op_axes_arrays[1][idim] = idim; | ||||
| 3263 | } | ||||
| 3264 | |||||
| 3265 | /* The per-operand flags for the outer loop */ | ||||
| 3266 | op_flags[0] = NPY_ITER_READWRITE0x00010000 | | ||||
| 3267 | NPY_ITER_NO_BROADCAST0x08000000 | | ||||
| 3268 | NPY_ITER_ALLOCATE0x01000000 | | ||||
| 3269 | NPY_ITER_NO_SUBTYPE0x02000000; | ||||
| 3270 | op_flags[1] = NPY_ITER_READONLY0x00020000; | ||||
| 3271 | |||||
| 3272 | op[0] = out; | ||||
| 3273 | op[1] = arr; | ||||
| 3274 | |||||
| 3275 | need_outer_iterator = (ndim > 1); | ||||
| 3276 | /* We can't buffer, so must do UPDATEIFCOPY */ | ||||
| 3277 | if (!PyArray_ISALIGNED(arr)PyArray_CHKFLAGS((arr), 0x0100) || (out && !PyArray_ISALIGNED(out)PyArray_CHKFLAGS((out), 0x0100)) || | ||||
| 3278 | !PyArray_EquivTypes(op_dtypes[0], PyArray_DESCR(arr)) || | ||||
| 3279 | (out && | ||||
| 3280 | !PyArray_EquivTypes(op_dtypes[0], PyArray_DESCR(out)))) { | ||||
| 3281 | need_outer_iterator = 1; | ||||
| 3282 | } | ||||
| 3283 | /* If input and output overlap in memory, use iterator to figure it out */ | ||||
| 3284 | else if (out != NULL((void*)0) && solve_may_share_memory(out, arr, NPY_MAY_SHARE_BOUNDS0) != 0) { | ||||
| 3285 | need_outer_iterator = 1; | ||||
| 3286 | } | ||||
| 3287 | |||||
| 3288 | if (need_outer_iterator) { | ||||
| 3289 | int ndim_iter = 0; | ||||
| 3290 | npy_uint32 flags = NPY_ITER_ZEROSIZE_OK0x00000040| | ||||
| 3291 | NPY_ITER_REFS_OK0x00000020| | ||||
| 3292 | NPY_ITER_COPY_IF_OVERLAP0x00002000; | ||||
| 3293 | PyArray_Descr **op_dtypes_param = NULL((void*)0); | ||||
| 3294 | |||||
| 3295 | /* | ||||
| 3296 | * The way accumulate is set up, we can't do buffering, | ||||
| 3297 | * so make a copy instead when necessary. | ||||
| 3298 | */ | ||||
| 3299 | ndim_iter = ndim; | ||||
| 3300 | flags |= NPY_ITER_MULTI_INDEX0x00000004; | ||||
| 3301 | /* | ||||
| 3302 | * Add some more flags. | ||||
| 3303 | * | ||||
| 3304 | * The accumulation outer loop is 'elementwise' over the array, so turn | ||||
| 3305 | * on NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE. That is, in-place | ||||
| 3306 | * accumulate(x, out=x) is safe to do without temporary copies. | ||||
| 3307 | */ | ||||
| 3308 | op_flags[0] |= NPY_ITER_UPDATEIFCOPY0x00800000|NPY_ITER_ALIGNED0x00100000|NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE0x40000000; | ||||
| 3309 | op_flags[1] |= NPY_ITER_COPY0x00400000|NPY_ITER_ALIGNED0x00100000|NPY_ITER_OVERLAP_ASSUME_ELEMENTWISE0x40000000; | ||||
| 3310 | op_dtypes_param = op_dtypes; | ||||
| 3311 | op_dtypes[1] = op_dtypes[0]; | ||||
| 3312 | NPY_UF_DBG_PRINT("Allocating outer iterator\n"); | ||||
| 3313 | iter = NpyIter_AdvancedNew(2, op, flags, | ||||
| 3314 | NPY_KEEPORDER, NPY_UNSAFE_CASTING, | ||||
| 3315 | op_flags, | ||||
| 3316 | op_dtypes_param, | ||||
| 3317 | ndim_iter, op_axes, NULL((void*)0), 0); | ||||
| 3318 | if (iter == NULL((void*)0)) { | ||||
| 3319 | goto fail; | ||||
| 3320 | } | ||||
| 3321 | |||||
| 3322 | /* In case COPY or UPDATEIFCOPY occurred */ | ||||
| 3323 | op[0] = NpyIter_GetOperandArray(iter)[0]; | ||||
| 3324 | op[1] = NpyIter_GetOperandArray(iter)[1]; | ||||
| 3325 | |||||
| 3326 | if (NpyIter_RemoveAxis(iter, axis) != NPY_SUCCEED1) { | ||||
| 3327 | goto fail; | ||||
| 3328 | } | ||||
| 3329 | if (NpyIter_RemoveMultiIndex(iter) != NPY_SUCCEED1) { | ||||
| 3330 | goto fail; | ||||
| 3331 | } | ||||
| 3332 | } | ||||
| 3333 | |||||
| 3334 | /* Get the output */ | ||||
| 3335 | if (out == NULL((void*)0)) { | ||||
| 3336 | if (iter) { | ||||
| 3337 | op[0] = out = NpyIter_GetOperandArray(iter)[0]; | ||||
| 3338 | Py_INCREF(out)_Py_INCREF(((PyObject*)(out))); | ||||
| 3339 | } | ||||
| 3340 | else { | ||||
| 3341 | PyArray_Descr *dtype = op_dtypes[0]; | ||||
| 3342 | Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype))); | ||||
| 3343 | op[0] = out = (PyArrayObject *)PyArray_NewFromDescr( | ||||
| 3344 | &PyArray_Type, dtype, | ||||
| 3345 | ndim, PyArray_DIMS(op[1]), NULL((void*)0), NULL((void*)0), | ||||
| 3346 | 0, NULL((void*)0)); | ||||
| 3347 | if (out == NULL((void*)0)) { | ||||
| 3348 | goto fail; | ||||
| 3349 | } | ||||
| 3350 | |||||
| 3351 | } | ||||
| 3352 | } | ||||
| 3353 | |||||
| 3354 | /* | ||||
| 3355 | * If the reduction axis has size zero, either return the reduction | ||||
| 3356 | * unit for UFUNC_REDUCE, or return the zero-sized output array | ||||
| 3357 | * for UFUNC_ACCUMULATE. | ||||
| 3358 | */ | ||||
| 3359 | if (PyArray_DIM(op[1], axis) == 0) { | ||||
| 3360 | goto finish; | ||||
| 3361 | } | ||||
| 3362 | else if (PyArray_SIZE(op[0])PyArray_MultiplyList(PyArray_DIMS(op[0]), PyArray_NDIM(op[0]) ) == 0) { | ||||
| 3363 | goto finish; | ||||
| 3364 | } | ||||
| 3365 | |||||
| 3366 | if (iter && NpyIter_GetIterSize(iter) != 0) { | ||||
| 3367 | char *dataptr_copy[3]; | ||||
| 3368 | npy_intp stride_copy[3]; | ||||
| 3369 | npy_intp count_m1, stride0, stride1; | ||||
| 3370 | |||||
| 3371 | NpyIter_IterNextFunc *iternext; | ||||
| 3372 | char **dataptr; | ||||
| 3373 | |||||
| 3374 | int itemsize = op_dtypes[0]->elsize; | ||||
| 3375 | |||||
| 3376 | /* Get the variables needed for the loop */ | ||||
| 3377 | iternext = NpyIter_GetIterNext(iter, NULL((void*)0)); | ||||
| 3378 | if (iternext == NULL((void*)0)) { | ||||
| 3379 | goto fail; | ||||
| 3380 | } | ||||
| 3381 | dataptr = NpyIter_GetDataPtrArray(iter); | ||||
| 3382 | needs_api = NpyIter_IterationNeedsAPI(iter); | ||||
| 3383 | |||||
| 3384 | |||||
| 3385 | /* Execute the loop with just the outer iterator */ | ||||
| 3386 | count_m1 = PyArray_DIM(op[1], axis)-1; | ||||
| 3387 | stride0 = 0, stride1 = PyArray_STRIDE(op[1], axis); | ||||
| 3388 | |||||
| 3389 | NPY_UF_DBG_PRINT("UFunc: Reduce loop with just outer iterator\n"); | ||||
| 3390 | |||||
| 3391 | stride0 = PyArray_STRIDE(op[0], axis); | ||||
| 3392 | |||||
| 3393 | stride_copy[0] = stride0; | ||||
| 3394 | stride_copy[1] = stride1; | ||||
| 3395 | stride_copy[2] = stride0; | ||||
| 3396 | |||||
| 3397 | NPY_BEGIN_THREADS_NDITER(iter)do { if (!NpyIter_IterationNeedsAPI(iter)) { do { if ((NpyIter_GetIterSize (iter)) > 500) { _save = PyEval_SaveThread();} } while (0) ;; } } while(0); | ||||
| 3398 | |||||
| 3399 | do { | ||||
| 3400 | dataptr_copy[0] = dataptr[0]; | ||||
| 3401 | dataptr_copy[1] = dataptr[1]; | ||||
| 3402 | dataptr_copy[2] = dataptr[0]; | ||||
| 3403 | |||||
| 3404 | /* | ||||
| 3405 | * Copy the first element to start the reduction. | ||||
| 3406 | * | ||||
| 3407 | * Output (dataptr[0]) and input (dataptr[1]) may point to | ||||
| 3408 | * the same memory, e.g. np.add.accumulate(a, out=a). | ||||
| 3409 | */ | ||||
| 3410 | if (otype == NPY_OBJECT) { | ||||
| 3411 | /* | ||||
| 3412 | * Incref before decref to avoid the possibility of the | ||||
| 3413 | * reference count being zero temporarily. | ||||
| 3414 | */ | ||||
| 3415 | Py_XINCREF(*(PyObject **)dataptr_copy[1])_Py_XINCREF(((PyObject*)(*(PyObject **)dataptr_copy[1]))); | ||||
| 3416 | Py_XDECREF(*(PyObject **)dataptr_copy[0])_Py_XDECREF(((PyObject*)(*(PyObject **)dataptr_copy[0]))); | ||||
| 3417 | *(PyObject **)dataptr_copy[0] = | ||||
| 3418 | *(PyObject **)dataptr_copy[1]; | ||||
| 3419 | } | ||||
| 3420 | else { | ||||
| 3421 | memmove(dataptr_copy[0], dataptr_copy[1], itemsize); | ||||
| 3422 | } | ||||
| 3423 | |||||
| 3424 | if (count_m1 > 0) { | ||||
| 3425 | /* Turn the two items into three for the inner loop */ | ||||
| 3426 | dataptr_copy[1] += stride1; | ||||
| 3427 | dataptr_copy[2] += stride0; | ||||
| 3428 | NPY_UF_DBG_PRINT1("iterator loop count %d\n", | ||||
| 3429 | (int)count_m1); | ||||
| 3430 | innerloop(dataptr_copy, &count_m1, | ||||
| 3431 | stride_copy, innerloopdata); | ||||
| 3432 | } | ||||
| 3433 | } while (!(needs_api && PyErr_Occurred()) && iternext(iter)); | ||||
| 3434 | |||||
| 3435 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 3436 | } | ||||
| 3437 | else if (iter == NULL((void*)0)) { | ||||
| 3438 | char *dataptr_copy[3]; | ||||
| 3439 | npy_intp stride_copy[3]; | ||||
| 3440 | |||||
| 3441 | int itemsize = op_dtypes[0]->elsize; | ||||
| 3442 | |||||
| 3443 | /* Execute the loop with no iterators */ | ||||
| 3444 | npy_intp count = PyArray_DIM(op[1], axis); | ||||
| 3445 | npy_intp stride0 = 0, stride1 = PyArray_STRIDE(op[1], axis); | ||||
| 3446 | |||||
| 3447 | NPY_UF_DBG_PRINT("UFunc: Reduce loop with no iterators\n"); | ||||
| 3448 | |||||
| 3449 | if (PyArray_NDIM(op[0]) != PyArray_NDIM(op[1]) || | ||||
| 3450 | !PyArray_CompareLists(PyArray_DIMS(op[0]), | ||||
| 3451 | PyArray_DIMS(op[1]), | ||||
| 3452 | PyArray_NDIM(op[0]))) { | ||||
| 3453 | PyErr_SetString(PyExc_ValueError, | ||||
| 3454 | "provided out is the wrong size " | ||||
| 3455 | "for the reduction"); | ||||
| 3456 | goto fail; | ||||
| 3457 | } | ||||
| 3458 | stride0 = PyArray_STRIDE(op[0], axis); | ||||
| 3459 | |||||
| 3460 | stride_copy[0] = stride0; | ||||
| 3461 | stride_copy[1] = stride1; | ||||
| 3462 | stride_copy[2] = stride0; | ||||
| 3463 | |||||
| 3464 | /* Turn the two items into three for the inner loop */ | ||||
| 3465 | dataptr_copy[0] = PyArray_BYTES(op[0]); | ||||
| 3466 | dataptr_copy[1] = PyArray_BYTES(op[1]); | ||||
| 3467 | dataptr_copy[2] = PyArray_BYTES(op[0]); | ||||
| 3468 | |||||
| 3469 | /* | ||||
| 3470 | * Copy the first element to start the reduction. | ||||
| 3471 | * | ||||
| 3472 | * Output (dataptr[0]) and input (dataptr[1]) may point to the | ||||
| 3473 | * same memory, e.g. np.add.accumulate(a, out=a). | ||||
| 3474 | */ | ||||
| 3475 | if (otype == NPY_OBJECT) { | ||||
| 3476 | /* | ||||
| 3477 | * Incref before decref to avoid the possibility of the | ||||
| 3478 | * reference count being zero temporarily. | ||||
| 3479 | */ | ||||
| 3480 | Py_XINCREF(*(PyObject **)dataptr_copy[1])_Py_XINCREF(((PyObject*)(*(PyObject **)dataptr_copy[1]))); | ||||
| 3481 | Py_XDECREF(*(PyObject **)dataptr_copy[0])_Py_XDECREF(((PyObject*)(*(PyObject **)dataptr_copy[0]))); | ||||
| 3482 | *(PyObject **)dataptr_copy[0] = | ||||
| 3483 | *(PyObject **)dataptr_copy[1]; | ||||
| 3484 | } | ||||
| 3485 | else { | ||||
| 3486 | memmove(dataptr_copy[0], dataptr_copy[1], itemsize); | ||||
| 3487 | } | ||||
| 3488 | |||||
| 3489 | if (count > 1) { | ||||
| 3490 | --count; | ||||
| 3491 | dataptr_copy[1] += stride1; | ||||
| 3492 | dataptr_copy[2] += stride0; | ||||
| 3493 | |||||
| 3494 | NPY_UF_DBG_PRINT1("iterator loop count %d\n", (int)count); | ||||
| 3495 | |||||
| 3496 | needs_api = PyDataType_REFCHK(op_dtypes[0])(((op_dtypes[0])->flags & (0x01)) == (0x01)); | ||||
| 3497 | |||||
| 3498 | if (!needs_api) { | ||||
| 3499 | NPY_BEGIN_THREADS_THRESHOLDED(count)do { if ((count) > 500) { _save = PyEval_SaveThread();} } while (0);; | ||||
| 3500 | } | ||||
| 3501 | |||||
| 3502 | innerloop(dataptr_copy, &count, | ||||
| 3503 | stride_copy, innerloopdata); | ||||
| 3504 | |||||
| 3505 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 3506 | } | ||||
| 3507 | } | ||||
| 3508 | |||||
| 3509 | finish: | ||||
| 3510 | Py_XDECREF(op_dtypes[0])_Py_XDECREF(((PyObject*)(op_dtypes[0]))); | ||||
| 3511 | int res = 0; | ||||
| 3512 | if (!NpyIter_Deallocate(iter)) { | ||||
| 3513 | res = -1; | ||||
| 3514 | } | ||||
| 3515 | if (!NpyIter_Deallocate(iter_inner)) { | ||||
| 3516 | res = -1; | ||||
| 3517 | } | ||||
| 3518 | if (res < 0) { | ||||
| 3519 | Py_DECREF(out)_Py_DECREF(((PyObject*)(out))); | ||||
| 3520 | return NULL((void*)0); | ||||
| 3521 | } | ||||
| 3522 | |||||
| 3523 | return (PyObject *)out; | ||||
| 3524 | |||||
| 3525 | fail: | ||||
| 3526 | Py_XDECREF(out)_Py_XDECREF(((PyObject*)(out))); | ||||
| 3527 | Py_XDECREF(op_dtypes[0])_Py_XDECREF(((PyObject*)(op_dtypes[0]))); | ||||
| 3528 | |||||
| 3529 | NpyIter_Deallocate(iter); | ||||
| 3530 | NpyIter_Deallocate(iter_inner); | ||||
| 3531 | |||||
| 3532 | return NULL((void*)0); | ||||
| 3533 | } | ||||
| 3534 | |||||
| 3535 | /* | ||||
| 3536 | * Reduceat performs a reduce over an axis using the indices as a guide | ||||
| 3537 | * | ||||
| 3538 | * op.reduceat(array,indices) computes | ||||
| 3539 | * op.reduce(array[indices[i]:indices[i+1]] | ||||
| 3540 | * for i=0..end with an implicit indices[i+1]=len(array) | ||||
| 3541 | * assumed when i=end-1 | ||||
| 3542 | * | ||||
| 3543 | * if indices[i+1] <= indices[i]+1 | ||||
| 3544 | * then the result is array[indices[i]] for that value | ||||
| 3545 | * | ||||
| 3546 | * op.accumulate(array) is the same as | ||||
| 3547 | * op.reduceat(array,indices)[::2] | ||||
| 3548 | * where indices is range(len(array)-1) with a zero placed in every other sample | ||||
| 3549 | * indices = zeros(len(array)*2-1) | ||||
| 3550 | * indices[1::2] = range(1,len(array)) | ||||
| 3551 | * | ||||
| 3552 | * output shape is based on the size of indices | ||||
| 3553 | */ | ||||
| 3554 | static PyObject * | ||||
| 3555 | PyUFunc_Reduceat(PyUFuncObject *ufunc, PyArrayObject *arr, PyArrayObject *ind, | ||||
| 3556 | PyArrayObject *out, int axis, int otype) | ||||
| 3557 | { | ||||
| 3558 | PyArrayObject *op[3]; | ||||
| 3559 | PyArray_Descr *op_dtypes[3] = {NULL((void*)0), NULL((void*)0), NULL((void*)0)}; | ||||
| 3560 | int op_axes_arrays[3][NPY_MAXDIMS32]; | ||||
| 3561 | int *op_axes[3] = {op_axes_arrays[0], op_axes_arrays[1], | ||||
| 3562 | op_axes_arrays[2]}; | ||||
| 3563 | npy_uint32 op_flags[3]; | ||||
| 3564 | int idim, ndim, otype_final; | ||||
| 3565 | int need_outer_iterator = 0; | ||||
| 3566 | |||||
| 3567 | NpyIter *iter = NULL((void*)0); | ||||
| 3568 | |||||
| 3569 | /* The reduceat indices - ind must be validated outside this call */ | ||||
| 3570 | npy_intp *reduceat_ind; | ||||
| 3571 | npy_intp i, ind_size, red_axis_size; | ||||
| 3572 | /* The selected inner loop */ | ||||
| 3573 | PyUFuncGenericFunction innerloop = NULL((void*)0); | ||||
| 3574 | void *innerloopdata = NULL((void*)0); | ||||
| 3575 | |||||
| 3576 | const char *ufunc_name = ufunc_get_name_cstr(ufunc); | ||||
| 3577 | char *opname = "reduceat"; | ||||
| 3578 | |||||
| 3579 | /* These parameters come from extobj= or from a TLS global */ | ||||
| 3580 | int buffersize = 0, errormask = 0; | ||||
| 3581 | |||||
| 3582 | NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);; | ||||
| 3583 | |||||
| 3584 | reduceat_ind = (npy_intp *)PyArray_DATA(ind); | ||||
| 3585 | ind_size = PyArray_DIM(ind, 0); | ||||
| 3586 | red_axis_size = PyArray_DIM(arr, axis); | ||||
| 3587 | |||||
| 3588 | /* Check for out-of-bounds values in indices array */ | ||||
| 3589 | for (i = 0; i < ind_size; ++i) { | ||||
| 3590 | if (reduceat_ind[i] < 0 || reduceat_ind[i] >= red_axis_size) { | ||||
| 3591 | PyErr_Format(PyExc_IndexError, | ||||
| 3592 | "index %" NPY_INTP_FMT"ld" " out-of-bounds in %s.%s [0, %" NPY_INTP_FMT"ld" ")", | ||||
| 3593 | reduceat_ind[i], ufunc_name, opname, red_axis_size); | ||||
| 3594 | return NULL((void*)0); | ||||
| 3595 | } | ||||
| 3596 | } | ||||
| 3597 | |||||
| 3598 | NPY_UF_DBG_PRINT2("\nEvaluating ufunc %s.%s\n", ufunc_name, opname); | ||||
| 3599 | |||||
| 3600 | #if 0 | ||||
| 3601 | printf("Doing %s.%s on array with dtype : ", ufunc_name, opname)__printf_chk (2 - 1, "Doing %s.%s on array with dtype : ", ufunc_name , opname); | ||||
| 3602 | PyObject_Print((PyObject *)PyArray_DESCR(arr), stdoutstdout, 0); | ||||
| 3603 | printf("\n")__printf_chk (2 - 1, "\n"); | ||||
| 3604 | printf("Index size is %d\n", (int)ind_size)__printf_chk (2 - 1, "Index size is %d\n", (int)ind_size); | ||||
| 3605 | #endif | ||||
| 3606 | |||||
| 3607 | if (_get_bufsize_errmask(NULL((void*)0), opname, &buffersize, &errormask) < 0) { | ||||
| 3608 | return NULL((void*)0); | ||||
| 3609 | } | ||||
| 3610 | |||||
| 3611 | /* Take a reference to out for later returning */ | ||||
| 3612 | Py_XINCREF(out)_Py_XINCREF(((PyObject*)(out))); | ||||
| 3613 | |||||
| 3614 | otype_final = otype; | ||||
| 3615 | if (get_binary_op_function(ufunc, &otype_final, | ||||
| 3616 | &innerloop, &innerloopdata) < 0) { | ||||
| 3617 | PyArray_Descr *dtype = PyArray_DescrFromType(otype); | ||||
| 3618 | PyErr_Format(PyExc_ValueError, | ||||
| 3619 | "could not find a matching type for %s.%s, " | ||||
| 3620 | "requested type has type code '%c'", | ||||
| 3621 | ufunc_name, opname, dtype ? dtype->type : '-'); | ||||
| 3622 | Py_XDECREF(dtype)_Py_XDECREF(((PyObject*)(dtype))); | ||||
| 3623 | goto fail; | ||||
| 3624 | } | ||||
| 3625 | |||||
| 3626 | ndim = PyArray_NDIM(arr); | ||||
| 3627 | |||||
| 3628 | /* | ||||
| 3629 | * Set up the output data type, using the input's exact | ||||
| 3630 | * data type if the type number didn't change to preserve | ||||
| 3631 | * metadata | ||||
| 3632 | */ | ||||
| 3633 | if (PyArray_DESCR(arr)->type_num == otype_final) { | ||||
| 3634 | if (PyArray_ISNBO(PyArray_DESCR(arr)->byteorder)((PyArray_DESCR(arr)->byteorder) != '>')) { | ||||
| 3635 | op_dtypes[0] = PyArray_DESCR(arr); | ||||
| 3636 | Py_INCREF(op_dtypes[0])_Py_INCREF(((PyObject*)(op_dtypes[0]))); | ||||
| 3637 | } | ||||
| 3638 | else { | ||||
| 3639 | op_dtypes[0] = PyArray_DescrNewByteorder(PyArray_DESCR(arr), | ||||
| 3640 | NPY_NATIVE'='); | ||||
| 3641 | } | ||||
| 3642 | } | ||||
| 3643 | else { | ||||
| 3644 | op_dtypes[0] = PyArray_DescrFromType(otype_final); | ||||
| 3645 | } | ||||
| 3646 | if (op_dtypes[0] == NULL((void*)0)) { | ||||
| 3647 | goto fail; | ||||
| 3648 | } | ||||
| 3649 | |||||
| 3650 | #if NPY_UF_DBG_TRACING0 | ||||
| 3651 | printf("Found %s.%s inner loop with dtype : ", ufunc_name, opname)__printf_chk (2 - 1, "Found %s.%s inner loop with dtype : ", ufunc_name, opname); | ||||
| 3652 | PyObject_Print((PyObject *)op_dtypes[0], stdoutstdout, 0); | ||||
| 3653 | printf("\n")__printf_chk (2 - 1, "\n"); | ||||
| 3654 | #endif | ||||
| 3655 | |||||
| 3656 | /* Set up the op_axes for the outer loop */ | ||||
| 3657 | for (idim = 0; idim < ndim; ++idim) { | ||||
| 3658 | /* Use the i-th iteration dimension to match up ind */ | ||||
| 3659 | if (idim == axis) { | ||||
| 3660 | op_axes_arrays[0][idim] = axis; | ||||
| 3661 | op_axes_arrays[1][idim] = -1; | ||||
| 3662 | op_axes_arrays[2][idim] = 0; | ||||
| 3663 | } | ||||
| 3664 | else { | ||||
| 3665 | op_axes_arrays[0][idim] = idim; | ||||
| 3666 | op_axes_arrays[1][idim] = idim; | ||||
| 3667 | op_axes_arrays[2][idim] = -1; | ||||
| 3668 | } | ||||
| 3669 | } | ||||
| 3670 | |||||
| 3671 | op[0] = out; | ||||
| 3672 | op[1] = arr; | ||||
| 3673 | op[2] = ind; | ||||
| 3674 | |||||
| 3675 | if (out != NULL((void*)0) || ndim > 1 || !PyArray_ISALIGNED(arr)PyArray_CHKFLAGS((arr), 0x0100) || | ||||
| 3676 | !PyArray_EquivTypes(op_dtypes[0], PyArray_DESCR(arr))) { | ||||
| 3677 | need_outer_iterator = 1; | ||||
| 3678 | } | ||||
| 3679 | |||||
| 3680 | if (need_outer_iterator) { | ||||
| 3681 | npy_uint32 flags = NPY_ITER_ZEROSIZE_OK0x00000040| | ||||
| 3682 | NPY_ITER_REFS_OK0x00000020| | ||||
| 3683 | NPY_ITER_MULTI_INDEX0x00000004| | ||||
| 3684 | NPY_ITER_COPY_IF_OVERLAP0x00002000; | ||||
| 3685 | |||||
| 3686 | /* | ||||
| 3687 | * The way reduceat is set up, we can't do buffering, | ||||
| 3688 | * so make a copy instead when necessary using | ||||
| 3689 | * the UPDATEIFCOPY flag | ||||
| 3690 | */ | ||||
| 3691 | |||||
| 3692 | /* The per-operand flags for the outer loop */ | ||||
| 3693 | op_flags[0] = NPY_ITER_READWRITE0x00010000| | ||||
| 3694 | NPY_ITER_NO_BROADCAST0x08000000| | ||||
| 3695 | NPY_ITER_ALLOCATE0x01000000| | ||||
| 3696 | NPY_ITER_NO_SUBTYPE0x02000000| | ||||
| 3697 | NPY_ITER_UPDATEIFCOPY0x00800000| | ||||
| 3698 | NPY_ITER_ALIGNED0x00100000; | ||||
| 3699 | op_flags[1] = NPY_ITER_READONLY0x00020000| | ||||
| 3700 | NPY_ITER_COPY0x00400000| | ||||
| 3701 | NPY_ITER_ALIGNED0x00100000; | ||||
| 3702 | op_flags[2] = NPY_ITER_READONLY0x00020000; | ||||
| 3703 | |||||
| 3704 | op_dtypes[1] = op_dtypes[0]; | ||||
| 3705 | |||||
| 3706 | NPY_UF_DBG_PRINT("Allocating outer iterator\n"); | ||||
| 3707 | iter = NpyIter_AdvancedNew(3, op, flags, | ||||
| 3708 | NPY_KEEPORDER, NPY_UNSAFE_CASTING, | ||||
| 3709 | op_flags, | ||||
| 3710 | op_dtypes, | ||||
| 3711 | ndim, op_axes, NULL((void*)0), 0); | ||||
| 3712 | if (iter == NULL((void*)0)) { | ||||
| 3713 | goto fail; | ||||
| 3714 | } | ||||
| 3715 | |||||
| 3716 | /* Remove the inner loop axis from the outer iterator */ | ||||
| 3717 | if (NpyIter_RemoveAxis(iter, axis) != NPY_SUCCEED1) { | ||||
| 3718 | goto fail; | ||||
| 3719 | } | ||||
| 3720 | if (NpyIter_RemoveMultiIndex(iter) != NPY_SUCCEED1) { | ||||
| 3721 | goto fail; | ||||
| 3722 | } | ||||
| 3723 | |||||
| 3724 | /* In case COPY or UPDATEIFCOPY occurred */ | ||||
| 3725 | op[0] = NpyIter_GetOperandArray(iter)[0]; | ||||
| 3726 | op[1] = NpyIter_GetOperandArray(iter)[1]; | ||||
| 3727 | op[2] = NpyIter_GetOperandArray(iter)[2]; | ||||
| 3728 | |||||
| 3729 | if (out == NULL((void*)0)) { | ||||
| 3730 | out = op[0]; | ||||
| 3731 | Py_INCREF(out)_Py_INCREF(((PyObject*)(out))); | ||||
| 3732 | } | ||||
| 3733 | } | ||||
| 3734 | /* Allocate the output for when there's no outer iterator */ | ||||
| 3735 | else if (out == NULL((void*)0)) { | ||||
| 3736 | Py_INCREF(op_dtypes[0])_Py_INCREF(((PyObject*)(op_dtypes[0]))); | ||||
| 3737 | op[0] = out = (PyArrayObject *)PyArray_NewFromDescr( | ||||
| 3738 | &PyArray_Type, op_dtypes[0], | ||||
| 3739 | 1, &ind_size, NULL((void*)0), NULL((void*)0), | ||||
| 3740 | 0, NULL((void*)0)); | ||||
| 3741 | if (out == NULL((void*)0)) { | ||||
| 3742 | goto fail; | ||||
| 3743 | } | ||||
| 3744 | } | ||||
| 3745 | |||||
| 3746 | /* | ||||
| 3747 | * If the output has zero elements, return now. | ||||
| 3748 | */ | ||||
| 3749 | if (PyArray_SIZE(op[0])PyArray_MultiplyList(PyArray_DIMS(op[0]), PyArray_NDIM(op[0]) ) == 0) { | ||||
| 3750 | goto finish; | ||||
| 3751 | } | ||||
| 3752 | |||||
| 3753 | if (iter && NpyIter_GetIterSize(iter) != 0) { | ||||
| 3754 | char *dataptr_copy[3]; | ||||
| 3755 | npy_intp stride_copy[3]; | ||||
| 3756 | |||||
| 3757 | NpyIter_IterNextFunc *iternext; | ||||
| 3758 | char **dataptr; | ||||
| 3759 | npy_intp count_m1; | ||||
| 3760 | npy_intp stride0, stride1; | ||||
| 3761 | npy_intp stride0_ind = PyArray_STRIDE(op[0], axis); | ||||
| 3762 | |||||
| 3763 | int itemsize = op_dtypes[0]->elsize; | ||||
| 3764 | int needs_api = NpyIter_IterationNeedsAPI(iter); | ||||
| 3765 | |||||
| 3766 | /* Get the variables needed for the loop */ | ||||
| 3767 | iternext = NpyIter_GetIterNext(iter, NULL((void*)0)); | ||||
| 3768 | if (iternext == NULL((void*)0)) { | ||||
| 3769 | goto fail; | ||||
| 3770 | } | ||||
| 3771 | dataptr = NpyIter_GetDataPtrArray(iter); | ||||
| 3772 | |||||
| 3773 | /* Execute the loop with just the outer iterator */ | ||||
| 3774 | count_m1 = PyArray_DIM(op[1], axis)-1; | ||||
| 3775 | stride0 = 0; | ||||
| 3776 | stride1 = PyArray_STRIDE(op[1], axis); | ||||
| 3777 | |||||
| 3778 | NPY_UF_DBG_PRINT("UFunc: Reduce loop with just outer iterator\n"); | ||||
| 3779 | |||||
| 3780 | stride_copy[0] = stride0; | ||||
| 3781 | stride_copy[1] = stride1; | ||||
| 3782 | stride_copy[2] = stride0; | ||||
| 3783 | |||||
| 3784 | NPY_BEGIN_THREADS_NDITER(iter)do { if (!NpyIter_IterationNeedsAPI(iter)) { do { if ((NpyIter_GetIterSize (iter)) > 500) { _save = PyEval_SaveThread();} } while (0) ;; } } while(0); | ||||
| 3785 | |||||
| 3786 | do { | ||||
| 3787 | |||||
| 3788 | for (i = 0; i < ind_size; ++i) { | ||||
| 3789 | npy_intp start = reduceat_ind[i], | ||||
| 3790 | end = (i == ind_size-1) ? count_m1+1 : | ||||
| 3791 | reduceat_ind[i+1]; | ||||
| 3792 | npy_intp count = end - start; | ||||
| 3793 | |||||
| 3794 | dataptr_copy[0] = dataptr[0] + stride0_ind*i; | ||||
| 3795 | dataptr_copy[1] = dataptr[1] + stride1*start; | ||||
| 3796 | dataptr_copy[2] = dataptr[0] + stride0_ind*i; | ||||
| 3797 | |||||
| 3798 | /* | ||||
| 3799 | * Copy the first element to start the reduction. | ||||
| 3800 | * | ||||
| 3801 | * Output (dataptr[0]) and input (dataptr[1]) may point | ||||
| 3802 | * to the same memory, e.g. | ||||
| 3803 | * np.add.reduceat(a, np.arange(len(a)), out=a). | ||||
| 3804 | */ | ||||
| 3805 | if (otype == NPY_OBJECT) { | ||||
| 3806 | /* | ||||
| 3807 | * Incref before decref to avoid the possibility of | ||||
| 3808 | * the reference count being zero temporarily. | ||||
| 3809 | */ | ||||
| 3810 | Py_XINCREF(*(PyObject **)dataptr_copy[1])_Py_XINCREF(((PyObject*)(*(PyObject **)dataptr_copy[1]))); | ||||
| 3811 | Py_XDECREF(*(PyObject **)dataptr_copy[0])_Py_XDECREF(((PyObject*)(*(PyObject **)dataptr_copy[0]))); | ||||
| 3812 | *(PyObject **)dataptr_copy[0] = | ||||
| 3813 | *(PyObject **)dataptr_copy[1]; | ||||
| 3814 | } | ||||
| 3815 | else { | ||||
| 3816 | memmove(dataptr_copy[0], dataptr_copy[1], itemsize); | ||||
| 3817 | } | ||||
| 3818 | |||||
| 3819 | if (count > 1) { | ||||
| 3820 | /* Inner loop like REDUCE */ | ||||
| 3821 | --count; | ||||
| 3822 | dataptr_copy[1] += stride1; | ||||
| 3823 | NPY_UF_DBG_PRINT1("iterator loop count %d\n", | ||||
| 3824 | (int)count); | ||||
| 3825 | innerloop(dataptr_copy, &count, | ||||
| 3826 | stride_copy, innerloopdata); | ||||
| 3827 | } | ||||
| 3828 | } | ||||
| 3829 | } while (!(needs_api && PyErr_Occurred()) && iternext(iter)); | ||||
| 3830 | |||||
| 3831 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 3832 | } | ||||
| 3833 | else if (iter == NULL((void*)0)) { | ||||
| 3834 | char *dataptr_copy[3]; | ||||
| 3835 | npy_intp stride_copy[3]; | ||||
| 3836 | |||||
| 3837 | int itemsize = op_dtypes[0]->elsize; | ||||
| 3838 | |||||
| 3839 | npy_intp stride0_ind = PyArray_STRIDE(op[0], axis); | ||||
| 3840 | |||||
| 3841 | /* Execute the loop with no iterators */ | ||||
| 3842 | npy_intp stride0 = 0, stride1 = PyArray_STRIDE(op[1], axis); | ||||
| 3843 | |||||
| 3844 | int needs_api = PyDataType_REFCHK(op_dtypes[0])(((op_dtypes[0])->flags & (0x01)) == (0x01)); | ||||
| 3845 | |||||
| 3846 | NPY_UF_DBG_PRINT("UFunc: Reduce loop with no iterators\n"); | ||||
| 3847 | |||||
| 3848 | stride_copy[0] = stride0; | ||||
| 3849 | stride_copy[1] = stride1; | ||||
| 3850 | stride_copy[2] = stride0; | ||||
| 3851 | |||||
| 3852 | if (!needs_api) { | ||||
| 3853 | NPY_BEGIN_THREADSdo {_save = PyEval_SaveThread();} while (0);; | ||||
| 3854 | } | ||||
| 3855 | |||||
| 3856 | for (i = 0; i < ind_size; ++i) { | ||||
| 3857 | npy_intp start = reduceat_ind[i], | ||||
| 3858 | end = (i == ind_size-1) ? PyArray_DIM(arr,axis) : | ||||
| 3859 | reduceat_ind[i+1]; | ||||
| 3860 | npy_intp count = end - start; | ||||
| 3861 | |||||
| 3862 | dataptr_copy[0] = PyArray_BYTES(op[0]) + stride0_ind*i; | ||||
| 3863 | dataptr_copy[1] = PyArray_BYTES(op[1]) + stride1*start; | ||||
| 3864 | dataptr_copy[2] = PyArray_BYTES(op[0]) + stride0_ind*i; | ||||
| 3865 | |||||
| 3866 | /* | ||||
| 3867 | * Copy the first element to start the reduction. | ||||
| 3868 | * | ||||
| 3869 | * Output (dataptr[0]) and input (dataptr[1]) may point to | ||||
| 3870 | * the same memory, e.g. | ||||
| 3871 | * np.add.reduceat(a, np.arange(len(a)), out=a). | ||||
| 3872 | */ | ||||
| 3873 | if (otype == NPY_OBJECT) { | ||||
| 3874 | /* | ||||
| 3875 | * Incref before decref to avoid the possibility of the | ||||
| 3876 | * reference count being zero temporarily. | ||||
| 3877 | */ | ||||
| 3878 | Py_XINCREF(*(PyObject **)dataptr_copy[1])_Py_XINCREF(((PyObject*)(*(PyObject **)dataptr_copy[1]))); | ||||
| 3879 | Py_XDECREF(*(PyObject **)dataptr_copy[0])_Py_XDECREF(((PyObject*)(*(PyObject **)dataptr_copy[0]))); | ||||
| 3880 | *(PyObject **)dataptr_copy[0] = | ||||
| 3881 | *(PyObject **)dataptr_copy[1]; | ||||
| 3882 | } | ||||
| 3883 | else { | ||||
| 3884 | memmove(dataptr_copy[0], dataptr_copy[1], itemsize); | ||||
| 3885 | } | ||||
| 3886 | |||||
| 3887 | if (count > 1) { | ||||
| 3888 | /* Inner loop like REDUCE */ | ||||
| 3889 | --count; | ||||
| 3890 | dataptr_copy[1] += stride1; | ||||
| 3891 | NPY_UF_DBG_PRINT1("iterator loop count %d\n", | ||||
| 3892 | (int)count); | ||||
| 3893 | innerloop(dataptr_copy, &count, | ||||
| 3894 | stride_copy, innerloopdata); | ||||
| 3895 | } | ||||
| 3896 | } | ||||
| 3897 | |||||
| 3898 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 3899 | } | ||||
| 3900 | |||||
| 3901 | finish: | ||||
| 3902 | Py_XDECREF(op_dtypes[0])_Py_XDECREF(((PyObject*)(op_dtypes[0]))); | ||||
| 3903 | if (!NpyIter_Deallocate(iter)) { | ||||
| 3904 | Py_DECREF(out)_Py_DECREF(((PyObject*)(out))); | ||||
| 3905 | return NULL((void*)0); | ||||
| 3906 | } | ||||
| 3907 | |||||
| 3908 | return (PyObject *)out; | ||||
| 3909 | |||||
| 3910 | fail: | ||||
| 3911 | Py_XDECREF(out)_Py_XDECREF(((PyObject*)(out))); | ||||
| 3912 | Py_XDECREF(op_dtypes[0])_Py_XDECREF(((PyObject*)(op_dtypes[0]))); | ||||
| 3913 | |||||
| 3914 | NpyIter_Deallocate(iter); | ||||
| 3915 | return NULL((void*)0); | ||||
| 3916 | } | ||||
| 3917 | |||||
| 3918 | |||||
| 3919 | static npy_bool | ||||
| 3920 | tuple_all_none(PyObject *tup) { | ||||
| 3921 | npy_intp i; | ||||
| 3922 | for (i = 0; i < PyTuple_GET_SIZE(tup)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(tup))))-> ob_size); ++i) { | ||||
| 3923 | if (PyTuple_GET_ITEM(tup, i)((((void) (0)), (PyTupleObject *)(tup))->ob_item[i]) != Py_None(&_Py_NoneStruct)) { | ||||
| 3924 | return NPY_FALSE0; | ||||
| 3925 | } | ||||
| 3926 | } | ||||
| 3927 | return NPY_TRUE1; | ||||
| 3928 | } | ||||
| 3929 | |||||
| 3930 | |||||
| 3931 | static int | ||||
| 3932 | _set_full_args_out(int nout, PyObject *out_obj, ufunc_full_args *full_args) | ||||
| 3933 | { | ||||
| 3934 | if (PyTuple_CheckExact(out_obj)((((PyObject*)(out_obj))->ob_type) == &PyTuple_Type)) { | ||||
| 3935 | if (PyTuple_GET_SIZE(out_obj)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(out_obj)))) ->ob_size) != nout) { | ||||
| 3936 | PyErr_SetString(PyExc_ValueError, | ||||
| 3937 | "The 'out' tuple must have exactly " | ||||
| 3938 | "one entry per ufunc output"); | ||||
| 3939 | return -1; | ||||
| 3940 | } | ||||
| 3941 | if (tuple_all_none(out_obj)) { | ||||
| 3942 | return 0; | ||||
| 3943 | } | ||||
| 3944 | else { | ||||
| 3945 | Py_INCREF(out_obj)_Py_INCREF(((PyObject*)(out_obj))); | ||||
| 3946 | full_args->out = out_obj; | ||||
| 3947 | } | ||||
| 3948 | } | ||||
| 3949 | else if (nout == 1) { | ||||
| 3950 | if (out_obj == Py_None(&_Py_NoneStruct)) { | ||||
| 3951 | return 0; | ||||
| 3952 | } | ||||
| 3953 | /* Can be an array if it only has one output */ | ||||
| 3954 | full_args->out = PyTuple_Pack(1, out_obj); | ||||
| 3955 | if (full_args->out == NULL((void*)0)) { | ||||
| 3956 | return -1; | ||||
| 3957 | } | ||||
| 3958 | } | ||||
| 3959 | else { | ||||
| 3960 | PyErr_SetString(PyExc_TypeError, | ||||
| 3961 | nout > 1 ? "'out' must be a tuple of arrays" : | ||||
| 3962 | "'out' must be an array or a tuple with " | ||||
| 3963 | "a single array"); | ||||
| 3964 | return -1; | ||||
| 3965 | } | ||||
| 3966 | return 0; | ||||
| 3967 | } | ||||
| 3968 | |||||
| 3969 | |||||
| 3970 | /* | ||||
| 3971 | * Convert function which replaces np._NoValue with NULL. | ||||
| 3972 | * As a converter returns 0 on error and 1 on success. | ||||
| 3973 | */ | ||||
| 3974 | static int | ||||
| 3975 | _not_NoValue(PyObject *obj, PyObject **out) | ||||
| 3976 | { | ||||
| 3977 | static PyObject *NoValue = NULL((void*)0); | ||||
| 3978 | npy_cache_import("numpy", "_NoValue", &NoValue); | ||||
| 3979 | if (NoValue == NULL((void*)0)) { | ||||
| 3980 | return 0; | ||||
| 3981 | } | ||||
| 3982 | if (obj == NoValue) { | ||||
| 3983 | *out = NULL((void*)0); | ||||
| 3984 | } | ||||
| 3985 | else { | ||||
| 3986 | *out = obj; | ||||
| 3987 | } | ||||
| 3988 | return 1; | ||||
| 3989 | } | ||||
| 3990 | |||||
| 3991 | |||||
| 3992 | /* forward declaration */ | ||||
| 3993 | static PyArray_DTypeMeta * _get_dtype(PyObject *dtype_obj); | ||||
| 3994 | |||||
| 3995 | /* | ||||
| 3996 | * This code handles reduce, reduceat, and accumulate | ||||
| 3997 | * (accumulate and reduce are special cases of the more general reduceat | ||||
| 3998 | * but they are handled separately for speed) | ||||
| 3999 | */ | ||||
| 4000 | static PyObject * | ||||
| 4001 | PyUFunc_GenericReduction(PyUFuncObject *ufunc, | ||||
| 4002 | PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames, int operation) | ||||
| 4003 | { | ||||
| 4004 | int i, naxes=0, ndim; | ||||
| 4005 | int axes[NPY_MAXDIMS32]; | ||||
| 4006 | |||||
| 4007 | ufunc_full_args full_args = {NULL((void*)0), NULL((void*)0)}; | ||||
| 4008 | PyObject *axes_obj = NULL((void*)0); | ||||
| 4009 | PyArrayObject *mp = NULL((void*)0), *wheremask = NULL((void*)0), *ret = NULL((void*)0); | ||||
| 4010 | PyObject *op = NULL((void*)0); | ||||
| 4011 | PyArrayObject *indices = NULL((void*)0); | ||||
| 4012 | PyArray_Descr *otype = NULL((void*)0); | ||||
| 4013 | PyArrayObject *out = NULL((void*)0); | ||||
| 4014 | int keepdims = 0; | ||||
| 4015 | PyObject *initial = NULL((void*)0); | ||||
| 4016 | npy_bool out_is_passed_by_position; | ||||
| 4017 | |||||
| 4018 | |||||
| 4019 | static char *_reduce_type[] = {"reduce", "accumulate", "reduceat", NULL((void*)0)}; | ||||
| 4020 | |||||
| 4021 | if (ufunc == NULL((void*)0)) { | ||||
| 4022 | PyErr_SetString(PyExc_ValueError, "function not supported"); | ||||
| 4023 | return NULL((void*)0); | ||||
| 4024 | } | ||||
| 4025 | if (ufunc->core_enabled) { | ||||
| 4026 | PyErr_Format(PyExc_RuntimeError, | ||||
| 4027 | "Reduction not defined on ufunc with signature"); | ||||
| 4028 | return NULL((void*)0); | ||||
| 4029 | } | ||||
| 4030 | if (ufunc->nin != 2) { | ||||
| 4031 | PyErr_Format(PyExc_ValueError, | ||||
| 4032 | "%s only supported for binary functions", | ||||
| 4033 | _reduce_type[operation]); | ||||
| 4034 | return NULL((void*)0); | ||||
| 4035 | } | ||||
| 4036 | if (ufunc->nout != 1) { | ||||
| 4037 | PyErr_Format(PyExc_ValueError, | ||||
| 4038 | "%s only supported for functions " | ||||
| 4039 | "returning a single value", | ||||
| 4040 | _reduce_type[operation]); | ||||
| 4041 | return NULL((void*)0); | ||||
| 4042 | } | ||||
| 4043 | |||||
| 4044 | /* | ||||
| 4045 | * Perform argument parsing, but start by only extracting. This is | ||||
| 4046 | * just to preserve the behaviour that __array_ufunc__ did not perform | ||||
| 4047 | * any checks on arguments, and we could change this or change it for | ||||
| 4048 | * certain parameters. | ||||
| 4049 | */ | ||||
| 4050 | PyObject *otype_obj = NULL((void*)0), *out_obj = NULL((void*)0), *indices_obj = NULL((void*)0); | ||||
| 4051 | PyObject *keepdims_obj = NULL((void*)0), *wheremask_obj = NULL((void*)0); | ||||
| 4052 | if (operation == UFUNC_REDUCEAT2) { | ||||
| 4053 | NPY_PREPARE_ARGPARSERstatic _NpyArgParserCache __argparse_cache = {-1}; | ||||
| 4054 | |||||
| 4055 | if (npy_parse_arguments("reduceat", args, len_args, kwnames,_npy_parse_arguments("reduceat", &__argparse_cache, args, len_args, kwnames, "array", ((void*)0), &op, "indices", ( (void*)0), &indices_obj, "|axis", ((void*)0), &axes_obj , "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), & out_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4056 | "array", NULL, &op,_npy_parse_arguments("reduceat", &__argparse_cache, args, len_args, kwnames, "array", ((void*)0), &op, "indices", ( (void*)0), &indices_obj, "|axis", ((void*)0), &axes_obj , "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), & out_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4057 | "indices", NULL, &indices_obj,_npy_parse_arguments("reduceat", &__argparse_cache, args, len_args, kwnames, "array", ((void*)0), &op, "indices", ( (void*)0), &indices_obj, "|axis", ((void*)0), &axes_obj , "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), & out_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4058 | "|axis", NULL, &axes_obj,_npy_parse_arguments("reduceat", &__argparse_cache, args, len_args, kwnames, "array", ((void*)0), &op, "indices", ( (void*)0), &indices_obj, "|axis", ((void*)0), &axes_obj , "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), & out_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4059 | "|dtype", NULL, &otype_obj,_npy_parse_arguments("reduceat", &__argparse_cache, args, len_args, kwnames, "array", ((void*)0), &op, "indices", ( (void*)0), &indices_obj, "|axis", ((void*)0), &axes_obj , "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), & out_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4060 | "|out", NULL, &out_obj,_npy_parse_arguments("reduceat", &__argparse_cache, args, len_args, kwnames, "array", ((void*)0), &op, "indices", ( (void*)0), &indices_obj, "|axis", ((void*)0), &axes_obj , "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), & out_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4061 | NULL, NULL, NULL)_npy_parse_arguments("reduceat", &__argparse_cache, args, len_args, kwnames, "array", ((void*)0), &op, "indices", ( (void*)0), &indices_obj, "|axis", ((void*)0), &axes_obj , "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), & out_obj, ((void*)0), ((void*)0), ((void*)0)) < 0) { | ||||
| 4062 | goto fail; | ||||
| 4063 | } | ||||
| 4064 | /* Prepare inputs for PyUfunc_CheckOverride */ | ||||
| 4065 | full_args.in = PyTuple_Pack(2, op, indices_obj); | ||||
| 4066 | if (full_args.in == NULL((void*)0)) { | ||||
| 4067 | goto fail; | ||||
| 4068 | } | ||||
| 4069 | out_is_passed_by_position = len_args >= 5; | ||||
| 4070 | } | ||||
| 4071 | else if (operation == UFUNC_ACCUMULATE1) { | ||||
| 4072 | NPY_PREPARE_ARGPARSERstatic _NpyArgParserCache __argparse_cache = {-1}; | ||||
| 4073 | |||||
| 4074 | if (npy_parse_arguments("accumulate", args, len_args, kwnames,_npy_parse_arguments("accumulate", &__argparse_cache, args , len_args, kwnames, "array", ((void*)0), &op, "|axis", ( (void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj , "|out", ((void*)0), &out_obj, ((void*)0), ((void*)0), ( (void*)0)) | ||||
| 4075 | "array", NULL, &op,_npy_parse_arguments("accumulate", &__argparse_cache, args , len_args, kwnames, "array", ((void*)0), &op, "|axis", ( (void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj , "|out", ((void*)0), &out_obj, ((void*)0), ((void*)0), ( (void*)0)) | ||||
| 4076 | "|axis", NULL, &axes_obj,_npy_parse_arguments("accumulate", &__argparse_cache, args , len_args, kwnames, "array", ((void*)0), &op, "|axis", ( (void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj , "|out", ((void*)0), &out_obj, ((void*)0), ((void*)0), ( (void*)0)) | ||||
| 4077 | "|dtype", NULL, &otype_obj,_npy_parse_arguments("accumulate", &__argparse_cache, args , len_args, kwnames, "array", ((void*)0), &op, "|axis", ( (void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj , "|out", ((void*)0), &out_obj, ((void*)0), ((void*)0), ( (void*)0)) | ||||
| 4078 | "|out", NULL, &out_obj,_npy_parse_arguments("accumulate", &__argparse_cache, args , len_args, kwnames, "array", ((void*)0), &op, "|axis", ( (void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj , "|out", ((void*)0), &out_obj, ((void*)0), ((void*)0), ( (void*)0)) | ||||
| 4079 | NULL, NULL, NULL)_npy_parse_arguments("accumulate", &__argparse_cache, args , len_args, kwnames, "array", ((void*)0), &op, "|axis", ( (void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj , "|out", ((void*)0), &out_obj, ((void*)0), ((void*)0), ( (void*)0)) < 0) { | ||||
| 4080 | goto fail; | ||||
| 4081 | } | ||||
| 4082 | /* Prepare input for PyUfunc_CheckOverride */ | ||||
| 4083 | full_args.in = PyTuple_Pack(1, op); | ||||
| 4084 | if (full_args.in == NULL((void*)0)) { | ||||
| 4085 | goto fail; | ||||
| 4086 | } | ||||
| 4087 | out_is_passed_by_position = len_args >= 4; | ||||
| 4088 | } | ||||
| 4089 | else { | ||||
| 4090 | NPY_PREPARE_ARGPARSERstatic _NpyArgParserCache __argparse_cache = {-1}; | ||||
| 4091 | |||||
| 4092 | if (npy_parse_arguments("reduce", args, len_args, kwnames,_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4093 | "array", NULL, &op,_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4094 | "|axis", NULL, &axes_obj,_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4095 | "|dtype", NULL, &otype_obj,_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4096 | "|out", NULL, &out_obj,_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4097 | "|keepdims", NULL, &keepdims_obj,_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4098 | "|initial", &_not_NoValue, &initial,_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4099 | "|where", NULL, &wheremask_obj,_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4100 | NULL, NULL, NULL)_npy_parse_arguments("reduce", &__argparse_cache, args, len_args , kwnames, "array", ((void*)0), &op, "|axis", ((void*)0), &axes_obj, "|dtype", ((void*)0), &otype_obj, "|out", ((void*)0), &out_obj, "|keepdims", ((void*)0), &keepdims_obj , "|initial", &_not_NoValue, &initial, "|where", ((void *)0), &wheremask_obj, ((void*)0), ((void*)0), ((void*)0)) < 0) { | ||||
| 4101 | goto fail; | ||||
| 4102 | } | ||||
| 4103 | /* Prepare input for PyUfunc_CheckOverride */ | ||||
| 4104 | full_args.in = PyTuple_Pack(1, op); | ||||
| 4105 | if (full_args.in == NULL((void*)0)) { | ||||
| 4106 | goto fail; | ||||
| 4107 | } | ||||
| 4108 | out_is_passed_by_position = len_args >= 4; | ||||
| 4109 | } | ||||
| 4110 | |||||
| 4111 | /* Normalize output for PyUFunc_CheckOverride and conversion. */ | ||||
| 4112 | if (out_is_passed_by_position) { | ||||
| 4113 | /* in this branch, out is always wrapped in a tuple. */ | ||||
| 4114 | if (out_obj != Py_None(&_Py_NoneStruct)) { | ||||
| 4115 | full_args.out = PyTuple_Pack(1, out_obj); | ||||
| 4116 | if (full_args.out == NULL((void*)0)) { | ||||
| 4117 | goto fail; | ||||
| 4118 | } | ||||
| 4119 | } | ||||
| 4120 | } | ||||
| 4121 | else if (out_obj) { | ||||
| 4122 | if (_set_full_args_out(1, out_obj, &full_args) < 0) { | ||||
| 4123 | goto fail; | ||||
| 4124 | } | ||||
| 4125 | /* Ensure that out_obj is the array, not the tuple: */ | ||||
| 4126 | if (full_args.out != NULL((void*)0)) { | ||||
| 4127 | out_obj = PyTuple_GET_ITEM(full_args.out, 0)((((void) (0)), (PyTupleObject *)(full_args.out))->ob_item [0]); | ||||
| 4128 | } | ||||
| 4129 | } | ||||
| 4130 | |||||
| 4131 | /* We now have all the information required to check for Overrides */ | ||||
| 4132 | PyObject *override = NULL((void*)0); | ||||
| 4133 | int errval = PyUFunc_CheckOverride(ufunc, _reduce_type[operation], | ||||
| 4134 | full_args.in, full_args.out, args, len_args, kwnames, &override); | ||||
| 4135 | if (errval) { | ||||
| 4136 | return NULL((void*)0); | ||||
| 4137 | } | ||||
| 4138 | else if (override) { | ||||
| 4139 | Py_XDECREF(full_args.in)_Py_XDECREF(((PyObject*)(full_args.in))); | ||||
| 4140 | Py_XDECREF(full_args.out)_Py_XDECREF(((PyObject*)(full_args.out))); | ||||
| 4141 | return override; | ||||
| 4142 | } | ||||
| 4143 | |||||
| 4144 | /* Finish parsing of all parameters (no matter which reduce-like) */ | ||||
| 4145 | if (indices_obj) { | ||||
| 4146 | PyArray_Descr *indtype = PyArray_DescrFromType(NPY_INTPNPY_LONG); | ||||
| 4147 | |||||
| 4148 | indices = (PyArrayObject *)PyArray_FromAny(indices_obj, | ||||
| 4149 | indtype, 1, 1, NPY_ARRAY_CARRAY(0x0001 | (0x0100 | 0x0400)), NULL((void*)0)); | ||||
| 4150 | if (indices == NULL((void*)0)) { | ||||
| 4151 | goto fail; | ||||
| 4152 | } | ||||
| 4153 | } | ||||
| 4154 | if (otype_obj && otype_obj != Py_None(&_Py_NoneStruct)) { | ||||
| 4155 | /* Use `_get_dtype` because `dtype` is a DType and not the instance */ | ||||
| 4156 | PyArray_DTypeMeta *dtype = _get_dtype(otype_obj); | ||||
| 4157 | if (dtype == NULL((void*)0)) { | ||||
| 4158 | goto fail; | ||||
| 4159 | } | ||||
| 4160 | Py_INCREF(dtype->singleton)_Py_INCREF(((PyObject*)(dtype->singleton))); | ||||
| 4161 | otype = dtype->singleton; | ||||
| 4162 | } | ||||
| 4163 | if (out_obj && !PyArray_OutputConverter(out_obj, &out)) { | ||||
| 4164 | goto fail; | ||||
| 4165 | } | ||||
| 4166 | if (keepdims_obj && !PyArray_PythonPyIntFromInt(keepdims_obj, &keepdims)) { | ||||
| 4167 | goto fail; | ||||
| 4168 | } | ||||
| 4169 | if (wheremask_obj && !_wheremask_converter(wheremask_obj, &wheremask)) { | ||||
| 4170 | goto fail; | ||||
| 4171 | } | ||||
| 4172 | |||||
| 4173 | /* Ensure input is an array */ | ||||
| 4174 | mp = (PyArrayObject *)PyArray_FromAny(op, NULL((void*)0), 0, 0, 0, NULL((void*)0)); | ||||
| 4175 | if (mp == NULL((void*)0)) { | ||||
| 4176 | goto fail; | ||||
| 4177 | } | ||||
| 4178 | |||||
| 4179 | ndim = PyArray_NDIM(mp); | ||||
| 4180 | |||||
| 4181 | /* Check to see that type (and otype) is not FLEXIBLE */ | ||||
| 4182 | if (PyArray_ISFLEXIBLE(mp)(((PyArray_TYPE(mp)) >=NPY_STRING) && ((PyArray_TYPE (mp)) <=NPY_VOID)) || | ||||
| 4183 | (otype && PyTypeNum_ISFLEXIBLE(otype->type_num)(((otype->type_num) >=NPY_STRING) && ((otype-> type_num) <=NPY_VOID)))) { | ||||
| 4184 | PyErr_Format(PyExc_TypeError, | ||||
| 4185 | "cannot perform %s with flexible type", | ||||
| 4186 | _reduce_type[operation]); | ||||
| 4187 | goto fail; | ||||
| 4188 | } | ||||
| 4189 | |||||
| 4190 | /* Convert the 'axis' parameter into a list of axes */ | ||||
| 4191 | if (axes_obj == NULL((void*)0)) { | ||||
| 4192 | /* apply defaults */ | ||||
| 4193 | if (ndim == 0) { | ||||
| 4194 | naxes = 0; | ||||
| 4195 | } | ||||
| 4196 | else { | ||||
| 4197 | naxes = 1; | ||||
| 4198 | axes[0] = 0; | ||||
| 4199 | } | ||||
| 4200 | } | ||||
| 4201 | else if (axes_obj == Py_None(&_Py_NoneStruct)) { | ||||
| 4202 | /* Convert 'None' into all the axes */ | ||||
| 4203 | naxes = ndim; | ||||
| 4204 | for (i = 0; i < naxes; ++i) { | ||||
| 4205 | axes[i] = i; | ||||
| 4206 | } | ||||
| 4207 | } | ||||
| 4208 | else if (PyTuple_Check(axes_obj)((((((PyObject*)(axes_obj))->ob_type))->tp_flags & ( (1UL << 26))) != 0)) { | ||||
| 4209 | naxes = PyTuple_Size(axes_obj); | ||||
| 4210 | if (naxes < 0 || naxes > NPY_MAXDIMS32) { | ||||
| 4211 | PyErr_SetString(PyExc_ValueError, | ||||
| 4212 | "too many values for 'axis'"); | ||||
| 4213 | goto fail; | ||||
| 4214 | } | ||||
| 4215 | for (i = 0; i < naxes; ++i) { | ||||
| 4216 | PyObject *tmp = PyTuple_GET_ITEM(axes_obj, i)((((void) (0)), (PyTupleObject *)(axes_obj))->ob_item[i]); | ||||
| 4217 | int axis = PyArray_PyIntAsInt(tmp); | ||||
| 4218 | if (error_converting(axis)(((axis) == -1) && PyErr_Occurred())) { | ||||
| 4219 | goto fail; | ||||
| 4220 | } | ||||
| 4221 | if (check_and_adjust_axis(&axis, ndim) < 0) { | ||||
| 4222 | goto fail; | ||||
| 4223 | } | ||||
| 4224 | axes[i] = (int)axis; | ||||
| 4225 | } | ||||
| 4226 | } | ||||
| 4227 | else { | ||||
| 4228 | /* Try to interpret axis as an integer */ | ||||
| 4229 | int axis = PyArray_PyIntAsInt(axes_obj); | ||||
| 4230 | /* TODO: PyNumber_Index would be good to use here */ | ||||
| 4231 | if (error_converting(axis)(((axis) == -1) && PyErr_Occurred())) { | ||||
| 4232 | goto fail; | ||||
| 4233 | } | ||||
| 4234 | /* | ||||
| 4235 | * As a special case for backwards compatibility in 'sum', | ||||
| 4236 | * 'prod', et al, also allow a reduction for scalars even | ||||
| 4237 | * though this is technically incorrect. | ||||
| 4238 | */ | ||||
| 4239 | if (ndim == 0 && (axis == 0 || axis == -1)) { | ||||
| 4240 | naxes = 0; | ||||
| 4241 | } | ||||
| 4242 | else if (check_and_adjust_axis(&axis, ndim) < 0) { | ||||
| 4243 | goto fail; | ||||
| 4244 | } | ||||
| 4245 | else { | ||||
| 4246 | axes[0] = (int)axis; | ||||
| 4247 | naxes = 1; | ||||
| 4248 | } | ||||
| 4249 | } | ||||
| 4250 | |||||
| 4251 | /* | ||||
| 4252 | * If out is specified it determines otype | ||||
| 4253 | * unless otype already specified. | ||||
| 4254 | */ | ||||
| 4255 | if (otype == NULL((void*)0) && out != NULL((void*)0)) { | ||||
| 4256 | otype = PyArray_DESCR(out); | ||||
| 4257 | Py_INCREF(otype)_Py_INCREF(((PyObject*)(otype))); | ||||
| 4258 | } | ||||
| 4259 | if (otype == NULL((void*)0)) { | ||||
| 4260 | /* | ||||
| 4261 | * For integer types --- make sure at least a long | ||||
| 4262 | * is used for add and multiply reduction to avoid overflow | ||||
| 4263 | */ | ||||
| 4264 | int typenum = PyArray_TYPE(mp); | ||||
| 4265 | if ((PyTypeNum_ISBOOL(typenum)((typenum) == NPY_BOOL) || PyTypeNum_ISINTEGER(typenum)(((typenum) >= NPY_BYTE) && ((typenum) <= NPY_ULONGLONG ))) | ||||
| 4266 | && ((strcmp(ufunc->name,"add") == 0) | ||||
| 4267 | || (strcmp(ufunc->name,"multiply") == 0))) { | ||||
| 4268 | if (PyTypeNum_ISBOOL(typenum)((typenum) == NPY_BOOL)) { | ||||
| 4269 | typenum = NPY_LONG; | ||||
| 4270 | } | ||||
| 4271 | else if ((size_t)PyArray_DESCR(mp)->elsize < sizeof(long)) { | ||||
| 4272 | if (PyTypeNum_ISUNSIGNED(typenum)(((typenum) == NPY_UBYTE) || ((typenum) == NPY_USHORT) || ((typenum ) == NPY_UINT) || ((typenum) == NPY_ULONG) || ((typenum) == NPY_ULONGLONG ))) { | ||||
| 4273 | typenum = NPY_ULONG; | ||||
| 4274 | } | ||||
| 4275 | else { | ||||
| 4276 | typenum = NPY_LONG; | ||||
| 4277 | } | ||||
| 4278 | } | ||||
| 4279 | } | ||||
| 4280 | otype = PyArray_DescrFromType(typenum); | ||||
| 4281 | } | ||||
| 4282 | |||||
| 4283 | |||||
| 4284 | switch(operation) { | ||||
| 4285 | case UFUNC_REDUCE0: | ||||
| 4286 | ret = PyUFunc_Reduce(ufunc, mp, out, naxes, axes, | ||||
| 4287 | otype, keepdims, initial, wheremask); | ||||
| 4288 | Py_XDECREF(wheremask)_Py_XDECREF(((PyObject*)(wheremask))); | ||||
| 4289 | break; | ||||
| 4290 | case UFUNC_ACCUMULATE1: | ||||
| 4291 | if (ndim == 0) { | ||||
| 4292 | PyErr_SetString(PyExc_TypeError, "cannot accumulate on a scalar"); | ||||
| 4293 | goto fail; | ||||
| 4294 | } | ||||
| 4295 | if (naxes != 1) { | ||||
| 4296 | PyErr_SetString(PyExc_ValueError, | ||||
| 4297 | "accumulate does not allow multiple axes"); | ||||
| 4298 | goto fail; | ||||
| 4299 | } | ||||
| 4300 | ret = (PyArrayObject *)PyUFunc_Accumulate(ufunc, mp, out, axes[0], | ||||
| 4301 | otype->type_num); | ||||
| 4302 | break; | ||||
| 4303 | case UFUNC_REDUCEAT2: | ||||
| 4304 | if (ndim == 0) { | ||||
| 4305 | PyErr_SetString(PyExc_TypeError, "cannot reduceat on a scalar"); | ||||
| 4306 | goto fail; | ||||
| 4307 | } | ||||
| 4308 | if (naxes != 1) { | ||||
| 4309 | PyErr_SetString(PyExc_ValueError, | ||||
| 4310 | "reduceat does not allow multiple axes"); | ||||
| 4311 | goto fail; | ||||
| 4312 | } | ||||
| 4313 | ret = (PyArrayObject *)PyUFunc_Reduceat(ufunc, mp, indices, out, | ||||
| 4314 | axes[0], otype->type_num); | ||||
| 4315 | Py_DECREF(indices)_Py_DECREF(((PyObject*)(indices))); | ||||
| 4316 | break; | ||||
| 4317 | } | ||||
| 4318 | Py_DECREF(mp)_Py_DECREF(((PyObject*)(mp))); | ||||
| 4319 | Py_DECREF(otype)_Py_DECREF(((PyObject*)(otype))); | ||||
| 4320 | Py_XDECREF(full_args.in)_Py_XDECREF(((PyObject*)(full_args.in))); | ||||
| 4321 | Py_XDECREF(full_args.out)_Py_XDECREF(((PyObject*)(full_args.out))); | ||||
| 4322 | |||||
| 4323 | if (ret == NULL((void*)0)) { | ||||
| 4324 | return NULL((void*)0); | ||||
| 4325 | } | ||||
| 4326 | |||||
| 4327 | /* Wrap and return the output */ | ||||
| 4328 | { | ||||
| 4329 | /* Find __array_wrap__ - note that these rules are different to the | ||||
| 4330 | * normal ufunc path | ||||
| 4331 | */ | ||||
| 4332 | PyObject *wrap; | ||||
| 4333 | if (out != NULL((void*)0)) { | ||||
| 4334 | wrap = Py_None(&_Py_NoneStruct); | ||||
| 4335 | Py_INCREF(wrap)_Py_INCREF(((PyObject*)(wrap))); | ||||
| 4336 | } | ||||
| 4337 | else if (Py_TYPE(op)(((PyObject*)(op))->ob_type) != Py_TYPE(ret)(((PyObject*)(ret))->ob_type)) { | ||||
| 4338 | wrap = PyObject_GetAttr(op, npy_um_str_array_wrap); | ||||
| 4339 | if (wrap == NULL((void*)0)) { | ||||
| 4340 | PyErr_Clear(); | ||||
| 4341 | } | ||||
| 4342 | else if (!PyCallable_Check(wrap)) { | ||||
| 4343 | Py_DECREF(wrap)_Py_DECREF(((PyObject*)(wrap))); | ||||
| 4344 | wrap = NULL((void*)0); | ||||
| 4345 | } | ||||
| 4346 | } | ||||
| 4347 | else { | ||||
| 4348 | wrap = NULL((void*)0); | ||||
| 4349 | } | ||||
| 4350 | return _apply_array_wrap(wrap, ret, NULL((void*)0)); | ||||
| 4351 | } | ||||
| 4352 | |||||
| 4353 | fail: | ||||
| 4354 | Py_XDECREF(otype)_Py_XDECREF(((PyObject*)(otype))); | ||||
| 4355 | Py_XDECREF(mp)_Py_XDECREF(((PyObject*)(mp))); | ||||
| 4356 | Py_XDECREF(wheremask)_Py_XDECREF(((PyObject*)(wheremask))); | ||||
| 4357 | Py_XDECREF(full_args.in)_Py_XDECREF(((PyObject*)(full_args.in))); | ||||
| 4358 | Py_XDECREF(full_args.out)_Py_XDECREF(((PyObject*)(full_args.out))); | ||||
| 4359 | return NULL((void*)0); | ||||
| 4360 | } | ||||
| 4361 | |||||
| 4362 | |||||
| 4363 | /* | ||||
| 4364 | * Perform a basic check on `dtype`, `sig`, and `signature` since only one | ||||
| 4365 | * may be set. If `sig` is used, writes it into `out_signature` (which should | ||||
| 4366 | * be set to `signature_obj` so that following code only requires to handle | ||||
| 4367 | * `signature_obj`). | ||||
| 4368 | * | ||||
| 4369 | * Does NOT incref the output! This only copies the borrowed references | ||||
| 4370 | * gotten during the argument parsing. | ||||
| 4371 | * | ||||
| 4372 | * This function does not do any normalization of the input dtype tuples, | ||||
| 4373 | * this happens after the array-ufunc override check currently. | ||||
| 4374 | */ | ||||
| 4375 | static int | ||||
| 4376 | _check_and_copy_sig_to_signature( | ||||
| 4377 | PyObject *sig_obj, PyObject *signature_obj, PyObject *dtype, | ||||
| 4378 | PyObject **out_signature) | ||||
| 4379 | { | ||||
| 4380 | *out_signature = NULL((void*)0); | ||||
| 4381 | if (signature_obj != NULL((void*)0)) { | ||||
| 4382 | *out_signature = signature_obj; | ||||
| 4383 | } | ||||
| 4384 | |||||
| 4385 | if (sig_obj != NULL((void*)0)) { | ||||
| 4386 | if (*out_signature != NULL((void*)0)) { | ||||
| 4387 | PyErr_SetString(PyExc_TypeError, | ||||
| 4388 | "cannot specify both 'sig' and 'signature'"); | ||||
| 4389 | *out_signature = NULL((void*)0); | ||||
| 4390 | return -1; | ||||
| 4391 | } | ||||
| 4392 | *out_signature = sig_obj; | ||||
| 4393 | } | ||||
| 4394 | |||||
| 4395 | if (dtype != NULL((void*)0)) { | ||||
| 4396 | if (*out_signature != NULL((void*)0)) { | ||||
| 4397 | PyErr_SetString(PyExc_TypeError, | ||||
| 4398 | "cannot specify both 'signature' and 'dtype'"); | ||||
| 4399 | return -1; | ||||
| 4400 | } | ||||
| 4401 | /* dtype needs to be converted, delay after the override check */ | ||||
| 4402 | } | ||||
| 4403 | return 0; | ||||
| 4404 | } | ||||
| 4405 | |||||
| 4406 | |||||
| 4407 | /* | ||||
| 4408 | * Note: This function currently lets DType classes pass, but in general | ||||
| 4409 | * the class (not the descriptor instance) is the preferred input, so the | ||||
| 4410 | * parsing should eventually be adapted to prefer classes and possible | ||||
| 4411 | * deprecated instances. (Users should not notice that much, since `np.float64` | ||||
| 4412 | * or "float64" usually denotes the DType class rather than the instance.) | ||||
| 4413 | */ | ||||
| 4414 | static PyArray_DTypeMeta * | ||||
| 4415 | _get_dtype(PyObject *dtype_obj) { | ||||
| 4416 | if (PyObject_TypeCheck(dtype_obj, &PyArrayDTypeMeta_Type)((((PyObject*)(dtype_obj))->ob_type) == (&PyArrayDTypeMeta_Type ) || PyType_IsSubtype((((PyObject*)(dtype_obj))->ob_type), (&PyArrayDTypeMeta_Type)))) { | ||||
| 4417 | Py_INCREF(dtype_obj)_Py_INCREF(((PyObject*)(dtype_obj))); | ||||
| 4418 | return (PyArray_DTypeMeta *)dtype_obj; | ||||
| 4419 | } | ||||
| 4420 | else { | ||||
| 4421 | PyArray_Descr *descr = NULL((void*)0); | ||||
| 4422 | if (!PyArray_DescrConverter(dtype_obj, &descr)) { | ||||
| 4423 | return NULL((void*)0); | ||||
| 4424 | } | ||||
| 4425 | PyArray_DTypeMeta *out = NPY_DTYPE(descr)((PyArray_DTypeMeta *)(((PyObject*)(descr))->ob_type)); | ||||
| 4426 | if (NPY_UNLIKELY(!out->legacy)__builtin_expect(!!(!out->legacy), 0)) { | ||||
| 4427 | /* TODO: this path was unreachable when added. */ | ||||
| 4428 | PyErr_SetString(PyExc_TypeError, | ||||
| 4429 | "Cannot pass a new user DType instance to the `dtype` or " | ||||
| 4430 | "`signature` arguments of ufuncs. Pass the DType class " | ||||
| 4431 | "instead."); | ||||
| 4432 | Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr))); | ||||
| 4433 | return NULL((void*)0); | ||||
| 4434 | } | ||||
| 4435 | else if (NPY_UNLIKELY(out->singleton != descr)__builtin_expect(!!(out->singleton != descr), 0)) { | ||||
| 4436 | /* This does not warn about `metadata`, but units is important. */ | ||||
| 4437 | if (!PyArray_EquivTypes(out->singleton, descr)) { | ||||
| 4438 | PyErr_Format(PyExc_TypeError, | ||||
| 4439 | "The `dtype` and `signature` arguments to " | ||||
| 4440 | "ufuncs only select the general DType and not details " | ||||
| 4441 | "such as the byte order or time unit (with rare " | ||||
| 4442 | "exceptions see release notes). To avoid this warning " | ||||
| 4443 | "please use the scalar types `np.float64`, or string " | ||||
| 4444 | "notation.\n" | ||||
| 4445 | "In rare cases where the time unit was preserved, " | ||||
| 4446 | "either cast the inputs or provide an output array. " | ||||
| 4447 | "In the future NumPy may transition to allow providing " | ||||
| 4448 | "`dtype=` to denote the outputs `dtype` as well"); | ||||
| 4449 | Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr))); | ||||
| 4450 | return NULL((void*)0); | ||||
| 4451 | } | ||||
| 4452 | } | ||||
| 4453 | Py_INCREF(out)_Py_INCREF(((PyObject*)(out))); | ||||
| 4454 | Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr))); | ||||
| 4455 | return out; | ||||
| 4456 | } | ||||
| 4457 | } | ||||
| 4458 | |||||
| 4459 | |||||
| 4460 | static int | ||||
| 4461 | _make_new_typetup( | ||||
| 4462 | int nop, PyArray_DTypeMeta *signature[], PyObject **out_typetup) { | ||||
| 4463 | *out_typetup = PyTuple_New(nop); | ||||
| 4464 | if (*out_typetup == NULL((void*)0)) { | ||||
| 4465 | return -1; | ||||
| 4466 | } | ||||
| 4467 | |||||
| 4468 | int noncount = 0; | ||||
| 4469 | for (int i = 0; i < nop; i++) { | ||||
| 4470 | PyObject *item; | ||||
| 4471 | if (signature[i] == NULL((void*)0)) { | ||||
| 4472 | item = Py_None(&_Py_NoneStruct); | ||||
| 4473 | noncount++; | ||||
| 4474 | } | ||||
| 4475 | else { | ||||
| 4476 | if (!signature[i]->legacy || signature[i]->abstract) { | ||||
| 4477 | /* | ||||
| 4478 | * The legacy type resolution can't deal with these. | ||||
| 4479 | * This path will return `None` or so in the future to | ||||
| 4480 | * set an error later if the legacy type resolution is used. | ||||
| 4481 | */ | ||||
| 4482 | PyErr_SetString(PyExc_RuntimeError, | ||||
| 4483 | "Internal NumPy error: new DType in signature not yet " | ||||
| 4484 | "supported. (This should be unreachable code!)"); | ||||
| 4485 | Py_SETREF(*out_typetup, NULL)do { PyObject *_py_tmp = ((PyObject*)(*out_typetup)); (*out_typetup ) = (((void*)0)); _Py_DECREF(((PyObject*)(_py_tmp))); } while (0); | ||||
| 4486 | return -1; | ||||
| 4487 | } | ||||
| 4488 | item = (PyObject *)signature[i]->singleton; | ||||
| 4489 | } | ||||
| 4490 | Py_INCREF(item)_Py_INCREF(((PyObject*)(item))); | ||||
| 4491 | PyTuple_SET_ITEM(*out_typetup, i, item)PyTuple_SetItem(*out_typetup, i, item); | ||||
| 4492 | } | ||||
| 4493 | if (noncount == nop) { | ||||
| 4494 | /* The whole signature was None, simply ignore type tuple */ | ||||
| 4495 | Py_DECREF(*out_typetup)_Py_DECREF(((PyObject*)(*out_typetup))); | ||||
| 4496 | *out_typetup = NULL((void*)0); | ||||
| 4497 | } | ||||
| 4498 | return 0; | ||||
| 4499 | } | ||||
| 4500 | |||||
| 4501 | |||||
| 4502 | /* | ||||
| 4503 | * Finish conversion parsing of the type tuple. NumPy always only honored | ||||
| 4504 | * the type number for passed in descriptors/dtypes. | ||||
| 4505 | * The `dtype` argument is interpreted as the first output DType (not | ||||
| 4506 | * descriptor). | ||||
| 4507 | * Unlike the dtype of an `out` array, it influences loop selection! | ||||
| 4508 | * | ||||
| 4509 | * NOTE: This function replaces the type tuple if passed in (it steals | ||||
| 4510 | * the original reference and returns a new object and reference)! | ||||
| 4511 | * The caller must XDECREF the type tuple both on error or success. | ||||
| 4512 | * | ||||
| 4513 | * The function returns a new, normalized type-tuple. | ||||
| 4514 | */ | ||||
| 4515 | static int | ||||
| 4516 | _get_normalized_typetup(PyUFuncObject *ufunc, | ||||
| 4517 | PyObject *dtype_obj, PyObject *signature_obj, PyObject **out_typetup) | ||||
| 4518 | { | ||||
| 4519 | if (dtype_obj == NULL((void*)0) && signature_obj == NULL((void*)0)) { | ||||
| 4520 | return 0; | ||||
| 4521 | } | ||||
| 4522 | |||||
| 4523 | int res = -1; | ||||
| 4524 | int nin = ufunc->nin, nout = ufunc->nout, nop = nin + nout; | ||||
| 4525 | /* | ||||
| 4526 | * TODO: `signature` will be the main result in the future and | ||||
| 4527 | * not the typetup. (Type tuple construction can be deffered to when | ||||
| 4528 | * the legacy fallback is used). | ||||
| 4529 | */ | ||||
| 4530 | PyArray_DTypeMeta *signature[NPY_MAXARGS32]; | ||||
| 4531 | memset(signature, '\0', sizeof(*signature) * nop); | ||||
| 4532 | |||||
| 4533 | if (dtype_obj != NULL((void*)0)) { | ||||
| 4534 | if (dtype_obj == Py_None(&_Py_NoneStruct)) { | ||||
| 4535 | /* If `dtype=None` is passed, no need to do anything */ | ||||
| 4536 | assert(*out_typetup == NULL)((void) (0)); | ||||
| 4537 | return 0; | ||||
| 4538 | } | ||||
| 4539 | if (nout == 0) { | ||||
| 4540 | /* This may be allowed (NumPy does not do this)? */ | ||||
| 4541 | PyErr_SetString(PyExc_TypeError, | ||||
| 4542 | "Cannot provide `dtype` when a ufunc has no outputs"); | ||||
| 4543 | return -1; | ||||
| 4544 | } | ||||
| 4545 | PyArray_DTypeMeta *dtype = _get_dtype(dtype_obj); | ||||
| 4546 | if (dtype == NULL((void*)0)) { | ||||
| 4547 | return -1; | ||||
| 4548 | } | ||||
| 4549 | for (int i = nin; i < nop; i++) { | ||||
| 4550 | Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype))); | ||||
| 4551 | signature[i] = dtype; | ||||
| 4552 | } | ||||
| 4553 | Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype))); | ||||
| 4554 | res = _make_new_typetup(nop, signature, out_typetup); | ||||
| 4555 | goto finish; | ||||
| 4556 | } | ||||
| 4557 | |||||
| 4558 | assert(signature_obj != NULL)((void) (0)); | ||||
| 4559 | /* Fill in specified_types from the tuple or string (signature_obj) */ | ||||
| 4560 | if (PyTuple_Check(signature_obj)((((((PyObject*)(signature_obj))->ob_type))->tp_flags & ((1UL << 26))) != 0)) { | ||||
| 4561 | Py_ssize_t n = PyTuple_GET_SIZE(signature_obj)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(signature_obj ))))->ob_size); | ||||
| 4562 | if (n == 1 && nop != 1) { | ||||
| 4563 | /* | ||||
| 4564 | * Special handling, because we deprecate this path. The path | ||||
| 4565 | * probably mainly existed since the `dtype=obj` was passed through | ||||
| 4566 | * as `(obj,)` and parsed later. | ||||
| 4567 | */ | ||||
| 4568 | if (PyTuple_GET_ITEM(signature_obj, 0)((((void) (0)), (PyTupleObject *)(signature_obj))->ob_item [0]) == Py_None(&_Py_NoneStruct)) { | ||||
| 4569 | PyErr_SetString(PyExc_TypeError, | ||||
| 4570 | "a single item type tuple cannot contain None."); | ||||
| 4571 | goto finish; | ||||
| 4572 | } | ||||
| 4573 | if (DEPRECATE("The use of a length 1 tuple for the ufunc "PyErr_WarnEx(PyExc_DeprecationWarning,"The use of a length 1 tuple for the ufunc " "`signature` is deprecated. Use `dtype` or fill the" "tuple with `None`s." ,1) | ||||
| 4574 | "`signature` is deprecated. Use `dtype` or fill the"PyErr_WarnEx(PyExc_DeprecationWarning,"The use of a length 1 tuple for the ufunc " "`signature` is deprecated. Use `dtype` or fill the" "tuple with `None`s." ,1) | ||||
| 4575 | "tuple with `None`s.")PyErr_WarnEx(PyExc_DeprecationWarning,"The use of a length 1 tuple for the ufunc " "`signature` is deprecated. Use `dtype` or fill the" "tuple with `None`s." ,1) < 0) { | ||||
| 4576 | goto finish; | ||||
| 4577 | } | ||||
| 4578 | /* Use the same logic as for `dtype=` */ | ||||
| 4579 | res = _get_normalized_typetup(ufunc, | ||||
| 4580 | PyTuple_GET_ITEM(signature_obj, 0)((((void) (0)), (PyTupleObject *)(signature_obj))->ob_item [0]), NULL((void*)0), out_typetup); | ||||
| 4581 | goto finish; | ||||
| 4582 | } | ||||
| 4583 | if (n != nop) { | ||||
| 4584 | PyErr_Format(PyExc_ValueError, | ||||
| 4585 | "a type-tuple must be specified of length %d for ufunc '%s'", | ||||
| 4586 | nop, ufunc_get_name_cstr(ufunc)); | ||||
| 4587 | goto finish; | ||||
| 4588 | } | ||||
| 4589 | for (int i = 0; i < nop; ++i) { | ||||
| 4590 | PyObject *item = PyTuple_GET_ITEM(signature_obj, i)((((void) (0)), (PyTupleObject *)(signature_obj))->ob_item [i]); | ||||
| 4591 | if (item == Py_None(&_Py_NoneStruct)) { | ||||
| 4592 | continue; | ||||
| 4593 | } | ||||
| 4594 | signature[i] = _get_dtype(item); | ||||
| 4595 | if (signature[i] == NULL((void*)0)) { | ||||
| 4596 | goto finish; | ||||
| 4597 | } | ||||
| 4598 | } | ||||
| 4599 | } | ||||
| 4600 | else if (PyBytes_Check(signature_obj)((((((PyObject*)(signature_obj))->ob_type))->tp_flags & ((1UL << 27))) != 0) || PyUnicode_Check(signature_obj)((((((PyObject*)(signature_obj))->ob_type))->tp_flags & ((1UL << 28))) != 0)) { | ||||
| 4601 | PyObject *str_object = NULL((void*)0); | ||||
| 4602 | |||||
| 4603 | if (PyBytes_Check(signature_obj)((((((PyObject*)(signature_obj))->ob_type))->tp_flags & ((1UL << 27))) != 0)) { | ||||
| 4604 | str_object = PyUnicode_FromEncodedObject(signature_obj, NULL((void*)0), NULL((void*)0)); | ||||
| 4605 | if (str_object == NULL((void*)0)) { | ||||
| 4606 | goto finish; | ||||
| 4607 | } | ||||
| 4608 | } | ||||
| 4609 | else { | ||||
| 4610 | Py_INCREF(signature_obj)_Py_INCREF(((PyObject*)(signature_obj))); | ||||
| 4611 | str_object = signature_obj; | ||||
| 4612 | } | ||||
| 4613 | |||||
| 4614 | Py_ssize_t length; | ||||
| 4615 | const char *str = PyUnicode_AsUTF8AndSize(str_object, &length); | ||||
| 4616 | if (str == NULL((void*)0)) { | ||||
| 4617 | Py_DECREF(str_object)_Py_DECREF(((PyObject*)(str_object))); | ||||
| 4618 | goto finish; | ||||
| 4619 | } | ||||
| 4620 | |||||
| 4621 | if (length != 1 && (length != nin+nout + 2 || | ||||
| 4622 | str[nin] != '-' || str[nin+1] != '>')) { | ||||
| 4623 | PyErr_Format(PyExc_ValueError, | ||||
| 4624 | "a type-string for %s, %d typecode(s) before and %d after " | ||||
| 4625 | "the -> sign", ufunc_get_name_cstr(ufunc), nin, nout); | ||||
| 4626 | Py_DECREF(str_object)_Py_DECREF(((PyObject*)(str_object))); | ||||
| 4627 | goto finish; | ||||
| 4628 | } | ||||
| 4629 | if (length == 1 && nin+nout != 1) { | ||||
| 4630 | Py_DECREF(str_object)_Py_DECREF(((PyObject*)(str_object))); | ||||
| 4631 | if (DEPRECATE("The use of a length 1 string for the ufunc "PyErr_WarnEx(PyExc_DeprecationWarning,"The use of a length 1 string for the ufunc " "`signature` is deprecated. Use `dtype` attribute or " "pass a tuple with `None`s." ,1) | ||||
| 4632 | "`signature` is deprecated. Use `dtype` attribute or "PyErr_WarnEx(PyExc_DeprecationWarning,"The use of a length 1 string for the ufunc " "`signature` is deprecated. Use `dtype` attribute or " "pass a tuple with `None`s." ,1) | ||||
| 4633 | "pass a tuple with `None`s.")PyErr_WarnEx(PyExc_DeprecationWarning,"The use of a length 1 string for the ufunc " "`signature` is deprecated. Use `dtype` attribute or " "pass a tuple with `None`s." ,1) < 0) { | ||||
| 4634 | goto finish; | ||||
| 4635 | } | ||||
| 4636 | /* `signature="l"` is the same as `dtype="l"` */ | ||||
| 4637 | res = _get_normalized_typetup(ufunc, str_object, NULL((void*)0), out_typetup); | ||||
| 4638 | goto finish; | ||||
| 4639 | } | ||||
| 4640 | else { | ||||
| 4641 | for (int i = 0; i < nin+nout; ++i) { | ||||
| 4642 | npy_intp istr = i < nin ? i : i+2; | ||||
| 4643 | PyArray_Descr *descr = PyArray_DescrFromType(str[istr]); | ||||
| 4644 | if (descr == NULL((void*)0)) { | ||||
| 4645 | Py_DECREF(str_object)_Py_DECREF(((PyObject*)(str_object))); | ||||
| 4646 | goto finish; | ||||
| 4647 | } | ||||
| 4648 | signature[i] = NPY_DTYPE(descr)((PyArray_DTypeMeta *)(((PyObject*)(descr))->ob_type)); | ||||
| 4649 | Py_INCREF(signature[i])_Py_INCREF(((PyObject*)(signature[i]))); | ||||
| 4650 | Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr))); | ||||
| 4651 | } | ||||
| 4652 | Py_DECREF(str_object)_Py_DECREF(((PyObject*)(str_object))); | ||||
| 4653 | } | ||||
| 4654 | } | ||||
| 4655 | else { | ||||
| 4656 | PyErr_SetString(PyExc_TypeError, | ||||
| 4657 | "the signature object to ufunc must be a string or a tuple."); | ||||
| 4658 | goto finish; | ||||
| 4659 | } | ||||
| 4660 | res = _make_new_typetup(nop, signature, out_typetup); | ||||
| 4661 | |||||
| 4662 | finish: | ||||
| 4663 | for (int i =0; i < nop; i++) { | ||||
| 4664 | Py_XDECREF(signature[i])_Py_XDECREF(((PyObject*)(signature[i]))); | ||||
| 4665 | } | ||||
| 4666 | return res; | ||||
| 4667 | } | ||||
| 4668 | |||||
| 4669 | |||||
| 4670 | /* | ||||
| 4671 | * Main ufunc call implementation. | ||||
| 4672 | * | ||||
| 4673 | * This implementation makes use of the "fastcall" way of passing keyword | ||||
| 4674 | * arguments and is called directly from `ufunc_generic_vectorcall` when | ||||
| 4675 | * Python has `tp_vectorcall` (Python 3.8+). | ||||
| 4676 | * If `tp_vectorcall` is not available, the dictionary `kwargs` are unpacked in | ||||
| 4677 | * `ufunc_generic_call` with fairly little overhead. | ||||
| 4678 | */ | ||||
| 4679 | static PyObject * | ||||
| 4680 | ufunc_generic_fastcall(PyUFuncObject *ufunc, | ||||
| 4681 | PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames, | ||||
| 4682 | npy_bool outer) | ||||
| 4683 | { | ||||
| 4684 | PyArrayObject *operands[NPY_MAXARGS32] = {NULL((void*)0)}; | ||||
| 4685 | PyObject *retobj[NPY_MAXARGS32]; | ||||
| 4686 | PyObject *wraparr[NPY_MAXARGS32]; | ||||
| 4687 | PyObject *override = NULL((void*)0); | ||||
| 4688 | ufunc_full_args full_args = {NULL((void*)0), NULL((void*)0)}; | ||||
| 4689 | PyObject *typetup = NULL((void*)0); | ||||
| 4690 | |||||
| 4691 | int errval; | ||||
| 4692 | int nin = ufunc->nin, nout = ufunc->nout, nop = ufunc->nargs; | ||||
| 4693 | |||||
| 4694 | /* | ||||
| 4695 | * Note that the input (and possibly output) arguments are passed in as | ||||
| 4696 | * positional arguments. We extract these first and check for `out` | ||||
| 4697 | * passed by keyword later. | ||||
| 4698 | * Outputs and inputs are stored in `full_args.in` and `full_args.out` | ||||
| 4699 | * as tuples (or NULL when no outputs are passed). | ||||
| 4700 | */ | ||||
| 4701 | |||||
| 4702 | /* Check number of arguments */ | ||||
| 4703 | if ((len_args < nin) || (len_args > nop)) { | ||||
| 4704 | PyErr_Format(PyExc_TypeError, | ||||
| 4705 | "%s() takes from %d to %d positional arguments but " | ||||
| 4706 | "%zd were given", | ||||
| 4707 | ufunc_get_name_cstr(ufunc) , nin, nop, len_args); | ||||
| 4708 | return NULL((void*)0); | ||||
| 4709 | } | ||||
| 4710 | |||||
| 4711 | /* Fetch input arguments. */ | ||||
| 4712 | full_args.in = PyTuple_New(ufunc->nin); | ||||
| 4713 | if (full_args.in == NULL((void*)0)) { | ||||
| 4714 | return NULL((void*)0); | ||||
| 4715 | } | ||||
| 4716 | for (int i = 0; i < ufunc->nin; i++) { | ||||
| 4717 | PyObject *tmp = args[i]; | ||||
| 4718 | Py_INCREF(tmp)_Py_INCREF(((PyObject*)(tmp))); | ||||
| 4719 | PyTuple_SET_ITEM(full_args.in, i, tmp)PyTuple_SetItem(full_args.in, i, tmp); | ||||
| 4720 | } | ||||
| 4721 | |||||
| 4722 | /* | ||||
| 4723 | * If there are more arguments, they define the out args. Otherwise | ||||
| 4724 | * full_args.out is NULL for now, and the `out` kwarg may still be passed. | ||||
| 4725 | */ | ||||
| 4726 | npy_bool out_is_passed_by_position = len_args > nin; | ||||
| 4727 | if (out_is_passed_by_position) { | ||||
| 4728 | npy_bool all_none = NPY_TRUE1; | ||||
| 4729 | |||||
| 4730 | full_args.out = PyTuple_New(nout); | ||||
| 4731 | if (full_args.out == NULL((void*)0)) { | ||||
| 4732 | goto fail; | ||||
| 4733 | } | ||||
| 4734 | for (int i = nin; i < nop; i++) { | ||||
| 4735 | PyObject *tmp; | ||||
| 4736 | if (i < (int)len_args) { | ||||
| 4737 | tmp = args[i]; | ||||
| 4738 | if (tmp != Py_None(&_Py_NoneStruct)) { | ||||
| 4739 | all_none = NPY_FALSE0; | ||||
| 4740 | } | ||||
| 4741 | } | ||||
| 4742 | else { | ||||
| 4743 | tmp = Py_None(&_Py_NoneStruct); | ||||
| 4744 | } | ||||
| 4745 | Py_INCREF(tmp)_Py_INCREF(((PyObject*)(tmp))); | ||||
| 4746 | PyTuple_SET_ITEM(full_args.out, i-nin, tmp)PyTuple_SetItem(full_args.out, i-nin, tmp); | ||||
| 4747 | } | ||||
| 4748 | if (all_none) { | ||||
| 4749 | Py_SETREF(full_args.out, NULL)do { PyObject *_py_tmp = ((PyObject*)(full_args.out)); (full_args .out) = (((void*)0)); _Py_DECREF(((PyObject*)(_py_tmp))); } while (0); | ||||
| 4750 | } | ||||
| 4751 | } | ||||
| 4752 | else { | ||||
| 4753 | full_args.out = NULL((void*)0); | ||||
| 4754 | } | ||||
| 4755 | |||||
| 4756 | /* | ||||
| 4757 | * We have now extracted (but not converted) the input arguments. | ||||
| 4758 | * To simplify overrides, extract all other arguments (as objects only) | ||||
| 4759 | */ | ||||
| 4760 | PyObject *out_obj = NULL((void*)0), *where_obj = NULL((void*)0); | ||||
| 4761 | PyObject *axes_obj = NULL((void*)0), *axis_obj = NULL((void*)0); | ||||
| 4762 | PyObject *keepdims_obj = NULL((void*)0), *casting_obj = NULL((void*)0), *order_obj = NULL((void*)0); | ||||
| 4763 | PyObject *subok_obj = NULL((void*)0), *signature_obj = NULL((void*)0), *sig_obj = NULL((void*)0); | ||||
| 4764 | PyObject *dtype_obj = NULL((void*)0), *extobj = NULL((void*)0); | ||||
| 4765 | |||||
| 4766 | /* Skip parsing if there are no keyword arguments, nothing left to do */ | ||||
| 4767 | if (kwnames != NULL((void*)0)) { | ||||
| 4768 | if (!ufunc->core_enabled) { | ||||
| 4769 | NPY_PREPARE_ARGPARSERstatic _NpyArgParserCache __argparse_cache = {-1}; | ||||
| 4770 | |||||
| 4771 | if (npy_parse_arguments(ufunc->name, args + len_args, 0, kwnames,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4772 | "$out", NULL, &out_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4773 | "$where", NULL, &where_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4774 | "$casting", NULL, &casting_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4775 | "$order", NULL, &order_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4776 | "$subok", NULL, &subok_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4777 | "$dtype", NULL, &dtype_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4778 | "$signature", NULL, &signature_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4779 | "$sig", NULL, &sig_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4780 | "$extobj", NULL, &extobj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4781 | NULL, NULL, NULL)_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$where" , ((void*)0), &where_obj, "$casting", ((void*)0), &casting_obj , "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), &dtype_obj, "$signature" , ((void*)0), &signature_obj, "$sig", ((void*)0), &sig_obj , "$extobj", ((void*)0), &extobj, ((void*)0), ((void*)0), ((void*)0)) < 0) { | ||||
| 4782 | goto fail; | ||||
| 4783 | } | ||||
| 4784 | } | ||||
| 4785 | else { | ||||
| 4786 | NPY_PREPARE_ARGPARSERstatic _NpyArgParserCache __argparse_cache = {-1}; | ||||
| 4787 | |||||
| 4788 | if (npy_parse_arguments(ufunc->name, args + len_args, 0, kwnames,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4789 | "$out", NULL, &out_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4790 | "$axes", NULL, &axes_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4791 | "$axis", NULL, &axis_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4792 | "$keepdims", NULL, &keepdims_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4793 | "$casting", NULL, &casting_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4794 | "$order", NULL, &order_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4795 | "$subok", NULL, &subok_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4796 | "$dtype", NULL, &dtype_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4797 | "$signature", NULL, &signature_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4798 | "$sig", NULL, &sig_obj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4799 | "$extobj", NULL, &extobj,_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) | ||||
| 4800 | NULL, NULL, NULL)_npy_parse_arguments(ufunc->name, &__argparse_cache, args + len_args, 0, kwnames, "$out", ((void*)0), &out_obj, "$axes" , ((void*)0), &axes_obj, "$axis", ((void*)0), &axis_obj , "$keepdims", ((void*)0), &keepdims_obj, "$casting", ((void *)0), &casting_obj, "$order", ((void*)0), &order_obj, "$subok", ((void*)0), &subok_obj, "$dtype", ((void*)0), & dtype_obj, "$signature", ((void*)0), &signature_obj, "$sig" , ((void*)0), &sig_obj, "$extobj", ((void*)0), &extobj , ((void*)0), ((void*)0), ((void*)0)) < 0) { | ||||
| 4801 | goto fail; | ||||
| 4802 | } | ||||
| 4803 | if (NPY_UNLIKELY((axes_obj != NULL) && (axis_obj != NULL))__builtin_expect(!!((axes_obj != ((void*)0)) && (axis_obj != ((void*)0))), 0)) { | ||||
| 4804 | PyErr_SetString(PyExc_TypeError, | ||||
| 4805 | "cannot specify both 'axis' and 'axes'"); | ||||
| 4806 | goto fail; | ||||
| 4807 | } | ||||
| 4808 | } | ||||
| 4809 | |||||
| 4810 | /* Handle `out` arguments passed by keyword */ | ||||
| 4811 | if (out_obj != NULL((void*)0)) { | ||||
| 4812 | if (out_is_passed_by_position) { | ||||
| 4813 | PyErr_SetString(PyExc_TypeError, | ||||
| 4814 | "cannot specify 'out' as both a " | ||||
| 4815 | "positional and keyword argument"); | ||||
| 4816 | goto fail; | ||||
| 4817 | } | ||||
| 4818 | if (_set_full_args_out(nout, out_obj, &full_args) < 0) { | ||||
| 4819 | goto fail; | ||||
| 4820 | } | ||||
| 4821 | } | ||||
| 4822 | /* | ||||
| 4823 | * Only one of signature, sig, and dtype should be passed. If `sig` | ||||
| 4824 | * was passed, this puts it into `signature_obj` instead (these | ||||
| 4825 | * are borrowed references). | ||||
| 4826 | */ | ||||
| 4827 | if (_check_and_copy_sig_to_signature( | ||||
| 4828 | sig_obj, signature_obj, dtype_obj, &signature_obj) < 0) { | ||||
| 4829 | goto fail; | ||||
| 4830 | } | ||||
| 4831 | } | ||||
| 4832 | |||||
| 4833 | char *method; | ||||
| 4834 | if (!outer) { | ||||
| 4835 | method = "__call__"; | ||||
| 4836 | } | ||||
| 4837 | else { | ||||
| 4838 | method = "outer"; | ||||
| 4839 | } | ||||
| 4840 | /* We now have all the information required to check for Overrides */ | ||||
| 4841 | errval = PyUFunc_CheckOverride(ufunc, method, | ||||
| 4842 | full_args.in, full_args.out, | ||||
| 4843 | args, len_args, kwnames, &override); | ||||
| 4844 | if (errval) { | ||||
| 4845 | goto fail; | ||||
| 4846 | } | ||||
| 4847 | else if (override) { | ||||
| 4848 | Py_DECREF(full_args.in)_Py_DECREF(((PyObject*)(full_args.in))); | ||||
| 4849 | Py_XDECREF(full_args.out)_Py_XDECREF(((PyObject*)(full_args.out))); | ||||
| 4850 | return override; | ||||
| 4851 | } | ||||
| 4852 | |||||
| 4853 | if (outer) { | ||||
| 4854 | /* Outer uses special preparation of inputs (expand dims) */ | ||||
| 4855 | PyObject *new_in = prepare_input_arguments_for_outer(full_args.in, ufunc); | ||||
| 4856 | if (new_in == NULL((void*)0)) { | ||||
| 4857 | goto fail; | ||||
| 4858 | } | ||||
| 4859 | Py_SETREF(full_args.in, new_in)do { PyObject *_py_tmp = ((PyObject*)(full_args.in)); (full_args .in) = (new_in); _Py_DECREF(((PyObject*)(_py_tmp))); } while ( 0); | ||||
| 4860 | } | ||||
| 4861 | |||||
| 4862 | /* | ||||
| 4863 | * Parse the passed `dtype` or `signature` into an array containing | ||||
| 4864 | * PyArray_DTypeMeta and/or None. | ||||
| 4865 | */ | ||||
| 4866 | if (_get_normalized_typetup(ufunc, dtype_obj, signature_obj, &typetup) < 0) { | ||||
| 4867 | goto fail; | ||||
| 4868 | } | ||||
| 4869 | |||||
| 4870 | NPY_ORDER order = NPY_KEEPORDER; | ||||
| 4871 | NPY_CASTING casting = NPY_DEFAULT_ASSIGN_CASTING; | ||||
| 4872 | npy_bool subok = NPY_TRUE1; | ||||
| 4873 | int keepdims = -1; /* We need to know if it was passed */ | ||||
| 4874 | PyArrayObject *wheremask = NULL((void*)0); | ||||
| 4875 | if (convert_ufunc_arguments(ufunc, full_args, operands, | ||||
| 4876 | order_obj, &order, | ||||
| 4877 | casting_obj, &casting, | ||||
| 4878 | subok_obj, &subok, | ||||
| 4879 | where_obj, &wheremask, | ||||
| 4880 | keepdims_obj, &keepdims) < 0) { | ||||
| 4881 | goto fail; | ||||
| 4882 | } | ||||
| 4883 | |||||
| 4884 | if (!ufunc->core_enabled) { | ||||
| 4885 | errval = PyUFunc_GenericFunctionInternal(ufunc, operands, | ||||
| 4886 | full_args, typetup, extobj, casting, order, subok, | ||||
| 4887 | wheremask); | ||||
| 4888 | Py_XDECREF(wheremask)_Py_XDECREF(((PyObject*)(wheremask))); | ||||
| 4889 | } | ||||
| 4890 | else { | ||||
| 4891 | errval = PyUFunc_GeneralizedFunctionInternal(ufunc, operands, | ||||
| 4892 | full_args, typetup, extobj, casting, order, subok, | ||||
| 4893 | axis_obj, axes_obj, keepdims); | ||||
| 4894 | } | ||||
| 4895 | |||||
| 4896 | if (errval < 0) { | ||||
| 4897 | goto fail; | ||||
| 4898 | } | ||||
| 4899 | |||||
| 4900 | /* Free the input references */ | ||||
| 4901 | for (int i = 0; i < ufunc->nin; i++) { | ||||
| 4902 | Py_XSETREF(operands[i], NULL)do { PyObject *_py_tmp = ((PyObject*)(operands[i])); (operands [i]) = (((void*)0)); _Py_XDECREF(((PyObject*)(_py_tmp))); } while (0); | ||||
| 4903 | } | ||||
| 4904 | |||||
| 4905 | /* | ||||
| 4906 | * Use __array_wrap__ on all outputs | ||||
| 4907 | * if present on one of the input arguments. | ||||
| 4908 | * If present for multiple inputs: | ||||
| 4909 | * use __array_wrap__ of input object with largest | ||||
| 4910 | * __array_priority__ (default = 0.0) | ||||
| 4911 | * | ||||
| 4912 | * Exception: we should not wrap outputs for items already | ||||
| 4913 | * passed in as output-arguments. These items should either | ||||
| 4914 | * be left unwrapped or wrapped by calling their own __array_wrap__ | ||||
| 4915 | * routine. | ||||
| 4916 | * | ||||
| 4917 | * For each output argument, wrap will be either | ||||
| 4918 | * NULL --- call PyArray_Return() -- default if no output arguments given | ||||
| 4919 | * None --- array-object passed in don't call PyArray_Return | ||||
| 4920 | * method --- the __array_wrap__ method to call. | ||||
| 4921 | */ | ||||
| 4922 | _find_array_wrap(full_args, subok, wraparr, ufunc->nin, ufunc->nout); | ||||
| 4923 | |||||
| 4924 | /* wrap outputs */ | ||||
| 4925 | for (int i = 0; i < ufunc->nout; i++) { | ||||
| 4926 | int j = ufunc->nin+i; | ||||
| 4927 | _ufunc_context context; | ||||
| 4928 | PyObject *wrapped; | ||||
| 4929 | |||||
| 4930 | context.ufunc = ufunc; | ||||
| 4931 | context.args = full_args; | ||||
| 4932 | context.out_i = i; | ||||
| 4933 | |||||
| 4934 | wrapped = _apply_array_wrap(wraparr[i], operands[j], &context); | ||||
| 4935 | operands[j] = NULL((void*)0); /* Prevent fail double-freeing this */ | ||||
| 4936 | if (wrapped == NULL((void*)0)) { | ||||
| 4937 | for (int j = 0; j < i; j++) { | ||||
| 4938 | Py_DECREF(retobj[j])_Py_DECREF(((PyObject*)(retobj[j]))); | ||||
| 4939 | } | ||||
| 4940 | goto fail; | ||||
| 4941 | } | ||||
| 4942 | |||||
| 4943 | retobj[i] = wrapped; | ||||
| 4944 | } | ||||
| 4945 | |||||
| 4946 | Py_XDECREF(typetup)_Py_XDECREF(((PyObject*)(typetup))); | ||||
| 4947 | Py_XDECREF(full_args.in)_Py_XDECREF(((PyObject*)(full_args.in))); | ||||
| 4948 | Py_XDECREF(full_args.out)_Py_XDECREF(((PyObject*)(full_args.out))); | ||||
| 4949 | if (ufunc->nout == 1) { | ||||
| 4950 | return retobj[0]; | ||||
| 4951 | } | ||||
| 4952 | else { | ||||
| 4953 | PyTupleObject *ret; | ||||
| 4954 | |||||
| 4955 | ret = (PyTupleObject *)PyTuple_New(ufunc->nout); | ||||
| 4956 | for (int i = 0; i < ufunc->nout; i++) { | ||||
| 4957 | PyTuple_SET_ITEM(ret, i, retobj[i])PyTuple_SetItem(ret, i, retobj[i]); | ||||
| 4958 | } | ||||
| 4959 | return (PyObject *)ret; | ||||
| 4960 | } | ||||
| 4961 | |||||
| 4962 | fail: | ||||
| 4963 | Py_XDECREF(typetup)_Py_XDECREF(((PyObject*)(typetup))); | ||||
| 4964 | Py_XDECREF(full_args.in)_Py_XDECREF(((PyObject*)(full_args.in))); | ||||
| 4965 | Py_XDECREF(full_args.out)_Py_XDECREF(((PyObject*)(full_args.out))); | ||||
| 4966 | for (int i = 0; i < ufunc->nargs; i++) { | ||||
| 4967 | Py_XDECREF(operands[i])_Py_XDECREF(((PyObject*)(operands[i]))); | ||||
| 4968 | } | ||||
| 4969 | return NULL((void*)0); | ||||
| 4970 | } | ||||
| 4971 | |||||
| 4972 | |||||
| 4973 | /* | ||||
| 4974 | * TODO: The implementation below can be replaced with PyVectorcall_Call | ||||
| 4975 | * when available (should be Python 3.8+). | ||||
| 4976 | */ | ||||
| 4977 | static PyObject * | ||||
| 4978 | ufunc_generic_call( | ||||
| 4979 | PyUFuncObject *ufunc, PyObject *args, PyObject *kwds) | ||||
| 4980 | { | ||||
| 4981 | Py_ssize_t len_args = PyTuple_GET_SIZE(args)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(args))))-> ob_size); | ||||
| 4982 | /* | ||||
| 4983 | * Wrapper for tp_call to tp_fastcall, to support both on older versions | ||||
| 4984 | * of Python. (and generally simplifying support of both versions in the | ||||
| 4985 | * same codebase. | ||||
| 4986 | */ | ||||
| 4987 | if (kwds == NULL((void*)0)) { | ||||
| 4988 | return ufunc_generic_fastcall(ufunc, | ||||
| 4989 | PySequence_Fast_ITEMS(args)(((((((PyObject*)(args))->ob_type))->tp_flags & ((1UL << 25))) != 0) ? ((PyListObject *)(args))->ob_item : ((PyTupleObject *)(args))->ob_item), len_args, NULL((void*)0), NPY_FALSE0); | ||||
| 4990 | } | ||||
| 4991 | |||||
| 4992 | PyObject *new_args[NPY_MAXARGS32]; | ||||
| 4993 | Py_ssize_t len_kwds = PyDict_Size(kwds); | ||||
| 4994 | |||||
| 4995 | if (NPY_UNLIKELY(len_args + len_kwds > NPY_MAXARGS)__builtin_expect(!!(len_args + len_kwds > 32), 0)) { | ||||
| 4996 | /* | ||||
| 4997 | * We do not have enough scratch-space, so we have to abort; | ||||
| 4998 | * In practice this error should not be seen by users. | ||||
| 4999 | */ | ||||
| 5000 | PyErr_Format(PyExc_ValueError, | ||||
| 5001 | "%s() takes from %d to %d positional arguments but " | ||||
| 5002 | "%zd were given", | ||||
| 5003 | ufunc_get_name_cstr(ufunc) , ufunc->nin, ufunc->nargs, len_args); | ||||
| 5004 | return NULL((void*)0); | ||||
| 5005 | } | ||||
| 5006 | |||||
| 5007 | /* Copy args into the scratch space */ | ||||
| 5008 | for (Py_ssize_t i = 0; i < len_args; i++) { | ||||
| 5009 | new_args[i] = PyTuple_GET_ITEM(args, i)((((void) (0)), (PyTupleObject *)(args))->ob_item[i]); | ||||
| 5010 | } | ||||
| 5011 | |||||
| 5012 | PyObject *kwnames = PyTuple_New(len_kwds); | ||||
| 5013 | |||||
| 5014 | PyObject *key, *value; | ||||
| 5015 | Py_ssize_t pos = 0; | ||||
| 5016 | Py_ssize_t i = 0; | ||||
| 5017 | while (PyDict_Next(kwds, &pos, &key, &value)) { | ||||
| 5018 | Py_INCREF(key)_Py_INCREF(((PyObject*)(key))); | ||||
| 5019 | PyTuple_SET_ITEM(kwnames, i, key)PyTuple_SetItem(kwnames, i, key); | ||||
| 5020 | new_args[i + len_args] = value; | ||||
| 5021 | i++; | ||||
| 5022 | } | ||||
| 5023 | |||||
| 5024 | PyObject *res = ufunc_generic_fastcall(ufunc, | ||||
| 5025 | new_args, len_args, kwnames, NPY_FALSE0); | ||||
| 5026 | Py_DECREF(kwnames)_Py_DECREF(((PyObject*)(kwnames))); | ||||
| 5027 | return res; | ||||
| 5028 | } | ||||
| 5029 | |||||
| 5030 | |||||
| 5031 | #if PY_VERSION_HEX((3 << 24) | (8 << 16) | (5 << 8) | (0xF << 4) | (0 << 0)) >= 0x03080000 | ||||
| 5032 | /* | ||||
| 5033 | * Implement vectorcallfunc which should be defined with Python 3.8+. | ||||
| 5034 | * In principle this could be backported, but the speed gain seems moderate | ||||
| 5035 | * since ufunc calls often do not have keyword arguments and always have | ||||
| 5036 | * a large overhead. The only user would potentially be cython probably. | ||||
| 5037 | */ | ||||
| 5038 | static PyObject * | ||||
| 5039 | ufunc_generic_vectorcall(PyObject *ufunc, | ||||
| 5040 | PyObject *const *args, size_t len_args, PyObject *kwnames) | ||||
| 5041 | { | ||||
| 5042 | /* | ||||
| 5043 | * Unlike METH_FASTCALL, `len_args` may have a flag to signal that | ||||
| 5044 | * args[-1] may be (temporarily) used. So normalize it here. | ||||
| 5045 | */ | ||||
| 5046 | return ufunc_generic_fastcall((PyUFuncObject *)ufunc, | ||||
| 5047 | args, PyVectorcall_NARGS(len_args), kwnames, NPY_FALSE0); | ||||
| 5048 | } | ||||
| 5049 | #endif /* PY_VERSION_HEX >= 0x03080000 */ | ||||
| 5050 | |||||
| 5051 | |||||
| 5052 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject * | ||||
| 5053 | ufunc_geterr(PyObject *NPY_UNUSED(dummy)(__NPY_UNUSED_TAGGEDdummy) __attribute__ ((__unused__)), PyObject *args) | ||||
| 5054 | { | ||||
| 5055 | PyObject *thedict; | ||||
| 5056 | PyObject *res; | ||||
| 5057 | |||||
| 5058 | if (!PyArg_ParseTuple(args, "")) { | ||||
| 5059 | return NULL((void*)0); | ||||
| 5060 | } | ||||
| 5061 | thedict = PyThreadState_GetDict(); | ||||
| 5062 | if (thedict == NULL((void*)0)) { | ||||
| 5063 | thedict = PyEval_GetBuiltins(); | ||||
| 5064 | } | ||||
| 5065 | res = PyDict_GetItemWithError(thedict, npy_um_str_pyvals_name); | ||||
| 5066 | if (res == NULL((void*)0) && PyErr_Occurred()) { | ||||
| 5067 | return NULL((void*)0); | ||||
| 5068 | } | ||||
| 5069 | else if (res != NULL((void*)0)) { | ||||
| 5070 | Py_INCREF(res)_Py_INCREF(((PyObject*)(res))); | ||||
| 5071 | return res; | ||||
| 5072 | } | ||||
| 5073 | /* Construct list of defaults */ | ||||
| 5074 | res = PyList_New(3); | ||||
| 5075 | if (res == NULL((void*)0)) { | ||||
| 5076 | return NULL((void*)0); | ||||
| 5077 | } | ||||
| 5078 | PyList_SET_ITEM(res, 0, PyLong_FromLong(NPY_BUFSIZE))PyList_SetItem(res, 0, PyLong_FromLong(8192)); | ||||
| 5079 | PyList_SET_ITEM(res, 1, PyLong_FromLong(UFUNC_ERR_DEFAULT))PyList_SetItem(res, 1, PyLong_FromLong((1 << 0) + (1 << 3) + (1 << 9))); | ||||
| 5080 | PyList_SET_ITEM(res, 2, Py_None)PyList_SetItem(res, 2, (&_Py_NoneStruct)); Py_INCREF(Py_None)_Py_INCREF(((PyObject*)((&_Py_NoneStruct)))); | ||||
| 5081 | return res; | ||||
| 5082 | } | ||||
| 5083 | |||||
| 5084 | |||||
| 5085 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject * | ||||
| 5086 | ufunc_seterr(PyObject *NPY_UNUSED(dummy)(__NPY_UNUSED_TAGGEDdummy) __attribute__ ((__unused__)), PyObject *args) | ||||
| 5087 | { | ||||
| 5088 | PyObject *thedict; | ||||
| 5089 | int res; | ||||
| 5090 | PyObject *val; | ||||
| 5091 | static char *msg = "Error object must be a list of length 3"; | ||||
| 5092 | |||||
| 5093 | if (!PyArg_ParseTuple(args, "O:seterrobj", &val)) { | ||||
| 5094 | return NULL((void*)0); | ||||
| 5095 | } | ||||
| 5096 | if (!PyList_CheckExact(val)((((PyObject*)(val))->ob_type) == &PyList_Type) || PyList_GET_SIZE(val)(((void) (0)), (((PyVarObject*)(val))->ob_size)) != 3) { | ||||
| 5097 | PyErr_SetString(PyExc_ValueError, msg); | ||||
| 5098 | return NULL((void*)0); | ||||
| 5099 | } | ||||
| 5100 | thedict = PyThreadState_GetDict(); | ||||
| 5101 | if (thedict == NULL((void*)0)) { | ||||
| 5102 | thedict = PyEval_GetBuiltins(); | ||||
| 5103 | } | ||||
| 5104 | res = PyDict_SetItem(thedict, npy_um_str_pyvals_name, val); | ||||
| 5105 | if (res < 0) { | ||||
| 5106 | return NULL((void*)0); | ||||
| 5107 | } | ||||
| 5108 | #if USE_USE_DEFAULTS1==1 | ||||
| 5109 | if (ufunc_update_use_defaults() < 0) { | ||||
| 5110 | return NULL((void*)0); | ||||
| 5111 | } | ||||
| 5112 | #endif | ||||
| 5113 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | ||||
| 5114 | } | ||||
| 5115 | |||||
| 5116 | |||||
| 5117 | |||||
| 5118 | /*UFUNC_API*/ | ||||
| 5119 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 5120 | PyUFunc_ReplaceLoopBySignature(PyUFuncObject *func, | ||||
| 5121 | PyUFuncGenericFunction newfunc, | ||||
| 5122 | const int *signature, | ||||
| 5123 | PyUFuncGenericFunction *oldfunc) | ||||
| 5124 | { | ||||
| 5125 | int i, j; | ||||
| 5126 | int res = -1; | ||||
| 5127 | /* Find the location of the matching signature */ | ||||
| 5128 | for (i = 0; i < func->ntypes; i++) { | ||||
| 5129 | for (j = 0; j < func->nargs; j++) { | ||||
| 5130 | if (signature[j] != func->types[i*func->nargs+j]) { | ||||
| 5131 | break; | ||||
| 5132 | } | ||||
| 5133 | } | ||||
| 5134 | if (j < func->nargs) { | ||||
| 5135 | continue; | ||||
| 5136 | } | ||||
| 5137 | if (oldfunc != NULL((void*)0)) { | ||||
| 5138 | *oldfunc = func->functions[i]; | ||||
| 5139 | } | ||||
| 5140 | func->functions[i] = newfunc; | ||||
| 5141 | res = 0; | ||||
| 5142 | break; | ||||
| 5143 | } | ||||
| 5144 | return res; | ||||
| 5145 | } | ||||
| 5146 | |||||
| 5147 | /*UFUNC_API*/ | ||||
| 5148 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject * | ||||
| 5149 | PyUFunc_FromFuncAndData(PyUFuncGenericFunction *func, void **data, | ||||
| 5150 | char *types, int ntypes, | ||||
| 5151 | int nin, int nout, int identity, | ||||
| 5152 | const char *name, const char *doc, int unused) | ||||
| 5153 | { | ||||
| 5154 | return PyUFunc_FromFuncAndDataAndSignature(func, data, types, ntypes, | ||||
| 5155 | nin, nout, identity, name, doc, unused, NULL((void*)0)); | ||||
| 5156 | } | ||||
| 5157 | |||||
| 5158 | /*UFUNC_API*/ | ||||
| 5159 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject * | ||||
| 5160 | PyUFunc_FromFuncAndDataAndSignature(PyUFuncGenericFunction *func, void **data, | ||||
| 5161 | char *types, int ntypes, | ||||
| 5162 | int nin, int nout, int identity, | ||||
| 5163 | const char *name, const char *doc, | ||||
| 5164 | int unused, const char *signature) | ||||
| 5165 | { | ||||
| 5166 | return PyUFunc_FromFuncAndDataAndSignatureAndIdentity( | ||||
| 5167 | func, data, types, ntypes, nin, nout, identity, name, doc, | ||||
| 5168 | unused, signature, NULL((void*)0)); | ||||
| 5169 | } | ||||
| 5170 | |||||
| 5171 | /*UFUNC_API*/ | ||||
| 5172 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject * | ||||
| 5173 | PyUFunc_FromFuncAndDataAndSignatureAndIdentity(PyUFuncGenericFunction *func, void **data, | ||||
| 5174 | char *types, int ntypes, | ||||
| 5175 | int nin, int nout, int identity, | ||||
| 5176 | const char *name, const char *doc, | ||||
| 5177 | const int unused, const char *signature, | ||||
| 5178 | PyObject *identity_value) | ||||
| 5179 | { | ||||
| 5180 | PyUFuncObject *ufunc; | ||||
| 5181 | if (nin + nout > NPY_MAXARGS32) { | ||||
| 5182 | PyErr_Format(PyExc_ValueError, | ||||
| 5183 | "Cannot construct a ufunc with more than %d operands " | ||||
| 5184 | "(requested number were: inputs = %d and outputs = %d)", | ||||
| 5185 | NPY_MAXARGS32, nin, nout); | ||||
| 5186 | return NULL((void*)0); | ||||
| 5187 | } | ||||
| 5188 | |||||
| 5189 | ufunc = PyObject_GC_New(PyUFuncObject, &PyUFunc_Type)( (PyUFuncObject *) _PyObject_GC_New(&PyUFunc_Type) ); | ||||
| 5190 | /* | ||||
| 5191 | * We use GC_New here for ufunc->obj, but do not use GC_Track since | ||||
| 5192 | * ufunc->obj is still NULL at the end of this function. | ||||
| 5193 | * See ufunc_frompyfunc where ufunc->obj is set and GC_Track is called. | ||||
| 5194 | */ | ||||
| 5195 | if (ufunc == NULL((void*)0)) { | ||||
| 5196 | return NULL((void*)0); | ||||
| 5197 | } | ||||
| 5198 | |||||
| 5199 | ufunc->nin = nin; | ||||
| 5200 | ufunc->nout = nout; | ||||
| 5201 | ufunc->nargs = nin+nout; | ||||
| 5202 | ufunc->identity = identity; | ||||
| 5203 | if (ufunc->identity == PyUFunc_IdentityValue-3) { | ||||
| 5204 | Py_INCREF(identity_value)_Py_INCREF(((PyObject*)(identity_value))); | ||||
| 5205 | ufunc->identity_value = identity_value; | ||||
| 5206 | } | ||||
| 5207 | else { | ||||
| 5208 | ufunc->identity_value = NULL((void*)0); | ||||
| 5209 | } | ||||
| 5210 | |||||
| 5211 | ufunc->functions = func; | ||||
| 5212 | ufunc->data = data; | ||||
| 5213 | ufunc->types = types; | ||||
| 5214 | ufunc->ntypes = ntypes; | ||||
| 5215 | ufunc->core_signature = NULL((void*)0); | ||||
| 5216 | ufunc->core_enabled = 0; | ||||
| 5217 | ufunc->obj = NULL((void*)0); | ||||
| 5218 | ufunc->core_num_dims = NULL((void*)0); | ||||
| 5219 | ufunc->core_num_dim_ix = 0; | ||||
| 5220 | ufunc->core_offsets = NULL((void*)0); | ||||
| 5221 | ufunc->core_dim_ixs = NULL((void*)0); | ||||
| 5222 | ufunc->core_dim_sizes = NULL((void*)0); | ||||
| 5223 | ufunc->core_dim_flags = NULL((void*)0); | ||||
| 5224 | ufunc->userloops = NULL((void*)0); | ||||
| 5225 | ufunc->ptr = NULL((void*)0); | ||||
| 5226 | #if PY_VERSION_HEX((3 << 24) | (8 << 16) | (5 << 8) | (0xF << 4) | (0 << 0)) >= 0x03080000 | ||||
| 5227 | ufunc->vectorcall = &ufunc_generic_vectorcall; | ||||
| 5228 | #else | ||||
| 5229 | ufunc->reserved2 = NULL((void*)0); | ||||
| 5230 | #endif | ||||
| 5231 | ufunc->reserved1 = 0; | ||||
| 5232 | ufunc->iter_flags = 0; | ||||
| 5233 | |||||
| 5234 | /* Type resolution and inner loop selection functions */ | ||||
| 5235 | ufunc->type_resolver = &PyUFunc_DefaultTypeResolver; | ||||
| 5236 | ufunc->legacy_inner_loop_selector = &PyUFunc_DefaultLegacyInnerLoopSelector; | ||||
| 5237 | ufunc->masked_inner_loop_selector = &PyUFunc_DefaultMaskedInnerLoopSelector; | ||||
| 5238 | |||||
| 5239 | if (name == NULL((void*)0)) { | ||||
| 5240 | ufunc->name = "?"; | ||||
| 5241 | } | ||||
| 5242 | else { | ||||
| 5243 | ufunc->name = name; | ||||
| 5244 | } | ||||
| 5245 | ufunc->doc = doc; | ||||
| 5246 | |||||
| 5247 | ufunc->op_flags = PyArray_mallocPyMem_RawMalloc(sizeof(npy_uint32)*ufunc->nargs); | ||||
| 5248 | if (ufunc->op_flags == NULL((void*)0)) { | ||||
| 5249 | Py_DECREF(ufunc)_Py_DECREF(((PyObject*)(ufunc))); | ||||
| 5250 | return PyErr_NoMemory(); | ||||
| 5251 | } | ||||
| 5252 | memset(ufunc->op_flags, 0, sizeof(npy_uint32)*ufunc->nargs); | ||||
| 5253 | |||||
| 5254 | if (signature != NULL((void*)0)) { | ||||
| 5255 | if (_parse_signature(ufunc, signature) != 0) { | ||||
| 5256 | Py_DECREF(ufunc)_Py_DECREF(((PyObject*)(ufunc))); | ||||
| 5257 | return NULL((void*)0); | ||||
| 5258 | } | ||||
| 5259 | } | ||||
| 5260 | return (PyObject *)ufunc; | ||||
| 5261 | } | ||||
| 5262 | |||||
| 5263 | |||||
| 5264 | /*UFUNC_API*/ | ||||
| 5265 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 5266 | PyUFunc_SetUsesArraysAsData(void **NPY_UNUSED(data)(__NPY_UNUSED_TAGGEDdata) __attribute__ ((__unused__)), size_t NPY_UNUSED(i)(__NPY_UNUSED_TAGGEDi) __attribute__ ((__unused__))) | ||||
| 5267 | { | ||||
| 5268 | /* NumPy 1.21, 201-03-29 */ | ||||
| 5269 | PyErr_SetString(PyExc_RuntimeError, | ||||
| 5270 | "PyUFunc_SetUsesArraysAsData() C-API function has been " | ||||
| 5271 | "disabled. It was initially deprecated in NumPy 1.19."); | ||||
| 5272 | return -1; | ||||
| 5273 | } | ||||
| 5274 | |||||
| 5275 | |||||
| 5276 | /* | ||||
| 5277 | * This is the first-part of the CObject structure. | ||||
| 5278 | * | ||||
| 5279 | * I don't think this will change, but if it should, then | ||||
| 5280 | * this needs to be fixed. The exposed C-API was insufficient | ||||
| 5281 | * because I needed to replace the pointer and it wouldn't | ||||
| 5282 | * let me with a destructor set (even though it works fine | ||||
| 5283 | * with the destructor). | ||||
| 5284 | */ | ||||
| 5285 | typedef struct { | ||||
| 5286 | PyObject_HEADPyObject ob_base; | ||||
| 5287 | void *c_obj; | ||||
| 5288 | } _simple_cobj; | ||||
| 5289 | |||||
| 5290 | #define _SETCPTR(cobj, val) ((_simple_cobj *)(cobj))->c_obj = (val) | ||||
| 5291 | |||||
| 5292 | /* return 1 if arg1 > arg2, 0 if arg1 == arg2, and -1 if arg1 < arg2 */ | ||||
| 5293 | static int | ||||
| 5294 | cmp_arg_types(int *arg1, int *arg2, int n) | ||||
| 5295 | { | ||||
| 5296 | for (; n > 0; n--, arg1++, arg2++) { | ||||
| 5297 | if (PyArray_EquivTypenums(*arg1, *arg2)) { | ||||
| 5298 | continue; | ||||
| 5299 | } | ||||
| 5300 | if (PyArray_CanCastSafely(*arg1, *arg2)) { | ||||
| 5301 | return -1; | ||||
| 5302 | } | ||||
| 5303 | return 1; | ||||
| 5304 | } | ||||
| 5305 | return 0; | ||||
| 5306 | } | ||||
| 5307 | |||||
| 5308 | /* | ||||
| 5309 | * This frees the linked-list structure when the CObject | ||||
| 5310 | * is destroyed (removed from the internal dictionary) | ||||
| 5311 | */ | ||||
| 5312 | static NPY_INLINEinline void | ||||
| 5313 | _free_loop1d_list(PyUFunc_Loop1d *data) | ||||
| 5314 | { | ||||
| 5315 | int i; | ||||
| 5316 | |||||
| 5317 | while (data != NULL((void*)0)) { | ||||
| 5318 | PyUFunc_Loop1d *next = data->next; | ||||
| 5319 | PyArray_freePyMem_RawFree(data->arg_types); | ||||
| 5320 | |||||
| 5321 | if (data->arg_dtypes != NULL((void*)0)) { | ||||
| 5322 | for (i = 0; i < data->nargs; i++) { | ||||
| 5323 | Py_DECREF(data->arg_dtypes[i])_Py_DECREF(((PyObject*)(data->arg_dtypes[i]))); | ||||
| 5324 | } | ||||
| 5325 | PyArray_freePyMem_RawFree(data->arg_dtypes); | ||||
| 5326 | } | ||||
| 5327 | |||||
| 5328 | PyArray_freePyMem_RawFree(data); | ||||
| 5329 | data = next; | ||||
| 5330 | } | ||||
| 5331 | } | ||||
| 5332 | |||||
| 5333 | static void | ||||
| 5334 | _loop1d_list_free(PyObject *ptr) | ||||
| 5335 | { | ||||
| 5336 | PyUFunc_Loop1d *data = (PyUFunc_Loop1d *)PyCapsule_GetPointer(ptr, NULL((void*)0)); | ||||
| 5337 | _free_loop1d_list(data); | ||||
| 5338 | } | ||||
| 5339 | |||||
| 5340 | |||||
| 5341 | /* | ||||
| 5342 | * This function allows the user to register a 1-d loop with an already | ||||
| 5343 | * created ufunc. This function is similar to RegisterLoopForType except | ||||
| 5344 | * that it allows a 1-d loop to be registered with PyArray_Descr objects | ||||
| 5345 | * instead of dtype type num values. This allows a 1-d loop to be registered | ||||
| 5346 | * for a structured array dtype or a custom dtype. The ufunc is called | ||||
| 5347 | * whenever any of it's input arguments match the user_dtype argument. | ||||
| 5348 | * | ||||
| 5349 | * ufunc - ufunc object created from call to PyUFunc_FromFuncAndData | ||||
| 5350 | * user_dtype - dtype that ufunc will be registered with | ||||
| 5351 | * function - 1-d loop function pointer | ||||
| 5352 | * arg_dtypes - array of dtype objects describing the ufunc operands | ||||
| 5353 | * data - arbitrary data pointer passed in to loop function | ||||
| 5354 | * | ||||
| 5355 | * returns 0 on success, -1 for failure | ||||
| 5356 | */ | ||||
| 5357 | /*UFUNC_API*/ | ||||
| 5358 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 5359 | PyUFunc_RegisterLoopForDescr(PyUFuncObject *ufunc, | ||||
| 5360 | PyArray_Descr *user_dtype, | ||||
| 5361 | PyUFuncGenericFunction function, | ||||
| 5362 | PyArray_Descr **arg_dtypes, | ||||
| 5363 | void *data) | ||||
| 5364 | { | ||||
| 5365 | int i; | ||||
| 5366 | int result = 0; | ||||
| 5367 | int *arg_typenums; | ||||
| 5368 | PyObject *key, *cobj; | ||||
| 5369 | |||||
| 5370 | if (user_dtype == NULL((void*)0)) { | ||||
| 5371 | PyErr_SetString(PyExc_TypeError, | ||||
| 5372 | "unknown user defined struct dtype"); | ||||
| 5373 | return -1; | ||||
| 5374 | } | ||||
| 5375 | |||||
| 5376 | key = PyLong_FromLong((long) user_dtype->type_num); | ||||
| 5377 | if (key == NULL((void*)0)) { | ||||
| 5378 | return -1; | ||||
| 5379 | } | ||||
| 5380 | |||||
| 5381 | arg_typenums = PyArray_mallocPyMem_RawMalloc(ufunc->nargs * sizeof(int)); | ||||
| 5382 | if (arg_typenums == NULL((void*)0)) { | ||||
| 5383 | PyErr_NoMemory(); | ||||
| 5384 | return -1; | ||||
| 5385 | } | ||||
| 5386 | if (arg_dtypes != NULL((void*)0)) { | ||||
| 5387 | for (i = 0; i < ufunc->nargs; i++) { | ||||
| 5388 | arg_typenums[i] = arg_dtypes[i]->type_num; | ||||
| 5389 | } | ||||
| 5390 | } | ||||
| 5391 | else { | ||||
| 5392 | for (i = 0; i < ufunc->nargs; i++) { | ||||
| 5393 | arg_typenums[i] = user_dtype->type_num; | ||||
| 5394 | } | ||||
| 5395 | } | ||||
| 5396 | |||||
| 5397 | result = PyUFunc_RegisterLoopForType(ufunc, user_dtype->type_num, | ||||
| 5398 | function, arg_typenums, data); | ||||
| 5399 | |||||
| 5400 | if (result == 0) { | ||||
| 5401 | cobj = PyDict_GetItemWithError(ufunc->userloops, key); | ||||
| 5402 | if (cobj == NULL((void*)0) && PyErr_Occurred()) { | ||||
| 5403 | result = -1; | ||||
| 5404 | } | ||||
| 5405 | else if (cobj == NULL((void*)0)) { | ||||
| 5406 | PyErr_SetString(PyExc_KeyError, | ||||
| 5407 | "userloop for user dtype not found"); | ||||
| 5408 | result = -1; | ||||
| 5409 | } | ||||
| 5410 | else { | ||||
| 5411 | int cmp = 1; | ||||
| 5412 | PyUFunc_Loop1d *current = PyCapsule_GetPointer(cobj, NULL((void*)0)); | ||||
| 5413 | if (current == NULL((void*)0)) { | ||||
| 5414 | result = -1; | ||||
| 5415 | goto done; | ||||
| 5416 | } | ||||
| 5417 | while (current != NULL((void*)0)) { | ||||
| 5418 | cmp = cmp_arg_types(current->arg_types, | ||||
| 5419 | arg_typenums, ufunc->nargs); | ||||
| 5420 | if (cmp >= 0 && current->arg_dtypes == NULL((void*)0)) { | ||||
| 5421 | break; | ||||
| 5422 | } | ||||
| 5423 | current = current->next; | ||||
| 5424 | } | ||||
| 5425 | if (cmp == 0 && current != NULL((void*)0) && current->arg_dtypes == NULL((void*)0)) { | ||||
| 5426 | current->arg_dtypes = PyArray_mallocPyMem_RawMalloc(ufunc->nargs * | ||||
| 5427 | sizeof(PyArray_Descr*)); | ||||
| 5428 | if (current->arg_dtypes == NULL((void*)0)) { | ||||
| 5429 | PyErr_NoMemory(); | ||||
| 5430 | result = -1; | ||||
| 5431 | goto done; | ||||
| 5432 | } | ||||
| 5433 | else if (arg_dtypes != NULL((void*)0)) { | ||||
| 5434 | for (i = 0; i < ufunc->nargs; i++) { | ||||
| 5435 | current->arg_dtypes[i] = arg_dtypes[i]; | ||||
| 5436 | Py_INCREF(current->arg_dtypes[i])_Py_INCREF(((PyObject*)(current->arg_dtypes[i]))); | ||||
| 5437 | } | ||||
| 5438 | } | ||||
| 5439 | else { | ||||
| 5440 | for (i = 0; i < ufunc->nargs; i++) { | ||||
| 5441 | current->arg_dtypes[i] = user_dtype; | ||||
| 5442 | Py_INCREF(current->arg_dtypes[i])_Py_INCREF(((PyObject*)(current->arg_dtypes[i]))); | ||||
| 5443 | } | ||||
| 5444 | } | ||||
| 5445 | current->nargs = ufunc->nargs; | ||||
| 5446 | } | ||||
| 5447 | else { | ||||
| 5448 | PyErr_SetString(PyExc_RuntimeError, | ||||
| 5449 | "loop already registered"); | ||||
| 5450 | result = -1; | ||||
| 5451 | } | ||||
| 5452 | } | ||||
| 5453 | } | ||||
| 5454 | |||||
| 5455 | done: | ||||
| 5456 | PyArray_freePyMem_RawFree(arg_typenums); | ||||
| 5457 | |||||
| 5458 | Py_DECREF(key)_Py_DECREF(((PyObject*)(key))); | ||||
| 5459 | |||||
| 5460 | return result; | ||||
| 5461 | } | ||||
| 5462 | |||||
| 5463 | /*UFUNC_API*/ | ||||
| 5464 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | ||||
| 5465 | PyUFunc_RegisterLoopForType(PyUFuncObject *ufunc, | ||||
| 5466 | int usertype, | ||||
| 5467 | PyUFuncGenericFunction function, | ||||
| 5468 | const int *arg_types, | ||||
| 5469 | void *data) | ||||
| 5470 | { | ||||
| 5471 | PyArray_Descr *descr; | ||||
| 5472 | PyUFunc_Loop1d *funcdata; | ||||
| 5473 | PyObject *key, *cobj; | ||||
| 5474 | int i; | ||||
| 5475 | int *newtypes=NULL((void*)0); | ||||
| 5476 | |||||
| 5477 | descr=PyArray_DescrFromType(usertype); | ||||
| 5478 | if ((usertype < NPY_USERDEF && usertype != NPY_VOID) || (descr==NULL((void*)0))) { | ||||
| 5479 | PyErr_SetString(PyExc_TypeError, "unknown user-defined type"); | ||||
| 5480 | return -1; | ||||
| 5481 | } | ||||
| 5482 | Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr))); | ||||
| 5483 | |||||
| 5484 | if (ufunc->userloops == NULL((void*)0)) { | ||||
| 5485 | ufunc->userloops = PyDict_New(); | ||||
| 5486 | } | ||||
| 5487 | key = PyLong_FromLong((long) usertype); | ||||
| 5488 | if (key == NULL((void*)0)) { | ||||
| 5489 | return -1; | ||||
| 5490 | } | ||||
| 5491 | funcdata = PyArray_mallocPyMem_RawMalloc(sizeof(PyUFunc_Loop1d)); | ||||
| 5492 | if (funcdata == NULL((void*)0)) { | ||||
| 5493 | goto fail; | ||||
| 5494 | } | ||||
| 5495 | newtypes = PyArray_mallocPyMem_RawMalloc(sizeof(int)*ufunc->nargs); | ||||
| 5496 | if (newtypes == NULL((void*)0)) { | ||||
| 5497 | goto fail; | ||||
| 5498 | } | ||||
| 5499 | if (arg_types != NULL((void*)0)) { | ||||
| 5500 | for (i = 0; i < ufunc->nargs; i++) { | ||||
| 5501 | newtypes[i] = arg_types[i]; | ||||
| 5502 | } | ||||
| 5503 | } | ||||
| 5504 | else { | ||||
| 5505 | for (i = 0; i < ufunc->nargs; i++) { | ||||
| 5506 | newtypes[i] = usertype; | ||||
| 5507 | } | ||||
| 5508 | } | ||||
| 5509 | |||||
| 5510 | funcdata->func = function; | ||||
| 5511 | funcdata->arg_types = newtypes; | ||||
| 5512 | funcdata->data = data; | ||||
| 5513 | funcdata->next = NULL((void*)0); | ||||
| 5514 | funcdata->arg_dtypes = NULL((void*)0); | ||||
| 5515 | funcdata->nargs = 0; | ||||
| 5516 | |||||
| 5517 | /* Get entry for this user-defined type*/ | ||||
| 5518 | cobj = PyDict_GetItemWithError(ufunc->userloops, key); | ||||
| 5519 | if (cobj == NULL((void*)0) && PyErr_Occurred()) { | ||||
| 5520 | return 0; | ||||
| 5521 | } | ||||
| 5522 | /* If it's not there, then make one and return. */ | ||||
| 5523 | else if (cobj == NULL((void*)0)) { | ||||
| 5524 | cobj = PyCapsule_New((void *)funcdata, NULL((void*)0), _loop1d_list_free); | ||||
| 5525 | if (cobj == NULL((void*)0)) { | ||||
| 5526 | goto fail; | ||||
| 5527 | } | ||||
| 5528 | PyDict_SetItem(ufunc->userloops, key, cobj); | ||||
| 5529 | Py_DECREF(cobj)_Py_DECREF(((PyObject*)(cobj))); | ||||
| 5530 | Py_DECREF(key)_Py_DECREF(((PyObject*)(key))); | ||||
| 5531 | return 0; | ||||
| 5532 | } | ||||
| 5533 | else { | ||||
| 5534 | PyUFunc_Loop1d *current, *prev = NULL((void*)0); | ||||
| 5535 | int cmp = 1; | ||||
| 5536 | /* | ||||
| 5537 | * There is already at least 1 loop. Place this one in | ||||
| 5538 | * lexicographic order. If the next one signature | ||||
| 5539 | * is exactly like this one, then just replace. | ||||
| 5540 | * Otherwise insert. | ||||
| 5541 | */ | ||||
| 5542 | current = PyCapsule_GetPointer(cobj, NULL((void*)0)); | ||||
| 5543 | if (current == NULL((void*)0)) { | ||||
| 5544 | goto fail; | ||||
| 5545 | } | ||||
| 5546 | while (current != NULL((void*)0)) { | ||||
| 5547 | cmp = cmp_arg_types(current->arg_types, newtypes, ufunc->nargs); | ||||
| 5548 | if (cmp >= 0) { | ||||
| 5549 | break; | ||||
| 5550 | } | ||||
| 5551 | prev = current; | ||||
| 5552 | current = current->next; | ||||
| 5553 | } | ||||
| 5554 | if (cmp == 0) { | ||||
| 5555 | /* just replace it with new function */ | ||||
| 5556 | current->func = function; | ||||
| 5557 | current->data = data; | ||||
| 5558 | PyArray_freePyMem_RawFree(newtypes); | ||||
| 5559 | PyArray_freePyMem_RawFree(funcdata); | ||||
| 5560 | } | ||||
| 5561 | else { | ||||
| 5562 | /* | ||||
| 5563 | * insert it before the current one by hacking the internals | ||||
| 5564 | * of cobject to replace the function pointer --- can't use | ||||
| 5565 | * CObject API because destructor is set. | ||||
| 5566 | */ | ||||
| 5567 | funcdata->next = current; | ||||
| 5568 | if (prev == NULL((void*)0)) { | ||||
| 5569 | /* place this at front */ | ||||
| 5570 | _SETCPTR(cobj, funcdata); | ||||
| 5571 | } | ||||
| 5572 | else { | ||||
| 5573 | prev->next = funcdata; | ||||
| 5574 | } | ||||
| 5575 | } | ||||
| 5576 | } | ||||
| 5577 | Py_DECREF(key)_Py_DECREF(((PyObject*)(key))); | ||||
| 5578 | return 0; | ||||
| 5579 | |||||
| 5580 | fail: | ||||
| 5581 | Py_DECREF(key)_Py_DECREF(((PyObject*)(key))); | ||||
| 5582 | PyArray_freePyMem_RawFree(funcdata); | ||||
| 5583 | PyArray_freePyMem_RawFree(newtypes); | ||||
| 5584 | if (!PyErr_Occurred()) PyErr_NoMemory(); | ||||
| 5585 | return -1; | ||||
| 5586 | } | ||||
| 5587 | |||||
| 5588 | #undef _SETCPTR | ||||
| 5589 | |||||
| 5590 | |||||
| 5591 | static void | ||||
| 5592 | ufunc_dealloc(PyUFuncObject *ufunc) | ||||
| 5593 | { | ||||
| 5594 | PyObject_GC_UnTrack((PyObject *)ufunc); | ||||
| 5595 | PyArray_freePyMem_RawFree(ufunc->core_num_dims); | ||||
| 5596 | PyArray_freePyMem_RawFree(ufunc->core_dim_ixs); | ||||
| 5597 | PyArray_freePyMem_RawFree(ufunc->core_dim_sizes); | ||||
| 5598 | PyArray_freePyMem_RawFree(ufunc->core_dim_flags); | ||||
| 5599 | PyArray_freePyMem_RawFree(ufunc->core_offsets); | ||||
| 5600 | PyArray_freePyMem_RawFree(ufunc->core_signature); | ||||
| 5601 | PyArray_freePyMem_RawFree(ufunc->ptr); | ||||
| 5602 | PyArray_freePyMem_RawFree(ufunc->op_flags); | ||||
| 5603 | Py_XDECREF(ufunc->userloops)_Py_XDECREF(((PyObject*)(ufunc->userloops))); | ||||
| 5604 | if (ufunc->identity == PyUFunc_IdentityValue-3) { | ||||
| 5605 | Py_DECREF(ufunc->identity_value)_Py_DECREF(((PyObject*)(ufunc->identity_value))); | ||||
| 5606 | } | ||||
| 5607 | if (ufunc->obj != NULL((void*)0)) { | ||||
| 5608 | Py_DECREF(ufunc->obj)_Py_DECREF(((PyObject*)(ufunc->obj))); | ||||
| 5609 | } | ||||
| 5610 | PyObject_GC_Del(ufunc); | ||||
| 5611 | } | ||||
| 5612 | |||||
| 5613 | static PyObject * | ||||
| 5614 | ufunc_repr(PyUFuncObject *ufunc) | ||||
| 5615 | { | ||||
| 5616 | return PyUnicode_FromFormat("<ufunc '%s'>", ufunc->name); | ||||
| 5617 | } | ||||
| 5618 | |||||
| 5619 | static int | ||||
| 5620 | ufunc_traverse(PyUFuncObject *self, visitproc visit, void *arg) | ||||
| 5621 | { | ||||
| 5622 | Py_VISIT(self->obj)do { if (self->obj) { int vret = visit(((PyObject*)(self-> obj)), arg); if (vret) return vret; } } while (0); | ||||
| 5623 | if (self->identity == PyUFunc_IdentityValue-3) { | ||||
| 5624 | Py_VISIT(self->identity_value)do { if (self->identity_value) { int vret = visit(((PyObject *)(self->identity_value)), arg); if (vret) return vret; } } while (0); | ||||
| 5625 | } | ||||
| 5626 | return 0; | ||||
| 5627 | } | ||||
| 5628 | |||||
| 5629 | /****************************************************************************** | ||||
| 5630 | *** UFUNC METHODS *** | ||||
| 5631 | *****************************************************************************/ | ||||
| 5632 | |||||
| 5633 | |||||
| 5634 | /* | ||||
| 5635 | * op.outer(a,b) is equivalent to op(a[:,NewAxis,NewAxis,etc.],b) | ||||
| 5636 | * where a has b.ndim NewAxis terms appended. | ||||
| 5637 | * | ||||
| 5638 | * The result has dimensions a.ndim + b.ndim | ||||
| 5639 | */ | ||||
| 5640 | static PyObject * | ||||
| 5641 | ufunc_outer(PyUFuncObject *ufunc, | ||||
| 5642 | PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) | ||||
| 5643 | { | ||||
| 5644 | if (ufunc->core_enabled) { | ||||
| 5645 | PyErr_Format(PyExc_TypeError, | ||||
| 5646 | "method outer is not allowed in ufunc with non-trivial"\ | ||||
| 5647 | " signature"); | ||||
| 5648 | return NULL((void*)0); | ||||
| 5649 | } | ||||
| 5650 | |||||
| 5651 | if (ufunc->nin != 2) { | ||||
| 5652 | PyErr_SetString(PyExc_ValueError, | ||||
| 5653 | "outer product only supported "\ | ||||
| 5654 | "for binary functions"); | ||||
| 5655 | return NULL((void*)0); | ||||
| 5656 | } | ||||
| 5657 | |||||
| 5658 | if (len_args != 2) { | ||||
| 5659 | PyErr_SetString(PyExc_TypeError, "exactly two arguments expected"); | ||||
| 5660 | return NULL((void*)0); | ||||
| 5661 | } | ||||
| 5662 | |||||
| 5663 | return ufunc_generic_fastcall(ufunc, args, len_args, kwnames, NPY_TRUE1); | ||||
| 5664 | } | ||||
| 5665 | |||||
| 5666 | |||||
| 5667 | static PyObject * | ||||
| 5668 | prepare_input_arguments_for_outer(PyObject *args, PyUFuncObject *ufunc) | ||||
| 5669 | { | ||||
| 5670 | PyArrayObject *ap1 = NULL((void*)0); | ||||
| 5671 | PyObject *tmp; | ||||
| 5672 | static PyObject *_numpy_matrix; | ||||
| 5673 | npy_cache_import("numpy", "matrix", &_numpy_matrix); | ||||
| 5674 | |||||
| 5675 | const char *matrix_deprecation_msg = ( | ||||
| 5676 | "%s.outer() was passed a numpy matrix as %s argument. " | ||||
| 5677 | "Special handling of matrix is deprecated and will result in an " | ||||
| 5678 | "error in most cases. Please convert the matrix to a NumPy " | ||||
| 5679 | "array to retain the old behaviour. You can use `matrix.A` " | ||||
| 5680 | "to achieve this."); | ||||
| 5681 | |||||
| 5682 | tmp = PyTuple_GET_ITEM(args, 0)((((void) (0)), (PyTupleObject *)(args))->ob_item[0]); | ||||
| 5683 | |||||
| 5684 | if (PyObject_IsInstance(tmp, _numpy_matrix)) { | ||||
| 5685 | /* DEPRECATED 2020-05-13, NumPy 1.20 */ | ||||
| 5686 | if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, | ||||
| 5687 | matrix_deprecation_msg, ufunc->name, "first") < 0) { | ||||
| 5688 | return NULL((void*)0); | ||||
| 5689 | } | ||||
| 5690 | ap1 = (PyArrayObject *) PyArray_FromObject(tmp, NPY_NOTYPE, 0, 0)PyArray_FromAny(tmp, PyArray_DescrFromType(NPY_NOTYPE), 0, 0, (0x0100 | 0x0400) | 0x0040, ((void*)0)); | ||||
| 5691 | } | ||||
| 5692 | else { | ||||
| 5693 | ap1 = (PyArrayObject *) PyArray_FROM_O(tmp)PyArray_FromAny(tmp, ((void*)0), 0, 0, 0, ((void*)0)); | ||||
| 5694 | } | ||||
| 5695 | if (ap1 == NULL((void*)0)) { | ||||
| 5696 | return NULL((void*)0); | ||||
| 5697 | } | ||||
| 5698 | |||||
| 5699 | PyArrayObject *ap2 = NULL((void*)0); | ||||
| 5700 | tmp = PyTuple_GET_ITEM(args, 1)((((void) (0)), (PyTupleObject *)(args))->ob_item[1]); | ||||
| 5701 | if (PyObject_IsInstance(tmp, _numpy_matrix)) { | ||||
| 5702 | /* DEPRECATED 2020-05-13, NumPy 1.20 */ | ||||
| 5703 | if (PyErr_WarnFormat(PyExc_DeprecationWarning, 1, | ||||
| 5704 | matrix_deprecation_msg, ufunc->name, "second") < 0) { | ||||
| 5705 | Py_DECREF(ap1)_Py_DECREF(((PyObject*)(ap1))); | ||||
| 5706 | return NULL((void*)0); | ||||
| 5707 | } | ||||
| 5708 | ap2 = (PyArrayObject *) PyArray_FromObject(tmp, NPY_NOTYPE, 0, 0)PyArray_FromAny(tmp, PyArray_DescrFromType(NPY_NOTYPE), 0, 0, (0x0100 | 0x0400) | 0x0040, ((void*)0)); | ||||
| 5709 | } | ||||
| 5710 | else { | ||||
| 5711 | ap2 = (PyArrayObject *) PyArray_FROM_O(tmp)PyArray_FromAny(tmp, ((void*)0), 0, 0, 0, ((void*)0)); | ||||
| 5712 | } | ||||
| 5713 | if (ap2 == NULL((void*)0)) { | ||||
| 5714 | Py_DECREF(ap1)_Py_DECREF(((PyObject*)(ap1))); | ||||
| 5715 | return NULL((void*)0); | ||||
| 5716 | } | ||||
| 5717 | /* Construct new shape from ap1 and ap2 and then reshape */ | ||||
| 5718 | PyArray_Dims newdims; | ||||
| 5719 | npy_intp newshape[NPY_MAXDIMS32]; | ||||
| 5720 | newdims.len = PyArray_NDIM(ap1) + PyArray_NDIM(ap2); | ||||
| 5721 | newdims.ptr = newshape; | ||||
| 5722 | |||||
| 5723 | if (newdims.len > NPY_MAXDIMS32) { | ||||
| 5724 | PyErr_Format(PyExc_ValueError, | ||||
| 5725 | "maximum supported dimension for an ndarray is %d, but " | ||||
| 5726 | "`%s.outer()` result would have %d.", | ||||
| 5727 | NPY_MAXDIMS32, ufunc->name, newdims.len); | ||||
| 5728 | goto fail; | ||||
| 5729 | } | ||||
| 5730 | if (newdims.ptr == NULL((void*)0)) { | ||||
| 5731 | goto fail; | ||||
| 5732 | } | ||||
| 5733 | memcpy(newshape, PyArray_DIMS(ap1), PyArray_NDIM(ap1) * sizeof(npy_intp)); | ||||
| 5734 | for (int i = PyArray_NDIM(ap1); i < newdims.len; i++) { | ||||
| 5735 | newshape[i] = 1; | ||||
| 5736 | } | ||||
| 5737 | |||||
| 5738 | PyArrayObject *ap_new; | ||||
| 5739 | ap_new = (PyArrayObject *)PyArray_Newshape(ap1, &newdims, NPY_CORDER); | ||||
| 5740 | if (ap_new == NULL((void*)0)) { | ||||
| 5741 | goto fail; | ||||
| 5742 | } | ||||
| 5743 | if (PyArray_NDIM(ap_new) != newdims.len || | ||||
| 5744 | !PyArray_CompareLists(PyArray_DIMS(ap_new), newshape, newdims.len)) { | ||||
| 5745 | PyErr_Format(PyExc_TypeError, | ||||
| 5746 | "%s.outer() called with ndarray-subclass of type '%s' " | ||||
| 5747 | "which modified its shape after a reshape. `outer()` relies " | ||||
| 5748 | "on reshaping the inputs and is for example not supported for " | ||||
| 5749 | "the 'np.matrix' class (the usage of matrix is generally " | ||||
| 5750 | "discouraged). " | ||||
| 5751 | "To work around this issue, please convert the inputs to " | ||||
| 5752 | "numpy arrays.", | ||||
| 5753 | ufunc->name, Py_TYPE(ap_new)(((PyObject*)(ap_new))->ob_type)->tp_name); | ||||
| 5754 | Py_DECREF(ap_new)_Py_DECREF(((PyObject*)(ap_new))); | ||||
| 5755 | goto fail; | ||||
| 5756 | } | ||||
| 5757 | |||||
| 5758 | Py_DECREF(ap1)_Py_DECREF(((PyObject*)(ap1))); | ||||
| 5759 | return Py_BuildValue("(NN)", ap_new, ap2); | ||||
| 5760 | |||||
| 5761 | fail: | ||||
| 5762 | Py_XDECREF(ap1)_Py_XDECREF(((PyObject*)(ap1))); | ||||
| 5763 | Py_XDECREF(ap2)_Py_XDECREF(((PyObject*)(ap2))); | ||||
| 5764 | return NULL((void*)0); | ||||
| 5765 | } | ||||
| 5766 | |||||
| 5767 | |||||
| 5768 | static PyObject * | ||||
| 5769 | ufunc_reduce(PyUFuncObject *ufunc, | ||||
| 5770 | PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) | ||||
| 5771 | { | ||||
| 5772 | return PyUFunc_GenericReduction( | ||||
| 5773 | ufunc, args, len_args, kwnames, UFUNC_REDUCE0); | ||||
| 5774 | } | ||||
| 5775 | |||||
| 5776 | static PyObject * | ||||
| 5777 | ufunc_accumulate(PyUFuncObject *ufunc, | ||||
| 5778 | PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) | ||||
| 5779 | { | ||||
| 5780 | return PyUFunc_GenericReduction( | ||||
| 5781 | ufunc, args, len_args, kwnames, UFUNC_ACCUMULATE1); | ||||
| 5782 | } | ||||
| 5783 | |||||
| 5784 | static PyObject * | ||||
| 5785 | ufunc_reduceat(PyUFuncObject *ufunc, | ||||
| 5786 | PyObject *const *args, Py_ssize_t len_args, PyObject *kwnames) | ||||
| 5787 | { | ||||
| 5788 | return PyUFunc_GenericReduction( | ||||
| 5789 | ufunc, args, len_args, kwnames, UFUNC_REDUCEAT2); | ||||
| 5790 | } | ||||
| 5791 | |||||
| 5792 | /* Helper for ufunc_at, below */ | ||||
| 5793 | static NPY_INLINEinline PyArrayObject * | ||||
| 5794 | new_array_op(PyArrayObject *op_array, char *data) | ||||
| 5795 | { | ||||
| 5796 | npy_intp dims[1] = {1}; | ||||
| 5797 | PyObject *r = PyArray_NewFromDescr(&PyArray_Type, PyArray_DESCR(op_array), | ||||
| 5798 | 1, dims, NULL((void*)0), data, | ||||
| 5799 | NPY_ARRAY_WRITEABLE0x0400, NULL((void*)0)); | ||||
| 5800 | return (PyArrayObject *)r; | ||||
| 5801 | } | ||||
| 5802 | |||||
| 5803 | /* | ||||
| 5804 | * Call ufunc only on selected array items and store result in first operand. | ||||
| 5805 | * For add ufunc, method call is equivalent to op1[idx] += op2 with no | ||||
| 5806 | * buffering of the first operand. | ||||
| 5807 | * Arguments: | ||||
| 5808 | * op1 - First operand to ufunc | ||||
| 5809 | * idx - Indices that are applied to first operand. Equivalent to op1[idx]. | ||||
| 5810 | * op2 - Second operand to ufunc (if needed). Must be able to broadcast | ||||
| 5811 | * over first operand. | ||||
| 5812 | */ | ||||
| 5813 | static PyObject * | ||||
| 5814 | ufunc_at(PyUFuncObject *ufunc, PyObject *args) | ||||
| 5815 | { | ||||
| 5816 | PyObject *op1 = NULL((void*)0); | ||||
| 5817 | PyObject *idx = NULL((void*)0); | ||||
| 5818 | PyObject *op2 = NULL((void*)0); | ||||
| 5819 | PyArrayObject *op1_array = NULL((void*)0); | ||||
| 5820 | PyArrayObject *op2_array = NULL((void*)0); | ||||
| 5821 | PyArrayMapIterObject *iter = NULL((void*)0); | ||||
| 5822 | PyArrayIterObject *iter2 = NULL((void*)0); | ||||
| 5823 | PyArray_Descr *dtypes[3] = {NULL((void*)0), NULL((void*)0), NULL((void*)0)}; | ||||
| 5824 | PyArrayObject *operands[3] = {NULL((void*)0), NULL((void*)0), NULL((void*)0)}; | ||||
| 5825 | PyArrayObject *array_operands[3] = {NULL((void*)0), NULL((void*)0), NULL((void*)0)}; | ||||
| 5826 | |||||
| 5827 | int needs_api = 0; | ||||
| 5828 | |||||
| 5829 | PyUFuncGenericFunction innerloop; | ||||
| 5830 | void *innerloopdata; | ||||
| 5831 | npy_intp i; | ||||
| 5832 | int nop; | ||||
| 5833 | |||||
| 5834 | /* override vars */ | ||||
| 5835 | int errval; | ||||
| 5836 | PyObject *override = NULL((void*)0); | ||||
| 5837 | |||||
| 5838 | NpyIter *iter_buffer; | ||||
| 5839 | NpyIter_IterNextFunc *iternext; | ||||
| 5840 | npy_uint32 op_flags[NPY_MAXARGS32]; | ||||
| 5841 | int buffersize; | ||||
| 5842 | int errormask = 0; | ||||
| 5843 | char * err_msg = NULL((void*)0); | ||||
| 5844 | NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);; | ||||
| 5845 | |||||
| 5846 | if (ufunc->nin > 2) { | ||||
| 5847 | PyErr_SetString(PyExc_ValueError, | ||||
| 5848 | "Only unary and binary ufuncs supported at this time"); | ||||
| 5849 | return NULL((void*)0); | ||||
| 5850 | } | ||||
| 5851 | |||||
| 5852 | if (ufunc->nout != 1) { | ||||
| 5853 | PyErr_SetString(PyExc_ValueError, | ||||
| 5854 | "Only single output ufuncs supported at this time"); | ||||
| 5855 | return NULL((void*)0); | ||||
| 5856 | } | ||||
| 5857 | |||||
| 5858 | if (!PyArg_ParseTuple(args, "OO|O:at", &op1, &idx, &op2)) { | ||||
| 5859 | return NULL((void*)0); | ||||
| 5860 | } | ||||
| 5861 | |||||
| 5862 | if (ufunc->nin == 2 && op2 == NULL((void*)0)) { | ||||
| 5863 | PyErr_SetString(PyExc_ValueError, | ||||
| 5864 | "second operand needed for ufunc"); | ||||
| 5865 | return NULL((void*)0); | ||||
| 5866 | } | ||||
| 5867 | errval = PyUFunc_CheckOverride(ufunc, "at", | ||||
| 5868 | args, NULL((void*)0), NULL((void*)0), 0, NULL((void*)0), &override); | ||||
| 5869 | |||||
| 5870 | if (errval) { | ||||
| 5871 | return NULL((void*)0); | ||||
| 5872 | } | ||||
| 5873 | else if (override) { | ||||
| 5874 | return override; | ||||
| 5875 | } | ||||
| 5876 | |||||
| 5877 | if (!PyArray_Check(op1)((((PyObject*)(op1))->ob_type) == (&PyArray_Type) || PyType_IsSubtype ((((PyObject*)(op1))->ob_type), (&PyArray_Type)))) { | ||||
| 5878 | PyErr_SetString(PyExc_TypeError, | ||||
| 5879 | "first operand must be array"); | ||||
| 5880 | return NULL((void*)0); | ||||
| 5881 | } | ||||
| 5882 | |||||
| 5883 | op1_array = (PyArrayObject *)op1; | ||||
| 5884 | |||||
| 5885 | /* Create second operand from number array if needed. */ | ||||
| 5886 | if (op2 != NULL((void*)0)) { | ||||
| 5887 | op2_array = (PyArrayObject *)PyArray_FromAny(op2, NULL((void*)0), | ||||
| 5888 | 0, 0, 0, NULL((void*)0)); | ||||
| 5889 | if (op2_array == NULL((void*)0)) { | ||||
| 5890 | goto fail; | ||||
| 5891 | } | ||||
| 5892 | } | ||||
| 5893 | |||||
| 5894 | /* Create map iterator */ | ||||
| 5895 | iter = (PyArrayMapIterObject *)PyArray_MapIterArrayCopyIfOverlap( | ||||
| 5896 | op1_array, idx, 1, op2_array); | ||||
| 5897 | if (iter == NULL((void*)0)) { | ||||
| 5898 | goto fail; | ||||
| 5899 | } | ||||
| 5900 | op1_array = iter->array; /* May be updateifcopied on overlap */ | ||||
| 5901 | |||||
| 5902 | if (op2 != NULL((void*)0)) { | ||||
| 5903 | /* | ||||
| 5904 | * May need to swap axes so that second operand is | ||||
| 5905 | * iterated over correctly | ||||
| 5906 | */ | ||||
| 5907 | if ((iter->subspace != NULL((void*)0)) && (iter->consec)) { | ||||
| 5908 | PyArray_MapIterSwapAxes(iter, &op2_array, 0); | ||||
| 5909 | if (op2_array == NULL((void*)0)) { | ||||
| 5910 | goto fail; | ||||
| 5911 | } | ||||
| 5912 | } | ||||
| 5913 | |||||
| 5914 | /* | ||||
| 5915 | * Create array iter object for second operand that | ||||
| 5916 | * "matches" the map iter object for the first operand. | ||||
| 5917 | * Then we can just iterate over the first and second | ||||
| 5918 | * operands at the same time and not have to worry about | ||||
| 5919 | * picking the correct elements from each operand to apply | ||||
| 5920 | * the ufunc to. | ||||
| 5921 | */ | ||||
| 5922 | if ((iter2 = (PyArrayIterObject *)\ | ||||
| 5923 | PyArray_BroadcastToShape((PyObject *)op2_array, | ||||
| 5924 | iter->dimensions, iter->nd))==NULL((void*)0)) { | ||||
| 5925 | goto fail; | ||||
| 5926 | } | ||||
| 5927 | } | ||||
| 5928 | |||||
| 5929 | /* | ||||
| 5930 | * Create dtypes array for either one or two input operands. | ||||
| 5931 | * The output operand is set to the first input operand | ||||
| 5932 | */ | ||||
| 5933 | operands[0] = op1_array; | ||||
| 5934 | if (op2_array != NULL((void*)0)) { | ||||
| 5935 | operands[1] = op2_array; | ||||
| 5936 | operands[2] = op1_array; | ||||
| 5937 | nop = 3; | ||||
| 5938 | } | ||||
| 5939 | else { | ||||
| 5940 | operands[1] = op1_array; | ||||
| 5941 | operands[2] = NULL((void*)0); | ||||
| 5942 | nop = 2; | ||||
| 5943 | } | ||||
| 5944 | |||||
| 5945 | if (ufunc->type_resolver(ufunc, NPY_UNSAFE_CASTING, | ||||
| 5946 | operands, NULL((void*)0), dtypes) < 0) { | ||||
| 5947 | goto fail; | ||||
| 5948 | } | ||||
| 5949 | if (ufunc->legacy_inner_loop_selector(ufunc, dtypes, | ||||
| 5950 | &innerloop, &innerloopdata, &needs_api) < 0) { | ||||
| 5951 | goto fail; | ||||
| 5952 | } | ||||
| 5953 | |||||
| 5954 | Py_INCREF(PyArray_DESCR(op1_array))_Py_INCREF(((PyObject*)(PyArray_DESCR(op1_array)))); | ||||
| 5955 | array_operands[0] = new_array_op(op1_array, iter->dataptr); | ||||
| 5956 | if (iter2 != NULL((void*)0)) { | ||||
| 5957 | Py_INCREF(PyArray_DESCR(op2_array))_Py_INCREF(((PyObject*)(PyArray_DESCR(op2_array)))); | ||||
| 5958 | array_operands[1] = new_array_op(op2_array, PyArray_ITER_DATA(iter2)((void *)(((PyArrayIterObject *)(iter2))->dataptr))); | ||||
| 5959 | Py_INCREF(PyArray_DESCR(op1_array))_Py_INCREF(((PyObject*)(PyArray_DESCR(op1_array)))); | ||||
| 5960 | array_operands[2] = new_array_op(op1_array, iter->dataptr); | ||||
| 5961 | } | ||||
| 5962 | else { | ||||
| 5963 | Py_INCREF(PyArray_DESCR(op1_array))_Py_INCREF(((PyObject*)(PyArray_DESCR(op1_array)))); | ||||
| 5964 | array_operands[1] = new_array_op(op1_array, iter->dataptr); | ||||
| 5965 | array_operands[2] = NULL((void*)0); | ||||
| 5966 | } | ||||
| 5967 | |||||
| 5968 | /* Set up the flags */ | ||||
| 5969 | op_flags[0] = NPY_ITER_READONLY0x00020000| | ||||
| 5970 | NPY_ITER_ALIGNED0x00100000; | ||||
| 5971 | |||||
| 5972 | if (iter2 != NULL((void*)0)) { | ||||
| 5973 | op_flags[1] = NPY_ITER_READONLY0x00020000| | ||||
| 5974 | NPY_ITER_ALIGNED0x00100000; | ||||
| 5975 | op_flags[2] = NPY_ITER_WRITEONLY0x00040000| | ||||
| 5976 | NPY_ITER_ALIGNED0x00100000| | ||||
| 5977 | NPY_ITER_ALLOCATE0x01000000| | ||||
| 5978 | NPY_ITER_NO_BROADCAST0x08000000| | ||||
| 5979 | NPY_ITER_NO_SUBTYPE0x02000000; | ||||
| 5980 | } | ||||
| 5981 | else { | ||||
| 5982 | op_flags[1] = NPY_ITER_WRITEONLY0x00040000| | ||||
| 5983 | NPY_ITER_ALIGNED0x00100000| | ||||
| 5984 | NPY_ITER_ALLOCATE0x01000000| | ||||
| 5985 | NPY_ITER_NO_BROADCAST0x08000000| | ||||
| 5986 | NPY_ITER_NO_SUBTYPE0x02000000; | ||||
| 5987 | } | ||||
| 5988 | |||||
| 5989 | if (_get_bufsize_errmask(NULL((void*)0), ufunc->name, &buffersize, &errormask) < 0) { | ||||
| 5990 | goto fail; | ||||
| 5991 | } | ||||
| 5992 | |||||
| 5993 | /* | ||||
| 5994 | * Create NpyIter object to "iterate" over single element of each input | ||||
| 5995 | * operand. This is an easy way to reuse the NpyIter logic for dealing | ||||
| 5996 | * with certain cases like casting operands to correct dtype. On each | ||||
| 5997 | * iteration over the MapIterArray object created above, we'll take the | ||||
| 5998 | * current data pointers from that and reset this NpyIter object using | ||||
| 5999 | * those data pointers, and then trigger a buffer copy. The buffer data | ||||
| 6000 | * pointers from the NpyIter object will then be passed to the inner loop | ||||
| 6001 | * function. | ||||
| 6002 | */ | ||||
| 6003 | iter_buffer = NpyIter_AdvancedNew(nop, array_operands, | ||||
| 6004 | NPY_ITER_EXTERNAL_LOOP0x00000008| | ||||
| 6005 | NPY_ITER_REFS_OK0x00000020| | ||||
| 6006 | NPY_ITER_ZEROSIZE_OK0x00000040| | ||||
| 6007 | NPY_ITER_BUFFERED0x00000200| | ||||
| 6008 | NPY_ITER_GROWINNER0x00000400| | ||||
| 6009 | NPY_ITER_DELAY_BUFALLOC0x00000800, | ||||
| 6010 | NPY_KEEPORDER, NPY_UNSAFE_CASTING, | ||||
| 6011 | op_flags, dtypes, | ||||
| 6012 | -1, NULL((void*)0), NULL((void*)0), buffersize); | ||||
| 6013 | |||||
| 6014 | if (iter_buffer == NULL((void*)0)) { | ||||
| 6015 | goto fail; | ||||
| 6016 | } | ||||
| 6017 | |||||
| 6018 | needs_api = needs_api | NpyIter_IterationNeedsAPI(iter_buffer); | ||||
| 6019 | |||||
| 6020 | iternext = NpyIter_GetIterNext(iter_buffer, NULL((void*)0)); | ||||
| 6021 | if (iternext == NULL((void*)0)) { | ||||
| 6022 | NpyIter_Deallocate(iter_buffer); | ||||
| 6023 | goto fail; | ||||
| 6024 | } | ||||
| 6025 | |||||
| 6026 | if (!needs_api) { | ||||
| 6027 | NPY_BEGIN_THREADSdo {_save = PyEval_SaveThread();} while (0);; | ||||
| 6028 | } | ||||
| 6029 | |||||
| 6030 | /* | ||||
| 6031 | * Iterate over first and second operands and call ufunc | ||||
| 6032 | * for each pair of inputs | ||||
| 6033 | */ | ||||
| 6034 | i = iter->size; | ||||
| 6035 | while (i > 0) | ||||
| 6036 | { | ||||
| 6037 | char *dataptr[3]; | ||||
| 6038 | char **buffer_dataptr; | ||||
| 6039 | /* one element at a time, no stride required but read by innerloop */ | ||||
| 6040 | npy_intp count[3] = {1, 0xDEADBEEF, 0xDEADBEEF}; | ||||
| 6041 | npy_intp stride[3] = {0xDEADBEEF, 0xDEADBEEF, 0xDEADBEEF}; | ||||
| 6042 | |||||
| 6043 | /* | ||||
| 6044 | * Set up data pointers for either one or two input operands. | ||||
| 6045 | * The output data pointer points to the first operand data. | ||||
| 6046 | */ | ||||
| 6047 | dataptr[0] = iter->dataptr; | ||||
| 6048 | if (iter2 != NULL((void*)0)) { | ||||
| 6049 | dataptr[1] = PyArray_ITER_DATA(iter2)((void *)(((PyArrayIterObject *)(iter2))->dataptr)); | ||||
| 6050 | dataptr[2] = iter->dataptr; | ||||
| 6051 | } | ||||
| 6052 | else { | ||||
| 6053 | dataptr[1] = iter->dataptr; | ||||
| 6054 | dataptr[2] = NULL((void*)0); | ||||
| 6055 | } | ||||
| 6056 | |||||
| 6057 | /* Reset NpyIter data pointers which will trigger a buffer copy */ | ||||
| 6058 | NpyIter_ResetBasePointers(iter_buffer, dataptr, &err_msg); | ||||
| 6059 | if (err_msg) { | ||||
| 6060 | break; | ||||
| 6061 | } | ||||
| 6062 | |||||
| 6063 | buffer_dataptr = NpyIter_GetDataPtrArray(iter_buffer); | ||||
| 6064 | |||||
| 6065 | innerloop(buffer_dataptr, count, stride, innerloopdata); | ||||
| 6066 | |||||
| 6067 | if (needs_api && PyErr_Occurred()) { | ||||
| 6068 | break; | ||||
| 6069 | } | ||||
| 6070 | |||||
| 6071 | /* | ||||
| 6072 | * Call to iternext triggers copy from buffer back to output array | ||||
| 6073 | * after innerloop puts result in buffer. | ||||
| 6074 | */ | ||||
| 6075 | iternext(iter_buffer); | ||||
| 6076 | |||||
| 6077 | PyArray_MapIterNext(iter); | ||||
| 6078 | if (iter2 != NULL((void*)0)) { | ||||
| 6079 | PyArray_ITER_NEXT(iter2)do { ((PyArrayIterObject *)(iter2))->index++; if (((PyArrayIterObject *)(iter2))->nd_m1 == 0) { do { (((PyArrayIterObject *)(iter2 )))->dataptr += ((PyArrayIterObject *)(((PyArrayIterObject *)(iter2))))->strides[0]; (((PyArrayIterObject *)(iter2)) )->coordinates[0]++; } while (0); } else if (((PyArrayIterObject *)(iter2))->contiguous) ((PyArrayIterObject *)(iter2))-> dataptr += PyArray_DESCR(((PyArrayIterObject *)(iter2))->ao )->elsize; else if (((PyArrayIterObject *)(iter2))->nd_m1 == 1) { do { if ((((PyArrayIterObject *)(iter2)))->coordinates [1] < (((PyArrayIterObject *)(iter2)))->dims_m1[1]) { ( ((PyArrayIterObject *)(iter2)))->coordinates[1]++; (((PyArrayIterObject *)(iter2)))->dataptr += (((PyArrayIterObject *)(iter2)))-> strides[1]; } else { (((PyArrayIterObject *)(iter2)))->coordinates [1] = 0; (((PyArrayIterObject *)(iter2)))->coordinates[0]++ ; (((PyArrayIterObject *)(iter2)))->dataptr += (((PyArrayIterObject *)(iter2)))->strides[0] - (((PyArrayIterObject *)(iter2)) )->backstrides[1]; } } while (0); } else { int __npy_i; for (__npy_i=((PyArrayIterObject *)(iter2))->nd_m1; __npy_i >= 0; __npy_i--) { if (((PyArrayIterObject *)(iter2))->coordinates [__npy_i] < ((PyArrayIterObject *)(iter2))->dims_m1[__npy_i ]) { ((PyArrayIterObject *)(iter2))->coordinates[__npy_i]++ ; ((PyArrayIterObject *)(iter2))->dataptr += ((PyArrayIterObject *)(iter2))->strides[__npy_i]; break; } else { ((PyArrayIterObject *)(iter2))->coordinates[__npy_i] = 0; ((PyArrayIterObject *)(iter2))->dataptr -= ((PyArrayIterObject *)(iter2))-> backstrides[__npy_i]; } } } } while (0); | ||||
| 6080 | } | ||||
| 6081 | |||||
| 6082 | i--; | ||||
| 6083 | } | ||||
| 6084 | |||||
| 6085 | NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void *)0);} } while (0);; | ||||
| 6086 | |||||
| 6087 | if (err_msg) { | ||||
| 6088 | PyErr_SetString(PyExc_ValueError, err_msg); | ||||
| 6089 | } | ||||
| 6090 | |||||
| 6091 | NpyIter_Deallocate(iter_buffer); | ||||
| 6092 | |||||
| 6093 | Py_XDECREF(op2_array)_Py_XDECREF(((PyObject*)(op2_array))); | ||||
| 6094 | Py_XDECREF(iter)_Py_XDECREF(((PyObject*)(iter))); | ||||
| 6095 | Py_XDECREF(iter2)_Py_XDECREF(((PyObject*)(iter2))); | ||||
| 6096 | for (i = 0; i < 3; i++) { | ||||
| 6097 | Py_XDECREF(dtypes[i])_Py_XDECREF(((PyObject*)(dtypes[i]))); | ||||
| 6098 | Py_XDECREF(array_operands[i])_Py_XDECREF(((PyObject*)(array_operands[i]))); | ||||
| 6099 | } | ||||
| 6100 | |||||
| 6101 | if (needs_api && PyErr_Occurred()) { | ||||
| 6102 | return NULL((void*)0); | ||||
| 6103 | } | ||||
| 6104 | else { | ||||
| 6105 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | ||||
| 6106 | } | ||||
| 6107 | |||||
| 6108 | fail: | ||||
| 6109 | /* iter_buffer has already been deallocated, don't use NpyIter_Dealloc */ | ||||
| 6110 | if (op1_array != (PyArrayObject*)op1) { | ||||
| 6111 | PyArray_DiscardWritebackIfCopy(op1_array); | ||||
| 6112 | } | ||||
| 6113 | Py_XDECREF(op2_array)_Py_XDECREF(((PyObject*)(op2_array))); | ||||
| 6114 | Py_XDECREF(iter)_Py_XDECREF(((PyObject*)(iter))); | ||||
| 6115 | Py_XDECREF(iter2)_Py_XDECREF(((PyObject*)(iter2))); | ||||
| 6116 | for (i = 0; i < 3; i++) { | ||||
| 6117 | Py_XDECREF(dtypes[i])_Py_XDECREF(((PyObject*)(dtypes[i]))); | ||||
| 6118 | Py_XDECREF(array_operands[i])_Py_XDECREF(((PyObject*)(array_operands[i]))); | ||||
| 6119 | } | ||||
| 6120 | |||||
| 6121 | return NULL((void*)0); | ||||
| 6122 | } | ||||
| 6123 | |||||
| 6124 | |||||
| 6125 | static struct PyMethodDef ufunc_methods[] = { | ||||
| 6126 | {"reduce", | ||||
| 6127 | (PyCFunction)ufunc_reduce, | ||||
| 6128 | METH_FASTCALL0x0080 | METH_KEYWORDS0x0002, NULL((void*)0) }, | ||||
| 6129 | {"accumulate", | ||||
| 6130 | (PyCFunction)ufunc_accumulate, | ||||
| 6131 | METH_FASTCALL0x0080 | METH_KEYWORDS0x0002, NULL((void*)0) }, | ||||
| 6132 | {"reduceat", | ||||
| 6133 | (PyCFunction)ufunc_reduceat, | ||||
| 6134 | METH_FASTCALL0x0080 | METH_KEYWORDS0x0002, NULL((void*)0) }, | ||||
| 6135 | {"outer", | ||||
| 6136 | (PyCFunction)ufunc_outer, | ||||
| 6137 | METH_FASTCALL0x0080 | METH_KEYWORDS0x0002, NULL((void*)0)}, | ||||
| 6138 | {"at", | ||||
| 6139 | (PyCFunction)ufunc_at, | ||||
| 6140 | METH_VARARGS0x0001, NULL((void*)0)}, | ||||
| 6141 | {NULL((void*)0), NULL((void*)0), 0, NULL((void*)0)} /* sentinel */ | ||||
| 6142 | }; | ||||
| 6143 | |||||
| 6144 | |||||
| 6145 | /****************************************************************************** | ||||
| 6146 | *** UFUNC GETSET *** | ||||
| 6147 | *****************************************************************************/ | ||||
| 6148 | |||||
| 6149 | |||||
| 6150 | static char | ||||
| 6151 | _typecharfromnum(int num) { | ||||
| 6152 | PyArray_Descr *descr; | ||||
| 6153 | char ret; | ||||
| 6154 | |||||
| 6155 | descr = PyArray_DescrFromType(num); | ||||
| 6156 | ret = descr->type; | ||||
| 6157 | Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr))); | ||||
| 6158 | return ret; | ||||
| 6159 | } | ||||
| 6160 | |||||
| 6161 | |||||
| 6162 | static PyObject * | ||||
| 6163 | ufunc_get_doc(PyUFuncObject *ufunc) | ||||
| 6164 | { | ||||
| 6165 | static PyObject *_sig_formatter; | ||||
| 6166 | PyObject *doc; | ||||
| 6167 | |||||
| 6168 | npy_cache_import( | ||||
| 6169 | "numpy.core._internal", | ||||
| 6170 | "_ufunc_doc_signature_formatter", | ||||
| 6171 | &_sig_formatter); | ||||
| 6172 | |||||
| 6173 | if (_sig_formatter == NULL((void*)0)) { | ||||
| 6174 | return NULL((void*)0); | ||||
| 6175 | } | ||||
| 6176 | |||||
| 6177 | /* | ||||
| 6178 | * Put docstring first or FindMethod finds it... could so some | ||||
| 6179 | * introspection on name and nin + nout to automate the first part | ||||
| 6180 | * of it the doc string shouldn't need the calling convention | ||||
| 6181 | */ | ||||
| 6182 | doc = PyObject_CallFunctionObjArgs(_sig_formatter, | ||||
| 6183 | (PyObject *)ufunc, NULL((void*)0)); | ||||
| 6184 | if (doc == NULL((void*)0)) { | ||||
| 6185 | return NULL((void*)0); | ||||
| 6186 | } | ||||
| 6187 | if (ufunc->doc != NULL((void*)0)) { | ||||
| 6188 | Py_SETREF(doc, PyUnicode_FromFormat("%S\n\n%s", doc, ufunc->doc))do { PyObject *_py_tmp = ((PyObject*)(doc)); (doc) = (PyUnicode_FromFormat ("%S\n\n%s", doc, ufunc->doc)); _Py_DECREF(((PyObject*)(_py_tmp ))); } while (0); | ||||
| 6189 | } | ||||
| 6190 | return doc; | ||||
| 6191 | } | ||||
| 6192 | |||||
| 6193 | |||||
| 6194 | static PyObject * | ||||
| 6195 | ufunc_get_nin(PyUFuncObject *ufunc) | ||||
| 6196 | { | ||||
| 6197 | return PyLong_FromLong(ufunc->nin); | ||||
| 6198 | } | ||||
| 6199 | |||||
| 6200 | static PyObject * | ||||
| 6201 | ufunc_get_nout(PyUFuncObject *ufunc) | ||||
| 6202 | { | ||||
| 6203 | return PyLong_FromLong(ufunc->nout); | ||||
| 6204 | } | ||||
| 6205 | |||||
| 6206 | static PyObject * | ||||
| 6207 | ufunc_get_nargs(PyUFuncObject *ufunc) | ||||
| 6208 | { | ||||
| 6209 | return PyLong_FromLong(ufunc->nargs); | ||||
| 6210 | } | ||||
| 6211 | |||||
| 6212 | static PyObject * | ||||
| 6213 | ufunc_get_ntypes(PyUFuncObject *ufunc) | ||||
| 6214 | { | ||||
| 6215 | return PyLong_FromLong(ufunc->ntypes); | ||||
| 6216 | } | ||||
| 6217 | |||||
| 6218 | static PyObject * | ||||
| 6219 | ufunc_get_types(PyUFuncObject *ufunc) | ||||
| 6220 | { | ||||
| 6221 | /* return a list with types grouped input->output */ | ||||
| 6222 | PyObject *list; | ||||
| 6223 | PyObject *str; | ||||
| 6224 | int k, j, n, nt = ufunc->ntypes; | ||||
| 6225 | int ni = ufunc->nin; | ||||
| 6226 | int no = ufunc->nout; | ||||
| 6227 | char *t; | ||||
| 6228 | list = PyList_New(nt); | ||||
| 6229 | if (list == NULL((void*)0)) { | ||||
| 6230 | return NULL((void*)0); | ||||
| 6231 | } | ||||
| 6232 | t = PyArray_mallocPyMem_RawMalloc(no+ni+2); | ||||
| 6233 | n = 0; | ||||
| 6234 | for (k = 0; k < nt; k++) { | ||||
| 6235 | for (j = 0; j<ni; j++) { | ||||
| 6236 | t[j] = _typecharfromnum(ufunc->types[n]); | ||||
| 6237 | n++; | ||||
| 6238 | } | ||||
| 6239 | t[ni] = '-'; | ||||
| 6240 | t[ni+1] = '>'; | ||||
| 6241 | for (j = 0; j < no; j++) { | ||||
| 6242 | t[ni + 2 + j] = _typecharfromnum(ufunc->types[n]); | ||||
| 6243 | n++; | ||||
| 6244 | } | ||||
| 6245 | str = PyUnicode_FromStringAndSize(t, no + ni + 2); | ||||
| 6246 | PyList_SET_ITEM(list, k, str)PyList_SetItem(list, k, str); | ||||
| 6247 | } | ||||
| 6248 | PyArray_freePyMem_RawFree(t); | ||||
| 6249 | return list; | ||||
| 6250 | } | ||||
| 6251 | |||||
| 6252 | static PyObject * | ||||
| 6253 | ufunc_get_name(PyUFuncObject *ufunc) | ||||
| 6254 | { | ||||
| 6255 | return PyUnicode_FromString(ufunc->name); | ||||
| 6256 | } | ||||
| 6257 | |||||
| 6258 | static PyObject * | ||||
| 6259 | ufunc_get_identity(PyUFuncObject *ufunc) | ||||
| 6260 | { | ||||
| 6261 | npy_bool reorderable; | ||||
| 6262 | return _get_identity(ufunc, &reorderable); | ||||
| 6263 | } | ||||
| 6264 | |||||
| 6265 | static PyObject * | ||||
| 6266 | ufunc_get_signature(PyUFuncObject *ufunc) | ||||
| 6267 | { | ||||
| 6268 | if (!ufunc->core_enabled) { | ||||
| 6269 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | ||||
| 6270 | } | ||||
| 6271 | return PyUnicode_FromString(ufunc->core_signature); | ||||
| 6272 | } | ||||
| 6273 | |||||
| 6274 | #undef _typecharfromnum | ||||
| 6275 | |||||
| 6276 | /* | ||||
| 6277 | * Docstring is now set from python | ||||
| 6278 | * static char *Ufunctype__doc__ = NULL; | ||||
| 6279 | */ | ||||
| 6280 | static PyGetSetDef ufunc_getset[] = { | ||||
| 6281 | {"__doc__", | ||||
| 6282 | (getter)ufunc_get_doc, | ||||
| 6283 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6284 | {"nin", | ||||
| 6285 | (getter)ufunc_get_nin, | ||||
| 6286 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6287 | {"nout", | ||||
| 6288 | (getter)ufunc_get_nout, | ||||
| 6289 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6290 | {"nargs", | ||||
| 6291 | (getter)ufunc_get_nargs, | ||||
| 6292 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6293 | {"ntypes", | ||||
| 6294 | (getter)ufunc_get_ntypes, | ||||
| 6295 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6296 | {"types", | ||||
| 6297 | (getter)ufunc_get_types, | ||||
| 6298 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6299 | {"__name__", | ||||
| 6300 | (getter)ufunc_get_name, | ||||
| 6301 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6302 | {"identity", | ||||
| 6303 | (getter)ufunc_get_identity, | ||||
| 6304 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6305 | {"signature", | ||||
| 6306 | (getter)ufunc_get_signature, | ||||
| 6307 | NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | ||||
| 6308 | {NULL((void*)0), NULL((void*)0), NULL((void*)0), NULL((void*)0), NULL((void*)0)}, /* Sentinel */ | ||||
| 6309 | }; | ||||
| 6310 | |||||
| 6311 | |||||
| 6312 | /****************************************************************************** | ||||
| 6313 | *** UFUNC TYPE OBJECT *** | ||||
| 6314 | *****************************************************************************/ | ||||
| 6315 | |||||
| 6316 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyTypeObject PyUFunc_Type = { | ||||
| 6317 | PyVarObject_HEAD_INIT(NULL, 0){ { 1, ((void*)0) }, 0 }, | ||||
| 6318 | .tp_name = "numpy.ufunc", | ||||
| 6319 | .tp_basicsize = sizeof(PyUFuncObject), | ||||
| 6320 | .tp_dealloc = (destructor)ufunc_dealloc, | ||||
| 6321 | .tp_repr = (reprfunc)ufunc_repr, | ||||
| 6322 | .tp_call = (ternaryfunc)ufunc_generic_call, | ||||
| 6323 | .tp_str = (reprfunc)ufunc_repr, | ||||
| 6324 | .tp_flags = Py_TPFLAGS_DEFAULT( 0 | (1UL << 18) | 0) | | ||||
| 6325 | #if PY_VERSION_HEX((3 << 24) | (8 << 16) | (5 << 8) | (0xF << 4) | (0 << 0)) >= 0x03080000 | ||||
| 6326 | _Py_TPFLAGS_HAVE_VECTORCALL(1UL << 11) | | ||||
| 6327 | #endif | ||||
| 6328 | Py_TPFLAGS_HAVE_GC(1UL << 14), | ||||
| 6329 | .tp_traverse = (traverseproc)ufunc_traverse, | ||||
| 6330 | .tp_methods = ufunc_methods, | ||||
| 6331 | .tp_getset = ufunc_getset, | ||||
| 6332 | #if PY_VERSION_HEX((3 << 24) | (8 << 16) | (5 << 8) | (0xF << 4) | (0 << 0)) >= 0x03080000 | ||||
| 6333 | .tp_vectorcall_offset = offsetof(PyUFuncObject, vectorcall)__builtin_offsetof(PyUFuncObject, vectorcall), | ||||
| 6334 | #endif | ||||
| 6335 | }; | ||||
| 6336 | |||||
| 6337 | /* End of code for ufunc objects */ |
| 1 | void _Py_INCREF(PyObject *op) { ++op->ob_refcnt; } |