Bug Summary

File:numpy/core/src/multiarray/calculation.c
Warning:line 407, column 17
PyObject ownership leak with reference count of 1

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name calculation.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-output=html -analyzer-checker=python -analyzer-disable-checker=deadcode -analyzer-config prune-paths=true,suppress-c++-stdlib=true,suppress-null-return-paths=false,crosscheck-with-z3=true,model-path=/opt/pyrefcon/lib/pyrefcon/models/models -analyzer-config experimental-enable-naive-ctu-analysis=true,ctu-dir=/tmp/pyrefcon/numpy/csa-scan,ctu-index-name=/tmp/pyrefcon/numpy/csa-scan/externalDefMap.txt,ctu-invocation-list=/tmp/pyrefcon/numpy/csa-scan/invocations.yaml,display-ctu-progress=false -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +sse -target-feature +sse2 -target-feature +sse3 -tune-cpu generic -debug-info-kind=limited -dwarf-version=4 -debugger-tuning=gdb -fcoverage-compilation-dir=/tmp/pyrefcon/numpy -resource-dir /opt/pyrefcon/lib/clang/13.0.0 -isystem /opt/pyrefcon/lib/pyrefcon/models/python3.8 -D NDEBUG -D _FORTIFY_SOURCE=2 -D NPY_INTERNAL_BUILD=1 -D HAVE_NPY_CONFIG_H=1 -D _FILE_OFFSET_BITS=64 -D _LARGEFILE_SOURCE=1 -D _LARGEFILE64_SOURCE=1 -I build/src.linux-x86_64-3.8/numpy/core/src/common -I build/src.linux-x86_64-3.8/numpy/core/src/umath -I numpy/core/include -I build/src.linux-x86_64-3.8/numpy/core/include/numpy -I build/src.linux-x86_64-3.8/numpy/distutils/include -I numpy/core/src/common -I numpy/core/src -I numpy/core -I numpy/core/src/npymath -I numpy/core/src/multiarray -I numpy/core/src/umath -I numpy/core/src/npysort -I numpy/core/src/_simd -I build/src.linux-x86_64-3.8/numpy/core/src/common -I build/src.linux-x86_64-3.8/numpy/core/src/npymath -internal-isystem /opt/pyrefcon/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-result -Wsign-compare -Wall -Wformat -Werror=format-security -Wformat -Werror=format-security -Wdate-time -fdebug-compilation-dir=/tmp/pyrefcon/numpy -ferror-limit 19 -fwrapv -pthread -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/pyrefcon/numpy/csa-scan/reports -x c numpy/core/src/multiarray/calculation.c

numpy/core/src/multiarray/calculation.c

1#define PY_SSIZE_T_CLEAN
2#include <Python.h>
3#include "structmember.h"
4
5#define NPY_NO_DEPRECATED_API0x0000000E NPY_API_VERSION0x0000000E
6#define _MULTIARRAYMODULE
7#include "numpy/arrayobject.h"
8#include "lowlevel_strided_loops.h"
9
10#include "npy_config.h"
11
12#include "npy_pycompat.h"
13
14#include "common.h"
15#include "number.h"
16
17#include "calculation.h"
18#include "array_assign.h"
19
20static double
21power_of_ten(int n)
22{
23 static const double p10[] = {1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8};
24 double ret;
25 if (n < 9) {
26 ret = p10[n];
27 }
28 else {
29 ret = 1e9;
30 while (n-- > 9) {
31 ret *= 10.;
32 }
33 }
34 return ret;
35}
36
37/*NUMPY_API
38 * ArgMax
39 */
40NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
41PyArray_ArgMax(PyArrayObject *op, int axis, PyArrayObject *out)
42{
43 PyArrayObject *ap = NULL((void*)0), *rp = NULL((void*)0);
44 PyArray_ArgFunc* arg_func;
45 char *ip;
46 npy_intp *rptr;
47 npy_intp i, n, m;
48 int elsize;
49 NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);;
50
51 if ((ap = (PyArrayObject *)PyArray_CheckAxis(op, &axis, 0)) == NULL((void*)0)) {
52 return NULL((void*)0);
53 }
54 /*
55 * We need to permute the array so that axis is placed at the end.
56 * And all other dimensions are shifted left.
57 */
58 if (axis != PyArray_NDIM(ap)-1) {
59 PyArray_Dims newaxes;
60 npy_intp dims[NPY_MAXDIMS32];
61 int j;
62
63 newaxes.ptr = dims;
64 newaxes.len = PyArray_NDIM(ap);
65 for (j = 0; j < axis; j++) {
66 dims[j] = j;
67 }
68 for (j = axis; j < PyArray_NDIM(ap) - 1; j++) {
69 dims[j] = j + 1;
70 }
71 dims[PyArray_NDIM(ap) - 1] = axis;
72 op = (PyArrayObject *)PyArray_Transpose(ap, &newaxes);
73 Py_DECREF(ap)_Py_DECREF(((PyObject*)(ap)));
74 if (op == NULL((void*)0)) {
75 return NULL((void*)0);
76 }
77 }
78 else {
79 op = ap;
80 }
81
82 /* Will get native-byte order contiguous copy. */
83 ap = (PyArrayObject *)PyArray_ContiguousFromAny((PyObject *)op,PyArray_FromAny((PyObject *)op, PyArray_DescrFromType(PyArray_DESCR
(op)->type_num), 1, 0, ((0x0001 | (0x0100 | 0x0400))), ((void
*)0))
84 PyArray_DESCR(op)->type_num, 1, 0)PyArray_FromAny((PyObject *)op, PyArray_DescrFromType(PyArray_DESCR
(op)->type_num), 1, 0, ((0x0001 | (0x0100 | 0x0400))), ((void
*)0))
;
85 Py_DECREF(op)_Py_DECREF(((PyObject*)(op)));
86 if (ap == NULL((void*)0)) {
87 return NULL((void*)0);
88 }
89 arg_func = PyArray_DESCR(ap)->f->argmax;
90 if (arg_func == NULL((void*)0)) {
91 PyErr_SetString(PyExc_TypeError,
92 "data type not ordered");
93 goto fail;
94 }
95 elsize = PyArray_DESCR(ap)->elsize;
96 m = PyArray_DIMS(ap)[PyArray_NDIM(ap)-1];
97 if (m == 0) {
98 PyErr_SetString(PyExc_ValueError,
99 "attempt to get argmax of an empty sequence");
100 goto fail;
101 }
102
103 if (!out) {
104 rp = (PyArrayObject *)PyArray_NewFromDescr(
105 Py_TYPE(ap)(((PyObject*)(ap))->ob_type), PyArray_DescrFromType(NPY_INTPNPY_LONG),
106 PyArray_NDIM(ap) - 1, PyArray_DIMS(ap), NULL((void*)0), NULL((void*)0),
107 0, (PyObject *)ap);
108 if (rp == NULL((void*)0)) {
109 goto fail;
110 }
111 }
112 else {
113 if ((PyArray_NDIM(out) != PyArray_NDIM(ap) - 1) ||
114 !PyArray_CompareLists(PyArray_DIMS(out), PyArray_DIMS(ap),
115 PyArray_NDIM(out))) {
116 PyErr_SetString(PyExc_ValueError,
117 "output array does not match result of np.argmax.");
118 goto fail;
119 }
120 rp = (PyArrayObject *)PyArray_FromArray(out,
121 PyArray_DescrFromType(NPY_INTPNPY_LONG),
122 NPY_ARRAY_CARRAY(0x0001 | (0x0100 | 0x0400)) | NPY_ARRAY_WRITEBACKIFCOPY0x2000);
123 if (rp == NULL((void*)0)) {
124 goto fail;
125 }
126 }
127
128 NPY_BEGIN_THREADS_DESCR(PyArray_DESCR(ap))do {if (!(((((PyArray_DESCR(ap)))->flags & (0x10)) == (
0x10)))) do {_save = PyEval_SaveThread();} while (0);;} while
(0);
;
129 n = PyArray_SIZE(ap)PyArray_MultiplyList(PyArray_DIMS(ap), PyArray_NDIM(ap))/m;
130 rptr = (npy_intp *)PyArray_DATA(rp);
131 for (ip = PyArray_DATA(ap), i = 0; i < n; i++, ip += elsize*m) {
132 arg_func(ip, m, rptr, ap);
133 rptr += 1;
134 }
135 NPY_END_THREADS_DESCR(PyArray_DESCR(ap))do {if (!(((((PyArray_DESCR(ap)))->flags & (0x10)) == (
0x10)))) do { if (_save) { PyEval_RestoreThread(_save); _save
= ((void*)0);} } while (0);; } while (0);
;
136
137 Py_DECREF(ap)_Py_DECREF(((PyObject*)(ap)));
138 /* Trigger the UPDATEIFCOPY/WRTIEBACKIFCOPY if necessary */
139 if (out != NULL((void*)0) && out != rp) {
140 PyArray_ResolveWritebackIfCopy(rp);
141 Py_DECREF(rp)_Py_DECREF(((PyObject*)(rp)));
142 rp = out;
143 Py_INCREF(rp)_Py_INCREF(((PyObject*)(rp)));
144 }
145 return (PyObject *)rp;
146
147 fail:
148 Py_DECREF(ap)_Py_DECREF(((PyObject*)(ap)));
149 Py_XDECREF(rp)_Py_XDECREF(((PyObject*)(rp)));
150 return NULL((void*)0);
151}
152
153/*NUMPY_API
154 * ArgMin
155 */
156NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
157PyArray_ArgMin(PyArrayObject *op, int axis, PyArrayObject *out)
158{
159 PyArrayObject *ap = NULL((void*)0), *rp = NULL((void*)0);
160 PyArray_ArgFunc* arg_func;
161 char *ip;
162 npy_intp *rptr;
163 npy_intp i, n, m;
164 int elsize;
165 NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);;
166
167 if ((ap = (PyArrayObject *)PyArray_CheckAxis(op, &axis, 0)) == NULL((void*)0)) {
168 return NULL((void*)0);
169 }
170 /*
171 * We need to permute the array so that axis is placed at the end.
172 * And all other dimensions are shifted left.
173 */
174 if (axis != PyArray_NDIM(ap)-1) {
175 PyArray_Dims newaxes;
176 npy_intp dims[NPY_MAXDIMS32];
177 int i;
178
179 newaxes.ptr = dims;
180 newaxes.len = PyArray_NDIM(ap);
181 for (i = 0; i < axis; i++) {
182 dims[i] = i;
183 }
184 for (i = axis; i < PyArray_NDIM(ap) - 1; i++) {
185 dims[i] = i + 1;
186 }
187 dims[PyArray_NDIM(ap) - 1] = axis;
188 op = (PyArrayObject *)PyArray_Transpose(ap, &newaxes);
189 Py_DECREF(ap)_Py_DECREF(((PyObject*)(ap)));
190 if (op == NULL((void*)0)) {
191 return NULL((void*)0);
192 }
193 }
194 else {
195 op = ap;
196 }
197
198 /* Will get native-byte order contiguous copy. */
199 ap = (PyArrayObject *)PyArray_ContiguousFromAny((PyObject *)op,PyArray_FromAny((PyObject *)op, PyArray_DescrFromType(PyArray_DESCR
(op)->type_num), 1, 0, ((0x0001 | (0x0100 | 0x0400))), ((void
*)0))
200 PyArray_DESCR(op)->type_num, 1, 0)PyArray_FromAny((PyObject *)op, PyArray_DescrFromType(PyArray_DESCR
(op)->type_num), 1, 0, ((0x0001 | (0x0100 | 0x0400))), ((void
*)0))
;
201 Py_DECREF(op)_Py_DECREF(((PyObject*)(op)));
202 if (ap == NULL((void*)0)) {
203 return NULL((void*)0);
204 }
205 arg_func = PyArray_DESCR(ap)->f->argmin;
206 if (arg_func == NULL((void*)0)) {
207 PyErr_SetString(PyExc_TypeError,
208 "data type not ordered");
209 goto fail;
210 }
211 elsize = PyArray_DESCR(ap)->elsize;
212 m = PyArray_DIMS(ap)[PyArray_NDIM(ap)-1];
213 if (m == 0) {
214 PyErr_SetString(PyExc_ValueError,
215 "attempt to get argmin of an empty sequence");
216 goto fail;
217 }
218
219 if (!out) {
220 rp = (PyArrayObject *)PyArray_NewFromDescr(
221 Py_TYPE(ap)(((PyObject*)(ap))->ob_type), PyArray_DescrFromType(NPY_INTPNPY_LONG),
222 PyArray_NDIM(ap) - 1, PyArray_DIMS(ap), NULL((void*)0), NULL((void*)0),
223 0, (PyObject *)ap);
224 if (rp == NULL((void*)0)) {
225 goto fail;
226 }
227 }
228 else {
229 if ((PyArray_NDIM(out) != PyArray_NDIM(ap) - 1) ||
230 !PyArray_CompareLists(PyArray_DIMS(out), PyArray_DIMS(ap),
231 PyArray_NDIM(out))) {
232 PyErr_SetString(PyExc_ValueError,
233 "output array does not match result of np.argmin.");
234 goto fail;
235 }
236 rp = (PyArrayObject *)PyArray_FromArray(out,
237 PyArray_DescrFromType(NPY_INTPNPY_LONG),
238 NPY_ARRAY_CARRAY(0x0001 | (0x0100 | 0x0400)) | NPY_ARRAY_WRITEBACKIFCOPY0x2000);
239 if (rp == NULL((void*)0)) {
240 goto fail;
241 }
242 }
243
244 NPY_BEGIN_THREADS_DESCR(PyArray_DESCR(ap))do {if (!(((((PyArray_DESCR(ap)))->flags & (0x10)) == (
0x10)))) do {_save = PyEval_SaveThread();} while (0);;} while
(0);
;
245 n = PyArray_SIZE(ap)PyArray_MultiplyList(PyArray_DIMS(ap), PyArray_NDIM(ap))/m;
246 rptr = (npy_intp *)PyArray_DATA(rp);
247 for (ip = PyArray_DATA(ap), i = 0; i < n; i++, ip += elsize*m) {
248 arg_func(ip, m, rptr, ap);
249 rptr += 1;
250 }
251 NPY_END_THREADS_DESCR(PyArray_DESCR(ap))do {if (!(((((PyArray_DESCR(ap)))->flags & (0x10)) == (
0x10)))) do { if (_save) { PyEval_RestoreThread(_save); _save
= ((void*)0);} } while (0);; } while (0);
;
252
253 Py_DECREF(ap)_Py_DECREF(((PyObject*)(ap)));
254 /* Trigger the UPDATEIFCOPY/WRITEBACKIFCOPY if necessary */
255 if (out != NULL((void*)0) && out != rp) {
256 PyArray_ResolveWritebackIfCopy(rp);
257 Py_DECREF(rp)_Py_DECREF(((PyObject*)(rp)));
258 rp = out;
259 Py_INCREF(rp)_Py_INCREF(((PyObject*)(rp)));
260 }
261 return (PyObject *)rp;
262
263 fail:
264 Py_DECREF(ap)_Py_DECREF(((PyObject*)(ap)));
265 Py_XDECREF(rp)_Py_XDECREF(((PyObject*)(rp)));
266 return NULL((void*)0);
267}
268
269/*NUMPY_API
270 * Max
271 */
272NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
273PyArray_Max(PyArrayObject *ap, int axis, PyArrayObject *out)
274{
275 PyArrayObject *arr;
276 PyObject *ret;
277
278 arr = (PyArrayObject *)PyArray_CheckAxis(ap, &axis, 0);
279 if (arr == NULL((void*)0)) {
280 return NULL((void*)0);
281 }
282 ret = PyArray_GenericReduceFunction(arr, n_ops.maximum, axis,
283 PyArray_DESCR(arr)->type_num, out);
284 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
285 return ret;
286}
287
288/*NUMPY_API
289 * Min
290 */
291NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
292PyArray_Min(PyArrayObject *ap, int axis, PyArrayObject *out)
293{
294 PyArrayObject *arr;
295 PyObject *ret;
296
297 arr=(PyArrayObject *)PyArray_CheckAxis(ap, &axis, 0);
298 if (arr == NULL((void*)0)) {
299 return NULL((void*)0);
300 }
301 ret = PyArray_GenericReduceFunction(arr, n_ops.minimum, axis,
302 PyArray_DESCR(arr)->type_num, out);
303 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
304 return ret;
305}
306
307/*NUMPY_API
308 * Ptp
309 */
310NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
311PyArray_Ptp(PyArrayObject *ap, int axis, PyArrayObject *out)
312{
313 PyArrayObject *arr;
314 PyObject *ret;
315 PyObject *obj1 = NULL((void*)0), *obj2 = NULL((void*)0);
316
317 arr=(PyArrayObject *)PyArray_CheckAxis(ap, &axis, 0);
318 if (arr == NULL((void*)0)) {
319 return NULL((void*)0);
320 }
321 obj1 = PyArray_Max(arr, axis, out);
322 if (obj1 == NULL((void*)0)) {
323 goto fail;
324 }
325 obj2 = PyArray_Min(arr, axis, NULL((void*)0));
326 if (obj2 == NULL((void*)0)) {
327 goto fail;
328 }
329 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
330 if (out) {
331 ret = PyObject_CallFunction_PyObject_CallFunction_SizeT(n_ops.subtract, "OOO", out, obj2, out);
332 }
333 else {
334 ret = PyNumber_Subtract(obj1, obj2);
335 }
336 Py_DECREF(obj1)_Py_DECREF(((PyObject*)(obj1)));
337 Py_DECREF(obj2)_Py_DECREF(((PyObject*)(obj2)));
338 return ret;
339
340 fail:
341 Py_XDECREF(arr)_Py_XDECREF(((PyObject*)(arr)));
342 Py_XDECREF(obj1)_Py_XDECREF(((PyObject*)(obj1)));
343 Py_XDECREF(obj2)_Py_XDECREF(((PyObject*)(obj2)));
344 return NULL((void*)0);
345}
346
347
348
349/*NUMPY_API
350 * Set variance to 1 to by-pass square-root calculation and return variance
351 * Std
352 */
353NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
354PyArray_Std(PyArrayObject *self, int axis, int rtype, PyArrayObject *out,
355 int variance)
356{
357 return __New_PyArray_Std(self, axis, rtype, out, variance, 0);
1
Calling '__New_PyArray_Std'
358}
359
360NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
361__New_PyArray_Std(PyArrayObject *self, int axis, int rtype, PyArrayObject *out,
362 int variance, int num)
363{
364 PyObject *obj1 = NULL((void*)0), *obj2 = NULL((void*)0), *obj3 = NULL((void*)0);
365 PyArrayObject *arr1 = NULL((void*)0), *arr2 = NULL((void*)0), *arrnew = NULL((void*)0);
366 PyObject *ret = NULL((void*)0), *newshape = NULL((void*)0);
367 int i, n;
368 npy_intp val;
369
370 arrnew = (PyArrayObject *)PyArray_CheckAxis(self, &axis, 0);
371 if (arrnew
1.1
'arrnew' is not equal to NULL
1.1
'arrnew' is not equal to NULL
1.1
'arrnew' is not equal to NULL
== NULL((void*)0)) {
2
Taking false branch
372 return NULL((void*)0);
373 }
374 /* Compute and reshape mean */
375 arr1 = (PyArrayObject *)PyArray_EnsureAnyArray(
376 PyArray_Mean(arrnew, axis, rtype, NULL((void*)0)));
377 if (arr1
2.1
'arr1' is not equal to NULL
2.1
'arr1' is not equal to NULL
2.1
'arr1' is not equal to NULL
== NULL((void*)0)) {
3
Taking false branch
378 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
379 return NULL((void*)0);
380 }
381 n = PyArray_NDIM(arrnew);
382 newshape = PyTuple_New(n);
383 if (newshape == NULL((void*)0)) {
4
Assuming 'newshape' is not equal to NULL
5
Taking false branch
384 Py_DECREF(arr1)_Py_DECREF(((PyObject*)(arr1)));
385 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
386 return NULL((void*)0);
387 }
388 for (i = 0; i < n; i++) {
6
Assuming 'i' is >= 'n'
7
Loop condition is false. Execution continues on line 397
389 if (i == axis) {
390 val = 1;
391 }
392 else {
393 val = PyArray_DIM(arrnew,i);
394 }
395 PyTuple_SET_ITEM(newshape, i, PyLong_FromSsize_t(val))PyTuple_SetItem(newshape, i, PyLong_FromSsize_t(val));
396 }
397 arr2 = (PyArrayObject *)PyArray_Reshape(arr1, newshape);
398 Py_DECREF(arr1)_Py_DECREF(((PyObject*)(arr1)));
399 Py_DECREF(newshape)_Py_DECREF(((PyObject*)(newshape)));
400 if (arr2 == NULL((void*)0)) {
8
Assuming 'arr2' is not equal to NULL
9
Taking false branch
401 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
402 return NULL((void*)0);
403 }
404
405 /* Compute x = x - mx */
406 arr1 = (PyArrayObject *)PyArray_EnsureAnyArray(
13
Calling 'PyArray_EnsureAnyArray'
16
Returning from 'PyArray_EnsureAnyArray'
407 PyNumber_Subtract((PyObject *)arrnew, (PyObject *)arr2));
10
Calling 'PyNumber_Subtract'
12
Returning from 'PyNumber_Subtract'
23
PyObject ownership leak with reference count of 1
408 Py_DECREF(arr2)_Py_DECREF(((PyObject*)(arr2)));
409 if (arr1
16.1
'arr1' is not equal to NULL
16.1
'arr1' is not equal to NULL
16.1
'arr1' is not equal to NULL
== NULL((void*)0)) {
17
Taking false branch
410 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
411 return NULL((void*)0);
412 }
413 /* Compute x * x */
414 if (PyArray_ISCOMPLEX(arr1)(((PyArray_TYPE(arr1)) >= NPY_CFLOAT) && ((PyArray_TYPE
(arr1)) <= NPY_CLONGDOUBLE))
) {
18
Assuming the condition is true
19
Assuming the condition is true
20
Taking true branch
415 obj3 = PyArray_Conjugate(arr1, NULL((void*)0));
416 }
417 else {
418 obj3 = (PyObject *)arr1;
419 Py_INCREF(arr1)_Py_INCREF(((PyObject*)(arr1)));
420 }
421 if (obj3 == NULL((void*)0)) {
21
Assuming 'obj3' is equal to NULL
22
Taking true branch
422 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
423 return NULL((void*)0);
424 }
425 arr2 = (PyArrayObject *)PyArray_EnsureAnyArray(
426 PyArray_GenericBinaryFunction((PyObject *)arr1, obj3,
427 n_ops.multiply));
428 Py_DECREF(arr1)_Py_DECREF(((PyObject*)(arr1)));
429 Py_DECREF(obj3)_Py_DECREF(((PyObject*)(obj3)));
430 if (arr2 == NULL((void*)0)) {
431 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
432 return NULL((void*)0);
433 }
434 if (PyArray_ISCOMPLEX(arr2)(((PyArray_TYPE(arr2)) >= NPY_CFLOAT) && ((PyArray_TYPE
(arr2)) <= NPY_CLONGDOUBLE))
) {
435 obj3 = PyObject_GetAttrString((PyObject *)arr2, "real");
436 switch(rtype) {
437 case NPY_CDOUBLE:
438 rtype = NPY_DOUBLE;
439 break;
440 case NPY_CFLOAT:
441 rtype = NPY_FLOAT;
442 break;
443 case NPY_CLONGDOUBLE:
444 rtype = NPY_LONGDOUBLE;
445 break;
446 }
447 }
448 else {
449 obj3 = (PyObject *)arr2;
450 Py_INCREF(arr2)_Py_INCREF(((PyObject*)(arr2)));
451 }
452 if (obj3 == NULL((void*)0)) {
453 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
454 return NULL((void*)0);
455 }
456 /* Compute add.reduce(x*x,axis) */
457 obj1 = PyArray_GenericReduceFunction((PyArrayObject *)obj3, n_ops.add,
458 axis, rtype, NULL((void*)0));
459 Py_DECREF(obj3)_Py_DECREF(((PyObject*)(obj3)));
460 Py_DECREF(arr2)_Py_DECREF(((PyObject*)(arr2)));
461 if (obj1 == NULL((void*)0)) {
462 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
463 return NULL((void*)0);
464 }
465 n = PyArray_DIM(arrnew,axis);
466 Py_DECREF(arrnew)_Py_DECREF(((PyObject*)(arrnew)));
467 n = (n-num);
468 if (n == 0) {
469 n = 1;
470 }
471 obj2 = PyFloat_FromDouble(1.0/((double )n));
472 if (obj2 == NULL((void*)0)) {
473 Py_DECREF(obj1)_Py_DECREF(((PyObject*)(obj1)));
474 return NULL((void*)0);
475 }
476 ret = PyNumber_Multiply(obj1, obj2);
477 Py_DECREF(obj1)_Py_DECREF(((PyObject*)(obj1)));
478 Py_DECREF(obj2)_Py_DECREF(((PyObject*)(obj2)));
479
480 if (!variance) {
481 arr1 = (PyArrayObject *)PyArray_EnsureAnyArray(ret);
482 /* sqrt() */
483 ret = PyArray_GenericUnaryFunction(arr1, n_ops.sqrt);
484 Py_DECREF(arr1)_Py_DECREF(((PyObject*)(arr1)));
485 }
486 if (ret == NULL((void*)0)) {
487 return NULL((void*)0);
488 }
489 if (PyArray_CheckExact(self)(((PyObject*)(self))->ob_type == &PyArray_Type)) {
490 goto finish;
491 }
492 if (PyArray_Check(self)((((PyObject*)(self))->ob_type) == (&PyArray_Type) || PyType_IsSubtype
((((PyObject*)(self))->ob_type), (&PyArray_Type)))
&& Py_TYPE(self)(((PyObject*)(self))->ob_type) == Py_TYPE(ret)(((PyObject*)(ret))->ob_type)) {
493 goto finish;
494 }
495 arr1 = (PyArrayObject *)PyArray_EnsureArray(ret);
496 if (arr1 == NULL((void*)0)) {
497 return NULL((void*)0);
498 }
499 ret = PyArray_View(arr1, NULL((void*)0), Py_TYPE(self)(((PyObject*)(self))->ob_type));
500 Py_DECREF(arr1)_Py_DECREF(((PyObject*)(arr1)));
501
502finish:
503 if (out) {
504 if (PyArray_AssignArray(out, (PyArrayObject *)ret,
505 NULL((void*)0), NPY_DEFAULT_ASSIGN_CASTING) < 0) {
506 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
507 return NULL((void*)0);
508 }
509 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
510 Py_INCREF(out)_Py_INCREF(((PyObject*)(out)));
511 return (PyObject *)out;
512 }
513 return ret;
514}
515
516
517/*NUMPY_API
518 *Sum
519 */
520NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
521PyArray_Sum(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
522{
523 PyObject *arr, *ret;
524
525 arr = PyArray_CheckAxis(self, &axis, 0);
526 if (arr == NULL((void*)0)) {
527 return NULL((void*)0);
528 }
529 ret = PyArray_GenericReduceFunction((PyArrayObject *)arr, n_ops.add, axis,
530 rtype, out);
531 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
532 return ret;
533}
534
535/*NUMPY_API
536 * Prod
537 */
538NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
539PyArray_Prod(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
540{
541 PyObject *arr, *ret;
542
543 arr = PyArray_CheckAxis(self, &axis, 0);
544 if (arr == NULL((void*)0)) {
545 return NULL((void*)0);
546 }
547 ret = PyArray_GenericReduceFunction((PyArrayObject *)arr,
548 n_ops.multiply, axis,
549 rtype, out);
550 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
551 return ret;
552}
553
554/*NUMPY_API
555 *CumSum
556 */
557NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
558PyArray_CumSum(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
559{
560 PyObject *arr, *ret;
561
562 arr = PyArray_CheckAxis(self, &axis, 0);
563 if (arr == NULL((void*)0)) {
564 return NULL((void*)0);
565 }
566 ret = PyArray_GenericAccumulateFunction((PyArrayObject *)arr,
567 n_ops.add, axis,
568 rtype, out);
569 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
570 return ret;
571}
572
573/*NUMPY_API
574 * CumProd
575 */
576NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
577PyArray_CumProd(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
578{
579 PyObject *arr, *ret;
580
581 arr = PyArray_CheckAxis(self, &axis, 0);
582 if (arr == NULL((void*)0)) {
583 return NULL((void*)0);
584 }
585
586 ret = PyArray_GenericAccumulateFunction((PyArrayObject *)arr,
587 n_ops.multiply, axis,
588 rtype, out);
589 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
590 return ret;
591}
592
593/*NUMPY_API
594 * Round
595 */
596NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
597PyArray_Round(PyArrayObject *a, int decimals, PyArrayObject *out)
598{
599 PyObject *f, *ret = NULL((void*)0), *tmp, *op1, *op2;
600 int ret_int=0;
601 PyArray_Descr *my_descr;
602 if (out && (PyArray_SIZE(out)PyArray_MultiplyList(PyArray_DIMS(out), PyArray_NDIM(out)) != PyArray_SIZE(a)PyArray_MultiplyList(PyArray_DIMS(a), PyArray_NDIM(a)))) {
603 PyErr_SetString(PyExc_ValueError,
604 "invalid output shape");
605 return NULL((void*)0);
606 }
607 if (PyArray_ISCOMPLEX(a)(((PyArray_TYPE(a)) >= NPY_CFLOAT) && ((PyArray_TYPE
(a)) <= NPY_CLONGDOUBLE))
) {
608 PyObject *part;
609 PyObject *round_part;
610 PyObject *arr;
611 int res;
612
613 if (out) {
614 arr = (PyObject *)out;
615 Py_INCREF(arr)_Py_INCREF(((PyObject*)(arr)));
616 }
617 else {
618 arr = PyArray_Copy(a)PyArray_NewCopy(a, NPY_CORDER);
619 if (arr == NULL((void*)0)) {
620 return NULL((void*)0);
621 }
622 }
623
624 /* arr.real = a.real.round(decimals) */
625 part = PyObject_GetAttrString((PyObject *)a, "real");
626 if (part == NULL((void*)0)) {
627 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
628 return NULL((void*)0);
629 }
630 part = PyArray_EnsureAnyArray(part);
631 round_part = PyArray_Round((PyArrayObject *)part,
632 decimals, NULL((void*)0));
633 Py_DECREF(part)_Py_DECREF(((PyObject*)(part)));
634 if (round_part == NULL((void*)0)) {
635 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
636 return NULL((void*)0);
637 }
638 res = PyObject_SetAttrString(arr, "real", round_part);
639 Py_DECREF(round_part)_Py_DECREF(((PyObject*)(round_part)));
640 if (res < 0) {
641 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
642 return NULL((void*)0);
643 }
644
645 /* arr.imag = a.imag.round(decimals) */
646 part = PyObject_GetAttrString((PyObject *)a, "imag");
647 if (part == NULL((void*)0)) {
648 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
649 return NULL((void*)0);
650 }
651 part = PyArray_EnsureAnyArray(part);
652 round_part = PyArray_Round((PyArrayObject *)part,
653 decimals, NULL((void*)0));
654 Py_DECREF(part)_Py_DECREF(((PyObject*)(part)));
655 if (round_part == NULL((void*)0)) {
656 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
657 return NULL((void*)0);
658 }
659 res = PyObject_SetAttrString(arr, "imag", round_part);
660 Py_DECREF(round_part)_Py_DECREF(((PyObject*)(round_part)));
661 if (res < 0) {
662 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
663 return NULL((void*)0);
664 }
665 return arr;
666 }
667 /* do the most common case first */
668 if (decimals >= 0) {
669 if (PyArray_ISINTEGER(a)(((PyArray_TYPE(a)) >= NPY_BYTE) && ((PyArray_TYPE
(a)) <= NPY_ULONGLONG))
) {
670 if (out) {
671 if (PyArray_AssignArray(out, a,
672 NULL((void*)0), NPY_DEFAULT_ASSIGN_CASTING) < 0) {
673 return NULL((void*)0);
674 }
675 Py_INCREF(out)_Py_INCREF(((PyObject*)(out)));
676 return (PyObject *)out;
677 }
678 else {
679 Py_INCREF(a)_Py_INCREF(((PyObject*)(a)));
680 return (PyObject *)a;
681 }
682 }
683 if (decimals == 0) {
684 if (out) {
685 return PyObject_CallFunction_PyObject_CallFunction_SizeT(n_ops.rint, "OO", a, out);
686 }
687 return PyObject_CallFunction_PyObject_CallFunction_SizeT(n_ops.rint, "O", a);
688 }
689 op1 = n_ops.multiply;
690 op2 = n_ops.true_divide;
691 }
692 else {
693 op1 = n_ops.true_divide;
694 op2 = n_ops.multiply;
695 decimals = -decimals;
696 }
697 if (!out) {
698 if (PyArray_ISINTEGER(a)(((PyArray_TYPE(a)) >= NPY_BYTE) && ((PyArray_TYPE
(a)) <= NPY_ULONGLONG))
) {
699 ret_int = 1;
700 my_descr = PyArray_DescrFromType(NPY_DOUBLE);
701 }
702 else {
703 Py_INCREF(PyArray_DESCR(a))_Py_INCREF(((PyObject*)(PyArray_DESCR(a))));
704 my_descr = PyArray_DESCR(a);
705 }
706 out = (PyArrayObject *)PyArray_Empty(PyArray_NDIM(a), PyArray_DIMS(a),
707 my_descr,
708 PyArray_ISFORTRAN(a)(PyArray_CHKFLAGS(a, 0x0002) && (!PyArray_CHKFLAGS(a,
0x0001)))
);
709 if (out == NULL((void*)0)) {
710 return NULL((void*)0);
711 }
712 }
713 else {
714 Py_INCREF(out)_Py_INCREF(((PyObject*)(out)));
715 }
716 f = PyFloat_FromDouble(power_of_ten(decimals));
717 if (f == NULL((void*)0)) {
718 return NULL((void*)0);
719 }
720 ret = PyObject_CallFunction_PyObject_CallFunction_SizeT(op1, "OOO", a, f, out);
721 if (ret == NULL((void*)0)) {
722 goto finish;
723 }
724 tmp = PyObject_CallFunction_PyObject_CallFunction_SizeT(n_ops.rint, "OO", ret, ret);
725 if (tmp == NULL((void*)0)) {
726 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
727 ret = NULL((void*)0);
728 goto finish;
729 }
730 Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp)));
731 tmp = PyObject_CallFunction_PyObject_CallFunction_SizeT(op2, "OOO", ret, f, ret);
732 if (tmp == NULL((void*)0)) {
733 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
734 ret = NULL((void*)0);
735 goto finish;
736 }
737 Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp)));
738
739 finish:
740 Py_DECREF(f)_Py_DECREF(((PyObject*)(f)));
741 Py_DECREF(out)_Py_DECREF(((PyObject*)(out)));
742 if (ret_int) {
743 Py_INCREF(PyArray_DESCR(a))_Py_INCREF(((PyObject*)(PyArray_DESCR(a))));
744 tmp = PyArray_CastToType((PyArrayObject *)ret,
745 PyArray_DESCR(a), PyArray_ISFORTRAN(a)(PyArray_CHKFLAGS(a, 0x0002) && (!PyArray_CHKFLAGS(a,
0x0001)))
);
746 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
747 return tmp;
748 }
749 return ret;
750}
751
752
753/*NUMPY_API
754 * Mean
755 */
756NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
757PyArray_Mean(PyArrayObject *self, int axis, int rtype, PyArrayObject *out)
758{
759 PyObject *obj1 = NULL((void*)0), *obj2 = NULL((void*)0), *ret;
760 PyArrayObject *arr;
761
762 arr = (PyArrayObject *)PyArray_CheckAxis(self, &axis, 0);
763 if (arr == NULL((void*)0)) {
764 return NULL((void*)0);
765 }
766 obj1 = PyArray_GenericReduceFunction(arr, n_ops.add, axis,
767 rtype, out);
768 obj2 = PyFloat_FromDouble((double)PyArray_DIM(arr,axis));
769 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
770 if (obj1 == NULL((void*)0) || obj2 == NULL((void*)0)) {
771 Py_XDECREF(obj1)_Py_XDECREF(((PyObject*)(obj1)));
772 Py_XDECREF(obj2)_Py_XDECREF(((PyObject*)(obj2)));
773 return NULL((void*)0);
774 }
775 if (!out) {
776 ret = PyNumber_TrueDivide(obj1, obj2);
777 }
778 else {
779 ret = PyObject_CallFunction_PyObject_CallFunction_SizeT(n_ops.divide, "OOO", out, obj2, out);
780 }
781 Py_DECREF(obj1)_Py_DECREF(((PyObject*)(obj1)));
782 Py_DECREF(obj2)_Py_DECREF(((PyObject*)(obj2)));
783 return ret;
784}
785
786/*NUMPY_API
787 * Any
788 */
789NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
790PyArray_Any(PyArrayObject *self, int axis, PyArrayObject *out)
791{
792 PyObject *arr, *ret;
793
794 arr = PyArray_CheckAxis(self, &axis, 0);
795 if (arr == NULL((void*)0)) {
796 return NULL((void*)0);
797 }
798 ret = PyArray_GenericReduceFunction((PyArrayObject *)arr,
799 n_ops.logical_or, axis,
800 NPY_BOOL, out);
801 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
802 return ret;
803}
804
805/*NUMPY_API
806 * All
807 */
808NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
809PyArray_All(PyArrayObject *self, int axis, PyArrayObject *out)
810{
811 PyObject *arr, *ret;
812
813 arr = PyArray_CheckAxis(self, &axis, 0);
814 if (arr == NULL((void*)0)) {
815 return NULL((void*)0);
816 }
817 ret = PyArray_GenericReduceFunction((PyArrayObject *)arr,
818 n_ops.logical_and, axis,
819 NPY_BOOL, out);
820 Py_DECREF(arr)_Py_DECREF(((PyObject*)(arr)));
821 return ret;
822}
823
824
825static PyObject *
826_GenericBinaryOutFunction(PyArrayObject *m1, PyObject *m2, PyArrayObject *out,
827 PyObject *op)
828{
829 if (out == NULL((void*)0)) {
830 return PyObject_CallFunction_PyObject_CallFunction_SizeT(op, "OO", m1, m2);
831 }
832 else {
833 PyObject *args, *ret;
834 static PyObject *kw = NULL((void*)0);
835
836 if (kw == NULL((void*)0)) {
837 kw = Py_BuildValue_Py_BuildValue_SizeT("{s:s}", "casting", "unsafe");
838 if (kw == NULL((void*)0)) {
839 return NULL((void*)0);
840 }
841 }
842
843 args = Py_BuildValue_Py_BuildValue_SizeT("OOO", m1, m2, out);
844 if (args == NULL((void*)0)) {
845 return NULL((void*)0);
846 }
847
848 ret = PyObject_Call(op, args, kw);
849
850 Py_DECREF(args)_Py_DECREF(((PyObject*)(args)));
851
852 return ret;
853 }
854}
855
856static PyObject *
857_slow_array_clip(PyArrayObject *self, PyObject *min, PyObject *max, PyArrayObject *out)
858{
859 PyObject *res1=NULL((void*)0), *res2=NULL((void*)0);
860
861 if (max != NULL((void*)0)) {
862 res1 = _GenericBinaryOutFunction(self, max, out, n_ops.minimum);
863 if (res1 == NULL((void*)0)) {
864 return NULL((void*)0);
865 }
866 }
867 else {
868 res1 = (PyObject *)self;
869 Py_INCREF(res1)_Py_INCREF(((PyObject*)(res1)));
870 }
871
872 if (min != NULL((void*)0)) {
873 res2 = _GenericBinaryOutFunction((PyArrayObject *)res1,
874 min, out, n_ops.maximum);
875 if (res2 == NULL((void*)0)) {
876 Py_XDECREF(res1)_Py_XDECREF(((PyObject*)(res1)));
877 return NULL((void*)0);
878 }
879 }
880 else {
881 res2 = res1;
882 Py_INCREF(res2)_Py_INCREF(((PyObject*)(res2)));
883 }
884 Py_DECREF(res1)_Py_DECREF(((PyObject*)(res1)));
885 return res2;
886}
887
888/*NUMPY_API
889 * Clip
890 */
891NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
892PyArray_Clip(PyArrayObject *self, PyObject *min, PyObject *max, PyArrayObject *out)
893{
894 PyArray_FastClipFunc *func;
895 int outgood = 0, ingood = 0;
896 PyArrayObject *maxa = NULL((void*)0);
897 PyArrayObject *mina = NULL((void*)0);
898 PyArrayObject *newout = NULL((void*)0), *newin = NULL((void*)0);
899 PyArray_Descr *indescr = NULL((void*)0), *newdescr = NULL((void*)0);
900 char *max_data, *min_data;
901 PyObject *zero;
902
903 /* Treat None the same as NULL */
904 if (min == Py_None(&_Py_NoneStruct)) {
905 min = NULL((void*)0);
906 }
907 if (max == Py_None(&_Py_NoneStruct)) {
908 max = NULL((void*)0);
909 }
910
911 if ((max == NULL((void*)0)) && (min == NULL((void*)0))) {
912 PyErr_SetString(PyExc_ValueError,
913 "array_clip: must set either max or min");
914 return NULL((void*)0);
915 }
916
917 func = PyArray_DESCR(self)->f->fastclip;
918 if (func == NULL((void*)0)) {
919 if (min == NULL((void*)0)) {
920 return PyObject_CallFunctionObjArgs(n_ops.minimum, self, max, out, NULL((void*)0));
921 }
922 else if (max == NULL((void*)0)) {
923 return PyObject_CallFunctionObjArgs(n_ops.maximum, self, min, out, NULL((void*)0));
924 }
925 else {
926 return PyObject_CallFunctionObjArgs(n_ops.clip, self, min, max, out, NULL((void*)0));
927 }
928 }
929
930 /*
931 * NumPy 1.17.0, 2019-02-24
932 * NumPy 1.19.0, 2020-01-15
933 *
934 * Setting `->f->fastclip to anything but NULL has been deprecated in 1.19
935 * the code path below was previously deprecated since 1.17.
936 * (the deprecation moved to registration time instead of execution time)
937 * everything below can be removed once this deprecation completes
938 */
939
940 if (func == NULL((void*)0)
941 || (min != NULL((void*)0) && !PyArray_CheckAnyScalar(min)(((((((PyObject*)(min))->ob_type) == (&PyFloat_Type) ||
PyType_IsSubtype((((PyObject*)(min))->ob_type), (&PyFloat_Type
))) || ((((PyObject*)(min))->ob_type) == (&PyComplex_Type
) || PyType_IsSubtype((((PyObject*)(min))->ob_type), (&
PyComplex_Type))) || ((((((PyObject*)(min))->ob_type))->
tp_flags & ((1UL << 24))) != 0) || ((((PyObject*)(min
))->ob_type) == &PyBool_Type)) || ((((((PyObject*)(min
))->ob_type))->tp_flags & ((1UL << 27))) != 0
) || ((((((PyObject*)(min))->ob_type))->tp_flags & (
(1UL << 28))) != 0)) || ((((((PyObject*)(min))->ob_type
) == (&PyGenericArrType_Type) || PyType_IsSubtype((((PyObject
*)(min))->ob_type), (&PyGenericArrType_Type)))) || (((
((PyObject*)(min))->ob_type) == (&PyArray_Type) || PyType_IsSubtype
((((PyObject*)(min))->ob_type), (&PyArray_Type))) &&
(PyArray_NDIM((PyArrayObject *)min) == 0))))
)
942 || (max != NULL((void*)0) && !PyArray_CheckAnyScalar(max)(((((((PyObject*)(max))->ob_type) == (&PyFloat_Type) ||
PyType_IsSubtype((((PyObject*)(max))->ob_type), (&PyFloat_Type
))) || ((((PyObject*)(max))->ob_type) == (&PyComplex_Type
) || PyType_IsSubtype((((PyObject*)(max))->ob_type), (&
PyComplex_Type))) || ((((((PyObject*)(max))->ob_type))->
tp_flags & ((1UL << 24))) != 0) || ((((PyObject*)(max
))->ob_type) == &PyBool_Type)) || ((((((PyObject*)(max
))->ob_type))->tp_flags & ((1UL << 27))) != 0
) || ((((((PyObject*)(max))->ob_type))->tp_flags & (
(1UL << 28))) != 0)) || ((((((PyObject*)(max))->ob_type
) == (&PyGenericArrType_Type) || PyType_IsSubtype((((PyObject
*)(max))->ob_type), (&PyGenericArrType_Type)))) || (((
((PyObject*)(max))->ob_type) == (&PyArray_Type) || PyType_IsSubtype
((((PyObject*)(max))->ob_type), (&PyArray_Type))) &&
(PyArray_NDIM((PyArrayObject *)max) == 0))))
)
943 || PyArray_ISBYTESWAPPED(self)(!((PyArray_DESCR(self)->byteorder) != '>'))
944 || (out && PyArray_ISBYTESWAPPED(out)(!((PyArray_DESCR(out)->byteorder) != '>')))) {
945 return _slow_array_clip(self, min, max, out);
946 }
947 /* Use the fast scalar clip function */
948
949 /* First we need to figure out the correct type */
950 if (min != NULL((void*)0)) {
951 indescr = PyArray_DescrFromObject(min, NULL((void*)0));
952 if (indescr == NULL((void*)0)) {
953 goto fail;
954 }
955 }
956 if (max != NULL((void*)0)) {
957 newdescr = PyArray_DescrFromObject(max, indescr);
958 Py_XDECREF(indescr)_Py_XDECREF(((PyObject*)(indescr)));
959 indescr = NULL((void*)0);
960 if (newdescr == NULL((void*)0)) {
961 goto fail;
962 }
963 }
964 else {
965 /* Steal the reference */
966 newdescr = indescr;
967 indescr = NULL((void*)0);
968 }
969
970
971 /*
972 * Use the scalar descriptor only if it is of a bigger
973 * KIND than the input array (and then find the
974 * type that matches both).
975 */
976 if (PyArray_ScalarKind(newdescr->type_num, NULL((void*)0)) >
977 PyArray_ScalarKind(PyArray_DESCR(self)->type_num, NULL((void*)0))) {
978 indescr = PyArray_PromoteTypes(newdescr, PyArray_DESCR(self));
979 if (indescr == NULL((void*)0)) {
980 goto fail;
981 }
982 func = indescr->f->fastclip;
983 if (func == NULL((void*)0)) {
984 Py_DECREF(indescr)_Py_DECREF(((PyObject*)(indescr)));
985 return _slow_array_clip(self, min, max, out);
986 }
987 }
988 else {
989 indescr = PyArray_DESCR(self);
990 Py_INCREF(indescr)_Py_INCREF(((PyObject*)(indescr)));
991 }
992 Py_DECREF(newdescr)_Py_DECREF(((PyObject*)(newdescr)));
993 newdescr = NULL((void*)0);
994
995 if (!PyDataType_ISNOTSWAPPED(indescr)((((PyArray_Descr *)(indescr))->byteorder) != '>')) {
996 PyArray_Descr *descr2;
997 descr2 = PyArray_DescrNewByteorder(indescr, '=');
998 Py_DECREF(indescr)_Py_DECREF(((PyObject*)(indescr)));
999 indescr = NULL((void*)0);
1000 if (descr2 == NULL((void*)0)) {
1001 goto fail;
1002 }
1003 indescr = descr2;
1004 }
1005
1006 /* Convert max to an array */
1007 if (max != NULL((void*)0)) {
1008 Py_INCREF(indescr)_Py_INCREF(((PyObject*)(indescr)));
1009 maxa = (PyArrayObject *)PyArray_FromAny(max, indescr, 0, 0,
1010 NPY_ARRAY_DEFAULT((0x0001 | (0x0100 | 0x0400))), NULL((void*)0));
1011 if (maxa == NULL((void*)0)) {
1012 goto fail;
1013 }
1014 }
1015
1016 /*
1017 * If we are unsigned, then make sure min is not < 0
1018 * This is to match the behavior of _slow_array_clip
1019 *
1020 * We allow min and max to go beyond the limits
1021 * for other data-types in which case they
1022 * are interpreted as their modular counterparts.
1023 */
1024 if (min != NULL((void*)0)) {
1025 if (PyArray_ISUNSIGNED(self)(((PyArray_TYPE(self)) == NPY_UBYTE) || ((PyArray_TYPE(self))
== NPY_USHORT) || ((PyArray_TYPE(self)) == NPY_UINT) || ((PyArray_TYPE
(self)) == NPY_ULONG) || ((PyArray_TYPE(self)) == NPY_ULONGLONG
))
) {
1026 int cmp;
1027 zero = PyLong_FromLong(0);
1028 cmp = PyObject_RichCompareBool(min, zero, Py_LT0);
1029 if (cmp == -1) {
1030 Py_DECREF(zero)_Py_DECREF(((PyObject*)(zero)));
1031 goto fail;
1032 }
1033 if (cmp == 1) {
1034 min = zero;
1035 }
1036 else {
1037 Py_DECREF(zero)_Py_DECREF(((PyObject*)(zero)));
1038 Py_INCREF(min)_Py_INCREF(((PyObject*)(min)));
1039 }
1040 }
1041 else {
1042 Py_INCREF(min)_Py_INCREF(((PyObject*)(min)));
1043 }
1044
1045 /* Convert min to an array */
1046 Py_INCREF(indescr)_Py_INCREF(((PyObject*)(indescr)));
1047 mina = (PyArrayObject *)PyArray_FromAny(min, indescr, 0, 0,
1048 NPY_ARRAY_DEFAULT((0x0001 | (0x0100 | 0x0400))), NULL((void*)0));
1049 Py_DECREF(min)_Py_DECREF(((PyObject*)(min)));
1050 if (mina == NULL((void*)0)) {
1051 goto fail;
1052 }
1053 }
1054
1055 /*
1056 * Check to see if input is single-segment, aligned,
1057 * and in native byteorder
1058 */
1059 if (PyArray_ISONESEGMENT(self)(PyArray_CHKFLAGS(self, 0x0001) || PyArray_CHKFLAGS(self, 0x0002
))
&&
1060 PyArray_CHKFLAGS(self, NPY_ARRAY_ALIGNED0x0100) &&
1061 PyArray_ISNOTSWAPPED(self)((PyArray_DESCR(self)->byteorder) != '>') &&
1062 (PyArray_DESCR(self) == indescr)) {
1063 ingood = 1;
1064 }
1065 if (!ingood) {
1066 int flags;
1067
1068 if (PyArray_ISFORTRAN(self)(PyArray_CHKFLAGS(self, 0x0002) && (!PyArray_CHKFLAGS
(self, 0x0001)))
) {
1069 flags = NPY_ARRAY_FARRAY(0x0002 | (0x0100 | 0x0400));
1070 }
1071 else {
1072 flags = NPY_ARRAY_CARRAY(0x0001 | (0x0100 | 0x0400));
1073 }
1074 Py_INCREF(indescr)_Py_INCREF(((PyObject*)(indescr)));
1075 newin = (PyArrayObject *)PyArray_FromArray(self, indescr, flags);
1076 if (newin == NULL((void*)0)) {
1077 goto fail;
1078 }
1079 }
1080 else {
1081 newin = self;
1082 Py_INCREF(newin)_Py_INCREF(((PyObject*)(newin)));
1083 }
1084
1085 /*
1086 * At this point, newin is a single-segment, aligned, and correct
1087 * byte-order array of the correct type
1088 *
1089 * if ingood == 0, then it is a copy, otherwise,
1090 * it is the original input.
1091 */
1092
1093 /*
1094 * If we have already made a copy of the data, then use
1095 * that as the output array
1096 */
1097 if (out == NULL((void*)0) && !ingood) {
1098 out = newin;
1099 }
1100
1101 /*
1102 * Now, we know newin is a usable array for fastclip,
1103 * we need to make sure the output array is available
1104 * and usable
1105 */
1106 if (out == NULL((void*)0)) {
1107 Py_INCREF(indescr)_Py_INCREF(((PyObject*)(indescr)));
1108 out = (PyArrayObject*)PyArray_NewFromDescr(Py_TYPE(self)(((PyObject*)(self))->ob_type),
1109 indescr, PyArray_NDIM(self),
1110 PyArray_DIMS(self),
1111 NULL((void*)0), NULL((void*)0),
1112 PyArray_ISFORTRAN(self)(PyArray_CHKFLAGS(self, 0x0002) && (!PyArray_CHKFLAGS
(self, 0x0001)))
,
1113 (PyObject *)self);
1114 if (out == NULL((void*)0)) {
1115 goto fail;
1116 }
1117
1118 outgood = 1;
1119 }
1120 else Py_INCREF(out)_Py_INCREF(((PyObject*)(out)));
1121 /* Input is good at this point */
1122 if (out == newin) {
1123 outgood = 1;
1124 }
1125
1126
1127 /* make sure the shape of the output array is the same */
1128 if (!PyArray_SAMESHAPE(newin, out)((PyArray_NDIM(newin) == PyArray_NDIM(out)) && PyArray_CompareLists
(PyArray_DIMS(newin), PyArray_DIMS(out), PyArray_NDIM(newin))
)
) {
1129 PyErr_SetString(PyExc_ValueError, "clip: Output array must have the"
1130 "same shape as the input.");
1131 goto fail;
1132 }
1133
1134 if (!outgood && PyArray_EQUIVALENTLY_ITERABLE(( ( PyArray_NDIM(self) == PyArray_NDIM(out) && PyArray_CompareLists
(PyArray_DIMS(self), PyArray_DIMS(out), PyArray_NDIM(self)) &&
(PyArray_FLAGS(self)&(0x0001| 0x0002)) & (PyArray_FLAGS
(out)&(0x0001| 0x0002)) ) && PyArray_EQUIVALENTLY_ITERABLE_OVERLAP_OK
( self, out, 1, 0))
1135 self, out, PyArray_TRIVIALLY_ITERABLE_OP_READ,( ( PyArray_NDIM(self) == PyArray_NDIM(out) && PyArray_CompareLists
(PyArray_DIMS(self), PyArray_DIMS(out), PyArray_NDIM(self)) &&
(PyArray_FLAGS(self)&(0x0001| 0x0002)) & (PyArray_FLAGS
(out)&(0x0001| 0x0002)) ) && PyArray_EQUIVALENTLY_ITERABLE_OVERLAP_OK
( self, out, 1, 0))
1136 PyArray_TRIVIALLY_ITERABLE_OP_NOREAD)( ( PyArray_NDIM(self) == PyArray_NDIM(out) && PyArray_CompareLists
(PyArray_DIMS(self), PyArray_DIMS(out), PyArray_NDIM(self)) &&
(PyArray_FLAGS(self)&(0x0001| 0x0002)) & (PyArray_FLAGS
(out)&(0x0001| 0x0002)) ) && PyArray_EQUIVALENTLY_ITERABLE_OVERLAP_OK
( self, out, 1, 0))
&&
1137 PyArray_CHKFLAGS(out, NPY_ARRAY_ALIGNED0x0100) &&
1138 PyArray_ISNOTSWAPPED(out)((PyArray_DESCR(out)->byteorder) != '>') &&
1139 PyArray_EquivTypes(PyArray_DESCR(out), indescr)) {
1140 outgood = 1;
1141 }
1142
1143 /*
1144 * Do we still not have a suitable output array?
1145 * Create one, now. No matter why the array is not suitable a copy has
1146 * to be made. This may be just to avoid memory overlap though.
1147 */
1148 if (!outgood) {
1149 int oflags;
1150 if (PyArray_ISFORTRAN(self)(PyArray_CHKFLAGS(self, 0x0002) && (!PyArray_CHKFLAGS
(self, 0x0001)))
) {
1151 oflags = NPY_ARRAY_FARRAY(0x0002 | (0x0100 | 0x0400));
1152 }
1153 else {
1154 oflags = NPY_ARRAY_CARRAY(0x0001 | (0x0100 | 0x0400));
1155 }
1156 oflags |= (NPY_ARRAY_WRITEBACKIFCOPY0x2000 | NPY_ARRAY_FORCECAST0x0010 |
1157 NPY_ARRAY_ENSURECOPY0x0020);
1158 Py_INCREF(indescr)_Py_INCREF(((PyObject*)(indescr)));
1159 newout = (PyArrayObject*)PyArray_FromArray(out, indescr, oflags);
1160 if (newout == NULL((void*)0)) {
1161 goto fail;
1162 }
1163 }
1164 else {
1165 newout = out;
1166 Py_INCREF(newout)_Py_INCREF(((PyObject*)(newout)));
1167 }
1168
1169 /* Now we can call the fast-clip function */
1170 min_data = max_data = NULL((void*)0);
1171 if (mina != NULL((void*)0)) {
1172 min_data = PyArray_DATA(mina);
1173 }
1174 if (maxa != NULL((void*)0)) {
1175 max_data = PyArray_DATA(maxa);
1176 }
1177 func(PyArray_DATA(newin), PyArray_SIZE(newin)PyArray_MultiplyList(PyArray_DIMS(newin), PyArray_NDIM(newin)
)
, min_data, max_data, PyArray_DATA(newout));
1178
1179 /* Clean up temporary variables */
1180 Py_XDECREF(indescr)_Py_XDECREF(((PyObject*)(indescr)));
1181 Py_XDECREF(newdescr)_Py_XDECREF(((PyObject*)(newdescr)));
1182 Py_XDECREF(mina)_Py_XDECREF(((PyObject*)(mina)));
1183 Py_XDECREF(maxa)_Py_XDECREF(((PyObject*)(maxa)));
1184 Py_DECREF(newin)_Py_DECREF(((PyObject*)(newin)));
1185 /* Copy back into out if out was not already a nice array. */
1186 PyArray_ResolveWritebackIfCopy(newout);
1187 Py_DECREF(newout)_Py_DECREF(((PyObject*)(newout)));
1188 return (PyObject *)out;
1189
1190 fail:
1191 Py_XDECREF(indescr)_Py_XDECREF(((PyObject*)(indescr)));
1192 Py_XDECREF(newdescr)_Py_XDECREF(((PyObject*)(newdescr)));
1193 Py_XDECREF(maxa)_Py_XDECREF(((PyObject*)(maxa)));
1194 Py_XDECREF(mina)_Py_XDECREF(((PyObject*)(mina)));
1195 Py_XDECREF(newin)_Py_XDECREF(((PyObject*)(newin)));
1196 PyArray_DiscardWritebackIfCopy(newout);
1197 Py_XDECREF(newout)_Py_XDECREF(((PyObject*)(newout)));
1198 return NULL((void*)0);
1199}
1200
1201
1202/*NUMPY_API
1203 * Conjugate
1204 */
1205NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1206PyArray_Conjugate(PyArrayObject *self, PyArrayObject *out)
1207{
1208 if (PyArray_ISCOMPLEX(self)(((PyArray_TYPE(self)) >= NPY_CFLOAT) && ((PyArray_TYPE
(self)) <= NPY_CLONGDOUBLE))
|| PyArray_ISOBJECT(self)((PyArray_TYPE(self)) == NPY_OBJECT) ||
1209 PyArray_ISUSERDEF(self)(((PyArray_TYPE(self)) >= NPY_USERDEF) && ((PyArray_TYPE
(self)) < NPY_USERDEF+ NPY_NUMUSERTYPES))
) {
1210 if (out == NULL((void*)0)) {
1211 return PyArray_GenericUnaryFunction(self,
1212 n_ops.conjugate);
1213 }
1214 else {
1215 return PyArray_GenericBinaryFunction((PyObject *)self,
1216 (PyObject *)out,
1217 n_ops.conjugate);
1218 }
1219 }
1220 else {
1221 PyArrayObject *ret;
1222 if (!PyArray_ISNUMBER(self)(((PyArray_TYPE(self)) <= NPY_CLONGDOUBLE) || ((PyArray_TYPE
(self)) == NPY_HALF))
) {
1223 /* 2017-05-04, 1.13 */
1224 if (DEPRECATE("attempting to conjugate non-numeric dtype; this "PyErr_WarnEx(PyExc_DeprecationWarning,"attempting to conjugate non-numeric dtype; this "
"will error in the future to match the behavior of " "np.conjugate"
,1)
1225 "will error in the future to match the behavior of "PyErr_WarnEx(PyExc_DeprecationWarning,"attempting to conjugate non-numeric dtype; this "
"will error in the future to match the behavior of " "np.conjugate"
,1)
1226 "np.conjugate")PyErr_WarnEx(PyExc_DeprecationWarning,"attempting to conjugate non-numeric dtype; this "
"will error in the future to match the behavior of " "np.conjugate"
,1)
< 0) {
1227 return NULL((void*)0);
1228 }
1229 }
1230 if (out) {
1231 if (PyArray_AssignArray(out, self,
1232 NULL((void*)0), NPY_DEFAULT_ASSIGN_CASTING) < 0) {
1233 return NULL((void*)0);
1234 }
1235 ret = out;
1236 }
1237 else {
1238 ret = self;
1239 }
1240 Py_INCREF(ret)_Py_INCREF(((PyObject*)(ret)));
1241 return (PyObject *)ret;
1242 }
1243}
1244
1245/*NUMPY_API
1246 * Trace
1247 */
1248NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1249PyArray_Trace(PyArrayObject *self, int offset, int axis1, int axis2,
1250 int rtype, PyArrayObject *out)
1251{
1252 PyObject *diag = NULL((void*)0), *ret = NULL((void*)0);
1253
1254 diag = PyArray_Diagonal(self, offset, axis1, axis2);
1255 if (diag == NULL((void*)0)) {
1256 return NULL((void*)0);
1257 }
1258 ret = PyArray_GenericReduceFunction((PyArrayObject *)diag, n_ops.add, -1, rtype, out);
1259 Py_DECREF(diag)_Py_DECREF(((PyObject*)(diag)));
1260 return ret;
1261}

/opt/pyrefcon/lib/pyrefcon/models/models/PyNumber_Subtract.model

1#ifndef PyNumber_Subtract
2struct _object;
3typedef struct _object PyObject;
4PyObject* clang_analyzer_PyObject_New_Reference();
5PyObject* PyNumber_Subtract(PyObject *o1, PyObject *o2) {
6 return clang_analyzer_PyObject_New_Reference();
11
Setting reference count to 1
7}
8#else
9#warning "API PyNumber_Subtract is defined as a macro."
10#endif

/tmp/pyrefcon/numpy/numpy/core/src/multiarray/ctors.c

1#define PY_SSIZE_T_CLEAN
2#include <Python.h>
3#include "structmember.h"
4
5#define NPY_NO_DEPRECATED_API0x0000000E NPY_API_VERSION0x0000000E
6#define _MULTIARRAYMODULE
7#include "numpy/arrayobject.h"
8#include "numpy/arrayscalars.h"
9
10#include "numpy/npy_math.h"
11
12#include "npy_config.h"
13
14#include "npy_ctypes.h"
15#include "npy_pycompat.h"
16#include "multiarraymodule.h"
17
18#include "common.h"
19#include "ctors.h"
20#include "convert_datatype.h"
21#include "shape.h"
22#include "npy_buffer.h"
23#include "lowlevel_strided_loops.h"
24#include "_datetime.h"
25#include "datetime_strings.h"
26#include "array_assign.h"
27#include "mapping.h" /* for array_item_asarray */
28#include "templ_common.h" /* for npy_mul_with_overflow_intp */
29#include "alloc.h"
30#include <assert.h>
31
32#include "get_attr_string.h"
33#include "array_coercion.h"
34
35/*
36 * Reading from a file or a string.
37 *
38 * As much as possible, we try to use the same code for both files and strings,
39 * so the semantics for fromstring and fromfile are the same, especially with
40 * regards to the handling of text representations.
41 */
42
43/*
44 * Scanning function for next element parsing and separator skipping.
45 * These functions return:
46 * - 0 to indicate more data to read
47 * - -1 when reading stopped at the end of the string/file
48 * - -2 when reading stopped before the end was reached.
49 *
50 * The dtype specific parsing functions may set the python error state
51 * (they have to get the GIL first) additionally.
52 */
53typedef int (*next_element)(void **, void *, PyArray_Descr *, void *);
54typedef int (*skip_separator)(void **, const char *, void *);
55
56
57static npy_bool
58string_is_fully_read(char const* start, char const* end) {
59 if (end == NULL((void*)0)) {
60 return *start == '\0'; /* null terminated */
61 }
62 else {
63 return start >= end; /* fixed length */
64 }
65}
66
67
68static int
69fromstr_next_element(char **s, void *dptr, PyArray_Descr *dtype,
70 const char *end)
71{
72 char *e = *s;
73 int r = dtype->f->fromstr(*s, dptr, &e, dtype);
74 /*
75 * fromstr always returns 0 for basic dtypes; s points to the end of the
76 * parsed string. If s is not changed an error occurred or the end was
77 * reached.
78 */
79 if (*s == e || r < 0) {
80 /* Nothing read, could be end of string or an error (or both) */
81 if (string_is_fully_read(*s, end)) {
82 return -1;
83 }
84 return -2;
85 }
86 *s = e;
87 if (end != NULL((void*)0) && *s > end) {
88 /* Stop the iteration if we read far enough */
89 return -1;
90 }
91 return 0;
92}
93
94static int
95fromfile_next_element(FILE **fp, void *dptr, PyArray_Descr *dtype,
96 void *NPY_UNUSED(stream_data)(__NPY_UNUSED_TAGGEDstream_data) __attribute__ ((__unused__)))
97{
98 /* the NULL argument is for backwards-compatibility */
99 int r = dtype->f->scanfunc(*fp, dptr, NULL((void*)0), dtype);
100 /* r can be EOF or the number of items read (0 or 1) */
101 if (r == 1) {
102 return 0;
103 }
104 else if (r == EOF(-1)) {
105 return -1;
106 }
107 else {
108 /* unable to read more, but EOF not reached indicating an error. */
109 return -2;
110 }
111}
112
113/*
114 * Remove multiple whitespace from the separator, and add a space to the
115 * beginning and end. This simplifies the separator-skipping code below.
116 */
117static char *
118swab_separator(const char *sep)
119{
120 int skip_space = 0;
121 char *s, *start;
122
123 s = start = malloc(strlen(sep)+3);
124 if (s == NULL((void*)0)) {
125 PyErr_NoMemory();
126 return NULL((void*)0);
127 }
128 /* add space to front if there isn't one */
129 if (*sep != '\0' && !isspace(*sep)((*__ctype_b_loc ())[(int) ((*sep))] & (unsigned short int
) _ISspace)
) {
130 *s = ' '; s++;
131 }
132 while (*sep != '\0') {
133 if (isspace(*sep)((*__ctype_b_loc ())[(int) ((*sep))] & (unsigned short int
) _ISspace)
) {
134 if (skip_space) {
135 sep++;
136 }
137 else {
138 *s = ' ';
139 s++;
140 sep++;
141 skip_space = 1;
142 }
143 }
144 else {
145 *s = *sep;
146 s++;
147 sep++;
148 skip_space = 0;
149 }
150 }
151 /* add space to end if there isn't one */
152 if (s != start && s[-1] == ' ') {
153 *s = ' ';
154 s++;
155 }
156 *s = '\0';
157 return start;
158}
159
160/*
161 * Assuming that the separator is the next bit in the string (file), skip it.
162 *
163 * Single spaces in the separator are matched to arbitrary-long sequences
164 * of whitespace in the input. If the separator consists only of spaces,
165 * it matches one or more whitespace characters.
166 *
167 * If we can't match the separator, return -2.
168 * If we hit the end of the string (file), return -1.
169 * Otherwise, return 0.
170 */
171static int
172fromstr_skip_separator(char **s, const char *sep, const char *end)
173{
174 char *string = *s;
175 int result = 0;
176
177 while (1) {
178 char c = *string;
179 if (string_is_fully_read(string, end)) {
180 result = -1;
181 break;
182 }
183 else if (*sep == '\0') {
184 if (string != *s) {
185 /* matched separator */
186 result = 0;
187 break;
188 }
189 else {
190 /* separator was whitespace wildcard that didn't match */
191 result = -2;
192 break;
193 }
194 }
195 else if (*sep == ' ') {
196 /* whitespace wildcard */
197 if (!isspace(c)((*__ctype_b_loc ())[(int) ((c))] & (unsigned short int) _ISspace
)
) {
198 sep++;
199 continue;
200 }
201 }
202 else if (*sep != c) {
203 result = -2;
204 break;
205 }
206 else {
207 sep++;
208 }
209 string++;
210 }
211 *s = string;
212 return result;
213}
214
215static int
216fromfile_skip_separator(FILE **fp, const char *sep, void *NPY_UNUSED(stream_data)(__NPY_UNUSED_TAGGEDstream_data) __attribute__ ((__unused__)))
217{
218 int result = 0;
219 const char *sep_start = sep;
220
221 while (1) {
222 int c = fgetc(*fp);
223
224 if (c == EOF(-1)) {
225 result = -1;
226 break;
227 }
228 else if (*sep == '\0') {
229 ungetc(c, *fp);
230 if (sep != sep_start) {
231 /* matched separator */
232 result = 0;
233 break;
234 }
235 else {
236 /* separator was whitespace wildcard that didn't match */
237 result = -2;
238 break;
239 }
240 }
241 else if (*sep == ' ') {
242 /* whitespace wildcard */
243 if (!isspace(c)((*__ctype_b_loc ())[(int) ((c))] & (unsigned short int) _ISspace
)
) {
244 sep++;
245 sep_start++;
246 ungetc(c, *fp);
247 }
248 else if (sep == sep_start) {
249 sep_start--;
250 }
251 }
252 else if (*sep != c) {
253 ungetc(c, *fp);
254 result = -2;
255 break;
256 }
257 else {
258 sep++;
259 }
260 }
261 return result;
262}
263
264/*
265 * Change a sub-array field to the base descriptor
266 * and update the dimensions and strides
267 * appropriately. Dimensions and strides are added
268 * to the end.
269 *
270 * Strides are only added if given (because data is given).
271 */
272static int
273_update_descr_and_dimensions(PyArray_Descr **des, npy_intp *newdims,
274 npy_intp *newstrides, int oldnd)
275{
276 PyArray_Descr *old;
277 int newnd;
278 int numnew;
279 npy_intp *mydim;
280 int i;
281 int tuple;
282
283 old = *des;
284 *des = old->subarray->base;
285
286
287 mydim = newdims + oldnd;
288 tuple = PyTuple_Check(old->subarray->shape)((((((PyObject*)(old->subarray->shape))->ob_type))->
tp_flags & ((1UL << 26))) != 0)
;
289 if (tuple) {
290 numnew = PyTuple_GET_SIZE(old->subarray->shape)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(old->subarray
->shape))))->ob_size)
;
291 }
292 else {
293 numnew = 1;
294 }
295
296
297 newnd = oldnd + numnew;
298 if (newnd > NPY_MAXDIMS32) {
299 goto finish;
300 }
301 if (tuple) {
302 for (i = 0; i < numnew; i++) {
303 mydim[i] = (npy_intp) PyLong_AsLong(
304 PyTuple_GET_ITEM(old->subarray->shape, i)((((void) (0)), (PyTupleObject *)(old->subarray->shape)
)->ob_item[i])
);
305 }
306 }
307 else {
308 mydim[0] = (npy_intp) PyLong_AsLong(old->subarray->shape);
309 }
310
311 if (newstrides) {
312 npy_intp tempsize;
313 npy_intp *mystrides;
314
315 mystrides = newstrides + oldnd;
316 /* Make new strides -- always C-contiguous */
317 tempsize = (*des)->elsize;
318 for (i = numnew - 1; i >= 0; i--) {
319 mystrides[i] = tempsize;
320 tempsize *= mydim[i] ? mydim[i] : 1;
321 }
322 }
323
324 finish:
325 Py_INCREF(*des)_Py_INCREF(((PyObject*)(*des)));
326 Py_DECREF(old)_Py_DECREF(((PyObject*)(old)));
327 return newnd;
328}
329
330NPY_NO_EXPORT__attribute__((visibility("hidden"))) void
331_unaligned_strided_byte_copy(char *dst, npy_intp outstrides, char *src,
332 npy_intp instrides, npy_intp N, int elsize)
333{
334 npy_intp i;
335 char *tout = dst;
336 char *tin = src;
337
338#define _COPY_N_SIZE(size) \
339 for(i=0; i<N; i++) { \
340 memcpy(tout, tin, size); \
341 tin += instrides; \
342 tout += outstrides; \
343 } \
344 return
345
346 switch(elsize) {
347 case 8:
348 _COPY_N_SIZE(8);
349 case 4:
350 _COPY_N_SIZE(4);
351 case 1:
352 _COPY_N_SIZE(1);
353 case 2:
354 _COPY_N_SIZE(2);
355 case 16:
356 _COPY_N_SIZE(16);
357 default:
358 _COPY_N_SIZE(elsize);
359 }
360#undef _COPY_N_SIZE
361
362}
363
364NPY_NO_EXPORT__attribute__((visibility("hidden"))) void
365_strided_byte_swap(void *p, npy_intp stride, npy_intp n, int size)
366{
367 char *a, *b, c = 0;
368 int j, m;
369
370 switch(size) {
371 case 1: /* no byteswap necessary */
372 break;
373 case 4:
374 if (npy_is_aligned((void*)((npy_intp)p | stride), sizeof(npy_uint32))) {
375 for (a = (char*)p; n > 0; n--, a += stride) {
376 npy_uint32 * a_ = (npy_uint32 *)a;
377 *a_ = npy_bswap4(*a_);
378 }
379 }
380 else {
381 for (a = (char*)p; n > 0; n--, a += stride) {
382 npy_bswap4_unaligned(a);
383 }
384 }
385 break;
386 case 8:
387 if (npy_is_aligned((void*)((npy_intp)p | stride), sizeof(npy_uint64))) {
388 for (a = (char*)p; n > 0; n--, a += stride) {
389 npy_uint64 * a_ = (npy_uint64 *)a;
390 *a_ = npy_bswap8(*a_);
391 }
392 }
393 else {
394 for (a = (char*)p; n > 0; n--, a += stride) {
395 npy_bswap8_unaligned(a);
396 }
397 }
398 break;
399 case 2:
400 if (npy_is_aligned((void*)((npy_intp)p | stride), sizeof(npy_uint16))) {
401 for (a = (char*)p; n > 0; n--, a += stride) {
402 npy_uint16 * a_ = (npy_uint16 *)a;
403 *a_ = npy_bswap2(*a_);
404 }
405 }
406 else {
407 for (a = (char*)p; n > 0; n--, a += stride) {
408 npy_bswap2_unaligned(a);
409 }
410 }
411 break;
412 default:
413 m = size/2;
414 for (a = (char *)p; n > 0; n--, a += stride - m) {
415 b = a + (size - 1);
416 for (j = 0; j < m; j++) {
417 c=*a; *a++ = *b; *b-- = c;
418 }
419 }
420 break;
421 }
422}
423
424NPY_NO_EXPORT__attribute__((visibility("hidden"))) void
425byte_swap_vector(void *p, npy_intp n, int size)
426{
427 _strided_byte_swap(p, (npy_intp) size, n, size);
428 return;
429}
430
431/* If numitems > 1, then dst must be contiguous */
432NPY_NO_EXPORT__attribute__((visibility("hidden"))) void
433copy_and_swap(void *dst, void *src, int itemsize, npy_intp numitems,
434 npy_intp srcstrides, int swap)
435{
436 if ((numitems == 1) || (itemsize == srcstrides)) {
437 memcpy(dst, src, itemsize*numitems);
438 }
439 else {
440 npy_intp i;
441 char *s1 = (char *)src;
442 char *d1 = (char *)dst;
443
444 for (i = 0; i < numitems; i++) {
445 memcpy(d1, s1, itemsize);
446 d1 += itemsize;
447 s1 += srcstrides;
448 }
449 }
450
451 if (swap) {
452 byte_swap_vector(dst, numitems, itemsize);
453 }
454}
455
456
457/*
458 * Recursive helper to assign using a coercion cache. This function
459 * must consume the cache depth first, just as the cache was originally
460 * produced.
461 */
462NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
463PyArray_AssignFromCache_Recursive(
464 PyArrayObject *self, const int ndim, coercion_cache_obj **cache)
465{
466 /* Consume first cache element by extracting information and freeing it */
467 PyObject *original_obj = (*cache)->converted_obj;
468 PyObject *obj = (*cache)->arr_or_sequence;
469 Py_INCREF(obj)_Py_INCREF(((PyObject*)(obj)));
470 npy_bool sequence = (*cache)->sequence;
471 int depth = (*cache)->depth;
472 *cache = npy_unlink_coercion_cache(*cache);
473
474 /*
475 * The maximum depth is special (specifically for objects), but usually
476 * unrolled in the sequence branch below.
477 */
478 if (NPY_UNLIKELY(depth == ndim)__builtin_expect(!!(depth == ndim), 0)) {
479 /*
480 * We have reached the maximum depth. We should simply assign to the
481 * element in principle. There is one exception. If this is a 0-D
482 * array being stored into a 0-D array (but we do not reach here then).
483 */
484 if (PyArray_ISOBJECT(self)((PyArray_TYPE(self)) == NPY_OBJECT)) {
485 assert(ndim != 0)((void) (0)); /* guaranteed by PyArray_AssignFromCache */
486 assert(PyArray_NDIM(self) == 0)((void) (0));
487 Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj)));
488 return PyArray_Pack(PyArray_DESCR(self), PyArray_BYTES(self),
489 original_obj);
490 }
491 if (sequence) {
492 /*
493 * Sanity check which may be removed, the error is raised already
494 * in `PyArray_DiscoverDTypeAndShape`.
495 */
496 assert(0)((void) (0));
497 PyErr_SetString(PyExc_RuntimeError,
498 "setting an array element with a sequence");
499 goto fail;
500 }
501 else if (original_obj != obj || !PyArray_CheckExact(obj)(((PyObject*)(obj))->ob_type == &PyArray_Type)) {
502 /*
503 * If the leave node is an array-like, but not a numpy array,
504 * we pretend it is an arbitrary scalar. This means that in
505 * most cases (where the dtype is int or float), we will end
506 * up using float(array-like), or int(array-like). That does
507 * not support general casting, but helps Quantity and masked
508 * arrays, because it allows them to raise an error when
509 * `__float__()` or `__int__()` is called.
510 */
511 Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj)));
512 return PyArray_SETITEM(self, PyArray_BYTES(self), original_obj);
513 }
514 }
515
516 /* The element is either a sequence, or an array */
517 if (!sequence) {
518 /* Straight forward array assignment */
519 assert(PyArray_Check(obj))((void) (0));
520 if (PyArray_CopyInto(self, (PyArrayObject *)obj) < 0) {
521 goto fail;
522 }
523 }
524 else {
525 assert(depth != ndim)((void) (0));
526 npy_intp length = PySequence_LengthPySequence_Size(obj);
527 if (length != PyArray_DIMS(self)[0]) {
528 PyErr_SetString(PyExc_RuntimeError,
529 "Inconsistent object during array creation? "
530 "Content of sequences changed (length inconsistent).");
531 goto fail;
532 }
533
534 for (npy_intp i = 0; i < length; i++) {
535 PyObject *value = PySequence_Fast_GET_ITEM(obj, i)(((((((PyObject*)(obj))->ob_type))->tp_flags & ((1UL
<< 25))) != 0) ? (((PyListObject *)(obj))->ob_item[
i]) : ((((void) (0)), (PyTupleObject *)(obj))->ob_item[i])
)
;
536
537 if (*cache == NULL((void*)0) || (*cache)->converted_obj != value ||
538 (*cache)->depth != depth + 1) {
539 if (ndim != depth + 1) {
540 PyErr_SetString(PyExc_RuntimeError,
541 "Inconsistent object during array creation? "
542 "Content of sequences changed (now too shallow).");
543 goto fail;
544 }
545 /* Straight forward assignment of elements */
546 char *item;
547 item = (PyArray_BYTES(self) + i * PyArray_STRIDES(self)[0]);
548 if (PyArray_Pack(PyArray_DESCR(self), item, value) < 0) {
549 goto fail;
550 }
551 }
552 else {
553 PyArrayObject *view;
554 view = (PyArrayObject *)array_item_asarray(self, i);
555 if (view == NULL((void*)0)) {
556 goto fail;
557 }
558 if (PyArray_AssignFromCache_Recursive(view, ndim, cache) < 0) {
559 Py_DECREF(view)_Py_DECREF(((PyObject*)(view)));
560 goto fail;
561 }
562 Py_DECREF(view)_Py_DECREF(((PyObject*)(view)));
563 }
564 }
565 }
566 Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj)));
567 return 0;
568
569 fail:
570 Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj)));
571 return -1;
572}
573
574
575/**
576 * Fills an item based on a coercion cache object. It consumes the cache
577 * object while doing so.
578 *
579 * @param self Array to fill.
580 * @param cache coercion_cache_object, will be consumed. The cache must not
581 * contain a single array (must start with a sequence). The array case
582 * should be handled by `PyArray_FromArray()` before.
583 * @return 0 on success -1 on failure.
584 */
585NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
586PyArray_AssignFromCache(PyArrayObject *self, coercion_cache_obj *cache) {
587 int ndim = PyArray_NDIM(self);
588 /*
589 * Do not support ndim == 0 now with an array in the cache.
590 * The ndim == 0 is special because np.array(np.array(0), dtype=object)
591 * should unpack the inner array.
592 * Since the single-array case is special, it is handled previously
593 * in either case.
594 */
595 assert(cache->sequence)((void) (0));
596 assert(ndim != 0)((void) (0)); /* guaranteed if cache contains a sequence */
597
598 if (PyArray_AssignFromCache_Recursive(self, ndim, &cache) < 0) {
599 /* free the remaining cache. */
600 npy_free_coercion_cache(cache);
601 return -1;
602 }
603
604 /*
605 * Sanity check, this is the initial call, and when it returns, the
606 * cache has to be fully consumed, otherwise something is wrong.
607 * NOTE: May be nicer to put into a recursion helper.
608 */
609 if (cache != NULL((void*)0)) {
610 PyErr_SetString(PyExc_RuntimeError,
611 "Inconsistent object during array creation? "
612 "Content of sequences changed (cache not consumed).");
613 npy_free_coercion_cache(cache);
614 return -1;
615 }
616 return 0;
617}
618
619
620static void
621raise_memory_error(int nd, npy_intp const *dims, PyArray_Descr *descr)
622{
623 static PyObject *exc_type = NULL((void*)0);
624
625 npy_cache_import(
626 "numpy.core._exceptions", "_ArrayMemoryError",
627 &exc_type);
628 if (exc_type == NULL((void*)0)) {
629 goto fail;
630 }
631
632 PyObject *shape = PyArray_IntTupleFromIntp(nd, dims);
633 if (shape == NULL((void*)0)) {
634 goto fail;
635 }
636
637 /* produce an error object */
638 PyObject *exc_value = PyTuple_Pack(2, shape, (PyObject *)descr);
639 Py_DECREF(shape)_Py_DECREF(((PyObject*)(shape)));
640 if (exc_value == NULL((void*)0)){
641 goto fail;
642 }
643 PyErr_SetObject(exc_type, exc_value);
644 Py_DECREF(exc_value)_Py_DECREF(((PyObject*)(exc_value)));
645 return;
646
647fail:
648 /* we couldn't raise the formatted exception for some reason */
649 PyErr_WriteUnraisable(NULL((void*)0));
650 PyErr_NoMemory();
651}
652
653/*
654 * Generic new array creation routine.
655 * Internal variant with calloc argument for PyArray_Zeros.
656 *
657 * steals a reference to descr. On failure or descr->subarray, descr will
658 * be decrefed.
659 */
660NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
661PyArray_NewFromDescr_int(
662 PyTypeObject *subtype, PyArray_Descr *descr, int nd,
663 npy_intp const *dims, npy_intp const *strides, void *data,
664 int flags, PyObject *obj, PyObject *base, int zeroed,
665 int allow_emptystring)
666{
667 PyArrayObject_fields *fa;
668 npy_intp nbytes;
669
670 if (nd > NPY_MAXDIMS32 || nd < 0) {
671 PyErr_Format(PyExc_ValueError,
672 "number of dimensions must be within [0, %d]", NPY_MAXDIMS32);
673 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
674 return NULL((void*)0);
675 }
676
677 if (descr->subarray) {
678 PyObject *ret;
679 npy_intp newdims[2*NPY_MAXDIMS32];
680 npy_intp *newstrides = NULL((void*)0);
681 memcpy(newdims, dims, nd*sizeof(npy_intp));
682 if (strides) {
683 newstrides = newdims + NPY_MAXDIMS32;
684 memcpy(newstrides, strides, nd*sizeof(npy_intp));
685 }
686 nd =_update_descr_and_dimensions(&descr, newdims,
687 newstrides, nd);
688 ret = PyArray_NewFromDescr_int(
689 subtype, descr,
690 nd, newdims, newstrides, data,
691 flags, obj, base,
692 zeroed, allow_emptystring);
693 return ret;
694 }
695
696 /* Check datatype element size */
697 nbytes = descr->elsize;
698 if (PyDataType_ISUNSIZED(descr)((descr)->elsize == 0 && !(((PyArray_Descr *)(descr
))->names != ((void*)0)))
) {
699 if (!PyDataType_ISFLEXIBLE(descr)(((((PyArray_Descr*)(descr))->type_num) >=NPY_STRING) &&
((((PyArray_Descr*)(descr))->type_num) <=NPY_VOID))
) {
700 PyErr_SetString(PyExc_TypeError, "Empty data-type");
701 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
702 return NULL((void*)0);
703 }
704 else if (PyDataType_ISSTRING(descr)(((((PyArray_Descr*)(descr))->type_num) == NPY_STRING) || (
(((PyArray_Descr*)(descr))->type_num) == NPY_UNICODE))
&& !allow_emptystring &&
705 data == NULL((void*)0)) {
706 PyArray_DESCR_REPLACE(descr)do { PyArray_Descr *_new_; _new_ = PyArray_DescrNew(descr); _Py_XDECREF
(((PyObject*)(descr))); descr = _new_; } while(0)
;
707 if (descr == NULL((void*)0)) {
708 return NULL((void*)0);
709 }
710 if (descr->type_num == NPY_STRING) {
711 nbytes = descr->elsize = 1;
712 }
713 else {
714 nbytes = descr->elsize = sizeof(npy_ucs4);
715 }
716 }
717 }
718
719 fa = (PyArrayObject_fields *) subtype->tp_alloc(subtype, 0);
720 if (fa == NULL((void*)0)) {
721 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
722 return NULL((void*)0);
723 }
724 fa->_buffer_info = NULL((void*)0);
725 fa->nd = nd;
726 fa->dimensions = NULL((void*)0);
727 fa->data = NULL((void*)0);
728
729 if (data == NULL((void*)0)) {
730 fa->flags = NPY_ARRAY_DEFAULT((0x0001 | (0x0100 | 0x0400)));
731 if (flags) {
732 fa->flags |= NPY_ARRAY_F_CONTIGUOUS0x0002;
733 if (nd > 1) {
734 fa->flags &= ~NPY_ARRAY_C_CONTIGUOUS0x0001;
735 }
736 flags = NPY_ARRAY_F_CONTIGUOUS0x0002;
737 }
738 }
739 else {
740 fa->flags = (flags & ~NPY_ARRAY_WRITEBACKIFCOPY0x2000);
741 fa->flags &= ~NPY_ARRAY_UPDATEIFCOPY0x1000;
742 }
743 fa->descr = descr;
744 fa->base = (PyObject *)NULL((void*)0);
745 fa->weakreflist = (PyObject *)NULL((void*)0);
746
747 if (nd > 0) {
748 fa->dimensions = npy_alloc_cache_dim(2 * nd);
749 if (fa->dimensions == NULL((void*)0)) {
750 PyErr_NoMemory();
751 goto fail;
752 }
753 fa->strides = fa->dimensions + nd;
754
755 /* Copy dimensions, check them, and find total array size `nbytes` */
756 for (int i = 0; i < nd; i++) {
757 fa->dimensions[i] = dims[i];
758
759 if (fa->dimensions[i] == 0) {
760 /*
761 * Compare to PyArray_OverflowMultiplyList that
762 * returns 0 in this case.
763 */
764 continue;
765 }
766
767 if (fa->dimensions[i] < 0) {
768 PyErr_SetString(PyExc_ValueError,
769 "negative dimensions are not allowed");
770 goto fail;
771 }
772
773 /*
774 * Care needs to be taken to avoid integer overflow when multiplying
775 * the dimensions together to get the total size of the array.
776 */
777 if (npy_mul_with_overflow_intp(&nbytes, nbytes, fa->dimensions[i])) {
778 PyErr_SetString(PyExc_ValueError,
779 "array is too big; `arr.size * arr.dtype.itemsize` "
780 "is larger than the maximum possible size.");
781 goto fail;
782 }
783 }
784
785 /* Fill the strides (or copy them if they were passed in) */
786 if (strides == NULL((void*)0)) {
787 /* fill the strides and set the contiguity flags */
788 _array_fill_strides(fa->strides, dims, nd, descr->elsize,
789 flags, &(fa->flags));
790 }
791 else {
792 /* User to provided strides (user is responsible for correctness) */
793 for (int i = 0; i < nd; i++) {
794 fa->strides[i] = strides[i];
795 }
796 /* Since the strides were passed in must update contiguity */
797 PyArray_UpdateFlags((PyArrayObject *)fa,
798 NPY_ARRAY_C_CONTIGUOUS0x0001|NPY_ARRAY_F_CONTIGUOUS0x0002);
799 }
800 }
801 else {
802 fa->dimensions = NULL((void*)0);
803 fa->strides = NULL((void*)0);
804 fa->flags |= NPY_ARRAY_C_CONTIGUOUS0x0001|NPY_ARRAY_F_CONTIGUOUS0x0002;
805 }
806
807 if (data == NULL((void*)0)) {
808 /*
809 * Allocate something even for zero-space arrays
810 * e.g. shape=(0,) -- otherwise buffer exposure
811 * (a.data) doesn't work as it should.
812 * Could probably just allocate a few bytes here. -- Chuck
813 */
814 if (nbytes == 0) {
815 nbytes = descr->elsize ? descr->elsize : 1;
816 }
817 /*
818 * It is bad to have uninitialized OBJECT pointers
819 * which could also be sub-fields of a VOID array
820 */
821 if (zeroed || PyDataType_FLAGCHK(descr, NPY_NEEDS_INIT)(((descr)->flags & (0x08)) == (0x08))) {
822 data = npy_alloc_cache_zero(nbytes);
823 }
824 else {
825 data = npy_alloc_cache(nbytes);
826 }
827 if (data == NULL((void*)0)) {
828 raise_memory_error(fa->nd, fa->dimensions, descr);
829 goto fail;
830 }
831 fa->flags |= NPY_ARRAY_OWNDATA0x0004;
832 }
833 else {
834 /*
835 * If data is passed in, this object won't own it by default.
836 * Caller must arrange for this to be reset if truly desired
837 */
838 fa->flags &= ~NPY_ARRAY_OWNDATA0x0004;
839 }
840 fa->data = data;
841
842 /*
843 * Always update the aligned flag. Not owned data or input strides may
844 * not be aligned. Also on some platforms (debian sparc) malloc does not
845 * provide enough alignment for long double types.
846 */
847 PyArray_UpdateFlags((PyArrayObject *)fa, NPY_ARRAY_ALIGNED0x0100);
848
849 /* Set the base object. It's important to do it here so that
850 * __array_finalize__ below receives it
851 */
852 if (base != NULL((void*)0)) {
853 Py_INCREF(base)_Py_INCREF(((PyObject*)(base)));
854 if (PyArray_SetBaseObject((PyArrayObject *)fa, base) < 0) {
855 goto fail;
856 }
857 }
858
859 /*
860 * call the __array_finalize__ method if a subtype was requested.
861 * If obj is NULL use Py_None for the Python callback.
862 */
863 if (subtype != &PyArray_Type) {
864 PyObject *res, *func;
865
866 func = PyObject_GetAttr((PyObject *)fa, npy_ma_str_array_finalize);
867 if (func == NULL((void*)0)) {
868 goto fail;
869 }
870 else if (func == Py_None(&_Py_NoneStruct)) {
871 Py_DECREF(func)_Py_DECREF(((PyObject*)(func)));
872 }
873 else {
874 if (PyCapsule_CheckExact(func)((((PyObject*)(func))->ob_type) == &PyCapsule_Type)) {
875 /* A C-function is stored here */
876 PyArray_FinalizeFunc *cfunc;
877 cfunc = PyCapsule_GetPointer(func, NULL((void*)0));
878 Py_DECREF(func)_Py_DECREF(((PyObject*)(func)));
879 if (cfunc == NULL((void*)0)) {
880 goto fail;
881 }
882 if (cfunc((PyArrayObject *)fa, obj) < 0) {
883 goto fail;
884 }
885 }
886 else {
887 if (obj == NULL((void*)0)) {
888 obj = Py_None(&_Py_NoneStruct);
889 }
890 res = PyObject_CallFunctionObjArgs(func, obj, NULL((void*)0));
891 Py_DECREF(func)_Py_DECREF(((PyObject*)(func)));
892 if (res == NULL((void*)0)) {
893 goto fail;
894 }
895 else {
896 Py_DECREF(res)_Py_DECREF(((PyObject*)(res)));
897 }
898 }
899 }
900 }
901 return (PyObject *)fa;
902
903 fail:
904 Py_DECREF(fa)_Py_DECREF(((PyObject*)(fa)));
905 return NULL((void*)0);
906}
907
908
909/*NUMPY_API
910 * Generic new array creation routine.
911 *
912 * steals a reference to descr. On failure or when dtype->subarray is
913 * true, dtype will be decrefed.
914 */
915NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
916PyArray_NewFromDescr(
917 PyTypeObject *subtype, PyArray_Descr *descr,
918 int nd, npy_intp const *dims, npy_intp const *strides, void *data,
919 int flags, PyObject *obj)
920{
921 return PyArray_NewFromDescrAndBase(
922 subtype, descr,
923 nd, dims, strides, data,
924 flags, obj, NULL((void*)0));
925}
926
927/*
928 * Sets the base object using PyArray_SetBaseObject
929 */
930NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
931PyArray_NewFromDescrAndBase(
932 PyTypeObject *subtype, PyArray_Descr *descr,
933 int nd, npy_intp const *dims, npy_intp const *strides, void *data,
934 int flags, PyObject *obj, PyObject *base)
935{
936 return PyArray_NewFromDescr_int(subtype, descr, nd,
937 dims, strides, data,
938 flags, obj, base, 0, 0);
939}
940
941/*
942 * Creates a new array with the same shape as the provided one,
943 * with possible memory layout order, data type and shape changes.
944 *
945 * prototype - The array the new one should be like.
946 * order - NPY_CORDER - C-contiguous result.
947 * NPY_FORTRANORDER - Fortran-contiguous result.
948 * NPY_ANYORDER - Fortran if prototype is Fortran, C otherwise.
949 * NPY_KEEPORDER - Keeps the axis ordering of prototype.
950 * dtype - If not NULL, overrides the data type of the result.
951 * ndim - If not -1, overrides the shape of the result.
952 * dims - If ndim is not -1, overrides the shape of the result.
953 * subok - If 1, use the prototype's array subtype, otherwise
954 * always create a base-class array.
955 *
956 * NOTE: If dtype is not NULL, steals the dtype reference. On failure or when
957 * dtype->subarray is true, dtype will be decrefed.
958 */
959NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
960PyArray_NewLikeArrayWithShape(PyArrayObject *prototype, NPY_ORDER order,
961 PyArray_Descr *dtype, int ndim, npy_intp const *dims, int subok)
962{
963 PyObject *ret = NULL((void*)0);
964
965 if (ndim == -1) {
966 ndim = PyArray_NDIM(prototype);
967 dims = PyArray_DIMS(prototype);
968 }
969 else if (order == NPY_KEEPORDER && (ndim != PyArray_NDIM(prototype))) {
970 order = NPY_CORDER;
971 }
972
973 /* If no override data type, use the one from the prototype */
974 if (dtype == NULL((void*)0)) {
975 dtype = PyArray_DESCR(prototype);
976 Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype)));
977 }
978
979 /* Handle ANYORDER and simple KEEPORDER cases */
980 switch (order) {
981 case NPY_ANYORDER:
982 order = PyArray_ISFORTRAN(prototype)(PyArray_CHKFLAGS(prototype, 0x0002) && (!PyArray_CHKFLAGS
(prototype, 0x0001)))
?
983 NPY_FORTRANORDER : NPY_CORDER;
984 break;
985 case NPY_KEEPORDER:
986 if (PyArray_IS_C_CONTIGUOUS(prototype)PyArray_CHKFLAGS((prototype), 0x0001) || ndim <= 1) {
987 order = NPY_CORDER;
988 break;
989 }
990 else if (PyArray_IS_F_CONTIGUOUS(prototype)PyArray_CHKFLAGS((prototype), 0x0002)) {
991 order = NPY_FORTRANORDER;
992 break;
993 }
994 break;
995 default:
996 break;
997 }
998
999 /* If it's not KEEPORDER, this is simple */
1000 if (order != NPY_KEEPORDER) {
1001 ret = PyArray_NewFromDescr(subok ? Py_TYPE(prototype)(((PyObject*)(prototype))->ob_type) : &PyArray_Type,
1002 dtype,
1003 ndim,
1004 dims,
1005 NULL((void*)0),
1006 NULL((void*)0),
1007 order,
1008 subok ? (PyObject *)prototype : NULL((void*)0));
1009 }
1010 /* KEEPORDER needs some analysis of the strides */
1011 else {
1012 npy_intp strides[NPY_MAXDIMS32], stride;
1013 npy_stride_sort_item strideperm[NPY_MAXDIMS32];
1014 int idim;
1015
1016 PyArray_CreateSortedStridePerm(ndim,
1017 PyArray_STRIDES(prototype),
1018 strideperm);
1019
1020 /* Build the new strides */
1021 stride = dtype->elsize;
1022 for (idim = ndim-1; idim >= 0; --idim) {
1023 npy_intp i_perm = strideperm[idim].perm;
1024 strides[i_perm] = stride;
1025 stride *= dims[i_perm];
1026 }
1027
1028 /* Finally, allocate the array */
1029 ret = PyArray_NewFromDescr(subok ? Py_TYPE(prototype)(((PyObject*)(prototype))->ob_type) : &PyArray_Type,
1030 dtype,
1031 ndim,
1032 dims,
1033 strides,
1034 NULL((void*)0),
1035 0,
1036 subok ? (PyObject *)prototype : NULL((void*)0));
1037 }
1038
1039 return ret;
1040}
1041
1042/*NUMPY_API
1043 * Creates a new array with the same shape as the provided one,
1044 * with possible memory layout order and data type changes.
1045 *
1046 * prototype - The array the new one should be like.
1047 * order - NPY_CORDER - C-contiguous result.
1048 * NPY_FORTRANORDER - Fortran-contiguous result.
1049 * NPY_ANYORDER - Fortran if prototype is Fortran, C otherwise.
1050 * NPY_KEEPORDER - Keeps the axis ordering of prototype.
1051 * dtype - If not NULL, overrides the data type of the result.
1052 * subok - If 1, use the prototype's array subtype, otherwise
1053 * always create a base-class array.
1054 *
1055 * NOTE: If dtype is not NULL, steals the dtype reference. On failure or when
1056 * dtype->subarray is true, dtype will be decrefed.
1057 */
1058NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1059PyArray_NewLikeArray(PyArrayObject *prototype, NPY_ORDER order,
1060 PyArray_Descr *dtype, int subok)
1061{
1062 return PyArray_NewLikeArrayWithShape(prototype, order, dtype, -1, NULL((void*)0), subok);
1063}
1064
1065/*NUMPY_API
1066 * Generic new array creation routine.
1067 */
1068NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1069PyArray_New(
1070 PyTypeObject *subtype, int nd, npy_intp const *dims, int type_num,
1071 npy_intp const *strides, void *data, int itemsize, int flags,
1072 PyObject *obj)
1073{
1074 PyArray_Descr *descr;
1075 PyObject *new;
1076
1077 descr = PyArray_DescrFromType(type_num);
1078 if (descr == NULL((void*)0)) {
1079 return NULL((void*)0);
1080 }
1081 if (PyDataType_ISUNSIZED(descr)((descr)->elsize == 0 && !(((PyArray_Descr *)(descr
))->names != ((void*)0)))
) {
1082 if (itemsize < 1) {
1083 PyErr_SetString(PyExc_ValueError,
1084 "data type must provide an itemsize");
1085 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
1086 return NULL((void*)0);
1087 }
1088 PyArray_DESCR_REPLACE(descr)do { PyArray_Descr *_new_; _new_ = PyArray_DescrNew(descr); _Py_XDECREF
(((PyObject*)(descr))); descr = _new_; } while(0)
;
1089 descr->elsize = itemsize;
1090 }
1091 new = PyArray_NewFromDescr(subtype, descr, nd, dims, strides,
1092 data, flags, obj);
1093 return new;
1094}
1095
1096
1097NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyArray_Descr *
1098_dtype_from_buffer_3118(PyObject *memoryview)
1099{
1100 PyArray_Descr *descr;
1101 Py_buffer *view = PyMemoryView_GET_BUFFER(memoryview)(&((PyMemoryViewObject *)(memoryview))->view);
1102 if (view->format != NULL((void*)0)) {
1103 descr = _descriptor_from_pep3118_format(view->format);
1104 if (descr == NULL((void*)0)) {
1105 return NULL((void*)0);
1106 }
1107 }
1108 else {
1109 /* If no format is specified, just assume a byte array
1110 * TODO: void would make more sense here, as it wouldn't null
1111 * terminate.
1112 */
1113 descr = PyArray_DescrNewFromType(NPY_STRING);
1114 descr->elsize = view->itemsize;
1115 }
1116 return descr;
1117}
1118
1119
1120NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1121_array_from_buffer_3118(PyObject *memoryview)
1122{
1123 /* PEP 3118 */
1124 Py_buffer *view;
1125 PyArray_Descr *descr = NULL((void*)0);
1126 PyObject *r = NULL((void*)0);
1127 int nd, flags;
1128 Py_ssize_t d;
1129 npy_intp shape[NPY_MAXDIMS32], strides[NPY_MAXDIMS32];
1130
1131 view = PyMemoryView_GET_BUFFER(memoryview)(&((PyMemoryViewObject *)(memoryview))->view);
1132 nd = view->ndim;
1133 descr = _dtype_from_buffer_3118(memoryview);
1134
1135 if (descr == NULL((void*)0)) {
1136 return NULL((void*)0);
1137 }
1138
1139 /* Sanity check */
1140 if (descr->elsize != view->itemsize) {
1141 /* Ctypes has bugs in its PEP3118 implementation, which we need to
1142 * work around.
1143 *
1144 * bpo-10746
1145 * bpo-32780
1146 * bpo-32782
1147 *
1148 * Note that even if the above are fixed in main, we have to drop the
1149 * early patch versions of python to actually make use of the fixes.
1150 */
1151 if (!npy_ctypes_check(Py_TYPE(view->obj)(((PyObject*)(view->obj))->ob_type))) {
1152 /* This object has no excuse for a broken PEP3118 buffer */
1153 PyErr_Format(
1154 PyExc_RuntimeError,
1155 "Item size %zd for PEP 3118 buffer format "
1156 "string %s does not match the dtype %c item size %d.",
1157 view->itemsize, view->format, descr->type,
1158 descr->elsize);
1159 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
1160 return NULL((void*)0);
1161 }
1162
1163 if (PyErr_Warn(PyErr_WarnEx(PyExc_RuntimeWarning, "A builtin ctypes object gave a PEP3118 format "
"string that does not match its itemsize, so a " "best-guess will be made of the data type. "
"Newer versions of python may behave correctly.", 1)
1164 PyExc_RuntimeWarning,PyErr_WarnEx(PyExc_RuntimeWarning, "A builtin ctypes object gave a PEP3118 format "
"string that does not match its itemsize, so a " "best-guess will be made of the data type. "
"Newer versions of python may behave correctly.", 1)
1165 "A builtin ctypes object gave a PEP3118 format "PyErr_WarnEx(PyExc_RuntimeWarning, "A builtin ctypes object gave a PEP3118 format "
"string that does not match its itemsize, so a " "best-guess will be made of the data type. "
"Newer versions of python may behave correctly.", 1)
1166 "string that does not match its itemsize, so a "PyErr_WarnEx(PyExc_RuntimeWarning, "A builtin ctypes object gave a PEP3118 format "
"string that does not match its itemsize, so a " "best-guess will be made of the data type. "
"Newer versions of python may behave correctly.", 1)
1167 "best-guess will be made of the data type. "PyErr_WarnEx(PyExc_RuntimeWarning, "A builtin ctypes object gave a PEP3118 format "
"string that does not match its itemsize, so a " "best-guess will be made of the data type. "
"Newer versions of python may behave correctly.", 1)
1168 "Newer versions of python may behave correctly.")PyErr_WarnEx(PyExc_RuntimeWarning, "A builtin ctypes object gave a PEP3118 format "
"string that does not match its itemsize, so a " "best-guess will be made of the data type. "
"Newer versions of python may behave correctly.", 1)
< 0) {
1169 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
1170 return NULL((void*)0);
1171 }
1172
1173 /* Thankfully, np.dtype(ctypes_type) works in most cases.
1174 * For an array input, this produces a dtype containing all the
1175 * dimensions, so the array is now 0d.
1176 */
1177 nd = 0;
1178 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
1179 descr = (PyArray_Descr *)PyObject_CallFunctionObjArgs(
1180 (PyObject *)&PyArrayDescr_Type(*(PyTypeObject *)(&PyArrayDescr_TypeFull)), Py_TYPE(view->obj)(((PyObject*)(view->obj))->ob_type), NULL((void*)0));
1181 if (descr == NULL((void*)0)) {
1182 return NULL((void*)0);
1183 }
1184 if (descr->elsize != view->len) {
1185 PyErr_SetString(
1186 PyExc_RuntimeError,
1187 "For the given ctypes object, neither the item size "
1188 "computed from the PEP 3118 buffer format nor from "
1189 "converting the type to a np.dtype matched the actual "
1190 "size. This is a bug both in python and numpy");
1191 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
1192 return NULL((void*)0);
1193 }
1194 }
1195
1196 if (view->shape != NULL((void*)0)) {
1197 int k;
1198 if (nd > NPY_MAXDIMS32 || nd < 0) {
1199 PyErr_Format(PyExc_RuntimeError,
1200 "PEP3118 dimensions do not satisfy 0 <= ndim <= NPY_MAXDIMS");
1201 goto fail;
1202 }
1203 for (k = 0; k < nd; ++k) {
1204 shape[k] = view->shape[k];
1205 }
1206 if (view->strides != NULL((void*)0)) {
1207 for (k = 0; k < nd; ++k) {
1208 strides[k] = view->strides[k];
1209 }
1210 }
1211 else {
1212 d = view->len;
1213 for (k = 0; k < nd; ++k) {
1214 if (view->shape[k] != 0) {
1215 d /= view->shape[k];
1216 }
1217 strides[k] = d;
1218 }
1219 }
1220 }
1221 else {
1222 if (nd == 1) {
1223 shape[0] = view->len / view->itemsize;
1224 strides[0] = view->itemsize;
1225 }
1226 else if (nd > 1) {
1227 PyErr_SetString(PyExc_RuntimeError,
1228 "ndim computed from the PEP 3118 buffer format "
1229 "is greater than 1, but shape is NULL.");
1230 goto fail;
1231 }
1232 }
1233
1234 flags = NPY_ARRAY_BEHAVED(0x0100 | 0x0400) & (view->readonly ? ~NPY_ARRAY_WRITEABLE0x0400 : ~0);
1235 r = PyArray_NewFromDescrAndBase(
1236 &PyArray_Type, descr,
1237 nd, shape, strides, view->buf,
1238 flags, NULL((void*)0), memoryview);
1239 return r;
1240
1241
1242fail:
1243 Py_XDECREF(r)_Py_XDECREF(((PyObject*)(r)));
1244 Py_XDECREF(descr)_Py_XDECREF(((PyObject*)(descr)));
1245 return NULL((void*)0);
1246
1247}
1248
1249
1250/**
1251 * Attempts to extract an array from an array-like object.
1252 *
1253 * array-like is defined as either
1254 *
1255 * * an object implementing the PEP 3118 buffer interface;
1256 * * an object with __array_struct__ or __array_interface__ attributes;
1257 * * an object with an __array__ function.
1258 *
1259 * @param op The object to convert to an array
1260 * @param requested_type a requested dtype instance, may be NULL; The result
1261 * DType may be used, but is not enforced.
1262 * @param writeable whether the result must be writeable.
1263 * @param context Unused parameter, must be NULL (should be removed later).
1264 *
1265 * @returns The array object, Py_NotImplemented if op is not array-like,
1266 * or NULL with an error set. (A new reference to Py_NotImplemented
1267 * is returned.)
1268 */
1269NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1270_array_from_array_like(PyObject *op,
1271 PyArray_Descr *requested_dtype, npy_bool writeable, PyObject *context) {
1272 PyObject* tmp;
1273
1274 /*
1275 * If op supports the PEP 3118 buffer interface.
1276 * We skip bytes and unicode since they are considered scalars. Unicode
1277 * would fail but bytes would be incorrectly converted to a uint8 array.
1278 */
1279 if (!PyBytes_Check(op)((((((PyObject*)(op))->ob_type))->tp_flags & ((1UL <<
27))) != 0)
&& !PyUnicode_Check(op)((((((PyObject*)(op))->ob_type))->tp_flags & ((1UL <<
28))) != 0)
) {
1280 PyObject *memoryview = PyMemoryView_FromObject(op);
1281 if (memoryview == NULL((void*)0)) {
1282 PyErr_Clear();
1283 }
1284 else {
1285 tmp = _array_from_buffer_3118(memoryview);
1286 Py_DECREF(memoryview)_Py_DECREF(((PyObject*)(memoryview)));
1287 if (tmp == NULL((void*)0)) {
1288 return NULL((void*)0);
1289 }
1290
1291 if (writeable
1292 && PyArray_FailUnlessWriteable(
1293 (PyArrayObject *)tmp, "PEP 3118 buffer") < 0) {
1294 Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp)));
1295 return NULL((void*)0);
1296 }
1297
1298 return tmp;
1299 }
1300 }
1301
1302 /*
1303 * If op supports the __array_struct__ or __array_interface__ interface.
1304 */
1305 tmp = PyArray_FromStructInterface(op);
1306 if (tmp == NULL((void*)0)) {
1307 return NULL((void*)0);
1308 }
1309 if (tmp == Py_NotImplemented(&_Py_NotImplementedStruct)) {
1310 /* Until the return, NotImplemented is always a borrowed reference*/
1311 tmp = PyArray_FromInterface(op);
1312 if (tmp == NULL((void*)0)) {
1313 return NULL((void*)0);
1314 }
1315 }
1316
1317 /*
1318 * If op supplies the __array__ function.
1319 * The documentation says this should produce a copy, so
1320 * we skip this method if writeable is true, because the intent
1321 * of writeable is to modify the operand.
1322 * XXX: If the implementation is wrong, and/or if actual
1323 * usage requires this behave differently,
1324 * this should be changed!
1325 */
1326 if (!writeable && tmp == Py_NotImplemented(&_Py_NotImplementedStruct)) {
1327 tmp = PyArray_FromArrayAttr(op, requested_dtype, context);
1328 if (tmp == NULL((void*)0)) {
1329 return NULL((void*)0);
1330 }
1331 }
1332
1333 if (tmp != Py_NotImplemented(&_Py_NotImplementedStruct)) {
1334 if (writeable &&
1335 PyArray_FailUnlessWriteable((PyArrayObject *)tmp,
1336 "array interface object") < 0) {
1337 Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp)));
1338 return NULL((void*)0);
1339 }
1340 return tmp;
1341 }
1342
1343 /* Until here Py_NotImplemented was borrowed */
1344 Py_INCREF(Py_NotImplemented)_Py_INCREF(((PyObject*)((&_Py_NotImplementedStruct))));
1345 return Py_NotImplemented(&_Py_NotImplementedStruct);
1346}
1347
1348
1349/*NUMPY_API*/
1350NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
1351PyArray_GetArrayParamsFromObject(PyObject *NPY_UNUSED(op)(__NPY_UNUSED_TAGGEDop) __attribute__ ((__unused__)),
1352 PyArray_Descr *NPY_UNUSED(requested_dtype)(__NPY_UNUSED_TAGGEDrequested_dtype) __attribute__ ((__unused__
))
,
1353 npy_bool NPY_UNUSED(writeable)(__NPY_UNUSED_TAGGEDwriteable) __attribute__ ((__unused__)),
1354 PyArray_Descr **NPY_UNUSED(out_dtype)(__NPY_UNUSED_TAGGEDout_dtype) __attribute__ ((__unused__)),
1355 int *NPY_UNUSED(out_ndim)(__NPY_UNUSED_TAGGEDout_ndim) __attribute__ ((__unused__)), npy_intp *NPY_UNUSED(out_dims)(__NPY_UNUSED_TAGGEDout_dims) __attribute__ ((__unused__)),
1356 PyArrayObject **NPY_UNUSED(out_arr)(__NPY_UNUSED_TAGGEDout_arr) __attribute__ ((__unused__)), PyObject *NPY_UNUSED(context)(__NPY_UNUSED_TAGGEDcontext) __attribute__ ((__unused__)))
1357{
1358 /* Deprecated in NumPy 1.19, removed in NumPy 1.20. */
1359 PyErr_SetString(PyExc_RuntimeError,
1360 "PyArray_GetArrayParamsFromObject() C-API function is removed "
1361 "`PyArray_FromAny()` should be used at this time. New C-API "
1362 "may be exposed in the future (please do request this if it "
1363 "would help you).");
1364 return -1;
1365}
1366
1367
1368/*
1369 * This function is a legacy implementation to retain subarray dtype
1370 * behaviour in array coercion. The behaviour here makes sense if tuples
1371 * of matching dimensionality are being coerced. Due to the difficulty
1372 * that the result is ill-defined for lists of array-likes, this is deprecated.
1373 *
1374 * WARNING: Do not use this function, it exists purely to support a deprecated
1375 * code path.
1376 */
1377static int
1378setArrayFromSequence(PyArrayObject *a, PyObject *s,
1379 int dim, PyArrayObject * dst)
1380{
1381 Py_ssize_t i, slen;
1382 int res = -1;
1383
1384 /* first recursion, view equal destination */
1385 if (dst == NULL((void*)0))
1386 dst = a;
1387
1388 /*
1389 * This code is to ensure that the sequence access below will
1390 * return a lower-dimensional sequence.
1391 */
1392
1393 /* INCREF on entry DECREF on exit */
1394 Py_INCREF(s)_Py_INCREF(((PyObject*)(s)));
1395
1396 PyObject *seq = NULL((void*)0);
1397
1398 if (PyArray_Check(s)((((PyObject*)(s))->ob_type) == (&PyArray_Type) || PyType_IsSubtype
((((PyObject*)(s))->ob_type), (&PyArray_Type)))
) {
1399 if (!(PyArray_CheckExact(s)(((PyObject*)(s))->ob_type == &PyArray_Type))) {
1400 /*
1401 * make sure a base-class array is used so that the dimensionality
1402 * reduction assumption is correct.
1403 */
1404 /* This will DECREF(s) if replaced */
1405 s = PyArray_EnsureArray(s);
1406 if (s == NULL((void*)0)) {
1407 goto fail;
1408 }
1409 }
1410
1411 /* dst points to correct array subsection */
1412 if (PyArray_CopyInto(dst, (PyArrayObject *)s) < 0) {
1413 goto fail;
1414 }
1415
1416 Py_DECREF(s)_Py_DECREF(((PyObject*)(s)));
1417 return 0;
1418 }
1419
1420 if (dim > PyArray_NDIM(a)) {
1421 PyErr_Format(PyExc_ValueError,
1422 "setArrayFromSequence: sequence/array dimensions mismatch.");
1423 goto fail;
1424 }
1425
1426 /* Try __array__ before using s as a sequence */
1427 PyObject *tmp = _array_from_array_like(s, NULL((void*)0), 0, NULL((void*)0));
1428 if (tmp == NULL((void*)0)) {
1429 goto fail;
1430 }
1431 else if (tmp == Py_NotImplemented(&_Py_NotImplementedStruct)) {
1432 Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp)));
1433 }
1434 else {
1435 int r = PyArray_CopyInto(dst, (PyArrayObject *)tmp);
1436 Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp)));
1437 if (r < 0) {
1438 goto fail;
1439 }
1440 Py_DECREF(s)_Py_DECREF(((PyObject*)(s)));
1441 return 0;
1442 }
1443
1444 seq = PySequence_Fast(s, "Could not convert object to sequence");
1445 if (seq == NULL((void*)0)) {
1446 goto fail;
1447 }
1448 slen = PySequence_Fast_GET_SIZE(seq)(((((((PyObject*)(seq))->ob_type))->tp_flags & ((1UL
<< 25))) != 0) ? (((void) (0)), (((PyVarObject*)(seq))
->ob_size)) : (((PyVarObject*)((((void) (0)), (PyTupleObject
*)(seq))))->ob_size))
;
1449
1450 /*
1451 * Either the dimensions match, or the sequence has length 1 and can
1452 * be broadcast to the destination.
1453 */
1454 if (slen != PyArray_DIMS(a)[dim] && slen != 1) {
1455 PyErr_Format(PyExc_ValueError,
1456 "cannot copy sequence with size %zd to array axis "
1457 "with dimension %" NPY_INTP_FMT"ld", slen, PyArray_DIMS(a)[dim]);
1458 goto fail;
1459 }
1460
1461 /* Broadcast the one element from the sequence to all the outputs */
1462 if (slen == 1) {
1463 PyObject *o = PySequence_Fast_GET_ITEM(seq, 0)(((((((PyObject*)(seq))->ob_type))->tp_flags & ((1UL
<< 25))) != 0) ? (((PyListObject *)(seq))->ob_item[
0]) : ((((void) (0)), (PyTupleObject *)(seq))->ob_item[0])
)
;
1464 npy_intp alen = PyArray_DIM(a, dim);
1465
1466 for (i = 0; i < alen; i++) {
1467 if ((PyArray_NDIM(a) - dim) > 1) {
1468 PyArrayObject * tmp =
1469 (PyArrayObject *)array_item_asarray(dst, i);
1470 if (tmp == NULL((void*)0)) {
1471 goto fail;
1472 }
1473
1474 res = setArrayFromSequence(a, o, dim+1, tmp);
1475 Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp)));
1476 }
1477 else {
1478 char * b = (PyArray_BYTES(dst) + i * PyArray_STRIDES(dst)[0]);
1479 res = PyArray_SETITEM(dst, b, o);
1480 }
1481 if (res < 0) {
1482 goto fail;
1483 }
1484 }
1485 }
1486 /* Copy element by element */
1487 else {
1488 for (i = 0; i < slen; i++) {
1489 PyObject * o = PySequence_Fast_GET_ITEM(seq, i)(((((((PyObject*)(seq))->ob_type))->tp_flags & ((1UL
<< 25))) != 0) ? (((PyListObject *)(seq))->ob_item[
i]) : ((((void) (0)), (PyTupleObject *)(seq))->ob_item[i])
)
;
1490 if ((PyArray_NDIM(a) - dim) > 1) {
1491 PyArrayObject * tmp =
1492 (PyArrayObject *)array_item_asarray(dst, i);
1493 if (tmp == NULL((void*)0)) {
1494 goto fail;
1495 }
1496
1497 res = setArrayFromSequence(a, o, dim+1, tmp);
1498 Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp)));
1499 }
1500 else {
1501 char * b = (PyArray_BYTES(dst) + i * PyArray_STRIDES(dst)[0]);
1502 res = PyArray_SETITEM(dst, b, o);
1503 }
1504 if (res < 0) {
1505 goto fail;
1506 }
1507 }
1508 }
1509
1510 Py_DECREF(seq)_Py_DECREF(((PyObject*)(seq)));
1511 Py_DECREF(s)_Py_DECREF(((PyObject*)(s)));
1512 return 0;
1513
1514 fail:
1515 Py_XDECREF(seq)_Py_XDECREF(((PyObject*)(seq)));
1516 Py_DECREF(s)_Py_DECREF(((PyObject*)(s)));
1517 return res;
1518}
1519
1520
1521
1522/*NUMPY_API
1523 * Does not check for NPY_ARRAY_ENSURECOPY and NPY_ARRAY_NOTSWAPPED in flags
1524 * Steals a reference to newtype --- which can be NULL
1525 */
1526NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1527PyArray_FromAny(PyObject *op, PyArray_Descr *newtype, int min_depth,
1528 int max_depth, int flags, PyObject *context)
1529{
1530 /*
1531 * This is the main code to make a NumPy array from a Python
1532 * Object. It is called from many different places.
1533 */
1534 PyArrayObject *arr = NULL((void*)0), *ret;
1535 PyArray_Descr *dtype = NULL((void*)0);
1536 coercion_cache_obj *cache = NULL((void*)0);
1537 int ndim = 0;
1538 npy_intp dims[NPY_MAXDIMS32];
1539
1540 if (context != NULL((void*)0)) {
1541 PyErr_SetString(PyExc_RuntimeError, "'context' must be NULL");
1542 return NULL((void*)0);
1543 }
1544
1545 PyArray_Descr *fixed_descriptor;
1546 PyArray_DTypeMeta *fixed_DType;
1547 if (PyArray_ExtractDTypeAndDescriptor((PyObject *)newtype,
1548 &fixed_descriptor, &fixed_DType) < 0) {
1549 Py_XDECREF(newtype)_Py_XDECREF(((PyObject*)(newtype)));
1550 return NULL((void*)0);
1551 }
1552 Py_XDECREF(newtype)_Py_XDECREF(((PyObject*)(newtype)));
1553
1554 ndim = PyArray_DiscoverDTypeAndShape(op,
1555 NPY_MAXDIMS32, dims, &cache, fixed_DType, fixed_descriptor, &dtype);
1556
1557 Py_XDECREF(fixed_descriptor)_Py_XDECREF(((PyObject*)(fixed_descriptor)));
1558 Py_XDECREF(fixed_DType)_Py_XDECREF(((PyObject*)(fixed_DType)));
1559 if (ndim < 0) {
1560 return NULL((void*)0);
1561 }
1562
1563 if (NPY_UNLIKELY(fixed_descriptor != NULL && PyDataType_HASSUBARRAY(dtype))__builtin_expect(!!(fixed_descriptor != ((void*)0) &&
((dtype)->subarray != ((void*)0))), 0)
) {
1564 /*
1565 * When a subarray dtype was passed in, its dimensions are appended
1566 * to the array dimension (causing a dimension mismatch).
1567 * There is a problem with that, because if we coerce from non-arrays
1568 * we do this correctly by element (as defined by tuples), but for
1569 * arrays we first append the dimensions and then assign to the base
1570 * dtype and then assign which causes the problem.
1571 *
1572 * Thus, we check if there is an array included, in that case we
1573 * give a FutureWarning.
1574 * When the warning is removed, PyArray_Pack will have to ensure
1575 * that that it does not append the dimensions when creating the
1576 * subarrays to assign `arr[0] = obj[0]`.
1577 */
1578 int includes_array = 0;
1579 if (cache != NULL((void*)0)) {
1580 /* This is not ideal, but it is a pretty special case */
1581 coercion_cache_obj *next = cache;
1582 while (next != NULL((void*)0)) {
1583 if (!next->sequence) {
1584 includes_array = 1;
1585 break;
1586 }
1587 next = next->next;
1588 }
1589 }
1590 if (includes_array) {
1591 npy_free_coercion_cache(cache);
1592
1593 ret = (PyArrayObject *) PyArray_NewFromDescr(
1594 &PyArray_Type, dtype, ndim, dims, NULL((void*)0), NULL((void*)0),
1595 flags & NPY_ARRAY_F_CONTIGUOUS0x0002, NULL((void*)0));
1596 if (ret == NULL((void*)0)) {
1597 return NULL((void*)0);
1598 }
1599 assert(PyArray_NDIM(ret) != ndim)((void) (0));
1600
1601 /* NumPy 1.20, 2020-10-01 */
1602 if (DEPRECATE_FUTUREWARNING(PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1603 "creating an array with a subarray dtype will behave "PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1604 "differently when the `np.array()` (or `asarray`, etc.) "PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1605 "call includes an array or array object.\n"PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1606 "If you are converting a single array or a list of arrays,"PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1607 "you can opt-in to the future behaviour using:\n"PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1608 " np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n"PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1609 " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1610 "\n"PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1611 "By including a new field and indexing it after the "PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1612 "conversion.\n"PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1613 "This may lead to a different result or to current failures "PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
1614 "succeeding. (FutureWarning since NumPy 1.20)")PyErr_WarnEx(PyExc_FutureWarning,"creating an array with a subarray dtype will behave "
"differently when the `np.array()` (or `asarray`, etc.) " "call includes an array or array object.\n"
"If you are converting a single array or a list of arrays," "you can opt-in to the future behaviour using:\n"
" np.array(arr, dtype=np.dtype(['f', dtype]))['f']\n" " np.array([arr1, arr2], dtype=np.dtype(['f', dtype]))['f']\n"
"\n" "By including a new field and indexing it after the " "conversion.\n"
"This may lead to a different result or to current failures "
"succeeding. (FutureWarning since NumPy 1.20)",1)
< 0) {
1615 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
1616 return NULL((void*)0);
1617 }
1618
1619 if (setArrayFromSequence(ret, op, 0, NULL((void*)0)) < 0) {
1620 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
1621 return NULL((void*)0);
1622 }
1623 return (PyObject *)ret;
1624 }
1625 }
1626
1627 if (dtype == NULL((void*)0)) {
1628 dtype = PyArray_DescrFromType(NPY_DEFAULT_TYPENPY_DOUBLE);
1629 }
1630
1631 if (min_depth != 0 && ndim < min_depth) {
1632 PyErr_SetString(PyExc_ValueError,
1633 "object of too small depth for desired array");
1634 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
1635 npy_free_coercion_cache(cache);
1636 return NULL((void*)0);
1637 }
1638 if (max_depth != 0 && ndim > max_depth) {
1639 PyErr_SetString(PyExc_ValueError,
1640 "object too deep for desired array");
1641 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
1642 npy_free_coercion_cache(cache);
1643 return NULL((void*)0);
1644 }
1645
1646 /* Got the correct parameters, but the cache may already hold the result */
1647 if (cache != NULL((void*)0) && !(cache->sequence)) {
1648 /*
1649 * There is only a single array-like and it was converted, it
1650 * may still have the incorrect type, but that is handled below.
1651 */
1652 assert(cache->converted_obj == op)((void) (0));
1653 arr = (PyArrayObject *)(cache->arr_or_sequence);
1654 /* we may need to cast or assert flags (e.g. copy) */
1655 PyObject *res = PyArray_FromArray(arr, dtype, flags);
1656 npy_unlink_coercion_cache(cache);
1657 return res;
1658 }
1659 else if (cache == NULL((void*)0) && PyArray_IsScalar(op, Void)(((((PyObject*)(op))->ob_type) == (&PyVoidArrType_Type
) || PyType_IsSubtype((((PyObject*)(op))->ob_type), (&
PyVoidArrType_Type))))
&&
1660 !(((PyVoidScalarObject *)op)->flags & NPY_ARRAY_OWNDATA0x0004) &&
1661 newtype == NULL((void*)0)) {
1662 /*
1663 * Special case, we return a *view* into void scalars, mainly to
1664 * allow things similar to the "reversed" assignment:
1665 * arr[indx]["field"] = val # instead of arr["field"][indx] = val
1666 *
1667 * It is unclear that this is necessary in this particular code path.
1668 * Note that this path is only activated when the user did _not_
1669 * provide a dtype (newtype is NULL).
1670 */
1671 assert(ndim == 0)((void) (0));
1672
1673 return PyArray_NewFromDescrAndBase(
1674 &PyArray_Type, dtype,
1675 0, NULL((void*)0), NULL((void*)0),
1676 ((PyVoidScalarObject *)op)->obval,
1677 ((PyVoidScalarObject *)op)->flags,
1678 NULL((void*)0), op);
1679 }
1680 else if (cache == 0 && newtype != NULL((void*)0) &&
1681 PyDataType_ISSIGNED(newtype)(((((PyArray_Descr*)(newtype))->type_num) == NPY_BYTE) || (
(((PyArray_Descr*)(newtype))->type_num) == NPY_SHORT) || (
(((PyArray_Descr*)(newtype))->type_num) == NPY_INT) || (((
(PyArray_Descr*)(newtype))->type_num) == NPY_LONG) || ((((
PyArray_Descr*)(newtype))->type_num) == NPY_LONGLONG))
&& PyArray_IsScalar(op, Generic)(((((PyObject*)(op))->ob_type) == (&PyGenericArrType_Type
) || PyType_IsSubtype((((PyObject*)(op))->ob_type), (&
PyGenericArrType_Type))))
) {
1682 assert(ndim == 0)((void) (0));
1683 /*
1684 * This is an (possible) inconsistency where:
1685 *
1686 * np.array(np.float64(np.nan), dtype=np.int64)
1687 *
1688 * behaves differently from:
1689 *
1690 * np.array([np.float64(np.nan)], dtype=np.int64)
1691 * arr1d_int64[0] = np.float64(np.nan)
1692 * np.array(np.array(np.nan), dtype=np.int64)
1693 *
1694 * by not raising an error instead of using typical casting.
1695 * The error is desirable, but to always error seems like a
1696 * larger change to be considered at some other time and it is
1697 * undesirable that 0-D arrays behave differently from scalars.
1698 * This retains the behaviour, largely due to issues in pandas
1699 * which relied on a try/except (although hopefully that will
1700 * have a better solution at some point):
1701 * https://github.com/pandas-dev/pandas/issues/35481
1702 */
1703 return PyArray_FromScalar(op, dtype);
1704 }
1705
1706 /* There was no array (or array-like) passed in directly. */
1707 if ((flags & NPY_ARRAY_WRITEBACKIFCOPY0x2000) ||
1708 (flags & NPY_ARRAY_UPDATEIFCOPY0x1000)) {
1709 PyErr_SetString(PyExc_TypeError,
1710 "WRITEBACKIFCOPY used for non-array input.");
1711 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
1712 npy_free_coercion_cache(cache);
1713 return NULL((void*)0);
1714 }
1715
1716 /* Create a new array and copy the data */
1717 Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype))); /* hold on in case of a subarray that is replaced */
1718 ret = (PyArrayObject *)PyArray_NewFromDescr(
1719 &PyArray_Type, dtype, ndim, dims, NULL((void*)0), NULL((void*)0),
1720 flags&NPY_ARRAY_F_CONTIGUOUS0x0002, NULL((void*)0));
1721 if (ret == NULL((void*)0)) {
1722 npy_free_coercion_cache(cache);
1723 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
1724 return NULL((void*)0);
1725 }
1726 if (ndim == PyArray_NDIM(ret)) {
1727 /*
1728 * Appending of dimensions did not occur, so use the actual dtype
1729 * below. This is relevant for S0 or U0 which can be replaced with
1730 * S1 or U1, although that should likely change.
1731 */
1732 Py_SETREF(dtype, PyArray_DESCR(ret))do { PyObject *_py_tmp = ((PyObject*)(dtype)); (dtype) = (PyArray_DESCR
(ret)); _Py_DECREF(((PyObject*)(_py_tmp))); } while (0)
;
1733 Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype)));
1734 }
1735
1736 if (cache == NULL((void*)0)) {
1737 /* This is a single item. Set it directly. */
1738 assert(ndim == 0)((void) (0));
1739
1740 if (PyArray_Pack(dtype, PyArray_BYTES(ret), op) < 0) {
1741 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
1742 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
1743 return NULL((void*)0);
1744 }
1745 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
1746 return (PyObject *)ret;
1747 }
1748 assert(ndim != 0)((void) (0));
1749 assert(op == cache->converted_obj)((void) (0));
1750
1751 /* Decrease the number of dimensions to the detected ones */
1752 int out_ndim = PyArray_NDIM(ret);
1753 PyArray_Descr *out_descr = PyArray_DESCR(ret);
1754 ((PyArrayObject_fields *)ret)->nd = ndim;
1755 ((PyArrayObject_fields *)ret)->descr = dtype;
1756
1757 int success = PyArray_AssignFromCache(ret, cache);
1758
1759 ((PyArrayObject_fields *)ret)->nd = out_ndim;
1760 ((PyArrayObject_fields *)ret)->descr = out_descr;
1761 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
1762 if (success < 0) {
1763 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
1764 return NULL((void*)0);
1765 }
1766 return (PyObject *)ret;
1767}
1768
1769/*
1770 * flags is any of
1771 * NPY_ARRAY_C_CONTIGUOUS (formerly CONTIGUOUS),
1772 * NPY_ARRAY_F_CONTIGUOUS (formerly FORTRAN),
1773 * NPY_ARRAY_ALIGNED,
1774 * NPY_ARRAY_WRITEABLE,
1775 * NPY_ARRAY_NOTSWAPPED,
1776 * NPY_ARRAY_ENSURECOPY,
1777 * NPY_ARRAY_UPDATEIFCOPY,
1778 * NPY_ARRAY_WRITEBACKIFCOPY,
1779 * NPY_ARRAY_FORCECAST,
1780 * NPY_ARRAY_ENSUREARRAY,
1781 * NPY_ARRAY_ELEMENTSTRIDES
1782 *
1783 * or'd (|) together
1784 *
1785 * Any of these flags present means that the returned array should
1786 * guarantee that aspect of the array. Otherwise the returned array
1787 * won't guarantee it -- it will depend on the object as to whether or
1788 * not it has such features.
1789 *
1790 * Note that NPY_ARRAY_ENSURECOPY is enough
1791 * to guarantee NPY_ARRAY_C_CONTIGUOUS, NPY_ARRAY_ALIGNED and
1792 * NPY_ARRAY_WRITEABLE and therefore it is redundant to include
1793 * those as well.
1794 *
1795 * NPY_ARRAY_BEHAVED == NPY_ARRAY_ALIGNED | NPY_ARRAY_WRITEABLE
1796 * NPY_ARRAY_CARRAY = NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_BEHAVED
1797 * NPY_ARRAY_FARRAY = NPY_ARRAY_F_CONTIGUOUS | NPY_ARRAY_BEHAVED
1798 *
1799 * NPY_ARRAY_F_CONTIGUOUS can be set in the FLAGS to request a FORTRAN array.
1800 * Fortran arrays are always behaved (aligned,
1801 * notswapped, and writeable) and not (C) CONTIGUOUS (if > 1d).
1802 *
1803 * NPY_ARRAY_UPDATEIFCOPY is deprecated in favor of
1804 * NPY_ARRAY_WRITEBACKIFCOPY in 1.14
1805
1806 * NPY_ARRAY_WRITEBACKIFCOPY flag sets this flag in the returned
1807 * array if a copy is made and the base argument points to the (possibly)
1808 * misbehaved array. Before returning to python, PyArray_ResolveWritebackIfCopy
1809 * must be called to update the contents of the original array from the copy.
1810 *
1811 * NPY_ARRAY_FORCECAST will cause a cast to occur regardless of whether or not
1812 * it is safe.
1813 *
1814 * context is passed through to PyArray_GetArrayParamsFromObject
1815 */
1816
1817/*NUMPY_API
1818 * steals a reference to descr -- accepts NULL
1819 */
1820NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1821PyArray_CheckFromAny(PyObject *op, PyArray_Descr *descr, int min_depth,
1822 int max_depth, int requires, PyObject *context)
1823{
1824 PyObject *obj;
1825 if (requires & NPY_ARRAY_NOTSWAPPED0x0200) {
1826 if (!descr && PyArray_Check(op)((((PyObject*)(op))->ob_type) == (&PyArray_Type) || PyType_IsSubtype
((((PyObject*)(op))->ob_type), (&PyArray_Type)))
&&
1827 PyArray_ISBYTESWAPPED((PyArrayObject* )op)(!((PyArray_DESCR((PyArrayObject* )op)->byteorder) != '>'
))
) {
1828 descr = PyArray_DescrNew(PyArray_DESCR((PyArrayObject *)op));
1829 }
1830 else if (descr && !PyArray_ISNBO(descr->byteorder)((descr->byteorder) != '>')) {
1831 PyArray_DESCR_REPLACE(descr)do { PyArray_Descr *_new_; _new_ = PyArray_DescrNew(descr); _Py_XDECREF
(((PyObject*)(descr))); descr = _new_; } while(0)
;
1832 }
1833 if (descr && descr->byteorder != NPY_IGNORE'|') {
1834 descr->byteorder = NPY_NATIVE'=';
1835 }
1836 }
1837
1838 obj = PyArray_FromAny(op, descr, min_depth, max_depth, requires, context);
1839 if (obj == NULL((void*)0)) {
1840 return NULL((void*)0);
1841 }
1842 if ((requires & NPY_ARRAY_ELEMENTSTRIDES0x0080) &&
1843 !PyArray_ElementStrides(obj)) {
1844 PyObject *ret;
1845 ret = PyArray_NewCopy((PyArrayObject *)obj, NPY_ANYORDER);
1846 Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj)));
1847 obj = ret;
1848 }
1849 return obj;
1850}
1851
1852
1853/*NUMPY_API
1854 * steals reference to newtype --- acc. NULL
1855 */
1856NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
1857PyArray_FromArray(PyArrayObject *arr, PyArray_Descr *newtype, int flags)
1858{
1859
1860 PyArrayObject *ret = NULL((void*)0);
1861 int copy = 0;
1862 int arrflags;
1863 PyArray_Descr *oldtype;
1864 NPY_CASTING casting = NPY_SAFE_CASTING;
1865
1866 oldtype = PyArray_DESCR(arr);
1867 if (newtype == NULL((void*)0)) {
1868 /*
1869 * Check if object is of array with Null newtype.
1870 * If so return it directly instead of checking for casting.
1871 */
1872 if (flags == 0) {
1873 Py_INCREF(arr)_Py_INCREF(((PyObject*)(arr)));
1874 return (PyObject *)arr;
1875 }
1876 newtype = oldtype;
1877 Py_INCREF(oldtype)_Py_INCREF(((PyObject*)(oldtype)));
1878 }
1879 else if (PyDataType_ISUNSIZED(newtype)((newtype)->elsize == 0 && !(((PyArray_Descr *)(newtype
))->names != ((void*)0)))
) {
1880 PyArray_DESCR_REPLACE(newtype)do { PyArray_Descr *_new_; _new_ = PyArray_DescrNew(newtype);
_Py_XDECREF(((PyObject*)(newtype))); newtype = _new_; } while
(0)
;
1881 if (newtype == NULL((void*)0)) {
1882 return NULL((void*)0);
1883 }
1884 newtype->elsize = oldtype->elsize;
1885 }
1886
1887 /* If the casting if forced, use the 'unsafe' casting rule */
1888 if (flags & NPY_ARRAY_FORCECAST0x0010) {
1889 casting = NPY_UNSAFE_CASTING;
1890 }
1891
1892 /* Raise an error if the casting rule isn't followed */
1893 if (!PyArray_CanCastArrayTo(arr, newtype, casting)) {
1894 PyErr_Clear();
1895 npy_set_invalid_cast_error(
1896 PyArray_DESCR(arr), newtype, casting, PyArray_NDIM(arr) == 0);
1897 Py_DECREF(newtype)_Py_DECREF(((PyObject*)(newtype)));
1898 return NULL((void*)0);
1899 }
1900
1901 arrflags = PyArray_FLAGS(arr);
1902 /* If a guaranteed copy was requested */
1903 copy = (flags & NPY_ARRAY_ENSURECOPY0x0020) ||
1904 /* If C contiguous was requested, and arr is not */
1905 ((flags & NPY_ARRAY_C_CONTIGUOUS0x0001) &&
1906 (!(arrflags & NPY_ARRAY_C_CONTIGUOUS0x0001))) ||
1907 /* If an aligned array was requested, and arr is not */
1908 ((flags & NPY_ARRAY_ALIGNED0x0100) &&
1909 (!(arrflags & NPY_ARRAY_ALIGNED0x0100))) ||
1910 /* If a Fortran contiguous array was requested, and arr is not */
1911 ((flags & NPY_ARRAY_F_CONTIGUOUS0x0002) &&
1912 (!(arrflags & NPY_ARRAY_F_CONTIGUOUS0x0002))) ||
1913 /* If a writeable array was requested, and arr is not */
1914 ((flags & NPY_ARRAY_WRITEABLE0x0400) &&
1915 (!(arrflags & NPY_ARRAY_WRITEABLE0x0400))) ||
1916 !PyArray_EquivTypes(oldtype, newtype);
1917
1918 if (copy) {
1919 NPY_ORDER order = NPY_KEEPORDER;
1920 int subok = 1;
1921
1922 /* Set the order for the copy being made based on the flags */
1923 if (flags & NPY_ARRAY_F_CONTIGUOUS0x0002) {
1924 order = NPY_FORTRANORDER;
1925 }
1926 else if (flags & NPY_ARRAY_C_CONTIGUOUS0x0001) {
1927 order = NPY_CORDER;
1928 }
1929
1930 if ((flags & NPY_ARRAY_ENSUREARRAY0x0040)) {
1931 subok = 0;
1932 }
1933 ret = (PyArrayObject *)PyArray_NewLikeArray(arr, order,
1934 newtype, subok);
1935 if (ret == NULL((void*)0)) {
1936 return NULL((void*)0);
1937 }
1938
1939 if (PyArray_CopyInto(ret, arr) < 0) {
1940 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
1941 return NULL((void*)0);
1942 }
1943
1944 if (flags & NPY_ARRAY_UPDATEIFCOPY0x1000) {
1945 /* This is the ONLY place the NPY_ARRAY_UPDATEIFCOPY flag
1946 * is still used.
1947 * Can be deleted once the flag itself is removed
1948 */
1949
1950 /* 2017-Nov-10 1.14 */
1951 if (DEPRECATE(PyErr_WarnEx(PyExc_DeprecationWarning,"NPY_ARRAY_UPDATEIFCOPY, NPY_ARRAY_INOUT_ARRAY, and "
"NPY_ARRAY_INOUT_FARRAY are deprecated, use NPY_WRITEBACKIFCOPY, "
"NPY_ARRAY_INOUT_ARRAY2, or NPY_ARRAY_INOUT_FARRAY2 respectively "
"instead, and call PyArray_ResolveWritebackIfCopy before the "
"array is deallocated, i.e. before the last call to Py_DECREF."
,1)
1952 "NPY_ARRAY_UPDATEIFCOPY, NPY_ARRAY_INOUT_ARRAY, and "PyErr_WarnEx(PyExc_DeprecationWarning,"NPY_ARRAY_UPDATEIFCOPY, NPY_ARRAY_INOUT_ARRAY, and "
"NPY_ARRAY_INOUT_FARRAY are deprecated, use NPY_WRITEBACKIFCOPY, "
"NPY_ARRAY_INOUT_ARRAY2, or NPY_ARRAY_INOUT_FARRAY2 respectively "
"instead, and call PyArray_ResolveWritebackIfCopy before the "
"array is deallocated, i.e. before the last call to Py_DECREF."
,1)
1953 "NPY_ARRAY_INOUT_FARRAY are deprecated, use NPY_WRITEBACKIFCOPY, "PyErr_WarnEx(PyExc_DeprecationWarning,"NPY_ARRAY_UPDATEIFCOPY, NPY_ARRAY_INOUT_ARRAY, and "
"NPY_ARRAY_INOUT_FARRAY are deprecated, use NPY_WRITEBACKIFCOPY, "
"NPY_ARRAY_INOUT_ARRAY2, or NPY_ARRAY_INOUT_FARRAY2 respectively "
"instead, and call PyArray_ResolveWritebackIfCopy before the "
"array is deallocated, i.e. before the last call to Py_DECREF."
,1)
1954 "NPY_ARRAY_INOUT_ARRAY2, or NPY_ARRAY_INOUT_FARRAY2 respectively "PyErr_WarnEx(PyExc_DeprecationWarning,"NPY_ARRAY_UPDATEIFCOPY, NPY_ARRAY_INOUT_ARRAY, and "
"NPY_ARRAY_INOUT_FARRAY are deprecated, use NPY_WRITEBACKIFCOPY, "
"NPY_ARRAY_INOUT_ARRAY2, or NPY_ARRAY_INOUT_FARRAY2 respectively "
"instead, and call PyArray_ResolveWritebackIfCopy before the "
"array is deallocated, i.e. before the last call to Py_DECREF."
,1)
1955 "instead, and call PyArray_ResolveWritebackIfCopy before the "PyErr_WarnEx(PyExc_DeprecationWarning,"NPY_ARRAY_UPDATEIFCOPY, NPY_ARRAY_INOUT_ARRAY, and "
"NPY_ARRAY_INOUT_FARRAY are deprecated, use NPY_WRITEBACKIFCOPY, "
"NPY_ARRAY_INOUT_ARRAY2, or NPY_ARRAY_INOUT_FARRAY2 respectively "
"instead, and call PyArray_ResolveWritebackIfCopy before the "
"array is deallocated, i.e. before the last call to Py_DECREF."
,1)
1956 "array is deallocated, i.e. before the last call to Py_DECREF.")PyErr_WarnEx(PyExc_DeprecationWarning,"NPY_ARRAY_UPDATEIFCOPY, NPY_ARRAY_INOUT_ARRAY, and "
"NPY_ARRAY_INOUT_FARRAY are deprecated, use NPY_WRITEBACKIFCOPY, "
"NPY_ARRAY_INOUT_ARRAY2, or NPY_ARRAY_INOUT_FARRAY2 respectively "
"instead, and call PyArray_ResolveWritebackIfCopy before the "
"array is deallocated, i.e. before the last call to Py_DECREF."
,1)
< 0) {
1957 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
1958 return NULL((void*)0);
1959 }
1960 Py_INCREF(arr)_Py_INCREF(((PyObject*)(arr)));
1961 if (PyArray_SetWritebackIfCopyBase(ret, arr) < 0) {
1962 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
1963 return NULL((void*)0);
1964 }
1965 PyArray_ENABLEFLAGS(ret, NPY_ARRAY_UPDATEIFCOPY0x1000);
1966 PyArray_CLEARFLAGS(ret, NPY_ARRAY_WRITEBACKIFCOPY0x2000);
1967 }
1968 else if (flags & NPY_ARRAY_WRITEBACKIFCOPY0x2000) {
1969 Py_INCREF(arr)_Py_INCREF(((PyObject*)(arr)));
1970 if (PyArray_SetWritebackIfCopyBase(ret, arr) < 0) {
1971 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
1972 return NULL((void*)0);
1973 }
1974 }
1975 }
1976 /*
1977 * If no copy then take an appropriate view if necessary, or
1978 * just return a reference to ret itself.
1979 */
1980 else {
1981 int needview = ((flags & NPY_ARRAY_ENSUREARRAY0x0040) &&
1982 !PyArray_CheckExact(arr)(((PyObject*)(arr))->ob_type == &PyArray_Type));
1983
1984 Py_DECREF(newtype)_Py_DECREF(((PyObject*)(newtype)));
1985 if (needview) {
1986 PyTypeObject *subtype = NULL((void*)0);
1987
1988 if (flags & NPY_ARRAY_ENSUREARRAY0x0040) {
1989 subtype = &PyArray_Type;
1990 }
1991
1992 ret = (PyArrayObject *)PyArray_View(arr, NULL((void*)0), subtype);
1993 if (ret == NULL((void*)0)) {
1994 return NULL((void*)0);
1995 }
1996 }
1997 else {
1998 Py_INCREF(arr)_Py_INCREF(((PyObject*)(arr)));
1999 ret = arr;
2000 }
2001 }
2002
2003 return (PyObject *)ret;
2004}
2005
2006/*NUMPY_API */
2007NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2008PyArray_FromStructInterface(PyObject *input)
2009{
2010 PyArray_Descr *thetype = NULL((void*)0);
2011 PyArrayInterface *inter;
2012 PyObject *attr;
2013 char endian = NPY_NATBYTE'<';
2014
2015 attr = PyArray_LookupSpecial_OnInstance(input, "__array_struct__");
2016 if (attr == NULL((void*)0)) {
2017 if (PyErr_Occurred()) {
2018 return NULL((void*)0);
2019 } else {
2020 return Py_NotImplemented(&_Py_NotImplementedStruct);
2021 }
2022 }
2023 if (!PyCapsule_CheckExact(attr)((((PyObject*)(attr))->ob_type) == &PyCapsule_Type)) {
2024 if (PyType_Check(input)((((((PyObject*)(input))->ob_type))->tp_flags & ((1UL
<< 31))) != 0)
&& PyObject_HasAttrString(attr, "__get__")) {
2025 /*
2026 * If the input is a class `attr` should be a property-like object.
2027 * This cannot be interpreted as an array, but is a valid.
2028 * (Needed due to the lookup being on the instance rather than type)
2029 */
2030 Py_DECREF(attr)_Py_DECREF(((PyObject*)(attr)));
2031 return Py_NotImplemented(&_Py_NotImplementedStruct);
2032 }
2033 goto fail;
2034 }
2035 inter = PyCapsule_GetPointer(attr, NULL((void*)0));
2036 if (inter == NULL((void*)0)) {
2037 goto fail;
2038 }
2039 if (inter->two != 2) {
2040 goto fail;
2041 }
2042 if ((inter->flags & NPY_ARRAY_NOTSWAPPED0x0200) != NPY_ARRAY_NOTSWAPPED0x0200) {
2043 endian = NPY_OPPBYTE'>';
2044 inter->flags &= ~NPY_ARRAY_NOTSWAPPED0x0200;
2045 }
2046
2047 if (inter->flags & NPY_ARR_HAS_DESCR0x0800) {
2048 if (PyArray_DescrConverter(inter->descr, &thetype) == NPY_FAIL0) {
2049 thetype = NULL((void*)0);
2050 PyErr_Clear();
2051 }
2052 }
2053
2054 if (thetype == NULL((void*)0)) {
2055 PyObject *type_str = PyUnicode_FromFormat(
2056 "%c%c%d", endian, inter->typekind, inter->itemsize);
2057 if (type_str == NULL((void*)0)) {
2058 Py_DECREF(attr)_Py_DECREF(((PyObject*)(attr)));
2059 return NULL((void*)0);
2060 }
2061 int ok = PyArray_DescrConverter(type_str, &thetype);
2062 Py_DECREF(type_str)_Py_DECREF(((PyObject*)(type_str)));
2063 if (ok != NPY_SUCCEED1) {
2064 Py_DECREF(attr)_Py_DECREF(((PyObject*)(attr)));
2065 return NULL((void*)0);
2066 }
2067 }
2068
2069 PyObject *ret = PyArray_NewFromDescrAndBase(
2070 &PyArray_Type, thetype,
2071 inter->nd, inter->shape, inter->strides, inter->data,
2072 inter->flags, NULL((void*)0), input);
2073 Py_DECREF(attr)_Py_DECREF(((PyObject*)(attr)));
2074 return ret;
2075
2076 fail:
2077 PyErr_SetString(PyExc_ValueError, "invalid __array_struct__");
2078 Py_DECREF(attr)_Py_DECREF(((PyObject*)(attr)));
2079 return NULL((void*)0);
2080}
2081
2082/*
2083 * Checks if the object in descr is the default 'descr' member for the
2084 * __array_interface__ dictionary with 'typestr' member typestr.
2085 */
2086NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
2087_is_default_descr(PyObject *descr, PyObject *typestr) {
2088 if (!PyList_Check(descr)((((((PyObject*)(descr))->ob_type))->tp_flags & ((1UL
<< 25))) != 0)
|| PyList_GET_SIZE(descr)(((void) (0)), (((PyVarObject*)(descr))->ob_size)) != 1) {
2089 return 0;
2090 }
2091 PyObject *tuple = PyList_GET_ITEM(descr, 0)(((PyListObject *)(descr))->ob_item[0]);
2092 if (!(PyTuple_Check(tuple)((((((PyObject*)(tuple))->ob_type))->tp_flags & ((1UL
<< 26))) != 0)
&& PyTuple_GET_SIZE(tuple)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(tuple))))->
ob_size)
== 2)) {
2093 return 0;
2094 }
2095 PyObject *name = PyTuple_GET_ITEM(tuple, 0)((((void) (0)), (PyTupleObject *)(tuple))->ob_item[0]);
2096 if (!(PyUnicode_Check(name)((((((PyObject*)(name))->ob_type))->tp_flags & ((1UL
<< 28))) != 0)
&& PyUnicode_GetLength(name) == 0)) {
2097 return 0;
2098 }
2099 PyObject *typestr2 = PyTuple_GET_ITEM(tuple, 1)((((void) (0)), (PyTupleObject *)(tuple))->ob_item[1]);
2100 return PyObject_RichCompareBool(typestr, typestr2, Py_EQ2);
2101}
2102
2103
2104/*
2105 * A helper function to transition away from ignoring errors during
2106 * special attribute lookups during array coercion.
2107 */
2108static NPY_INLINEinline int
2109deprecated_lookup_error_clearing(PyTypeObject *type, char *attribute)
2110{
2111 PyObject *exc_type, *exc_value, *traceback;
2112 PyErr_Fetch(&exc_type, &exc_value, &traceback);
2113
2114 /* DEPRECATED 2021-05-12, NumPy 1.21. */
2115 int res = PyErr_WarnFormat(PyExc_DeprecationWarning, 1,
2116 "An exception was ignored while fetching the attribute `%s` from "
2117 "an object of type '%s'. With the exception of `AttributeError` "
2118 "NumPy will always raise this exception in the future. Raise this "
2119 "deprecation warning to see the original exception. "
2120 "(Warning added NumPy 1.21)", attribute, type->tp_name);
2121
2122 if (res < 0) {
2123 npy_PyErr_ChainExceptionsCause(exc_type, exc_value, traceback);
2124 return -1;
2125 }
2126 else {
2127 /* `PyErr_Fetch` cleared the original error, delete the references */
2128 Py_DECREF(exc_type)_Py_DECREF(((PyObject*)(exc_type)));
2129 Py_XDECREF(exc_value)_Py_XDECREF(((PyObject*)(exc_value)));
2130 Py_XDECREF(traceback)_Py_XDECREF(((PyObject*)(traceback)));
2131 return 0;
2132 }
2133}
2134
2135
2136/*NUMPY_API*/
2137NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2138PyArray_FromInterface(PyObject *origin)
2139{
2140 PyObject *iface = NULL((void*)0);
2141 PyObject *attr = NULL((void*)0);
2142 PyObject *base = NULL((void*)0);
2143 PyArrayObject *ret;
2144 PyArray_Descr *dtype = NULL((void*)0);
2145 char *data = NULL((void*)0);
2146 Py_buffer view;
2147 int i, n;
2148 npy_intp dims[NPY_MAXDIMS32], strides[NPY_MAXDIMS32];
2149 int dataflags = NPY_ARRAY_BEHAVED(0x0100 | 0x0400);
2150
2151 iface = PyArray_LookupSpecial_OnInstance(origin, "__array_interface__");
2152
2153 if (iface == NULL((void*)0)) {
2154 if (PyErr_Occurred()) {
2155 if (PyErr_ExceptionMatches(PyExc_RecursionError) ||
2156 PyErr_ExceptionMatches(PyExc_MemoryError)) {
2157 /* RecursionError and MemoryError are considered fatal */
2158 return NULL((void*)0);
2159 }
2160 if (deprecated_lookup_error_clearing(
2161 Py_TYPE(origin)(((PyObject*)(origin))->ob_type), "__array_interface__") < 0) {
2162 return NULL((void*)0);
2163 }
2164 }
2165 return Py_NotImplemented(&_Py_NotImplementedStruct);
2166 }
2167 if (!PyDict_Check(iface)((((((PyObject*)(iface))->ob_type))->tp_flags & ((1UL
<< 29))) != 0)
) {
2168 if (PyType_Check(origin)((((((PyObject*)(origin))->ob_type))->tp_flags & ((
1UL << 31))) != 0)
&& PyObject_HasAttrString(iface, "__get__")) {
2169 /*
2170 * If the input is a class `iface` should be a property-like object.
2171 * This cannot be interpreted as an array, but is a valid.
2172 * (Needed due to the lookup being on the instance rather than type)
2173 */
2174 Py_DECREF(iface)_Py_DECREF(((PyObject*)(iface)));
2175 return Py_NotImplemented(&_Py_NotImplementedStruct);
2176 }
2177
2178 Py_DECREF(iface)_Py_DECREF(((PyObject*)(iface)));
2179 PyErr_SetString(PyExc_ValueError,
2180 "Invalid __array_interface__ value, must be a dict");
2181 return NULL((void*)0);
2182 }
2183
2184 /* Get type string from interface specification */
2185 attr = _PyDict_GetItemStringWithError(iface, "typestr");
2186 if (attr == NULL((void*)0)) {
2187 Py_DECREF(iface)_Py_DECREF(((PyObject*)(iface)));
2188 if (!PyErr_Occurred()) {
2189 PyErr_SetString(PyExc_ValueError,
2190 "Missing __array_interface__ typestr");
2191 }
2192 return NULL((void*)0);
2193 }
2194
2195 /* allow bytes for backwards compatibility */
2196 if (!PyBytes_Check(attr)((((((PyObject*)(attr))->ob_type))->tp_flags & ((1UL
<< 27))) != 0)
&& !PyUnicode_Check(attr)((((((PyObject*)(attr))->ob_type))->tp_flags & ((1UL
<< 28))) != 0)
) {
2197 PyErr_SetString(PyExc_TypeError,
2198 "__array_interface__ typestr must be a string");
2199 goto fail;
2200 }
2201
2202 /* Get dtype from type string */
2203 if (PyArray_DescrConverter(attr, &dtype) != NPY_SUCCEED1) {
2204 goto fail;
2205 }
2206
2207 /*
2208 * If the dtype is NPY_VOID, see if there is extra information in
2209 * the 'descr' attribute.
2210 */
2211 if (dtype->type_num == NPY_VOID) {
2212 PyObject *descr = _PyDict_GetItemStringWithError(iface, "descr");
2213 if (descr == NULL((void*)0) && PyErr_Occurred()) {
2214 goto fail;
2215 }
2216 PyArray_Descr *new_dtype = NULL((void*)0);
2217 if (descr != NULL((void*)0)) {
2218 int is_default = _is_default_descr(descr, attr);
2219 if (is_default < 0) {
2220 goto fail;
2221 }
2222 if (!is_default) {
2223 if (PyArray_DescrConverter2(descr, &new_dtype) != NPY_SUCCEED1) {
2224 goto fail;
2225 }
2226 if (new_dtype != NULL((void*)0)) {
2227 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
2228 dtype = new_dtype;
2229 }
2230 }
2231
2232 }
2233
2234 }
2235
2236 /* Get shape tuple from interface specification */
2237 attr = _PyDict_GetItemStringWithError(iface, "shape");
2238 if (attr == NULL((void*)0)) {
2239 if (PyErr_Occurred()) {
2240 return NULL((void*)0);
2241 }
2242 /* Shape must be specified when 'data' is specified */
2243 PyObject *data = _PyDict_GetItemStringWithError(iface, "data");
2244 if (data == NULL((void*)0) && PyErr_Occurred()) {
2245 return NULL((void*)0);
2246 }
2247 else if (data != NULL((void*)0)) {
2248 Py_DECREF(iface)_Py_DECREF(((PyObject*)(iface)));
2249 PyErr_SetString(PyExc_ValueError,
2250 "Missing __array_interface__ shape");
2251 return NULL((void*)0);
2252 }
2253 /* Assume shape as scalar otherwise */
2254 else {
2255 /* NOTE: pointers to data and base should be NULL */
2256 n = dims[0] = 0;
2257 }
2258 }
2259 /* Make sure 'shape' is a tuple */
2260 else if (!PyTuple_Check(attr)((((((PyObject*)(attr))->ob_type))->tp_flags & ((1UL
<< 26))) != 0)
) {
2261 PyErr_SetString(PyExc_TypeError,
2262 "shape must be a tuple");
2263 goto fail;
2264 }
2265 /* Get dimensions from shape tuple */
2266 else {
2267 n = PyTuple_GET_SIZE(attr)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(attr))))->
ob_size)
;
2268 for (i = 0; i < n; i++) {
2269 PyObject *tmp = PyTuple_GET_ITEM(attr, i)((((void) (0)), (PyTupleObject *)(attr))->ob_item[i]);
2270 dims[i] = PyArray_PyIntAsIntp(tmp);
2271 if (error_converting(dims[i])(((dims[i]) == -1) && PyErr_Occurred())) {
2272 goto fail;
2273 }
2274 }
2275 }
2276
2277 /* Get data buffer from interface specification */
2278 attr = _PyDict_GetItemStringWithError(iface, "data");
2279 if (attr == NULL((void*)0) && PyErr_Occurred()){
2280 return NULL((void*)0);
2281 }
2282
2283 /* Case for data access through pointer */
2284 if (attr && PyTuple_Check(attr)((((((PyObject*)(attr))->ob_type))->tp_flags & ((1UL
<< 26))) != 0)
) {
2285 PyObject *dataptr;
2286 if (PyTuple_GET_SIZE(attr)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(attr))))->
ob_size)
!= 2) {
2287 PyErr_SetString(PyExc_TypeError,
2288 "__array_interface__ data must be a 2-tuple with "
2289 "(data pointer integer, read-only flag)");
2290 goto fail;
2291 }
2292 dataptr = PyTuple_GET_ITEM(attr, 0)((((void) (0)), (PyTupleObject *)(attr))->ob_item[0]);
2293 if (PyLong_Check(dataptr)((((((PyObject*)(dataptr))->ob_type))->tp_flags & (
(1UL << 24))) != 0)
) {
2294 data = PyLong_AsVoidPtr(dataptr);
2295 if (data == NULL((void*)0) && PyErr_Occurred()) {
2296 goto fail;
2297 }
2298 }
2299 else {
2300 PyErr_SetString(PyExc_TypeError,
2301 "first element of __array_interface__ data tuple "
2302 "must be an integer.");
2303 goto fail;
2304 }
2305 if (PyObject_IsTrue(PyTuple_GET_ITEM(attr,1)((((void) (0)), (PyTupleObject *)(attr))->ob_item[1]))) {
2306 dataflags &= ~NPY_ARRAY_WRITEABLE0x0400;
2307 }
2308 base = origin;
2309 }
2310
2311 /* Case for data access through buffer */
2312 else if (attr) {
2313 if (attr != Py_None(&_Py_NoneStruct)) {
2314 base = attr;
2315 }
2316 else {
2317 base = origin;
2318 }
2319 if (PyObject_GetBuffer(base, &view,
2320 PyBUF_WRITABLE0x0001|PyBUF_SIMPLE0) < 0) {
2321 PyErr_Clear();
2322 if (PyObject_GetBuffer(base, &view,
2323 PyBUF_SIMPLE0) < 0) {
2324 goto fail;
2325 }
2326 dataflags &= ~NPY_ARRAY_WRITEABLE0x0400;
2327 }
2328 data = (char *)view.buf;
2329 /*
2330 * In Python 3 both of the deprecated functions PyObject_AsWriteBuffer and
2331 * PyObject_AsReadBuffer that this code replaces release the buffer. It is
2332 * up to the object that supplies the buffer to guarantee that the buffer
2333 * sticks around after the release.
2334 */
2335 PyBuffer_Release(&view);
2336
2337 /* Get offset number from interface specification */
2338 attr = _PyDict_GetItemStringWithError(iface, "offset");
2339 if (attr == NULL((void*)0) && PyErr_Occurred()) {
2340 goto fail;
2341 }
2342 else if (attr) {
2343 npy_longlong num = PyLong_AsLongLong(attr);
2344 if (error_converting(num)(((num) == -1) && PyErr_Occurred())) {
2345 PyErr_SetString(PyExc_TypeError,
2346 "__array_interface__ offset must be an integer");
2347 goto fail;
2348 }
2349 data += num;
2350 }
2351 }
2352
2353 ret = (PyArrayObject *)PyArray_NewFromDescrAndBase(
2354 &PyArray_Type, dtype,
2355 n, dims, NULL((void*)0), data,
2356 dataflags, NULL((void*)0), base);
2357 /*
2358 * Ref to dtype was stolen by PyArray_NewFromDescrAndBase
2359 * Prevent DECREFing dtype in fail codepath by setting to NULL
2360 */
2361 dtype = NULL((void*)0);
2362 if (ret == NULL((void*)0)) {
2363 goto fail;
2364 }
2365 if (data == NULL((void*)0)) {
2366 if (PyArray_SIZE(ret)PyArray_MultiplyList(PyArray_DIMS(ret), PyArray_NDIM(ret)) > 1) {
2367 PyErr_SetString(PyExc_ValueError,
2368 "cannot coerce scalar to array with size > 1");
2369 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
2370 goto fail;
2371 }
2372 if (PyArray_SETITEM(ret, PyArray_DATA(ret), origin) < 0) {
2373 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
2374 goto fail;
2375 }
2376 }
2377 attr = _PyDict_GetItemStringWithError(iface, "strides");
2378 if (attr == NULL((void*)0) && PyErr_Occurred()){
2379 return NULL((void*)0);
2380 }
2381 if (attr != NULL((void*)0) && attr != Py_None(&_Py_NoneStruct)) {
2382 if (!PyTuple_Check(attr)((((((PyObject*)(attr))->ob_type))->tp_flags & ((1UL
<< 26))) != 0)
) {
2383 PyErr_SetString(PyExc_TypeError,
2384 "strides must be a tuple");
2385 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
2386 goto fail;
2387 }
2388 if (n != PyTuple_GET_SIZE(attr)(((PyVarObject*)((((void) (0)), (PyTupleObject *)(attr))))->
ob_size)
) {
2389 PyErr_SetString(PyExc_ValueError,
2390 "mismatch in length of strides and shape");
2391 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
2392 goto fail;
2393 }
2394 for (i = 0; i < n; i++) {
2395 PyObject *tmp = PyTuple_GET_ITEM(attr, i)((((void) (0)), (PyTupleObject *)(attr))->ob_item[i]);
2396 strides[i] = PyArray_PyIntAsIntp(tmp);
2397 if (error_converting(strides[i])(((strides[i]) == -1) && PyErr_Occurred())) {
2398 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
2399 goto fail;
2400 }
2401 }
2402 if (n) {
2403 memcpy(PyArray_STRIDES(ret), strides, n*sizeof(npy_intp));
2404 }
2405 }
2406 PyArray_UpdateFlags(ret, NPY_ARRAY_UPDATE_ALL(0x0001 | 0x0002 | 0x0100));
2407 Py_DECREF(iface)_Py_DECREF(((PyObject*)(iface)));
2408 return (PyObject *)ret;
2409
2410 fail:
2411 Py_XDECREF(dtype)_Py_XDECREF(((PyObject*)(dtype)));
2412 Py_XDECREF(iface)_Py_XDECREF(((PyObject*)(iface)));
2413 return NULL((void*)0);
2414}
2415
2416/*NUMPY_API
2417 */
2418NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2419PyArray_FromArrayAttr(PyObject *op, PyArray_Descr *typecode, PyObject *context)
2420{
2421 PyObject *new;
2422 PyObject *array_meth;
2423
2424 if (context != NULL((void*)0)) {
2425 PyErr_SetString(PyExc_RuntimeError, "'context' must be NULL");
2426 return NULL((void*)0);
2427 }
2428 array_meth = PyArray_LookupSpecial_OnInstance(op, "__array__");
2429 if (array_meth == NULL((void*)0)) {
2430 if (PyErr_Occurred()) {
2431 if (PyErr_ExceptionMatches(PyExc_RecursionError) ||
2432 PyErr_ExceptionMatches(PyExc_MemoryError)) {
2433 /* RecursionError and MemoryError are considered fatal */
2434 return NULL((void*)0);
2435 }
2436 if (deprecated_lookup_error_clearing(
2437 Py_TYPE(op)(((PyObject*)(op))->ob_type), "__array__") < 0) {
2438 return NULL((void*)0);
2439 }
2440 }
2441 return Py_NotImplemented(&_Py_NotImplementedStruct);
2442 }
2443 if (PyType_Check(op)((((((PyObject*)(op))->ob_type))->tp_flags & ((1UL <<
31))) != 0)
&& PyObject_HasAttrString(array_meth, "__get__")) {
2444 /*
2445 * If the input is a class `array_meth` may be a property-like object.
2446 * This cannot be interpreted as an array (called), but is a valid.
2447 * Trying `array_meth.__call__()` on this should not be useful.
2448 * (Needed due to the lookup being on the instance rather than type)
2449 */
2450 Py_DECREF(array_meth)_Py_DECREF(((PyObject*)(array_meth)));
2451 return Py_NotImplemented(&_Py_NotImplementedStruct);
2452 }
2453 if (typecode == NULL((void*)0)) {
2454 new = PyObject_CallFunction_PyObject_CallFunction_SizeT(array_meth, NULL((void*)0));
2455 }
2456 else {
2457 new = PyObject_CallFunction_PyObject_CallFunction_SizeT(array_meth, "O", typecode);
2458 }
2459 Py_DECREF(array_meth)_Py_DECREF(((PyObject*)(array_meth)));
2460 if (new == NULL((void*)0)) {
2461 return NULL((void*)0);
2462 }
2463 if (!PyArray_Check(new)((((PyObject*)(new))->ob_type) == (&PyArray_Type) || PyType_IsSubtype
((((PyObject*)(new))->ob_type), (&PyArray_Type)))
) {
2464 PyErr_SetString(PyExc_ValueError,
2465 "object __array__ method not " \
2466 "producing an array");
2467 Py_DECREF(new)_Py_DECREF(((PyObject*)(new)));
2468 return NULL((void*)0);
2469 }
2470 return new;
2471}
2472
2473/*NUMPY_API
2474* new reference -- accepts NULL for mintype
2475*/
2476NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyArray_Descr *
2477PyArray_DescrFromObject(PyObject *op, PyArray_Descr *mintype)
2478{
2479 PyArray_Descr *dtype;
2480
2481 dtype = mintype;
2482 Py_XINCREF(dtype)_Py_XINCREF(((PyObject*)(dtype)));
2483
2484 if (PyArray_DTypeFromObject(op, NPY_MAXDIMS32, &dtype) < 0) {
2485 return NULL((void*)0);
2486 }
2487
2488 if (dtype == NULL((void*)0)) {
2489 return PyArray_DescrFromType(NPY_DEFAULT_TYPENPY_DOUBLE);
2490 }
2491 else {
2492 return dtype;
2493 }
2494}
2495
2496/* These are also old calls (should use PyArray_NewFromDescr) */
2497
2498/* They all zero-out the memory as previously done */
2499
2500/* steals reference to descr -- and enforces native byteorder on it.*/
2501
2502/*NUMPY_API
2503 Deprecated, use PyArray_NewFromDescr instead.
2504*/
2505NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2506PyArray_FromDimsAndDataAndDescr(int NPY_UNUSED(nd)(__NPY_UNUSED_TAGGEDnd) __attribute__ ((__unused__)), int *NPY_UNUSED(d)(__NPY_UNUSED_TAGGEDd) __attribute__ ((__unused__)),
2507 PyArray_Descr *descr,
2508 char *NPY_UNUSED(data)(__NPY_UNUSED_TAGGEDdata) __attribute__ ((__unused__)))
2509{
2510 PyErr_SetString(PyExc_NotImplementedError,
2511 "PyArray_FromDimsAndDataAndDescr: use PyArray_NewFromDescr.");
2512 Py_DECREF(descr)_Py_DECREF(((PyObject*)(descr)));
2513 return NULL((void*)0);
2514}
2515
2516/*NUMPY_API
2517 Deprecated, use PyArray_SimpleNew instead.
2518*/
2519NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2520PyArray_FromDims(int NPY_UNUSED(nd)(__NPY_UNUSED_TAGGEDnd) __attribute__ ((__unused__)), int *NPY_UNUSED(d)(__NPY_UNUSED_TAGGEDd) __attribute__ ((__unused__)), int NPY_UNUSED(type)(__NPY_UNUSED_TAGGEDtype) __attribute__ ((__unused__)))
2521{
2522 PyErr_SetString(PyExc_NotImplementedError,
2523 "PyArray_FromDims: use PyArray_SimpleNew.");
2524 return NULL((void*)0);
2525}
2526
2527/* end old calls */
2528
2529/*NUMPY_API
2530 * This is a quick wrapper around
2531 * PyArray_FromAny(op, NULL, 0, 0, NPY_ARRAY_ENSUREARRAY, NULL)
2532 * that special cases Arrays and PyArray_Scalars up front
2533 * It *steals a reference* to the object
2534 * It also guarantees that the result is PyArray_Type
2535 * Because it decrefs op if any conversion needs to take place
2536 * so it can be used like PyArray_EnsureArray(some_function(...))
2537 */
2538NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2539PyArray_EnsureArray(PyObject *op)
2540{
2541 PyObject *new;
2542
2543 if ((op == NULL((void*)0)) || (PyArray_CheckExact(op)(((PyObject*)(op))->ob_type == &PyArray_Type))) {
2544 new = op;
2545 Py_XINCREF(new)_Py_XINCREF(((PyObject*)(new)));
2546 }
2547 else if (PyArray_Check(op)((((PyObject*)(op))->ob_type) == (&PyArray_Type) || PyType_IsSubtype
((((PyObject*)(op))->ob_type), (&PyArray_Type)))
) {
2548 new = PyArray_View((PyArrayObject *)op, NULL((void*)0), &PyArray_Type);
2549 }
2550 else if (PyArray_IsScalar(op, Generic)(((((PyObject*)(op))->ob_type) == (&PyGenericArrType_Type
) || PyType_IsSubtype((((PyObject*)(op))->ob_type), (&
PyGenericArrType_Type))))
) {
2551 new = PyArray_FromScalar(op, NULL((void*)0));
2552 }
2553 else {
2554 new = PyArray_FROM_OF(op, NPY_ARRAY_ENSUREARRAY)PyArray_CheckFromAny(op, ((void*)0), 0, 0, 0x0040, ((void*)0)
)
;
2555 }
2556 Py_XDECREF(op)_Py_XDECREF(((PyObject*)(op)));
2557 return new;
2558}
2559
2560/*NUMPY_API*/
2561NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2562PyArray_EnsureAnyArray(PyObject *op)
2563{
2564 if (op && PyArray_Check(op)((((PyObject*)(op))->ob_type) == (&PyArray_Type) || PyType_IsSubtype
((((PyObject*)(op))->ob_type), (&PyArray_Type)))
) {
14
Assuming 'op' is non-null
15
Assuming the condition is true
2565 return op;
2566 }
2567 return PyArray_EnsureArray(op);
2568}
2569
2570/*
2571 * Private implementation of PyArray_CopyAnyInto with an additional order
2572 * parameter.
2573 */
2574NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
2575PyArray_CopyAsFlat(PyArrayObject *dst, PyArrayObject *src, NPY_ORDER order)
2576{
2577 NpyIter *dst_iter, *src_iter;
2578
2579 NpyIter_IterNextFunc *dst_iternext, *src_iternext;
2580 char **dst_dataptr, **src_dataptr;
2581 npy_intp dst_stride, src_stride;
2582 npy_intp *dst_countptr, *src_countptr;
2583 npy_uint32 baseflags;
2584
2585 npy_intp dst_count, src_count, count;
2586 npy_intp dst_size, src_size;
2587 int needs_api;
2588
2589 NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);;
2590
2591 if (PyArray_FailUnlessWriteable(dst, "destination array") < 0) {
2592 return -1;
2593 }
2594
2595 /*
2596 * If the shapes match and a particular order is forced
2597 * for both, use the more efficient CopyInto
2598 */
2599 if (order != NPY_ANYORDER && order != NPY_KEEPORDER &&
2600 PyArray_NDIM(dst) == PyArray_NDIM(src) &&
2601 PyArray_CompareLists(PyArray_DIMS(dst), PyArray_DIMS(src),
2602 PyArray_NDIM(dst))) {
2603 return PyArray_CopyInto(dst, src);
2604 }
2605
2606 dst_size = PyArray_SIZE(dst)PyArray_MultiplyList(PyArray_DIMS(dst), PyArray_NDIM(dst));
2607 src_size = PyArray_SIZE(src)PyArray_MultiplyList(PyArray_DIMS(src), PyArray_NDIM(src));
2608 if (dst_size != src_size) {
2609 PyErr_Format(PyExc_ValueError,
2610 "cannot copy from array of size %" NPY_INTP_FMT"ld" " into an array "
2611 "of size %" NPY_INTP_FMT"ld", src_size, dst_size);
2612 return -1;
2613 }
2614
2615 /* Zero-sized arrays require nothing be done */
2616 if (dst_size == 0) {
2617 return 0;
2618 }
2619
2620 baseflags = NPY_ITER_EXTERNAL_LOOP0x00000008 |
2621 NPY_ITER_DONT_NEGATE_STRIDES0x00001000 |
2622 NPY_ITER_REFS_OK0x00000020;
2623
2624 /*
2625 * This copy is based on matching C-order traversals of src and dst.
2626 * By using two iterators, we can find maximal sub-chunks that
2627 * can be processed at once.
2628 */
2629 dst_iter = NpyIter_New(dst, NPY_ITER_WRITEONLY0x00040000 | baseflags,
2630 order,
2631 NPY_NO_CASTING,
2632 NULL((void*)0));
2633 if (dst_iter == NULL((void*)0)) {
2634 return -1;
2635 }
2636 src_iter = NpyIter_New(src, NPY_ITER_READONLY0x00020000 | baseflags,
2637 order,
2638 NPY_NO_CASTING,
2639 NULL((void*)0));
2640 if (src_iter == NULL((void*)0)) {
2641 NpyIter_Deallocate(dst_iter);
2642 return -1;
2643 }
2644
2645 /* Get all the values needed for the inner loop */
2646 dst_iternext = NpyIter_GetIterNext(dst_iter, NULL((void*)0));
2647 dst_dataptr = NpyIter_GetDataPtrArray(dst_iter);
2648 /* Since buffering is disabled, we can cache the stride */
2649 dst_stride = NpyIter_GetInnerStrideArray(dst_iter)[0];
2650 dst_countptr = NpyIter_GetInnerLoopSizePtr(dst_iter);
2651
2652 src_iternext = NpyIter_GetIterNext(src_iter, NULL((void*)0));
2653 src_dataptr = NpyIter_GetDataPtrArray(src_iter);
2654 /* Since buffering is disabled, we can cache the stride */
2655 src_stride = NpyIter_GetInnerStrideArray(src_iter)[0];
2656 src_countptr = NpyIter_GetInnerLoopSizePtr(src_iter);
2657
2658 if (dst_iternext == NULL((void*)0) || src_iternext == NULL((void*)0)) {
2659 NpyIter_Deallocate(dst_iter);
2660 NpyIter_Deallocate(src_iter);
2661 return -1;
2662 }
2663
2664 needs_api = NpyIter_IterationNeedsAPI(dst_iter) ||
2665 NpyIter_IterationNeedsAPI(src_iter);
2666
2667 /*
2668 * Because buffering is disabled in the iterator, the inner loop
2669 * strides will be the same throughout the iteration loop. Thus,
2670 * we can pass them to this function to take advantage of
2671 * contiguous strides, etc.
2672 */
2673 NPY_cast_info cast_info;
2674 if (PyArray_GetDTypeTransferFunction(
2675 IsUintAligned(src) && IsAligned(src) &&
2676 IsUintAligned(dst) && IsAligned(dst),
2677 src_stride, dst_stride,
2678 PyArray_DESCR(src), PyArray_DESCR(dst),
2679 0,
2680 &cast_info, &needs_api) != NPY_SUCCEED1) {
2681 NpyIter_Deallocate(dst_iter);
2682 NpyIter_Deallocate(src_iter);
2683 return -1;
2684 }
2685
2686 if (!needs_api) {
2687 NPY_BEGIN_THREADSdo {_save = PyEval_SaveThread();} while (0);;
2688 }
2689
2690 dst_count = *dst_countptr;
2691 src_count = *src_countptr;
2692 char *args[2] = {src_dataptr[0], dst_dataptr[0]};
2693 npy_intp strides[2] = {src_stride, dst_stride};
2694
2695 int res = 0;
2696 for(;;) {
2697 /* Transfer the biggest amount that fits both */
2698 count = (src_count < dst_count) ? src_count : dst_count;
2699 if (cast_info.func(&cast_info.context,
2700 args, &count, strides, cast_info.auxdata) < 0) {
2701 res = -1;
2702 break;
2703 }
2704
2705 /* If we exhausted the dst block, refresh it */
2706 if (dst_count == count) {
2707 res = dst_iternext(dst_iter);
2708 if (!res) {
2709 break;
2710 }
2711 dst_count = *dst_countptr;
2712 args[1] = dst_dataptr[0];
2713 }
2714 else {
2715 dst_count -= count;
2716 args[1] += count*dst_stride;
2717 }
2718
2719 /* If we exhausted the src block, refresh it */
2720 if (src_count == count) {
2721 res = src_iternext(src_iter);
2722 if (!res) {
2723 break;
2724 }
2725 src_count = *src_countptr;
2726 args[0] = src_dataptr[0];
2727 }
2728 else {
2729 src_count -= count;
2730 args[0] += count*src_stride;
2731 }
2732 }
2733
2734 NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void
*)0);} } while (0);
;
2735
2736 NPY_cast_info_xfree(&cast_info);
2737 NpyIter_Deallocate(dst_iter);
2738 NpyIter_Deallocate(src_iter);
2739 if (res > 0) {
2740 /* The iteration stopped successfully, do not report an error */
2741 return 0;
2742 }
2743 return res;
2744}
2745
2746/*NUMPY_API
2747 * Copy an Array into another array -- memory must not overlap
2748 * Does not require src and dest to have "broadcastable" shapes
2749 * (only the same number of elements).
2750 *
2751 * TODO: For NumPy 2.0, this could accept an order parameter which
2752 * only allows NPY_CORDER and NPY_FORDER. Could also rename
2753 * this to CopyAsFlat to make the name more intuitive.
2754 *
2755 * Returns 0 on success, -1 on error.
2756 */
2757NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
2758PyArray_CopyAnyInto(PyArrayObject *dst, PyArrayObject *src)
2759{
2760 return PyArray_CopyAsFlat(dst, src, NPY_CORDER);
2761}
2762
2763/*NUMPY_API
2764 * Copy an Array into another array.
2765 * Broadcast to the destination shape if necessary.
2766 *
2767 * Returns 0 on success, -1 on failure.
2768 */
2769NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
2770PyArray_CopyInto(PyArrayObject *dst, PyArrayObject *src)
2771{
2772 return PyArray_AssignArray(dst, src, NULL((void*)0), NPY_UNSAFE_CASTING);
2773}
2774
2775/*NUMPY_API
2776 * Move the memory of one array into another, allowing for overlapping data.
2777 *
2778 * Returns 0 on success, negative on failure.
2779 */
2780NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
2781PyArray_MoveInto(PyArrayObject *dst, PyArrayObject *src)
2782{
2783 return PyArray_AssignArray(dst, src, NULL((void*)0), NPY_UNSAFE_CASTING);
2784}
2785
2786/*NUMPY_API
2787 * PyArray_CheckAxis
2788 *
2789 * check that axis is valid
2790 * convert 0-d arrays to 1-d arrays
2791 */
2792NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2793PyArray_CheckAxis(PyArrayObject *arr, int *axis, int flags)
2794{
2795 PyObject *temp1, *temp2;
2796 int n = PyArray_NDIM(arr);
2797
2798 if (*axis == NPY_MAXDIMS32 || n == 0) {
2799 if (n != 1) {
2800 temp1 = PyArray_Ravel(arr,0);
2801 if (temp1 == NULL((void*)0)) {
2802 *axis = 0;
2803 return NULL((void*)0);
2804 }
2805 if (*axis == NPY_MAXDIMS32) {
2806 *axis = PyArray_NDIM((PyArrayObject *)temp1)-1;
2807 }
2808 }
2809 else {
2810 temp1 = (PyObject *)arr;
2811 Py_INCREF(temp1)_Py_INCREF(((PyObject*)(temp1)));
2812 *axis = 0;
2813 }
2814 if (!flags && *axis == 0) {
2815 return temp1;
2816 }
2817 }
2818 else {
2819 temp1 = (PyObject *)arr;
2820 Py_INCREF(temp1)_Py_INCREF(((PyObject*)(temp1)));
2821 }
2822 if (flags) {
2823 temp2 = PyArray_CheckFromAny((PyObject *)temp1, NULL((void*)0),
2824 0, 0, flags, NULL((void*)0));
2825 Py_DECREF(temp1)_Py_DECREF(((PyObject*)(temp1)));
2826 if (temp2 == NULL((void*)0)) {
2827 return NULL((void*)0);
2828 }
2829 }
2830 else {
2831 temp2 = (PyObject *)temp1;
2832 }
2833 n = PyArray_NDIM((PyArrayObject *)temp2);
2834 if (check_and_adjust_axis(axis, n) < 0) {
2835 Py_DECREF(temp2)_Py_DECREF(((PyObject*)(temp2)));
2836 return NULL((void*)0);
2837 }
2838 return temp2;
2839}
2840
2841/*NUMPY_API
2842 * Zeros
2843 *
2844 * steals a reference to type. On failure or when dtype->subarray is
2845 * true, dtype will be decrefed.
2846 * accepts NULL type
2847 */
2848NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2849PyArray_Zeros(int nd, npy_intp const *dims, PyArray_Descr *type, int is_f_order)
2850{
2851 PyArrayObject *ret;
2852
2853 if (!type) {
2854 type = PyArray_DescrFromType(NPY_DEFAULT_TYPENPY_DOUBLE);
2855 }
2856
2857 ret = (PyArrayObject *)PyArray_NewFromDescr_int(
2858 &PyArray_Type, type,
2859 nd, dims, NULL((void*)0), NULL((void*)0),
2860 is_f_order, NULL((void*)0), NULL((void*)0),
2861 1, 0);
2862
2863 if (ret == NULL((void*)0)) {
2864 return NULL((void*)0);
2865 }
2866
2867 /* handle objects */
2868 if (PyDataType_REFCHK(PyArray_DESCR(ret))(((PyArray_DESCR(ret))->flags & (0x01)) == (0x01))) {
2869 if (_zerofill(ret) < 0) {
2870 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
2871 return NULL((void*)0);
2872 }
2873 }
2874
2875
2876 return (PyObject *)ret;
2877
2878}
2879
2880/*NUMPY_API
2881 * Empty
2882 *
2883 * accepts NULL type
2884 * steals a reference to type
2885 */
2886NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2887PyArray_Empty(int nd, npy_intp const *dims, PyArray_Descr *type, int is_f_order)
2888{
2889 PyArrayObject *ret;
2890
2891 if (!type) type = PyArray_DescrFromType(NPY_DEFAULT_TYPENPY_DOUBLE);
2892
2893 /*
2894 * PyArray_NewFromDescr steals a ref,
2895 * but we need to look at type later.
2896 * */
2897 Py_INCREF(type)_Py_INCREF(((PyObject*)(type)));
2898
2899 ret = (PyArrayObject *)PyArray_NewFromDescr(&PyArray_Type,
2900 type, nd, dims,
2901 NULL((void*)0), NULL((void*)0),
2902 is_f_order, NULL((void*)0));
2903 if (ret != NULL((void*)0) && PyDataType_REFCHK(type)(((type)->flags & (0x01)) == (0x01))) {
2904 PyArray_FillObjectArray(ret, Py_None(&_Py_NoneStruct));
2905 if (PyErr_Occurred()) {
2906 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
2907 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
2908 return NULL((void*)0);
2909 }
2910 }
2911
2912 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
2913 return (PyObject *)ret;
2914}
2915
2916/*
2917 * Like ceil(value), but check for overflow.
2918 *
2919 * Return 0 on success, -1 on failure. In case of failure, set a PyExc_Overflow
2920 * exception
2921 */
2922static npy_intp
2923_arange_safe_ceil_to_intp(double value)
2924{
2925 double ivalue;
2926
2927 ivalue = npy_ceil(value);
2928 /* condition inverted to handle NaN */
2929 if (npy_isnan(ivalue)) {
2930 PyErr_SetString(PyExc_ValueError,
2931 "arange: cannot compute length");
2932 return -1;
2933 }
2934 if (!((double)NPY_MIN_INTP(-9223372036854775807L -1L) <= ivalue && ivalue <= (double)NPY_MAX_INTP9223372036854775807L)) {
2935 PyErr_SetString(PyExc_OverflowError,
2936 "arange: overflow while computing length");
2937 return -1;
2938 }
2939
2940 return (npy_intp)ivalue;
2941}
2942
2943
2944/*NUMPY_API
2945 Arange,
2946*/
2947NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
2948PyArray_Arange(double start, double stop, double step, int type_num)
2949{
2950 npy_intp length;
2951 PyArrayObject *range;
2952 PyArray_ArrFuncs *funcs;
2953 PyObject *obj;
2954 int ret;
2955 double delta, tmp_len;
2956 NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);;
2957
2958 delta = stop - start;
2959 tmp_len = delta/step;
2960
2961 /* Underflow and divide-by-inf check */
2962 if (tmp_len == 0.0 && delta != 0.0) {
2963 if (npy_signbit(tmp_len)) {
2964 length = 0;
2965 }
2966 else {
2967 length = 1;
2968 }
2969 }
2970 else {
2971 length = _arange_safe_ceil_to_intp(tmp_len);
2972 if (error_converting(length)(((length) == -1) && PyErr_Occurred())) {
2973 return NULL((void*)0);
2974 }
2975 }
2976
2977 if (length <= 0) {
2978 length = 0;
2979 return PyArray_New(&PyArray_Type, 1, &length, type_num,
2980 NULL((void*)0), NULL((void*)0), 0, 0, NULL((void*)0));
2981 }
2982 range = (PyArrayObject *)PyArray_New(&PyArray_Type, 1, &length, type_num,
2983 NULL((void*)0), NULL((void*)0), 0, 0, NULL((void*)0));
2984 if (range == NULL((void*)0)) {
2985 return NULL((void*)0);
2986 }
2987 funcs = PyArray_DESCR(range)->f;
2988
2989 /*
2990 * place start in the buffer and the next value in the second position
2991 * if length > 2, then call the inner loop, otherwise stop
2992 */
2993 obj = PyFloat_FromDouble(start);
2994 ret = funcs->setitem(obj, PyArray_DATA(range), range);
2995 Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj)));
2996 if (ret < 0) {
2997 goto fail;
2998 }
2999 if (length == 1) {
3000 return (PyObject *)range;
3001 }
3002 obj = PyFloat_FromDouble(start + step);
3003 ret = funcs->setitem(obj, PyArray_BYTES(range)+PyArray_ITEMSIZE(range),
3004 range);
3005 Py_DECREF(obj)_Py_DECREF(((PyObject*)(obj)));
3006 if (ret < 0) {
3007 goto fail;
3008 }
3009 if (length == 2) {
3010 return (PyObject *)range;
3011 }
3012 if (!funcs->fill) {
3013 PyErr_SetString(PyExc_ValueError,
3014 "no fill-function for data-type.");
3015 Py_DECREF(range)_Py_DECREF(((PyObject*)(range)));
3016 return NULL((void*)0);
3017 }
3018 NPY_BEGIN_THREADS_DESCR(PyArray_DESCR(range))do {if (!(((((PyArray_DESCR(range)))->flags & (0x10)) ==
(0x10)))) do {_save = PyEval_SaveThread();} while (0);;} while
(0);
;
3019 funcs->fill(PyArray_DATA(range), length, range);
3020 NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void
*)0);} } while (0);
;
3021 if (PyErr_Occurred()) {
3022 goto fail;
3023 }
3024 return (PyObject *)range;
3025
3026 fail:
3027 Py_DECREF(range)_Py_DECREF(((PyObject*)(range)));
3028 return NULL((void*)0);
3029}
3030
3031/*
3032 * the formula is len = (intp) ceil((stop - start) / step);
3033 */
3034static npy_intp
3035_calc_length(PyObject *start, PyObject *stop, PyObject *step, PyObject **next, int cmplx)
3036{
3037 npy_intp len, tmp;
3038 PyObject *zero, *val;
3039 int next_is_nonzero, val_is_zero;
3040 double value;
3041
3042 *next = PyNumber_Subtract(stop, start);
3043 if (!(*next)) {
3044 if (PyTuple_Check(stop)((((((PyObject*)(stop))->ob_type))->tp_flags & ((1UL
<< 26))) != 0)
) {
3045 PyErr_Clear();
3046 PyErr_SetString(PyExc_TypeError,
3047 "arange: scalar arguments expected "\
3048 "instead of a tuple.");
3049 }
3050 return -1;
3051 }
3052
3053 zero = PyLong_FromLong(0);
3054 if (!zero) {
3055 Py_DECREF(*next)_Py_DECREF(((PyObject*)(*next)));
3056 *next = NULL((void*)0);
3057 return -1;
3058 }
3059
3060 next_is_nonzero = PyObject_RichCompareBool(*next, zero, Py_NE3);
3061 if (next_is_nonzero == -1) {
3062 Py_DECREF(zero)_Py_DECREF(((PyObject*)(zero)));
3063 Py_DECREF(*next)_Py_DECREF(((PyObject*)(*next)));
3064 *next = NULL((void*)0);
3065 return -1;
3066 }
3067 val = PyNumber_TrueDivide(*next, step);
3068 Py_DECREF(*next)_Py_DECREF(((PyObject*)(*next)));
3069 *next = NULL((void*)0);
3070
3071 if (!val) {
3072 Py_DECREF(zero)_Py_DECREF(((PyObject*)(zero)));
3073 return -1;
3074 }
3075
3076 val_is_zero = PyObject_RichCompareBool(val, zero, Py_EQ2);
3077 Py_DECREF(zero)_Py_DECREF(((PyObject*)(zero)));
3078 if (val_is_zero == -1) {
3079 Py_DECREF(val)_Py_DECREF(((PyObject*)(val)));
3080 return -1;
3081 }
3082
3083 if (cmplx && PyComplex_Check(val)((((PyObject*)(val))->ob_type) == (&PyComplex_Type) ||
PyType_IsSubtype((((PyObject*)(val))->ob_type), (&PyComplex_Type
)))
) {
3084 value = PyComplex_RealAsDouble(val);
3085 if (error_converting(value)(((value) == -1) && PyErr_Occurred())) {
3086 Py_DECREF(val)_Py_DECREF(((PyObject*)(val)));
3087 return -1;
3088 }
3089 len = _arange_safe_ceil_to_intp(value);
3090 if (error_converting(len)(((len) == -1) && PyErr_Occurred())) {
3091 Py_DECREF(val)_Py_DECREF(((PyObject*)(val)));
3092 return -1;
3093 }
3094 value = PyComplex_ImagAsDouble(val);
3095 Py_DECREF(val)_Py_DECREF(((PyObject*)(val)));
3096 if (error_converting(value)(((value) == -1) && PyErr_Occurred())) {
3097 return -1;
3098 }
3099 tmp = _arange_safe_ceil_to_intp(value);
3100 if (error_converting(tmp)(((tmp) == -1) && PyErr_Occurred())) {
3101 return -1;
3102 }
3103 len = PyArray_MIN(len, tmp)(((len)<(tmp))?(len):(tmp));
3104 }
3105 else {
3106 value = PyFloat_AsDouble(val);
3107 Py_DECREF(val)_Py_DECREF(((PyObject*)(val)));
3108 if (error_converting(value)(((value) == -1) && PyErr_Occurred())) {
3109 return -1;
3110 }
3111
3112 /* Underflow and divide-by-inf check */
3113 if (val_is_zero && next_is_nonzero) {
3114 if (npy_signbit(value)) {
3115 len = 0;
3116 }
3117 else {
3118 len = 1;
3119 }
3120 }
3121 else {
3122 len = _arange_safe_ceil_to_intp(value);
3123 if (error_converting(len)(((len) == -1) && PyErr_Occurred())) {
3124 return -1;
3125 }
3126 }
3127 }
3128
3129 if (len > 0) {
3130 *next = PyNumber_Add(start, step);
3131 if (!*next) {
3132 return -1;
3133 }
3134 }
3135 return len;
3136}
3137
3138/*NUMPY_API
3139 *
3140 * ArangeObj,
3141 *
3142 * this doesn't change the references
3143 */
3144NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
3145PyArray_ArangeObj(PyObject *start, PyObject *stop, PyObject *step, PyArray_Descr *dtype)
3146{
3147 PyArrayObject *range;
3148 PyArray_ArrFuncs *funcs;
3149 PyObject *next, *err;
3150 npy_intp length;
3151 PyArray_Descr *native = NULL((void*)0);
3152 int swap;
3153 NPY_BEGIN_THREADS_DEFPyThreadState *_save=((void*)0);;
3154
3155 /* Datetime arange is handled specially */
3156 if ((dtype != NULL((void*)0) && (dtype->type_num == NPY_DATETIME ||
3157 dtype->type_num == NPY_TIMEDELTA)) ||
3158 (dtype == NULL((void*)0) && (is_any_numpy_datetime_or_timedelta(start) ||
3159 is_any_numpy_datetime_or_timedelta(stop) ||
3160 is_any_numpy_datetime_or_timedelta(step)))) {
3161 return (PyObject *)datetime_arange(start, stop, step, dtype);
3162 }
3163
3164 if (!dtype) {
3165 PyArray_Descr *deftype;
3166 PyArray_Descr *newtype;
3167
3168 /* intentionally made to be at least NPY_LONG */
3169 deftype = PyArray_DescrFromType(NPY_LONG);
3170 newtype = PyArray_DescrFromObject(start, deftype);
3171 Py_DECREF(deftype)_Py_DECREF(((PyObject*)(deftype)));
3172 if (newtype == NULL((void*)0)) {
3173 return NULL((void*)0);
3174 }
3175 deftype = newtype;
3176 if (stop && stop != Py_None(&_Py_NoneStruct)) {
3177 newtype = PyArray_DescrFromObject(stop, deftype);
3178 Py_DECREF(deftype)_Py_DECREF(((PyObject*)(deftype)));
3179 if (newtype == NULL((void*)0)) {
3180 return NULL((void*)0);
3181 }
3182 deftype = newtype;
3183 }
3184 if (step && step != Py_None(&_Py_NoneStruct)) {
3185 newtype = PyArray_DescrFromObject(step, deftype);
3186 Py_DECREF(deftype)_Py_DECREF(((PyObject*)(deftype)));
3187 if (newtype == NULL((void*)0)) {
3188 return NULL((void*)0);
3189 }
3190 deftype = newtype;
3191 }
3192 dtype = deftype;
3193 }
3194 else {
3195 Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype)));
3196 }
3197 if (!step || step == Py_None(&_Py_NoneStruct)) {
3198 step = PyLong_FromLong(1);
3199 }
3200 else {
3201 Py_XINCREF(step)_Py_XINCREF(((PyObject*)(step)));
3202 }
3203 if (!stop || stop == Py_None(&_Py_NoneStruct)) {
3204 stop = start;
3205 start = PyLong_FromLong(0);
3206 }
3207 else {
3208 Py_INCREF(start)_Py_INCREF(((PyObject*)(start)));
3209 }
3210 /* calculate the length and next = start + step*/
3211 length = _calc_length(start, stop, step, &next,
3212 PyTypeNum_ISCOMPLEX(dtype->type_num)(((dtype->type_num) >= NPY_CFLOAT) && ((dtype->
type_num) <= NPY_CLONGDOUBLE))
);
3213 err = PyErr_Occurred();
3214 if (err) {
3215 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3216 if (err && PyErr_GivenExceptionMatches(err, PyExc_OverflowError)) {
3217 PyErr_SetString(PyExc_ValueError, "Maximum allowed size exceeded");
3218 }
3219 goto fail;
3220 }
3221 if (length <= 0) {
3222 length = 0;
3223 range = (PyArrayObject *)PyArray_SimpleNewFromDescr(1, &length, dtype)PyArray_NewFromDescr(&PyArray_Type, dtype, 1, &length
, ((void*)0), ((void*)0), 0, ((void*)0))
;
3224 Py_DECREF(step)_Py_DECREF(((PyObject*)(step)));
3225 Py_DECREF(start)_Py_DECREF(((PyObject*)(start)));
3226 return (PyObject *)range;
3227 }
3228
3229 /*
3230 * If dtype is not in native byte-order then get native-byte
3231 * order version. And then swap on the way out.
3232 */
3233 if (!PyArray_ISNBO(dtype->byteorder)((dtype->byteorder) != '>')) {
3234 native = PyArray_DescrNewByteorder(dtype, NPY_NATBYTE'<');
3235 swap = 1;
3236 }
3237 else {
3238 native = dtype;
3239 swap = 0;
3240 }
3241
3242 range = (PyArrayObject *)PyArray_SimpleNewFromDescr(1, &length, native)PyArray_NewFromDescr(&PyArray_Type, native, 1, &length
, ((void*)0), ((void*)0), 0, ((void*)0))
;
3243 if (range == NULL((void*)0)) {
3244 goto fail;
3245 }
3246
3247 /*
3248 * place start in the buffer and the next value in the second position
3249 * if length > 2, then call the inner loop, otherwise stop
3250 */
3251 funcs = PyArray_DESCR(range)->f;
3252 if (funcs->setitem(start, PyArray_DATA(range), range) < 0) {
3253 goto fail;
3254 }
3255 if (length == 1) {
3256 goto finish;
3257 }
3258 if (funcs->setitem(next, PyArray_BYTES(range)+PyArray_ITEMSIZE(range),
3259 range) < 0) {
3260 goto fail;
3261 }
3262 if (length == 2) {
3263 goto finish;
3264 }
3265 if (!funcs->fill) {
3266 PyErr_SetString(PyExc_ValueError, "no fill-function for data-type.");
3267 Py_DECREF(range)_Py_DECREF(((PyObject*)(range)));
3268 goto fail;
3269 }
3270 NPY_BEGIN_THREADS_DESCR(PyArray_DESCR(range))do {if (!(((((PyArray_DESCR(range)))->flags & (0x10)) ==
(0x10)))) do {_save = PyEval_SaveThread();} while (0);;} while
(0);
;
3271 funcs->fill(PyArray_DATA(range), length, range);
3272 NPY_END_THREADSdo { if (_save) { PyEval_RestoreThread(_save); _save = ((void
*)0);} } while (0);
;
3273 if (PyErr_Occurred()) {
3274 goto fail;
3275 }
3276 finish:
3277 /* TODO: This swapping could be handled on the fly by the nditer */
3278 if (swap) {
3279 PyObject *new;
3280 new = PyArray_Byteswap(range, 1);
3281 Py_DECREF(new)_Py_DECREF(((PyObject*)(new)));
3282 Py_DECREF(PyArray_DESCR(range))_Py_DECREF(((PyObject*)(PyArray_DESCR(range))));
3283 /* steals the reference */
3284 ((PyArrayObject_fields *)range)->descr = dtype;
3285 }
3286 Py_DECREF(start)_Py_DECREF(((PyObject*)(start)));
3287 Py_DECREF(step)_Py_DECREF(((PyObject*)(step)));
3288 Py_DECREF(next)_Py_DECREF(((PyObject*)(next)));
3289 return (PyObject *)range;
3290
3291 fail:
3292 Py_DECREF(start)_Py_DECREF(((PyObject*)(start)));
3293 Py_DECREF(step)_Py_DECREF(((PyObject*)(step)));
3294 Py_XDECREF(next)_Py_XDECREF(((PyObject*)(next)));
3295 return NULL((void*)0);
3296}
3297
3298/* This array creation function does not steal the reference to dtype. */
3299static PyArrayObject *
3300array_fromfile_binary(FILE *fp, PyArray_Descr *dtype, npy_intp num, size_t *nread)
3301{
3302 PyArrayObject *r;
3303 npy_off_toff_t start, numbytes;
3304 int elsize;
3305
3306 if (num < 0) {
3307 int fail = 0;
3308 start = npy_ftellftello(fp);
3309 if (start < 0) {
3310 fail = 1;
3311 }
3312 if (npy_fseekfseeko(fp, 0, SEEK_END2) < 0) {
3313 fail = 1;
3314 }
3315 numbytes = npy_ftellftello(fp);
3316 if (numbytes < 0) {
3317 fail = 1;
3318 }
3319 numbytes -= start;
3320 if (npy_fseekfseeko(fp, start, SEEK_SET0) < 0) {
3321 fail = 1;
3322 }
3323 if (fail) {
3324 PyErr_SetString(PyExc_IOError,
3325 "could not seek in file");
3326 return NULL((void*)0);
3327 }
3328 num = numbytes / dtype->elsize;
3329 }
3330
3331 /*
3332 * Array creation may move sub-array dimensions from the dtype to array
3333 * dimensions, so we need to use the original element size when reading.
3334 */
3335 elsize = dtype->elsize;
3336
3337 Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype))); /* do not steal the original dtype. */
3338 r = (PyArrayObject *)PyArray_NewFromDescr(&PyArray_Type, dtype, 1, &num,
3339 NULL((void*)0), NULL((void*)0), 0, NULL((void*)0));
3340 if (r == NULL((void*)0)) {
3341 return NULL((void*)0);
3342 }
3343
3344 NPY_BEGIN_ALLOW_THREADS{ PyThreadState *_save; _save = PyEval_SaveThread();;
3345 *nread = fread(PyArray_DATA(r), elsize, num, fp);
3346 NPY_END_ALLOW_THREADSPyEval_RestoreThread(_save); };
3347 return r;
3348}
3349
3350/*
3351 * Create an array by reading from the given stream, using the passed
3352 * next_element and skip_separator functions.
3353 * Does not steal the reference to dtype.
3354 */
3355#define FROM_BUFFER_SIZE 4096
3356static PyArrayObject *
3357array_from_text(PyArray_Descr *dtype, npy_intp num, char const *sep, size_t *nread,
3358 void *stream, next_element next, skip_separator skip_sep,
3359 void *stream_data)
3360{
3361 PyArrayObject *r;
3362 npy_intp i;
3363 char *dptr, *clean_sep, *tmp;
3364 int err = 0;
3365 int stop_reading_flag = 0; /* -1 means end reached; -2 a parsing error */
3366 npy_intp thisbuf = 0;
3367 npy_intp size;
3368 npy_intp bytes, totalbytes;
3369
3370 size = (num >= 0) ? num : FROM_BUFFER_SIZE;
3371
3372 /*
3373 * Array creation may move sub-array dimensions from the dtype to array
3374 * dimensions, so we need to use the original dtype when reading.
3375 */
3376 Py_INCREF(dtype)_Py_INCREF(((PyObject*)(dtype)));
3377
3378 r = (PyArrayObject *)
3379 PyArray_NewFromDescr(&PyArray_Type, dtype, 1, &size,
3380 NULL((void*)0), NULL((void*)0), 0, NULL((void*)0));
3381 if (r == NULL((void*)0)) {
3382 return NULL((void*)0);
3383 }
3384
3385 clean_sep = swab_separator(sep);
3386 if (clean_sep == NULL((void*)0)) {
3387 err = 1;
3388 goto fail;
3389 }
3390
3391 NPY_BEGIN_ALLOW_THREADS{ PyThreadState *_save; _save = PyEval_SaveThread();;
3392 totalbytes = bytes = size * dtype->elsize;
3393 dptr = PyArray_DATA(r);
3394 for (i = 0; num < 0 || i < num; i++) {
3395 stop_reading_flag = next(&stream, dptr, dtype, stream_data);
3396 if (stop_reading_flag < 0) {
3397 break;
3398 }
3399 *nread += 1;
3400 thisbuf += 1;
3401 dptr += dtype->elsize;
3402 if (num < 0 && thisbuf == size) {
3403 totalbytes += bytes;
3404 tmp = PyDataMem_RENEW(PyArray_DATA(r), totalbytes);
3405 if (tmp == NULL((void*)0)) {
3406 err = 1;
3407 break;
3408 }
3409 ((PyArrayObject_fields *)r)->data = tmp;
3410 dptr = tmp + (totalbytes - bytes);
3411 thisbuf = 0;
3412 }
3413 stop_reading_flag = skip_sep(&stream, clean_sep, stream_data);
3414 if (stop_reading_flag < 0) {
3415 if (num == i + 1) {
3416 /* if we read as much as requested sep is optional */
3417 stop_reading_flag = -1;
3418 }
3419 break;
3420 }
3421 }
3422 if (num < 0) {
3423 const size_t nsize = PyArray_MAX(*nread,1)(((*nread)>(1))?(*nread):(1))*dtype->elsize;
3424
3425 if (nsize != 0) {
3426 tmp = PyDataMem_RENEW(PyArray_DATA(r), nsize);
3427 if (tmp == NULL((void*)0)) {
3428 err = 1;
3429 }
3430 else {
3431 PyArray_DIMS(r)[0] = *nread;
3432 ((PyArrayObject_fields *)r)->data = tmp;
3433 }
3434 }
3435 }
3436 NPY_END_ALLOW_THREADSPyEval_RestoreThread(_save); };
3437
3438 free(clean_sep);
3439
3440 if (stop_reading_flag == -2) {
3441 if (PyErr_Occurred()) {
3442 /* If an error is already set (unlikely), do not create new one */
3443 Py_DECREF(r)_Py_DECREF(((PyObject*)(r)));
3444 return NULL((void*)0);
3445 }
3446 /* 2019-09-12, NumPy 1.18 */
3447 if (DEPRECATE(PyErr_WarnEx(PyExc_DeprecationWarning,"string or file could not be read to its end due to unmatched "
"data; this will raise a ValueError in the future.",1)
3448 "string or file could not be read to its end due to unmatched "PyErr_WarnEx(PyExc_DeprecationWarning,"string or file could not be read to its end due to unmatched "
"data; this will raise a ValueError in the future.",1)
3449 "data; this will raise a ValueError in the future.")PyErr_WarnEx(PyExc_DeprecationWarning,"string or file could not be read to its end due to unmatched "
"data; this will raise a ValueError in the future.",1)
< 0) {
3450 goto fail;
3451 }
3452 }
3453
3454fail:
3455 if (err == 1) {
3456 PyErr_NoMemory();
3457 }
3458 if (PyErr_Occurred()) {
3459 Py_DECREF(r)_Py_DECREF(((PyObject*)(r)));
3460 return NULL((void*)0);
3461 }
3462 return r;
3463}
3464#undef FROM_BUFFER_SIZE
3465
3466/*NUMPY_API
3467 *
3468 * Given a ``FILE *`` pointer ``fp``, and a ``PyArray_Descr``, return an
3469 * array corresponding to the data encoded in that file.
3470 *
3471 * The reference to `dtype` is stolen (it is possible that the passed in
3472 * dtype is not held on to).
3473 *
3474 * The number of elements to read is given as ``num``; if it is < 0, then
3475 * then as many as possible are read.
3476 *
3477 * If ``sep`` is NULL or empty, then binary data is assumed, else
3478 * text data, with ``sep`` as the separator between elements. Whitespace in
3479 * the separator matches any length of whitespace in the text, and a match
3480 * for whitespace around the separator is added.
3481 *
3482 * For memory-mapped files, use the buffer interface. No more data than
3483 * necessary is read by this routine.
3484 */
3485NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
3486PyArray_FromFile(FILE *fp, PyArray_Descr *dtype, npy_intp num, char *sep)
3487{
3488 PyArrayObject *ret;
3489 size_t nread = 0;
3490
3491 if (PyDataType_REFCHK(dtype)(((dtype)->flags & (0x01)) == (0x01))) {
3492 PyErr_SetString(PyExc_ValueError,
3493 "Cannot read into object array");
3494 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3495 return NULL((void*)0);
3496 }
3497 if (dtype->elsize == 0) {
3498 /* Nothing to read, just create an empty array of the requested type */
3499 return PyArray_NewFromDescr_int(
3500 &PyArray_Type, dtype,
3501 1, &num, NULL((void*)0), NULL((void*)0),
3502 0, NULL((void*)0), NULL((void*)0),
3503 0, 1);
3504 }
3505 if ((sep == NULL((void*)0)) || (strlen(sep) == 0)) {
3506 ret = array_fromfile_binary(fp, dtype, num, &nread);
3507 }
3508 else {
3509 if (dtype->f->scanfunc == NULL((void*)0)) {
3510 PyErr_SetString(PyExc_ValueError,
3511 "Unable to read character files of that array type");
3512 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3513 return NULL((void*)0);
3514 }
3515 ret = array_from_text(dtype, num, sep, &nread, fp,
3516 (next_element) fromfile_next_element,
3517 (skip_separator) fromfile_skip_separator, NULL((void*)0));
3518 }
3519 if (ret == NULL((void*)0)) {
3520 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3521 return NULL((void*)0);
3522 }
3523 if (((npy_intp) nread) < num) {
3524 /*
3525 * Realloc memory for smaller number of elements, use original dtype
3526 * which may have include a subarray (and is used for `nread`).
3527 */
3528 const size_t nsize = PyArray_MAX(nread,1)(((nread)>(1))?(nread):(1)) * dtype->elsize;
3529 char *tmp;
3530
3531 if ((tmp = PyDataMem_RENEW(PyArray_DATA(ret), nsize)) == NULL((void*)0)) {
3532 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3533 Py_DECREF(ret)_Py_DECREF(((PyObject*)(ret)));
3534 return PyErr_NoMemory();
3535 }
3536 ((PyArrayObject_fields *)ret)->data = tmp;
3537 PyArray_DIMS(ret)[0] = nread;
3538 }
3539 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3540 return (PyObject *)ret;
3541}
3542
3543/*NUMPY_API*/
3544NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
3545PyArray_FromBuffer(PyObject *buf, PyArray_Descr *type,
3546 npy_intp count, npy_intp offset)
3547{
3548 PyArrayObject *ret;
3549 char *data;
3550 Py_buffer view;
3551 Py_ssize_t ts;
3552 npy_intp s, n;
3553 int itemsize;
3554 int writeable = 1;
3555
3556
3557 if (PyDataType_REFCHK(type)(((type)->flags & (0x01)) == (0x01))) {
3558 PyErr_SetString(PyExc_ValueError,
3559 "cannot create an OBJECT array from memory"\
3560 " buffer");
3561 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
3562 return NULL((void*)0);
3563 }
3564 if (PyDataType_ISUNSIZED(type)((type)->elsize == 0 && !(((PyArray_Descr *)(type)
)->names != ((void*)0)))
) {
3565 PyErr_SetString(PyExc_ValueError,
3566 "itemsize cannot be zero in type");
3567 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
3568 return NULL((void*)0);
3569 }
3570
3571 if (PyObject_GetBuffer(buf, &view, PyBUF_WRITABLE0x0001|PyBUF_SIMPLE0) < 0) {
3572 writeable = 0;
3573 PyErr_Clear();
3574 if (PyObject_GetBuffer(buf, &view, PyBUF_SIMPLE0) < 0) {
3575 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
3576 return NULL((void*)0);
3577 }
3578 }
3579 data = (char *)view.buf;
3580 ts = view.len;
3581 /*
3582 * In Python 3 both of the deprecated functions PyObject_AsWriteBuffer and
3583 * PyObject_AsReadBuffer that this code replaces release the buffer. It is
3584 * up to the object that supplies the buffer to guarantee that the buffer
3585 * sticks around after the release.
3586 */
3587 PyBuffer_Release(&view);
3588
3589 if ((offset < 0) || (offset > ts)) {
3590 PyErr_Format(PyExc_ValueError,
3591 "offset must be non-negative and no greater than buffer "\
3592 "length (%" NPY_INTP_FMT"ld" ")", (npy_intp)ts);
3593 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
3594 return NULL((void*)0);
3595 }
3596
3597 data += offset;
3598 s = (npy_intp)ts - offset;
3599 n = (npy_intp)count;
3600 itemsize = type->elsize;
3601 if (n < 0) {
3602 if (itemsize == 0) {
3603 PyErr_SetString(PyExc_ValueError,
3604 "cannot determine count if itemsize is 0");
3605 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
3606 return NULL((void*)0);
3607 }
3608 if (s % itemsize != 0) {
3609 PyErr_SetString(PyExc_ValueError,
3610 "buffer size must be a multiple"\
3611 " of element size");
3612 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
3613 return NULL((void*)0);
3614 }
3615 n = s/itemsize;
3616 }
3617 else {
3618 if (s < n*itemsize) {
3619 PyErr_SetString(PyExc_ValueError,
3620 "buffer is smaller than requested"\
3621 " size");
3622 Py_DECREF(type)_Py_DECREF(((PyObject*)(type)));
3623 return NULL((void*)0);
3624 }
3625 }
3626
3627 ret = (PyArrayObject *)PyArray_NewFromDescrAndBase(
3628 &PyArray_Type, type,
3629 1, &n, NULL((void*)0), data,
3630 NPY_ARRAY_DEFAULT((0x0001 | (0x0100 | 0x0400))), NULL((void*)0), buf);
3631 if (ret == NULL((void*)0)) {
3632 return NULL((void*)0);
3633 }
3634
3635 if (!writeable) {
3636 PyArray_CLEARFLAGS(ret, NPY_ARRAY_WRITEABLE0x0400);
3637 }
3638 return (PyObject *)ret;
3639}
3640
3641/*NUMPY_API
3642 *
3643 * Given a pointer to a string ``data``, a string length ``slen``, and
3644 * a ``PyArray_Descr``, return an array corresponding to the data
3645 * encoded in that string.
3646 *
3647 * If the dtype is NULL, the default array type is used (double).
3648 * If non-null, the reference is stolen.
3649 *
3650 * If ``slen`` is < 0, then the end of string is used for text data.
3651 * It is an error for ``slen`` to be < 0 for binary data (since embedded NULLs
3652 * would be the norm).
3653 *
3654 * The number of elements to read is given as ``num``; if it is < 0, then
3655 * then as many as possible are read.
3656 *
3657 * If ``sep`` is NULL or empty, then binary data is assumed, else
3658 * text data, with ``sep`` as the separator between elements. Whitespace in
3659 * the separator matches any length of whitespace in the text, and a match
3660 * for whitespace around the separator is added.
3661 */
3662NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
3663PyArray_FromString(char *data, npy_intp slen, PyArray_Descr *dtype,
3664 npy_intp num, char *sep)
3665{
3666 int itemsize;
3667 PyArrayObject *ret;
3668 npy_bool binary;
3669
3670 if (dtype == NULL((void*)0)) {
3671 dtype=PyArray_DescrFromType(NPY_DEFAULT_TYPENPY_DOUBLE);
3672 if (dtype == NULL((void*)0)) {
3673 return NULL((void*)0);
3674 }
3675 }
3676 if (PyDataType_FLAGCHK(dtype, NPY_ITEM_IS_POINTER)(((dtype)->flags & (0x04)) == (0x04)) ||
3677 PyDataType_REFCHK(dtype)(((dtype)->flags & (0x01)) == (0x01))) {
3678 PyErr_SetString(PyExc_ValueError,
3679 "Cannot create an object array from" \
3680 " a string");
3681 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3682 return NULL((void*)0);
3683 }
3684 itemsize = dtype->elsize;
3685 if (itemsize == 0) {
3686 PyErr_SetString(PyExc_ValueError, "zero-valued itemsize");
3687 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3688 return NULL((void*)0);
3689 }
3690
3691 binary = ((sep == NULL((void*)0)) || (strlen(sep) == 0));
3692 if (binary) {
3693 if (num < 0 ) {
3694 if (slen % itemsize != 0) {
3695 PyErr_SetString(PyExc_ValueError,
3696 "string size must be a "\
3697 "multiple of element size");
3698 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3699 return NULL((void*)0);
3700 }
3701 num = slen/itemsize;
3702 }
3703 else {
3704 if (slen < num*itemsize) {
3705 PyErr_SetString(PyExc_ValueError,
3706 "string is smaller than " \
3707 "requested size");
3708 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3709 return NULL((void*)0);
3710 }
3711 }
3712 /*
3713 * NewFromDescr may replace dtype to absorb subarray shape
3714 * into the array, so get size beforehand.
3715 */
3716 npy_intp size_to_copy = num*dtype->elsize;
3717 ret = (PyArrayObject *)
3718 PyArray_NewFromDescr(&PyArray_Type, dtype,
3719 1, &num, NULL((void*)0), NULL((void*)0),
3720 0, NULL((void*)0));
3721 if (ret == NULL((void*)0)) {
3722 return NULL((void*)0);
3723 }
3724 memcpy(PyArray_DATA(ret), data, size_to_copy);
3725 }
3726 else {
3727 /* read from character-based string */
3728 size_t nread = 0;
3729 char *end;
3730
3731 if (dtype->f->fromstr == NULL((void*)0)) {
3732 PyErr_SetString(PyExc_ValueError,
3733 "don't know how to read " \
3734 "character strings with that " \
3735 "array type");
3736 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3737 return NULL((void*)0);
3738 }
3739 if (slen < 0) {
3740 end = NULL((void*)0);
3741 }
3742 else {
3743 end = data + slen;
3744 }
3745 ret = array_from_text(dtype, num, sep, &nread,
3746 data,
3747 (next_element) fromstr_next_element,
3748 (skip_separator) fromstr_skip_separator,
3749 end);
3750 Py_DECREF(dtype)_Py_DECREF(((PyObject*)(dtype)));
3751 }
3752 return (PyObject *)ret;
3753}
3754
3755/*NUMPY_API
3756 *
3757 * steals a reference to dtype (which cannot be NULL)
3758 */
3759NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyObject *
3760PyArray_FromIter(PyObject *obj, PyArray_Descr *dtype, npy_intp count)
3761{
3762 PyObject *value;
3763 PyObject *iter = PyObject_GetIter(obj);
3764 PyArrayObject *ret = NULL((void*)0);
3765 npy_intp i, elsize, elcount;
3766 char *item, *new_data;
3767
3768 if (iter == NULL((void*)0)) {
3769 goto done;
3770 }
3771 if (PyDataType_ISUNSIZED(dtype)((dtype)->elsize == 0 && !(((PyArray_Descr *)(dtype
))->names != ((void*)0)))
) {
3772 PyErr_SetString(PyExc_ValueError,
3773 "Must specify length when using variable-size data-type.");
3774 goto done;
3775 }
3776 if (count < 0) {
3777 elcount = PyObject_LengthHint(obj, 0);
3778 if (elcount < 0) {
3779 goto done;
3780 }
3781 }
3782 else {
3783 elcount = count;
3784 }
3785
3786 elsize = dtype->elsize;
3787
3788 /*
3789 * We would need to alter the memory RENEW code to decrement any
3790 * reference counts before throwing away any memory.
3791 */
3792 if (PyDataType_REFCHK(dtype)(((dtype)->flags & (0x01)) == (0x01))) {
3793 PyErr_SetString(PyExc_ValueError,
3794 "cannot create object arrays from iterator");
3795 goto done;
3796 }
3797
3798 ret = (PyArrayObject *)PyArray_NewFromDescr(&PyArray_Type, dtype, 1,
3799 &elcount, NULL((void*)0),NULL((void*)0), 0, NULL((void*)0));
3800 dtype = NULL((void*)0);
3801 if (ret == NULL((void*)0)) {
3802 goto done;
3803 }
3804 for (i = 0; (i < count || count == -1) &&
3805 (value = PyIter_Next(iter)); i++) {
3806 if (i >= elcount && elsize != 0) {
3807 npy_intp nbytes;
3808 /*
3809 Grow PyArray_DATA(ret):
3810 this is similar for the strategy for PyListObject, but we use
3811 50% overallocation => 0, 4, 8, 14, 23, 36, 56, 86 ...
3812 */
3813 elcount = (i >> 1) + (i < 4 ? 4 : 2) + i;
3814 if (!npy_mul_with_overflow_intp(&nbytes, elcount, elsize)) {
3815 new_data = PyDataMem_RENEW(PyArray_DATA(ret), nbytes);
3816 }
3817 else {
3818 new_data = NULL((void*)0);
3819 }
3820 if (new_data == NULL((void*)0)) {
3821 PyErr_SetString(PyExc_MemoryError,
3822 "cannot allocate array memory");
3823 Py_DECREF(value)_Py_DECREF(((PyObject*)(value)));
3824 goto done;
3825 }
3826 ((PyArrayObject_fields *)ret)->data = new_data;
3827 }
3828 PyArray_DIMS(ret)[0] = i + 1;
3829
3830 if (((item = index2ptr(ret, i)) == NULL((void*)0)) ||
3831 PyArray_SETITEM(ret, item, value) == -1) {
3832 Py_DECREF(value)_Py_DECREF(((PyObject*)(value)));
3833 goto done;
3834 }
3835 Py_DECREF(value)_Py_DECREF(((PyObject*)(value)));
3836 }
3837
3838
3839 if (PyErr_Occurred()) {
3840 goto done;
3841 }
3842 if (i < count) {
3843 PyErr_SetString(PyExc_ValueError,
3844 "iterator too short");
3845 goto done;
3846 }
3847
3848 /*
3849 * Realloc the data so that don't keep extra memory tied up
3850 * (assuming realloc is reasonably good about reusing space...)
3851 */
3852 if (i == 0 || elsize == 0) {
3853 /* The size cannot be zero for PyDataMem_RENEW. */
3854 goto done;
3855 }
3856 new_data = PyDataMem_RENEW(PyArray_DATA(ret), i * elsize);
3857 if (new_data == NULL((void*)0)) {
3858 PyErr_SetString(PyExc_MemoryError,
3859 "cannot allocate array memory");
3860 goto done;
3861 }
3862 ((PyArrayObject_fields *)ret)->data = new_data;
3863
3864 done:
3865 Py_XDECREF(iter)_Py_XDECREF(((PyObject*)(iter)));
3866 Py_XDECREF(dtype)_Py_XDECREF(((PyObject*)(dtype)));
3867 if (PyErr_Occurred()) {
3868 Py_XDECREF(ret)_Py_XDECREF(((PyObject*)(ret)));
3869 return NULL((void*)0);
3870 }
3871 return (PyObject *)ret;
3872}
3873
3874/*
3875 * This is the main array creation routine.
3876 *
3877 * Flags argument has multiple related meanings
3878 * depending on data and strides:
3879 *
3880 * If data is given, then flags is flags associated with data.
3881 * If strides is not given, then a contiguous strides array will be created
3882 * and the NPY_ARRAY_C_CONTIGUOUS bit will be set. If the flags argument
3883 * has the NPY_ARRAY_F_CONTIGUOUS bit set, then a FORTRAN-style strides array will be
3884 * created (and of course the NPY_ARRAY_F_CONTIGUOUS flag bit will be set).
3885 *
3886 * If data is not given but created here, then flags will be NPY_ARRAY_DEFAULT
3887 * and a non-zero flags argument can be used to indicate a FORTRAN style
3888 * array is desired.
3889 *
3890 * Dimensions and itemsize must have been checked for validity.
3891 */
3892
3893NPY_NO_EXPORT__attribute__((visibility("hidden"))) void
3894_array_fill_strides(npy_intp *strides, npy_intp const *dims, int nd, size_t itemsize,
3895 int inflag, int *objflags)
3896{
3897 int i;
3898#if NPY_RELAXED_STRIDES_CHECKING1
3899 npy_bool not_cf_contig = 0;
3900 npy_bool nod = 0; /* A dim != 1 was found */
3901
3902 /* Check if new array is both F- and C-contiguous */
3903 for (i = 0; i < nd; i++) {
3904 if (dims[i] != 1) {
3905 if (nod) {
3906 not_cf_contig = 1;
3907 break;
3908 }
3909 nod = 1;
3910 }
3911 }
3912#endif /* NPY_RELAXED_STRIDES_CHECKING */
3913
3914 /* Only make Fortran strides if not contiguous as well */
3915 if ((inflag & (NPY_ARRAY_F_CONTIGUOUS0x0002|NPY_ARRAY_C_CONTIGUOUS0x0001)) ==
3916 NPY_ARRAY_F_CONTIGUOUS0x0002) {
3917 for (i = 0; i < nd; i++) {
3918 strides[i] = itemsize;
3919 if (dims[i]) {
3920 itemsize *= dims[i];
3921 }
3922#if NPY_RELAXED_STRIDES_CHECKING1
3923 else {
3924 not_cf_contig = 0;
3925 }
3926#if NPY_RELAXED_STRIDES_DEBUG0
3927 /* For testing purpose only */
3928 if (dims[i] == 1) {
3929 strides[i] = NPY_MAX_INTP9223372036854775807L;
3930 }
3931#endif /* NPY_RELAXED_STRIDES_DEBUG */
3932#endif /* NPY_RELAXED_STRIDES_CHECKING */
3933 }
3934#if NPY_RELAXED_STRIDES_CHECKING1
3935 if (not_cf_contig) {
3936#else /* not NPY_RELAXED_STRIDES_CHECKING */
3937 if ((nd > 1) && ((strides[0] != strides[nd-1]) || (dims[nd-1] > 1))) {
3938#endif /* not NPY_RELAXED_STRIDES_CHECKING */
3939 *objflags = ((*objflags)|NPY_ARRAY_F_CONTIGUOUS0x0002) &
3940 ~NPY_ARRAY_C_CONTIGUOUS0x0001;
3941 }
3942 else {
3943 *objflags |= (NPY_ARRAY_F_CONTIGUOUS0x0002|NPY_ARRAY_C_CONTIGUOUS0x0001);
3944 }
3945 }
3946 else {
3947 for (i = nd - 1; i >= 0; i--) {
3948 strides[i] = itemsize;
3949 if (dims[i]) {
3950 itemsize *= dims[i];
3951 }
3952#if NPY_RELAXED_STRIDES_CHECKING1
3953 else {
3954 not_cf_contig = 0;
3955 }
3956#if NPY_RELAXED_STRIDES_DEBUG0
3957 /* For testing purpose only */
3958 if (dims[i] == 1) {
3959 strides[i] = NPY_MAX_INTP9223372036854775807L;
3960 }
3961#endif /* NPY_RELAXED_STRIDES_DEBUG */
3962#endif /* NPY_RELAXED_STRIDES_CHECKING */
3963 }
3964#if NPY_RELAXED_STRIDES_CHECKING1
3965 if (not_cf_contig) {
3966#else /* not NPY_RELAXED_STRIDES_CHECKING */
3967 if ((nd > 1) && ((strides[0] != strides[nd-1]) || (dims[0] > 1))) {
3968#endif /* not NPY_RELAXED_STRIDES_CHECKING */
3969 *objflags = ((*objflags)|NPY_ARRAY_C_CONTIGUOUS0x0001) &
3970 ~NPY_ARRAY_F_CONTIGUOUS0x0002;
3971 }
3972 else {
3973 *objflags |= (NPY_ARRAY_C_CONTIGUOUS0x0001|NPY_ARRAY_F_CONTIGUOUS0x0002);
3974 }
3975 }
3976 return;
3977}
3978
3979/*
3980 * Calls arr_of_subclass.__array_wrap__(towrap), in order to make 'towrap'
3981 * have the same ndarray subclass as 'arr_of_subclass'.
3982 */
3983NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyArrayObject *
3984PyArray_SubclassWrap(PyArrayObject *arr_of_subclass, PyArrayObject *towrap)
3985{
3986 PyObject *wrapped = PyObject_CallMethod_PyObject_CallMethod_SizeT((PyObject *)arr_of_subclass,
3987 "__array_wrap__", "O", towrap);
3988 if (wrapped == NULL((void*)0)) {
3989 return NULL((void*)0);
3990 }
3991 if (!PyArray_Check(wrapped)((((PyObject*)(wrapped))->ob_type) == (&PyArray_Type) ||
PyType_IsSubtype((((PyObject*)(wrapped))->ob_type), (&
PyArray_Type)))
) {
3992 PyErr_SetString(PyExc_RuntimeError,
3993 "ndarray subclass __array_wrap__ method returned an "
3994 "object which was not an instance of an ndarray subclass");
3995 Py_DECREF(wrapped)_Py_DECREF(((PyObject*)(wrapped)));
3996 return NULL((void*)0);
3997 }
3998
3999 return (PyArrayObject *)wrapped;
4000}