File: | numpy/fft/_pocketfft.c |
Warning: | line 2372, column 9 PyObject ownership leak with reference count of 1 |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* | |||
2 | * This file is part of pocketfft. | |||
3 | * Licensed under a 3-clause BSD style license - see LICENSE.md | |||
4 | */ | |||
5 | ||||
6 | /* | |||
7 | * Main implementation file. | |||
8 | * | |||
9 | * Copyright (C) 2004-2018 Max-Planck-Society | |||
10 | * \author Martin Reinecke | |||
11 | */ | |||
12 | ||||
13 | #define NPY_NO_DEPRECATED_API0x0000000E NPY_API_VERSION0x0000000E | |||
14 | ||||
15 | #include "Python.h" | |||
16 | #include "numpy/arrayobject.h" | |||
17 | ||||
18 | #include <math.h> | |||
19 | #include <string.h> | |||
20 | #include <stdlib.h> | |||
21 | ||||
22 | #include "npy_config.h" | |||
23 | #define restrictrestrict NPY_RESTRICTNPY_RESTRICT | |||
24 | ||||
25 | #define RALLOC(type,num)((type *)malloc((num)*sizeof(type))) \ | |||
26 | ((type *)malloc((num)*sizeof(type))) | |||
27 | #define DEALLOC(ptr)do { free(ptr); (ptr)=((void*)0); } while(0) \ | |||
28 | do { free(ptr); (ptr)=NULL((void*)0); } while(0) | |||
29 | ||||
30 | #define SWAP(a,b,type)do { type tmp_=(a); (a)=(b); (b)=tmp_; } while(0) \ | |||
31 | do { type tmp_=(a); (a)=(b); (b)=tmp_; } while(0) | |||
32 | ||||
33 | #ifdef __GNUC__4 | |||
34 | #define NOINLINE__attribute__((noinline)) __attribute__((noinline)) | |||
35 | #define WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) __attribute__ ((warn_unused_result)) | |||
36 | #else | |||
37 | #define NOINLINE__attribute__((noinline)) | |||
38 | #define WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
39 | #endif | |||
40 | ||||
41 | struct cfft_plan_i; | |||
42 | typedef struct cfft_plan_i * cfft_plan; | |||
43 | struct rfft_plan_i; | |||
44 | typedef struct rfft_plan_i * rfft_plan; | |||
45 | ||||
46 | // adapted from https://stackoverflow.com/questions/42792939/ | |||
47 | // CAUTION: this function only works for arguments in the range [-0.25; 0.25]! | |||
48 | static void my_sincosm1pi (double a, double *restrictrestrict res) | |||
49 | { | |||
50 | double s = a * a; | |||
51 | /* Approximate cos(pi*x)-1 for x in [-0.25,0.25] */ | |||
52 | double r = -1.0369917389758117e-4; | |||
53 | r = fma (r, s, 1.9294935641298806e-3); | |||
54 | r = fma (r, s, -2.5806887942825395e-2); | |||
55 | r = fma (r, s, 2.3533063028328211e-1); | |||
56 | r = fma (r, s, -1.3352627688538006e+0); | |||
57 | r = fma (r, s, 4.0587121264167623e+0); | |||
58 | r = fma (r, s, -4.9348022005446790e+0); | |||
59 | double c = r*s; | |||
60 | /* Approximate sin(pi*x) for x in [-0.25,0.25] */ | |||
61 | r = 4.6151442520157035e-4; | |||
62 | r = fma (r, s, -7.3700183130883555e-3); | |||
63 | r = fma (r, s, 8.2145868949323936e-2); | |||
64 | r = fma (r, s, -5.9926452893214921e-1); | |||
65 | r = fma (r, s, 2.5501640398732688e+0); | |||
66 | r = fma (r, s, -5.1677127800499516e+0); | |||
67 | s = s * a; | |||
68 | r = r * s; | |||
69 | s = fma (a, 3.1415926535897931e+0, r); | |||
70 | res[0] = c; | |||
71 | res[1] = s; | |||
72 | } | |||
73 | ||||
74 | NOINLINE__attribute__((noinline)) static void calc_first_octant(size_t den, double * restrictrestrict res) | |||
75 | { | |||
76 | size_t n = (den+4)>>3; | |||
77 | if (n==0) return; | |||
78 | res[0]=1.; res[1]=0.; | |||
79 | if (n==1) return; | |||
80 | size_t l1=(size_t)sqrt(n); | |||
81 | for (size_t i=1; i<l1; ++i) | |||
82 | my_sincosm1pi((2.*i)/den,&res[2*i]); | |||
83 | size_t start=l1; | |||
84 | while(start<n) | |||
85 | { | |||
86 | double cs[2]; | |||
87 | my_sincosm1pi((2.*start)/den,cs); | |||
88 | res[2*start] = cs[0]+1.; | |||
89 | res[2*start+1] = cs[1]; | |||
90 | size_t end = l1; | |||
91 | if (start+end>n) end = n-start; | |||
92 | for (size_t i=1; i<end; ++i) | |||
93 | { | |||
94 | double csx[2]={res[2*i], res[2*i+1]}; | |||
95 | res[2*(start+i)] = ((cs[0]*csx[0] - cs[1]*csx[1] + cs[0]) + csx[0]) + 1.; | |||
96 | res[2*(start+i)+1] = (cs[0]*csx[1] + cs[1]*csx[0]) + cs[1] + csx[1]; | |||
97 | } | |||
98 | start += l1; | |||
99 | } | |||
100 | for (size_t i=1; i<l1; ++i) | |||
101 | res[2*i] += 1.; | |||
102 | } | |||
103 | ||||
104 | NOINLINE__attribute__((noinline)) static void calc_first_quadrant(size_t n, double * restrictrestrict res) | |||
105 | { | |||
106 | double * restrictrestrict p = res+n; | |||
107 | calc_first_octant(n<<1, p); | |||
108 | size_t ndone=(n+2)>>2; | |||
109 | size_t i=0, idx1=0, idx2=2*ndone-2; | |||
110 | for (; i+1<ndone; i+=2, idx1+=2, idx2-=2) | |||
111 | { | |||
112 | res[idx1] = p[2*i]; | |||
113 | res[idx1+1] = p[2*i+1]; | |||
114 | res[idx2] = p[2*i+3]; | |||
115 | res[idx2+1] = p[2*i+2]; | |||
116 | } | |||
117 | if (i!=ndone) | |||
118 | { | |||
119 | res[idx1 ] = p[2*i]; | |||
120 | res[idx1+1] = p[2*i+1]; | |||
121 | } | |||
122 | } | |||
123 | ||||
124 | NOINLINE__attribute__((noinline)) static void calc_first_half(size_t n, double * restrictrestrict res) | |||
125 | { | |||
126 | int ndone=(n+1)>>1; | |||
127 | double * p = res+n-1; | |||
128 | calc_first_octant(n<<2, p); | |||
129 | int i4=0, in=n, i=0; | |||
130 | for (; i4<=in-i4; ++i, i4+=4) // octant 0 | |||
131 | { | |||
132 | res[2*i] = p[2*i4]; res[2*i+1] = p[2*i4+1]; | |||
133 | } | |||
134 | for (; i4-in <= 0; ++i, i4+=4) // octant 1 | |||
135 | { | |||
136 | int xm = in-i4; | |||
137 | res[2*i] = p[2*xm+1]; res[2*i+1] = p[2*xm]; | |||
138 | } | |||
139 | for (; i4<=3*in-i4; ++i, i4+=4) // octant 2 | |||
140 | { | |||
141 | int xm = i4-in; | |||
142 | res[2*i] = -p[2*xm+1]; res[2*i+1] = p[2*xm]; | |||
143 | } | |||
144 | for (; i<ndone; ++i, i4+=4) // octant 3 | |||
145 | { | |||
146 | int xm = 2*in-i4; | |||
147 | res[2*i] = -p[2*xm]; res[2*i+1] = p[2*xm+1]; | |||
148 | } | |||
149 | } | |||
150 | ||||
151 | NOINLINE__attribute__((noinline)) static void fill_first_quadrant(size_t n, double * restrictrestrict res) | |||
152 | { | |||
153 | const double hsqt2 = 0.707106781186547524400844362104849; | |||
154 | size_t quart = n>>2; | |||
155 | if ((n&7)==0) | |||
156 | res[quart] = res[quart+1] = hsqt2; | |||
157 | for (size_t i=2, j=2*quart-2; i<quart; i+=2, j-=2) | |||
158 | { | |||
159 | res[j ] = res[i+1]; | |||
160 | res[j+1] = res[i ]; | |||
161 | } | |||
162 | } | |||
163 | ||||
164 | NOINLINE__attribute__((noinline)) static void fill_first_half(size_t n, double * restrictrestrict res) | |||
165 | { | |||
166 | size_t half = n>>1; | |||
167 | if ((n&3)==0) | |||
168 | for (size_t i=0; i<half; i+=2) | |||
169 | { | |||
170 | res[i+half] = -res[i+1]; | |||
171 | res[i+half+1] = res[i ]; | |||
172 | } | |||
173 | else | |||
174 | for (size_t i=2, j=2*half-2; i<half; i+=2, j-=2) | |||
175 | { | |||
176 | res[j ] = -res[i ]; | |||
177 | res[j+1] = res[i+1]; | |||
178 | } | |||
179 | } | |||
180 | ||||
181 | NOINLINE__attribute__((noinline)) static void fill_second_half(size_t n, double * restrictrestrict res) | |||
182 | { | |||
183 | if ((n&1)==0) | |||
184 | for (size_t i=0; i<n; ++i) | |||
185 | res[i+n] = -res[i]; | |||
186 | else | |||
187 | for (size_t i=2, j=2*n-2; i<n; i+=2, j-=2) | |||
188 | { | |||
189 | res[j ] = res[i ]; | |||
190 | res[j+1] = -res[i+1]; | |||
191 | } | |||
192 | } | |||
193 | ||||
194 | NOINLINE__attribute__((noinline)) static void sincos_2pibyn_half(size_t n, double * restrictrestrict res) | |||
195 | { | |||
196 | if ((n&3)==0) | |||
197 | { | |||
198 | calc_first_octant(n, res); | |||
199 | fill_first_quadrant(n, res); | |||
200 | fill_first_half(n, res); | |||
201 | } | |||
202 | else if ((n&1)==0) | |||
203 | { | |||
204 | calc_first_quadrant(n, res); | |||
205 | fill_first_half(n, res); | |||
206 | } | |||
207 | else | |||
208 | calc_first_half(n, res); | |||
209 | } | |||
210 | ||||
211 | NOINLINE__attribute__((noinline)) static void sincos_2pibyn(size_t n, double * restrictrestrict res) | |||
212 | { | |||
213 | sincos_2pibyn_half(n, res); | |||
214 | fill_second_half(n, res); | |||
215 | } | |||
216 | ||||
217 | NOINLINE__attribute__((noinline)) static size_t largest_prime_factor (size_t n) | |||
218 | { | |||
219 | size_t res=1; | |||
220 | size_t tmp; | |||
221 | while (((tmp=(n>>1))<<1)==n) | |||
222 | { res=2; n=tmp; } | |||
223 | ||||
224 | size_t limit=(size_t)sqrt(n+0.01); | |||
225 | for (size_t x=3; x<=limit; x+=2) | |||
226 | while (((tmp=(n/x))*x)==n) | |||
227 | { | |||
228 | res=x; | |||
229 | n=tmp; | |||
230 | limit=(size_t)sqrt(n+0.01); | |||
231 | } | |||
232 | if (n>1) res=n; | |||
233 | ||||
234 | return res; | |||
235 | } | |||
236 | ||||
237 | NOINLINE__attribute__((noinline)) static double cost_guess (size_t n) | |||
238 | { | |||
239 | const double lfp=1.1; // penalty for non-hardcoded larger factors | |||
240 | size_t ni=n; | |||
241 | double result=0.; | |||
242 | size_t tmp; | |||
243 | while (((tmp=(n>>1))<<1)==n) | |||
244 | { result+=2; n=tmp; } | |||
245 | ||||
246 | size_t limit=(size_t)sqrt(n+0.01); | |||
247 | for (size_t x=3; x<=limit; x+=2) | |||
248 | while ((tmp=(n/x))*x==n) | |||
249 | { | |||
250 | result+= (x<=5) ? x : lfp*x; // penalize larger prime factors | |||
251 | n=tmp; | |||
252 | limit=(size_t)sqrt(n+0.01); | |||
253 | } | |||
254 | if (n>1) result+=(n<=5) ? n : lfp*n; | |||
255 | ||||
256 | return result*ni; | |||
257 | } | |||
258 | ||||
259 | /* returns the smallest composite of 2, 3, 5, 7 and 11 which is >= n */ | |||
260 | NOINLINE__attribute__((noinline)) static size_t good_size(size_t n) | |||
261 | { | |||
262 | if (n<=6) return n; | |||
263 | ||||
264 | size_t bestfac=2*n; | |||
265 | for (size_t f2=1; f2<bestfac; f2*=2) | |||
266 | for (size_t f23=f2; f23<bestfac; f23*=3) | |||
267 | for (size_t f235=f23; f235<bestfac; f235*=5) | |||
268 | for (size_t f2357=f235; f2357<bestfac; f2357*=7) | |||
269 | for (size_t f235711=f2357; f235711<bestfac; f235711*=11) | |||
270 | if (f235711>=n) bestfac=f235711; | |||
271 | return bestfac; | |||
272 | } | |||
273 | ||||
274 | typedef struct cmplx { | |||
275 | double r,i; | |||
276 | } cmplx; | |||
277 | ||||
278 | #define NFCT25 25 | |||
279 | typedef struct cfftp_fctdata | |||
280 | { | |||
281 | size_t fct; | |||
282 | cmplx *tw, *tws; | |||
283 | } cfftp_fctdata; | |||
284 | ||||
285 | typedef struct cfftp_plan_i | |||
286 | { | |||
287 | size_t length, nfct; | |||
288 | cmplx *mem; | |||
289 | cfftp_fctdata fct[NFCT25]; | |||
290 | } cfftp_plan_i; | |||
291 | typedef struct cfftp_plan_i * cfftp_plan; | |||
292 | ||||
293 | #define PMC(a,b,c,d) { a.r=c.r+d.r; a.i=c.i+d.i; b.r=c.r-d.r; b.i=c.i-d.i; } | |||
294 | #define ADDC(a,b,c) { a.r=b.r+c.r; a.i=b.i+c.i; } | |||
295 | #define SCALEC(a,b) { a.r*=b; a.i*=b; } | |||
296 | #define ROT90(a) { double tmp_=a.r; a.r=-a.i; a.i=tmp_; } | |||
297 | #define ROTM90(a){ double tmp_=-a.r; a.r=a.i; a.i=tmp_; } { double tmp_=-a.r; a.r=a.i; a.i=tmp_; } | |||
298 | #define CH(a,b,c) ch[(a)+ido*((b)+l1*(c))] | |||
299 | #define CC(a,b,c) cc[(a)+ido*((b)+cdim*(c))] | |||
300 | #define WA(x,i) wa[(i)-1+(x)*(ido-1)] | |||
301 | /* a = b*c */ | |||
302 | #define A_EQ_B_MUL_C(a,b,c) { a.r=b.r*c.r-b.i*c.i; a.i=b.r*c.i+b.i*c.r; } | |||
303 | /* a = conj(b)*c*/ | |||
304 | #define A_EQ_CB_MUL_C(a,b,c) { a.r=b.r*c.r+b.i*c.i; a.i=b.r*c.i-b.i*c.r; } | |||
305 | ||||
306 | #define PMSIGNC(a,b,c,d) { a.r=c.r+sign*d.r; a.i=c.i+sign*d.i; b.r=c.r-sign*d.r; b.i=c.i-sign*d.i; } | |||
307 | /* a = b*c */ | |||
308 | #define MULPMSIGNC(a,b,c) { a.r=b.r*c.r-sign*b.i*c.i; a.i=b.r*c.i+sign*b.i*c.r; } | |||
309 | /* a *= b */ | |||
310 | #define MULPMSIGNCEQ(a,b) { double xtmp=a.r; a.r=b.r*a.r-sign*b.i*a.i; a.i=b.r*a.i+sign*b.i*xtmp; } | |||
311 | ||||
312 | NOINLINE__attribute__((noinline)) static void pass2b (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
313 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa) | |||
314 | { | |||
315 | const size_t cdim=2; | |||
316 | ||||
317 | if (ido==1) | |||
318 | for (size_t k=0; k<l1; ++k) | |||
319 | PMC (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(0,1,k)) | |||
320 | else | |||
321 | for (size_t k=0; k<l1; ++k) | |||
322 | { | |||
323 | PMC (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(0,1,k)) | |||
324 | for (size_t i=1; i<ido; ++i) | |||
325 | { | |||
326 | cmplx t; | |||
327 | PMC (CH(i,k,0),t,CC(i,0,k),CC(i,1,k)) | |||
328 | A_EQ_B_MUL_C (CH(i,k,1),WA(0,i),t) | |||
329 | } | |||
330 | } | |||
331 | } | |||
332 | ||||
333 | NOINLINE__attribute__((noinline)) static void pass2f (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
334 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa) | |||
335 | { | |||
336 | const size_t cdim=2; | |||
337 | ||||
338 | if (ido==1) | |||
339 | for (size_t k=0; k<l1; ++k) | |||
340 | PMC (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(0,1,k)) | |||
341 | else | |||
342 | for (size_t k=0; k<l1; ++k) | |||
343 | { | |||
344 | PMC (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(0,1,k)) | |||
345 | for (size_t i=1; i<ido; ++i) | |||
346 | { | |||
347 | cmplx t; | |||
348 | PMC (CH(i,k,0),t,CC(i,0,k),CC(i,1,k)) | |||
349 | A_EQ_CB_MUL_C (CH(i,k,1),WA(0,i),t) | |||
350 | } | |||
351 | } | |||
352 | } | |||
353 | ||||
354 | #define PREP3(idx)cmplx t0 = CC(idx,0,k), t1, t2; PMC (t1,t2,CC(idx,1,k),CC(idx ,2,k)) CH(idx,k,0).r=t0.r+t1.r; CH(idx,k,0).i=t0.i+t1.i; \ | |||
355 | cmplx t0 = CC(idx,0,k), t1, t2; \ | |||
356 | PMC (t1,t2,CC(idx,1,k),CC(idx,2,k)) \ | |||
357 | CH(idx,k,0).r=t0.r+t1.r; \ | |||
358 | CH(idx,k,0).i=t0.i+t1.i; | |||
359 | #define PARTSTEP3a(u1,u2,twr,twi){ cmplx ca,cb; ca.r=t0.r+twr*t1.r; ca.i=t0.i+twr*t1.i; cb.i=twi *t2.r; cb.r=-(twi*t2.i); PMC(CH(0,k,u1),CH(0,k,u2),ca,cb) } \ | |||
360 | { \ | |||
361 | cmplx ca,cb; \ | |||
362 | ca.r=t0.r+twr*t1.r; \ | |||
363 | ca.i=t0.i+twr*t1.i; \ | |||
364 | cb.i=twi*t2.r; \ | |||
365 | cb.r=-(twi*t2.i); \ | |||
366 | PMC(CH(0,k,u1),CH(0,k,u2),ca,cb) \ | |||
367 | } | |||
368 | ||||
369 | #define PARTSTEP3b(u1,u2,twr,twi){ cmplx ca,cb,da,db; ca.r=t0.r+twr*t1.r; ca.i=t0.i+twr*t1.i; cb .i=twi*t2.r; cb.r=-(twi*t2.i); PMC(da,db,ca,cb) A_EQ_B_MUL_C ( CH(i,k,u1),WA(u1-1,i),da) A_EQ_B_MUL_C (CH(i,k,u2),WA(u2-1,i) ,db) } \ | |||
370 | { \ | |||
371 | cmplx ca,cb,da,db; \ | |||
372 | ca.r=t0.r+twr*t1.r; \ | |||
373 | ca.i=t0.i+twr*t1.i; \ | |||
374 | cb.i=twi*t2.r; \ | |||
375 | cb.r=-(twi*t2.i); \ | |||
376 | PMC(da,db,ca,cb) \ | |||
377 | A_EQ_B_MUL_C (CH(i,k,u1),WA(u1-1,i),da) \ | |||
378 | A_EQ_B_MUL_C (CH(i,k,u2),WA(u2-1,i),db) \ | |||
379 | } | |||
380 | NOINLINE__attribute__((noinline)) static void pass3b (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
381 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa) | |||
382 | { | |||
383 | const size_t cdim=3; | |||
384 | const double tw1r=-0.5, tw1i= 0.86602540378443864676; | |||
385 | ||||
386 | if (ido==1) | |||
387 | for (size_t k=0; k<l1; ++k) | |||
388 | { | |||
389 | PREP3(0)cmplx t0 = CC(0,0,k), t1, t2; PMC (t1,t2,CC(0,1,k),CC(0,2,k)) CH(0,k,0).r=t0.r+t1.r; CH(0,k,0).i=t0.i+t1.i; | |||
390 | PARTSTEP3a(1,2,tw1r,tw1i){ cmplx ca,cb; ca.r=t0.r+tw1r*t1.r; ca.i=t0.i+tw1r*t1.i; cb.i =tw1i*t2.r; cb.r=-(tw1i*t2.i); PMC(CH(0,k,1),CH(0,k,2),ca,cb) } | |||
391 | } | |||
392 | else | |||
393 | for (size_t k=0; k<l1; ++k) | |||
394 | { | |||
395 | { | |||
396 | PREP3(0)cmplx t0 = CC(0,0,k), t1, t2; PMC (t1,t2,CC(0,1,k),CC(0,2,k)) CH(0,k,0).r=t0.r+t1.r; CH(0,k,0).i=t0.i+t1.i; | |||
397 | PARTSTEP3a(1,2,tw1r,tw1i){ cmplx ca,cb; ca.r=t0.r+tw1r*t1.r; ca.i=t0.i+tw1r*t1.i; cb.i =tw1i*t2.r; cb.r=-(tw1i*t2.i); PMC(CH(0,k,1),CH(0,k,2),ca,cb) } | |||
398 | } | |||
399 | for (size_t i=1; i<ido; ++i) | |||
400 | { | |||
401 | PREP3(i)cmplx t0 = CC(i,0,k), t1, t2; PMC (t1,t2,CC(i,1,k),CC(i,2,k)) CH(i,k,0).r=t0.r+t1.r; CH(i,k,0).i=t0.i+t1.i; | |||
402 | PARTSTEP3b(1,2,tw1r,tw1i){ cmplx ca,cb,da,db; ca.r=t0.r+tw1r*t1.r; ca.i=t0.i+tw1r*t1.i ; cb.i=tw1i*t2.r; cb.r=-(tw1i*t2.i); PMC(da,db,ca,cb) A_EQ_B_MUL_C (CH(i,k,1),WA(1 -1,i),da) A_EQ_B_MUL_C (CH(i,k,2),WA(2 -1,i) ,db) } | |||
403 | } | |||
404 | } | |||
405 | } | |||
406 | #define PARTSTEP3f(u1,u2,twr,twi){ cmplx ca,cb,da,db; ca.r=t0.r+twr*t1.r; ca.i=t0.i+twr*t1.i; cb .i=twi*t2.r; cb.r=-(twi*t2.i); PMC(da,db,ca,cb) A_EQ_CB_MUL_C (CH(i,k,u1),WA(u1-1,i),da) A_EQ_CB_MUL_C (CH(i,k,u2),WA(u2-1 ,i),db) } \ | |||
407 | { \ | |||
408 | cmplx ca,cb,da,db; \ | |||
409 | ca.r=t0.r+twr*t1.r; \ | |||
410 | ca.i=t0.i+twr*t1.i; \ | |||
411 | cb.i=twi*t2.r; \ | |||
412 | cb.r=-(twi*t2.i); \ | |||
413 | PMC(da,db,ca,cb) \ | |||
414 | A_EQ_CB_MUL_C (CH(i,k,u1),WA(u1-1,i),da) \ | |||
415 | A_EQ_CB_MUL_C (CH(i,k,u2),WA(u2-1,i),db) \ | |||
416 | } | |||
417 | NOINLINE__attribute__((noinline)) static void pass3f (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
418 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa) | |||
419 | { | |||
420 | const size_t cdim=3; | |||
421 | const double tw1r=-0.5, tw1i= -0.86602540378443864676; | |||
422 | ||||
423 | if (ido==1) | |||
424 | for (size_t k=0; k<l1; ++k) | |||
425 | { | |||
426 | PREP3(0)cmplx t0 = CC(0,0,k), t1, t2; PMC (t1,t2,CC(0,1,k),CC(0,2,k)) CH(0,k,0).r=t0.r+t1.r; CH(0,k,0).i=t0.i+t1.i; | |||
427 | PARTSTEP3a(1,2,tw1r,tw1i){ cmplx ca,cb; ca.r=t0.r+tw1r*t1.r; ca.i=t0.i+tw1r*t1.i; cb.i =tw1i*t2.r; cb.r=-(tw1i*t2.i); PMC(CH(0,k,1),CH(0,k,2),ca,cb) } | |||
428 | } | |||
429 | else | |||
430 | for (size_t k=0; k<l1; ++k) | |||
431 | { | |||
432 | { | |||
433 | PREP3(0)cmplx t0 = CC(0,0,k), t1, t2; PMC (t1,t2,CC(0,1,k),CC(0,2,k)) CH(0,k,0).r=t0.r+t1.r; CH(0,k,0).i=t0.i+t1.i; | |||
434 | PARTSTEP3a(1,2,tw1r,tw1i){ cmplx ca,cb; ca.r=t0.r+tw1r*t1.r; ca.i=t0.i+tw1r*t1.i; cb.i =tw1i*t2.r; cb.r=-(tw1i*t2.i); PMC(CH(0,k,1),CH(0,k,2),ca,cb) } | |||
435 | } | |||
436 | for (size_t i=1; i<ido; ++i) | |||
437 | { | |||
438 | PREP3(i)cmplx t0 = CC(i,0,k), t1, t2; PMC (t1,t2,CC(i,1,k),CC(i,2,k)) CH(i,k,0).r=t0.r+t1.r; CH(i,k,0).i=t0.i+t1.i; | |||
439 | PARTSTEP3f(1,2,tw1r,tw1i){ cmplx ca,cb,da,db; ca.r=t0.r+tw1r*t1.r; ca.i=t0.i+tw1r*t1.i ; cb.i=tw1i*t2.r; cb.r=-(tw1i*t2.i); PMC(da,db,ca,cb) A_EQ_CB_MUL_C (CH(i,k,1),WA(1 -1,i),da) A_EQ_CB_MUL_C (CH(i,k,2),WA(2 -1,i ),db) } | |||
440 | } | |||
441 | } | |||
442 | } | |||
443 | ||||
444 | NOINLINE__attribute__((noinline)) static void pass4b (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
445 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa) | |||
446 | { | |||
447 | const size_t cdim=4; | |||
448 | ||||
449 | if (ido==1) | |||
450 | for (size_t k=0; k<l1; ++k) | |||
451 | { | |||
452 | cmplx t1, t2, t3, t4; | |||
453 | PMC(t2,t1,CC(0,0,k),CC(0,2,k)) | |||
454 | PMC(t3,t4,CC(0,1,k),CC(0,3,k)) | |||
455 | ROT90(t4) | |||
456 | PMC(CH(0,k,0),CH(0,k,2),t2,t3) | |||
457 | PMC(CH(0,k,1),CH(0,k,3),t1,t4) | |||
458 | } | |||
459 | else | |||
460 | for (size_t k=0; k<l1; ++k) | |||
461 | { | |||
462 | { | |||
463 | cmplx t1, t2, t3, t4; | |||
464 | PMC(t2,t1,CC(0,0,k),CC(0,2,k)) | |||
465 | PMC(t3,t4,CC(0,1,k),CC(0,3,k)) | |||
466 | ROT90(t4) | |||
467 | PMC(CH(0,k,0),CH(0,k,2),t2,t3) | |||
468 | PMC(CH(0,k,1),CH(0,k,3),t1,t4) | |||
469 | } | |||
470 | for (size_t i=1; i<ido; ++i) | |||
471 | { | |||
472 | cmplx c2, c3, c4, t1, t2, t3, t4; | |||
473 | cmplx cc0=CC(i,0,k), cc1=CC(i,1,k),cc2=CC(i,2,k),cc3=CC(i,3,k); | |||
474 | PMC(t2,t1,cc0,cc2) | |||
475 | PMC(t3,t4,cc1,cc3) | |||
476 | ROT90(t4) | |||
477 | cmplx wa0=WA(0,i), wa1=WA(1,i),wa2=WA(2,i); | |||
478 | PMC(CH(i,k,0),c3,t2,t3) | |||
479 | PMC(c2,c4,t1,t4) | |||
480 | A_EQ_B_MUL_C (CH(i,k,1),wa0,c2) | |||
481 | A_EQ_B_MUL_C (CH(i,k,2),wa1,c3) | |||
482 | A_EQ_B_MUL_C (CH(i,k,3),wa2,c4) | |||
483 | } | |||
484 | } | |||
485 | } | |||
486 | NOINLINE__attribute__((noinline)) static void pass4f (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
487 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa) | |||
488 | { | |||
489 | const size_t cdim=4; | |||
490 | ||||
491 | if (ido==1) | |||
492 | for (size_t k=0; k<l1; ++k) | |||
493 | { | |||
494 | cmplx t1, t2, t3, t4; | |||
495 | PMC(t2,t1,CC(0,0,k),CC(0,2,k)) | |||
496 | PMC(t3,t4,CC(0,1,k),CC(0,3,k)) | |||
497 | ROTM90(t4){ double tmp_=-t4.r; t4.r=t4.i; t4.i=tmp_; } | |||
498 | PMC(CH(0,k,0),CH(0,k,2),t2,t3) | |||
499 | PMC(CH(0,k,1),CH(0,k,3),t1,t4) | |||
500 | } | |||
501 | else | |||
502 | for (size_t k=0; k<l1; ++k) | |||
503 | { | |||
504 | { | |||
505 | cmplx t1, t2, t3, t4; | |||
506 | PMC(t2,t1,CC(0,0,k),CC(0,2,k)) | |||
507 | PMC(t3,t4,CC(0,1,k),CC(0,3,k)) | |||
508 | ROTM90(t4){ double tmp_=-t4.r; t4.r=t4.i; t4.i=tmp_; } | |||
509 | PMC(CH(0,k,0),CH(0,k,2),t2,t3) | |||
510 | PMC (CH(0,k,1),CH(0,k,3),t1,t4) | |||
511 | } | |||
512 | for (size_t i=1; i<ido; ++i) | |||
513 | { | |||
514 | cmplx c2, c3, c4, t1, t2, t3, t4; | |||
515 | cmplx cc0=CC(i,0,k), cc1=CC(i,1,k),cc2=CC(i,2,k),cc3=CC(i,3,k); | |||
516 | PMC(t2,t1,cc0,cc2) | |||
517 | PMC(t3,t4,cc1,cc3) | |||
518 | ROTM90(t4){ double tmp_=-t4.r; t4.r=t4.i; t4.i=tmp_; } | |||
519 | cmplx wa0=WA(0,i), wa1=WA(1,i),wa2=WA(2,i); | |||
520 | PMC(CH(i,k,0),c3,t2,t3) | |||
521 | PMC(c2,c4,t1,t4) | |||
522 | A_EQ_CB_MUL_C (CH(i,k,1),wa0,c2) | |||
523 | A_EQ_CB_MUL_C (CH(i,k,2),wa1,c3) | |||
524 | A_EQ_CB_MUL_C (CH(i,k,3),wa2,c4) | |||
525 | } | |||
526 | } | |||
527 | } | |||
528 | ||||
529 | #define PREP5(idx)cmplx t0 = CC(idx,0,k), t1, t2, t3, t4; PMC (t1,t4,CC(idx,1,k ),CC(idx,4,k)) PMC (t2,t3,CC(idx,2,k),CC(idx,3,k)) CH(idx,k,0 ).r=t0.r+t1.r+t2.r; CH(idx,k,0).i=t0.i+t1.i+t2.i; \ | |||
530 | cmplx t0 = CC(idx,0,k), t1, t2, t3, t4; \ | |||
531 | PMC (t1,t4,CC(idx,1,k),CC(idx,4,k)) \ | |||
532 | PMC (t2,t3,CC(idx,2,k),CC(idx,3,k)) \ | |||
533 | CH(idx,k,0).r=t0.r+t1.r+t2.r; \ | |||
534 | CH(idx,k,0).i=t0.i+t1.i+t2.i; | |||
535 | ||||
536 | #define PARTSTEP5a(u1,u2,twar,twbr,twai,twbi){ cmplx ca,cb; ca.r=t0.r+twar*t1.r+twbr*t2.r; ca.i=t0.i+twar* t1.i+twbr*t2.i; cb.i=twai*t4.r twbi*t3.r; cb.r=-(twai*t4.i twbi *t3.i); PMC(CH(0,k,u1),CH(0,k,u2),ca,cb) } \ | |||
537 | { \ | |||
538 | cmplx ca,cb; \ | |||
539 | ca.r=t0.r+twar*t1.r+twbr*t2.r; \ | |||
540 | ca.i=t0.i+twar*t1.i+twbr*t2.i; \ | |||
541 | cb.i=twai*t4.r twbi*t3.r; \ | |||
542 | cb.r=-(twai*t4.i twbi*t3.i); \ | |||
543 | PMC(CH(0,k,u1),CH(0,k,u2),ca,cb) \ | |||
544 | } | |||
545 | ||||
546 | #define PARTSTEP5b(u1,u2,twar,twbr,twai,twbi){ cmplx ca,cb,da,db; ca.r=t0.r+twar*t1.r+twbr*t2.r; ca.i=t0.i +twar*t1.i+twbr*t2.i; cb.i=twai*t4.r twbi*t3.r; cb.r=-(twai*t4 .i twbi*t3.i); PMC(da,db,ca,cb) A_EQ_B_MUL_C (CH(i,k,u1),WA(u1 -1,i),da) A_EQ_B_MUL_C (CH(i,k,u2),WA(u2-1,i),db) } \ | |||
547 | { \ | |||
548 | cmplx ca,cb,da,db; \ | |||
549 | ca.r=t0.r+twar*t1.r+twbr*t2.r; \ | |||
550 | ca.i=t0.i+twar*t1.i+twbr*t2.i; \ | |||
551 | cb.i=twai*t4.r twbi*t3.r; \ | |||
552 | cb.r=-(twai*t4.i twbi*t3.i); \ | |||
553 | PMC(da,db,ca,cb) \ | |||
554 | A_EQ_B_MUL_C (CH(i,k,u1),WA(u1-1,i),da) \ | |||
555 | A_EQ_B_MUL_C (CH(i,k,u2),WA(u2-1,i),db) \ | |||
556 | } | |||
557 | NOINLINE__attribute__((noinline)) static void pass5b (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
558 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa) | |||
559 | { | |||
560 | const size_t cdim=5; | |||
561 | const double tw1r= 0.3090169943749474241, | |||
562 | tw1i= 0.95105651629515357212, | |||
563 | tw2r= -0.8090169943749474241, | |||
564 | tw2i= 0.58778525229247312917; | |||
565 | ||||
566 | if (ido==1) | |||
567 | for (size_t k=0; k<l1; ++k) | |||
568 | { | |||
569 | PREP5(0)cmplx t0 = CC(0,0,k), t1, t2, t3, t4; PMC (t1,t4,CC(0,1,k),CC (0,4,k)) PMC (t2,t3,CC(0,2,k),CC(0,3,k)) CH(0,k,0).r=t0.r+t1. r+t2.r; CH(0,k,0).i=t0.i+t1.i+t2.i; | |||
570 | PARTSTEP5a(1,4,tw1r,tw2r,+tw1i,+tw2i){ cmplx ca,cb; ca.r=t0.r+tw1r*t1.r+tw2r*t2.r; ca.i=t0.i+tw1r* t1.i+tw2r*t2.i; cb.i=+tw1i*t4.r +tw2i*t3.r; cb.r=-(+tw1i*t4.i +tw2i*t3.i); PMC(CH(0,k,1),CH(0,k,4),ca,cb) } | |||
571 | PARTSTEP5a(2,3,tw2r,tw1r,+tw2i,-tw1i){ cmplx ca,cb; ca.r=t0.r+tw2r*t1.r+tw1r*t2.r; ca.i=t0.i+tw2r* t1.i+tw1r*t2.i; cb.i=+tw2i*t4.r -tw1i*t3.r; cb.r=-(+tw2i*t4.i -tw1i*t3.i); PMC(CH(0,k,2),CH(0,k,3),ca,cb) } | |||
572 | } | |||
573 | else | |||
574 | for (size_t k=0; k<l1; ++k) | |||
575 | { | |||
576 | { | |||
577 | PREP5(0)cmplx t0 = CC(0,0,k), t1, t2, t3, t4; PMC (t1,t4,CC(0,1,k),CC (0,4,k)) PMC (t2,t3,CC(0,2,k),CC(0,3,k)) CH(0,k,0).r=t0.r+t1. r+t2.r; CH(0,k,0).i=t0.i+t1.i+t2.i; | |||
578 | PARTSTEP5a(1,4,tw1r,tw2r,+tw1i,+tw2i){ cmplx ca,cb; ca.r=t0.r+tw1r*t1.r+tw2r*t2.r; ca.i=t0.i+tw1r* t1.i+tw2r*t2.i; cb.i=+tw1i*t4.r +tw2i*t3.r; cb.r=-(+tw1i*t4.i +tw2i*t3.i); PMC(CH(0,k,1),CH(0,k,4),ca,cb) } | |||
579 | PARTSTEP5a(2,3,tw2r,tw1r,+tw2i,-tw1i){ cmplx ca,cb; ca.r=t0.r+tw2r*t1.r+tw1r*t2.r; ca.i=t0.i+tw2r* t1.i+tw1r*t2.i; cb.i=+tw2i*t4.r -tw1i*t3.r; cb.r=-(+tw2i*t4.i -tw1i*t3.i); PMC(CH(0,k,2),CH(0,k,3),ca,cb) } | |||
580 | } | |||
581 | for (size_t i=1; i<ido; ++i) | |||
582 | { | |||
583 | PREP5(i)cmplx t0 = CC(i,0,k), t1, t2, t3, t4; PMC (t1,t4,CC(i,1,k),CC (i,4,k)) PMC (t2,t3,CC(i,2,k),CC(i,3,k)) CH(i,k,0).r=t0.r+t1. r+t2.r; CH(i,k,0).i=t0.i+t1.i+t2.i; | |||
584 | PARTSTEP5b(1,4,tw1r,tw2r,+tw1i,+tw2i){ cmplx ca,cb,da,db; ca.r=t0.r+tw1r*t1.r+tw2r*t2.r; ca.i=t0.i +tw1r*t1.i+tw2r*t2.i; cb.i=+tw1i*t4.r +tw2i*t3.r; cb.r=-(+tw1i *t4.i +tw2i*t3.i); PMC(da,db,ca,cb) A_EQ_B_MUL_C (CH(i,k,1),WA (1 -1,i),da) A_EQ_B_MUL_C (CH(i,k,4),WA(4 -1,i),db) } | |||
585 | PARTSTEP5b(2,3,tw2r,tw1r,+tw2i,-tw1i){ cmplx ca,cb,da,db; ca.r=t0.r+tw2r*t1.r+tw1r*t2.r; ca.i=t0.i +tw2r*t1.i+tw1r*t2.i; cb.i=+tw2i*t4.r -tw1i*t3.r; cb.r=-(+tw2i *t4.i -tw1i*t3.i); PMC(da,db,ca,cb) A_EQ_B_MUL_C (CH(i,k,2),WA (2 -1,i),da) A_EQ_B_MUL_C (CH(i,k,3),WA(3 -1,i),db) } | |||
586 | } | |||
587 | } | |||
588 | } | |||
589 | #define PARTSTEP5f(u1,u2,twar,twbr,twai,twbi){ cmplx ca,cb,da,db; ca.r=t0.r+twar*t1.r+twbr*t2.r; ca.i=t0.i +twar*t1.i+twbr*t2.i; cb.i=twai*t4.r twbi*t3.r; cb.r=-(twai*t4 .i twbi*t3.i); PMC(da,db,ca,cb) A_EQ_CB_MUL_C (CH(i,k,u1),WA( u1-1,i),da) A_EQ_CB_MUL_C (CH(i,k,u2),WA(u2-1,i),db) } \ | |||
590 | { \ | |||
591 | cmplx ca,cb,da,db; \ | |||
592 | ca.r=t0.r+twar*t1.r+twbr*t2.r; \ | |||
593 | ca.i=t0.i+twar*t1.i+twbr*t2.i; \ | |||
594 | cb.i=twai*t4.r twbi*t3.r; \ | |||
595 | cb.r=-(twai*t4.i twbi*t3.i); \ | |||
596 | PMC(da,db,ca,cb) \ | |||
597 | A_EQ_CB_MUL_C (CH(i,k,u1),WA(u1-1,i),da) \ | |||
598 | A_EQ_CB_MUL_C (CH(i,k,u2),WA(u2-1,i),db) \ | |||
599 | } | |||
600 | NOINLINE__attribute__((noinline)) static void pass5f (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
601 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa) | |||
602 | { | |||
603 | const size_t cdim=5; | |||
604 | const double tw1r= 0.3090169943749474241, | |||
605 | tw1i= -0.95105651629515357212, | |||
606 | tw2r= -0.8090169943749474241, | |||
607 | tw2i= -0.58778525229247312917; | |||
608 | ||||
609 | if (ido==1) | |||
610 | for (size_t k=0; k<l1; ++k) | |||
611 | { | |||
612 | PREP5(0)cmplx t0 = CC(0,0,k), t1, t2, t3, t4; PMC (t1,t4,CC(0,1,k),CC (0,4,k)) PMC (t2,t3,CC(0,2,k),CC(0,3,k)) CH(0,k,0).r=t0.r+t1. r+t2.r; CH(0,k,0).i=t0.i+t1.i+t2.i; | |||
613 | PARTSTEP5a(1,4,tw1r,tw2r,+tw1i,+tw2i){ cmplx ca,cb; ca.r=t0.r+tw1r*t1.r+tw2r*t2.r; ca.i=t0.i+tw1r* t1.i+tw2r*t2.i; cb.i=+tw1i*t4.r +tw2i*t3.r; cb.r=-(+tw1i*t4.i +tw2i*t3.i); PMC(CH(0,k,1),CH(0,k,4),ca,cb) } | |||
614 | PARTSTEP5a(2,3,tw2r,tw1r,+tw2i,-tw1i){ cmplx ca,cb; ca.r=t0.r+tw2r*t1.r+tw1r*t2.r; ca.i=t0.i+tw2r* t1.i+tw1r*t2.i; cb.i=+tw2i*t4.r -tw1i*t3.r; cb.r=-(+tw2i*t4.i -tw1i*t3.i); PMC(CH(0,k,2),CH(0,k,3),ca,cb) } | |||
615 | } | |||
616 | else | |||
617 | for (size_t k=0; k<l1; ++k) | |||
618 | { | |||
619 | { | |||
620 | PREP5(0)cmplx t0 = CC(0,0,k), t1, t2, t3, t4; PMC (t1,t4,CC(0,1,k),CC (0,4,k)) PMC (t2,t3,CC(0,2,k),CC(0,3,k)) CH(0,k,0).r=t0.r+t1. r+t2.r; CH(0,k,0).i=t0.i+t1.i+t2.i; | |||
621 | PARTSTEP5a(1,4,tw1r,tw2r,+tw1i,+tw2i){ cmplx ca,cb; ca.r=t0.r+tw1r*t1.r+tw2r*t2.r; ca.i=t0.i+tw1r* t1.i+tw2r*t2.i; cb.i=+tw1i*t4.r +tw2i*t3.r; cb.r=-(+tw1i*t4.i +tw2i*t3.i); PMC(CH(0,k,1),CH(0,k,4),ca,cb) } | |||
622 | PARTSTEP5a(2,3,tw2r,tw1r,+tw2i,-tw1i){ cmplx ca,cb; ca.r=t0.r+tw2r*t1.r+tw1r*t2.r; ca.i=t0.i+tw2r* t1.i+tw1r*t2.i; cb.i=+tw2i*t4.r -tw1i*t3.r; cb.r=-(+tw2i*t4.i -tw1i*t3.i); PMC(CH(0,k,2),CH(0,k,3),ca,cb) } | |||
623 | } | |||
624 | for (size_t i=1; i<ido; ++i) | |||
625 | { | |||
626 | PREP5(i)cmplx t0 = CC(i,0,k), t1, t2, t3, t4; PMC (t1,t4,CC(i,1,k),CC (i,4,k)) PMC (t2,t3,CC(i,2,k),CC(i,3,k)) CH(i,k,0).r=t0.r+t1. r+t2.r; CH(i,k,0).i=t0.i+t1.i+t2.i; | |||
627 | PARTSTEP5f(1,4,tw1r,tw2r,+tw1i,+tw2i){ cmplx ca,cb,da,db; ca.r=t0.r+tw1r*t1.r+tw2r*t2.r; ca.i=t0.i +tw1r*t1.i+tw2r*t2.i; cb.i=+tw1i*t4.r +tw2i*t3.r; cb.r=-(+tw1i *t4.i +tw2i*t3.i); PMC(da,db,ca,cb) A_EQ_CB_MUL_C (CH(i,k,1), WA(1 -1,i),da) A_EQ_CB_MUL_C (CH(i,k,4),WA(4 -1,i),db) } | |||
628 | PARTSTEP5f(2,3,tw2r,tw1r,+tw2i,-tw1i){ cmplx ca,cb,da,db; ca.r=t0.r+tw2r*t1.r+tw1r*t2.r; ca.i=t0.i +tw2r*t1.i+tw1r*t2.i; cb.i=+tw2i*t4.r -tw1i*t3.r; cb.r=-(+tw2i *t4.i -tw1i*t3.i); PMC(da,db,ca,cb) A_EQ_CB_MUL_C (CH(i,k,2), WA(2 -1,i),da) A_EQ_CB_MUL_C (CH(i,k,3),WA(3 -1,i),db) } | |||
629 | } | |||
630 | } | |||
631 | } | |||
632 | ||||
633 | #define PREP7(idx)cmplx t1 = CC(idx,0,k), t2, t3, t4, t5, t6, t7; PMC (t2,t7,CC (idx,1,k),CC(idx,6,k)) PMC (t3,t6,CC(idx,2,k),CC(idx,5,k)) PMC (t4,t5,CC(idx,3,k),CC(idx,4,k)) CH(idx,k,0).r=t1.r+t2.r+t3.r +t4.r; CH(idx,k,0).i=t1.i+t2.i+t3.i+t4.i; \ | |||
634 | cmplx t1 = CC(idx,0,k), t2, t3, t4, t5, t6, t7; \ | |||
635 | PMC (t2,t7,CC(idx,1,k),CC(idx,6,k)) \ | |||
636 | PMC (t3,t6,CC(idx,2,k),CC(idx,5,k)) \ | |||
637 | PMC (t4,t5,CC(idx,3,k),CC(idx,4,k)) \ | |||
638 | CH(idx,k,0).r=t1.r+t2.r+t3.r+t4.r; \ | |||
639 | CH(idx,k,0).i=t1.i+t2.i+t3.i+t4.i; | |||
640 | ||||
641 | #define PARTSTEP7a0(u1,u2,x1,x2,x3,y1,y2,y3,out1,out2){ cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r; ca.i=t1.i+x1 *t2.i+x2*t3.i+x3*t4.i; cb.i=y1*t7.r y2*t6.r y3*t5.r; cb.r=-(y1 *t7.i y2*t6.i y3*t5.i); PMC(out1,out2,ca,cb) } \ | |||
642 | { \ | |||
643 | cmplx ca,cb; \ | |||
644 | ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r; \ | |||
645 | ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i; \ | |||
646 | cb.i=y1*t7.r y2*t6.r y3*t5.r; \ | |||
647 | cb.r=-(y1*t7.i y2*t6.i y3*t5.i); \ | |||
648 | PMC(out1,out2,ca,cb) \ | |||
649 | } | |||
650 | #define PARTSTEP7a(u1,u2,x1,x2,x3,y1,y2,y3){ cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r; ca.i=t1.i+x1 *t2.i+x2*t3.i+x3*t4.i; cb.i=y1*t7.r y2*t6.r y3*t5.r; cb.r=-(y1 *t7.i y2*t6.i y3*t5.i); PMC(CH(0,k,u1),CH(0,k,u2),ca,cb) } \ | |||
651 | PARTSTEP7a0(u1,u2,x1,x2,x3,y1,y2,y3,CH(0,k,u1),CH(0,k,u2)){ cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r; ca.i=t1.i+x1 *t2.i+x2*t3.i+x3*t4.i; cb.i=y1*t7.r y2*t6.r y3*t5.r; cb.r=-(y1 *t7.i y2*t6.i y3*t5.i); PMC(CH(0,k,u1),CH(0,k,u2),ca,cb) } | |||
652 | #define PARTSTEP7(u1,u2,x1,x2,x3,y1,y2,y3){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4 .r; ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i; cb.i=y1*t7.r y2*t6.r y3 *t5.r; cb.r=-(y1*t7.i y2*t6.i y3*t5.i); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,u1),WA(u1-1,i),da) MULPMSIGNC (CH(i,k,u2),WA(u2-1,i) ,db) } \ | |||
653 | { \ | |||
654 | cmplx da,db; \ | |||
655 | PARTSTEP7a0(u1,u2,x1,x2,x3,y1,y2,y3,da,db){ cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r; ca.i=t1.i+x1 *t2.i+x2*t3.i+x3*t4.i; cb.i=y1*t7.r y2*t6.r y3*t5.r; cb.r=-(y1 *t7.i y2*t6.i y3*t5.i); PMC(da,db,ca,cb) } \ | |||
656 | MULPMSIGNC (CH(i,k,u1),WA(u1-1,i),da) \ | |||
657 | MULPMSIGNC (CH(i,k,u2),WA(u2-1,i),db) \ | |||
658 | } | |||
659 | ||||
660 | NOINLINE__attribute__((noinline)) static void pass7(size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
661 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa, const int sign) | |||
662 | { | |||
663 | const size_t cdim=7; | |||
664 | const double tw1r= 0.623489801858733530525, | |||
665 | tw1i= sign * 0.7818314824680298087084, | |||
666 | tw2r= -0.222520933956314404289, | |||
667 | tw2i= sign * 0.9749279121818236070181, | |||
668 | tw3r= -0.9009688679024191262361, | |||
669 | tw3i= sign * 0.4338837391175581204758; | |||
670 | ||||
671 | if (ido==1) | |||
672 | for (size_t k=0; k<l1; ++k) | |||
673 | { | |||
674 | PREP7(0)cmplx t1 = CC(0,0,k), t2, t3, t4, t5, t6, t7; PMC (t2,t7,CC(0 ,1,k),CC(0,6,k)) PMC (t3,t6,CC(0,2,k),CC(0,5,k)) PMC (t4,t5,CC (0,3,k),CC(0,4,k)) CH(0,k,0).r=t1.r+t2.r+t3.r+t4.r; CH(0,k,0) .i=t1.i+t2.i+t3.i+t4.i; | |||
675 | PARTSTEP7a(1,6,tw1r,tw2r,tw3r,+tw1i,+tw2i,+tw3i){ cmplx ca,cb; ca.r=t1.r+tw1r*t2.r+tw2r*t3.r+tw3r*t4.r; ca.i= t1.i+tw1r*t2.i+tw2r*t3.i+tw3r*t4.i; cb.i=+tw1i*t7.r +tw2i*t6. r +tw3i*t5.r; cb.r=-(+tw1i*t7.i +tw2i*t6.i +tw3i*t5.i); PMC(CH (0,k,1),CH(0,k,6),ca,cb) } | |||
676 | PARTSTEP7a(2,5,tw2r,tw3r,tw1r,+tw2i,-tw3i,-tw1i){ cmplx ca,cb; ca.r=t1.r+tw2r*t2.r+tw3r*t3.r+tw1r*t4.r; ca.i= t1.i+tw2r*t2.i+tw3r*t3.i+tw1r*t4.i; cb.i=+tw2i*t7.r -tw3i*t6. r -tw1i*t5.r; cb.r=-(+tw2i*t7.i -tw3i*t6.i -tw1i*t5.i); PMC(CH (0,k,2),CH(0,k,5),ca,cb) } | |||
677 | PARTSTEP7a(3,4,tw3r,tw1r,tw2r,+tw3i,-tw1i,+tw2i){ cmplx ca,cb; ca.r=t1.r+tw3r*t2.r+tw1r*t3.r+tw2r*t4.r; ca.i= t1.i+tw3r*t2.i+tw1r*t3.i+tw2r*t4.i; cb.i=+tw3i*t7.r -tw1i*t6. r +tw2i*t5.r; cb.r=-(+tw3i*t7.i -tw1i*t6.i +tw2i*t5.i); PMC(CH (0,k,3),CH(0,k,4),ca,cb) } | |||
678 | } | |||
679 | else | |||
680 | for (size_t k=0; k<l1; ++k) | |||
681 | { | |||
682 | { | |||
683 | PREP7(0)cmplx t1 = CC(0,0,k), t2, t3, t4, t5, t6, t7; PMC (t2,t7,CC(0 ,1,k),CC(0,6,k)) PMC (t3,t6,CC(0,2,k),CC(0,5,k)) PMC (t4,t5,CC (0,3,k),CC(0,4,k)) CH(0,k,0).r=t1.r+t2.r+t3.r+t4.r; CH(0,k,0) .i=t1.i+t2.i+t3.i+t4.i; | |||
684 | PARTSTEP7a(1,6,tw1r,tw2r,tw3r,+tw1i,+tw2i,+tw3i){ cmplx ca,cb; ca.r=t1.r+tw1r*t2.r+tw2r*t3.r+tw3r*t4.r; ca.i= t1.i+tw1r*t2.i+tw2r*t3.i+tw3r*t4.i; cb.i=+tw1i*t7.r +tw2i*t6. r +tw3i*t5.r; cb.r=-(+tw1i*t7.i +tw2i*t6.i +tw3i*t5.i); PMC(CH (0,k,1),CH(0,k,6),ca,cb) } | |||
685 | PARTSTEP7a(2,5,tw2r,tw3r,tw1r,+tw2i,-tw3i,-tw1i){ cmplx ca,cb; ca.r=t1.r+tw2r*t2.r+tw3r*t3.r+tw1r*t4.r; ca.i= t1.i+tw2r*t2.i+tw3r*t3.i+tw1r*t4.i; cb.i=+tw2i*t7.r -tw3i*t6. r -tw1i*t5.r; cb.r=-(+tw2i*t7.i -tw3i*t6.i -tw1i*t5.i); PMC(CH (0,k,2),CH(0,k,5),ca,cb) } | |||
686 | PARTSTEP7a(3,4,tw3r,tw1r,tw2r,+tw3i,-tw1i,+tw2i){ cmplx ca,cb; ca.r=t1.r+tw3r*t2.r+tw1r*t3.r+tw2r*t4.r; ca.i= t1.i+tw3r*t2.i+tw1r*t3.i+tw2r*t4.i; cb.i=+tw3i*t7.r -tw1i*t6. r +tw2i*t5.r; cb.r=-(+tw3i*t7.i -tw1i*t6.i +tw2i*t5.i); PMC(CH (0,k,3),CH(0,k,4),ca,cb) } | |||
687 | } | |||
688 | for (size_t i=1; i<ido; ++i) | |||
689 | { | |||
690 | PREP7(i)cmplx t1 = CC(i,0,k), t2, t3, t4, t5, t6, t7; PMC (t2,t7,CC(i ,1,k),CC(i,6,k)) PMC (t3,t6,CC(i,2,k),CC(i,5,k)) PMC (t4,t5,CC (i,3,k),CC(i,4,k)) CH(i,k,0).r=t1.r+t2.r+t3.r+t4.r; CH(i,k,0) .i=t1.i+t2.i+t3.i+t4.i; | |||
691 | PARTSTEP7(1,6,tw1r,tw2r,tw3r,+tw1i,+tw2i,+tw3i){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+tw1r*t2.r+tw2r*t3.r+tw3r *t4.r; ca.i=t1.i+tw1r*t2.i+tw2r*t3.i+tw3r*t4.i; cb.i=+tw1i*t7 .r +tw2i*t6.r +tw3i*t5.r; cb.r=-(+tw1i*t7.i +tw2i*t6.i +tw3i* t5.i); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,1),WA(1 -1,i),da ) MULPMSIGNC (CH(i,k,6),WA(6 -1,i),db) } | |||
692 | PARTSTEP7(2,5,tw2r,tw3r,tw1r,+tw2i,-tw3i,-tw1i){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+tw2r*t2.r+tw3r*t3.r+tw1r *t4.r; ca.i=t1.i+tw2r*t2.i+tw3r*t3.i+tw1r*t4.i; cb.i=+tw2i*t7 .r -tw3i*t6.r -tw1i*t5.r; cb.r=-(+tw2i*t7.i -tw3i*t6.i -tw1i* t5.i); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,2),WA(2 -1,i),da ) MULPMSIGNC (CH(i,k,5),WA(5 -1,i),db) } | |||
693 | PARTSTEP7(3,4,tw3r,tw1r,tw2r,+tw3i,-tw1i,+tw2i){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+tw3r*t2.r+tw1r*t3.r+tw2r *t4.r; ca.i=t1.i+tw3r*t2.i+tw1r*t3.i+tw2r*t4.i; cb.i=+tw3i*t7 .r -tw1i*t6.r +tw2i*t5.r; cb.r=-(+tw3i*t7.i -tw1i*t6.i +tw2i* t5.i); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,3),WA(3 -1,i),da ) MULPMSIGNC (CH(i,k,4),WA(4 -1,i),db) } | |||
694 | } | |||
695 | } | |||
696 | } | |||
697 | ||||
698 | #define PREP11(idx)cmplx t1 = CC(idx,0,k), t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 ; PMC (t2,t11,CC(idx,1,k),CC(idx,10,k)) PMC (t3,t10,CC(idx,2, k),CC(idx, 9,k)) PMC (t4,t9 ,CC(idx,3,k),CC(idx, 8,k)) PMC (t5 ,t8 ,CC(idx,4,k),CC(idx, 7,k)) PMC (t6,t7 ,CC(idx,5,k),CC(idx , 6,k)) CH(idx,k,0).r=t1.r+t2.r+t3.r+t4.r+t5.r+t6.r; CH(idx,k ,0).i=t1.i+t2.i+t3.i+t4.i+t5.i+t6.i; \ | |||
699 | cmplx t1 = CC(idx,0,k), t2, t3, t4, t5, t6, t7, t8, t9, t10, t11; \ | |||
700 | PMC (t2,t11,CC(idx,1,k),CC(idx,10,k)) \ | |||
701 | PMC (t3,t10,CC(idx,2,k),CC(idx, 9,k)) \ | |||
702 | PMC (t4,t9 ,CC(idx,3,k),CC(idx, 8,k)) \ | |||
703 | PMC (t5,t8 ,CC(idx,4,k),CC(idx, 7,k)) \ | |||
704 | PMC (t6,t7 ,CC(idx,5,k),CC(idx, 6,k)) \ | |||
705 | CH(idx,k,0).r=t1.r+t2.r+t3.r+t4.r+t5.r+t6.r; \ | |||
706 | CH(idx,k,0).i=t1.i+t2.i+t3.i+t4.i+t5.i+t6.i; | |||
707 | ||||
708 | #define PARTSTEP11a0(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5,out1,out2){ cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r+x4*t5.r+x5*t6 .r; ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i+x4*t5.i+x5*t6.i; cb.i=y1 *t11.r y2*t10.r y3*t9.r y4*t8.r y5*t7.r; cb.r=-(y1*t11.i y2*t10 .i y3*t9.i y4*t8.i y5*t7.i ); PMC(out1,out2,ca,cb) } \ | |||
709 | { \ | |||
710 | cmplx ca,cb; \ | |||
711 | ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r+x4*t5.r+x5*t6.r; \ | |||
712 | ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i+x4*t5.i+x5*t6.i; \ | |||
713 | cb.i=y1*t11.r y2*t10.r y3*t9.r y4*t8.r y5*t7.r; \ | |||
714 | cb.r=-(y1*t11.i y2*t10.i y3*t9.i y4*t8.i y5*t7.i ); \ | |||
715 | PMC(out1,out2,ca,cb) \ | |||
716 | } | |||
717 | #define PARTSTEP11a(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5){ cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r+x4*t5.r+x5*t6 .r; ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i+x4*t5.i+x5*t6.i; cb.i=y1 *t11.r y2*t10.r y3*t9.r y4*t8.r y5*t7.r; cb.r=-(y1*t11.i y2*t10 .i y3*t9.i y4*t8.i y5*t7.i ); PMC(CH(0,k,u1),CH(0,k,u2),ca,cb ) } \ | |||
718 | PARTSTEP11a0(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5,CH(0,k,u1),CH(0,k,u2)){ cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r+x4*t5.r+x5*t6 .r; ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i+x4*t5.i+x5*t6.i; cb.i=y1 *t11.r y2*t10.r y3*t9.r y4*t8.r y5*t7.r; cb.r=-(y1*t11.i y2*t10 .i y3*t9.i y4*t8.i y5*t7.i ); PMC(CH(0,k,u1),CH(0,k,u2),ca,cb ) } | |||
719 | #define PARTSTEP11(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4 .r+x4*t5.r+x5*t6.r; ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i+x4*t5.i +x5*t6.i; cb.i=y1*t11.r y2*t10.r y3*t9.r y4*t8.r y5*t7.r; cb. r=-(y1*t11.i y2*t10.i y3*t9.i y4*t8.i y5*t7.i ); PMC(da,db,ca ,cb) } MULPMSIGNC (CH(i,k,u1),WA(u1-1,i),da) MULPMSIGNC (CH(i ,k,u2),WA(u2-1,i),db) } \ | |||
720 | { \ | |||
721 | cmplx da,db; \ | |||
722 | PARTSTEP11a0(u1,u2,x1,x2,x3,x4,x5,y1,y2,y3,y4,y5,da,db){ cmplx ca,cb; ca.r=t1.r+x1*t2.r+x2*t3.r+x3*t4.r+x4*t5.r+x5*t6 .r; ca.i=t1.i+x1*t2.i+x2*t3.i+x3*t4.i+x4*t5.i+x5*t6.i; cb.i=y1 *t11.r y2*t10.r y3*t9.r y4*t8.r y5*t7.r; cb.r=-(y1*t11.i y2*t10 .i y3*t9.i y4*t8.i y5*t7.i ); PMC(da,db,ca,cb) } \ | |||
723 | MULPMSIGNC (CH(i,k,u1),WA(u1-1,i),da) \ | |||
724 | MULPMSIGNC (CH(i,k,u2),WA(u2-1,i),db) \ | |||
725 | } | |||
726 | ||||
727 | NOINLINE__attribute__((noinline)) static void pass11 (size_t ido, size_t l1, const cmplx * restrictrestrict cc, | |||
728 | cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa, const int sign) | |||
729 | { | |||
730 | const size_t cdim=11; | |||
731 | const double tw1r = 0.8412535328311811688618, | |||
732 | tw1i = sign * 0.5406408174555975821076, | |||
733 | tw2r = 0.4154150130018864255293, | |||
734 | tw2i = sign * 0.9096319953545183714117, | |||
735 | tw3r = -0.1423148382732851404438, | |||
736 | tw3i = sign * 0.9898214418809327323761, | |||
737 | tw4r = -0.6548607339452850640569, | |||
738 | tw4i = sign * 0.755749574354258283774, | |||
739 | tw5r = -0.9594929736144973898904, | |||
740 | tw5i = sign * 0.2817325568414296977114; | |||
741 | ||||
742 | if (ido==1) | |||
743 | for (size_t k=0; k<l1; ++k) | |||
744 | { | |||
745 | PREP11(0)cmplx t1 = CC(0,0,k), t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 ; PMC (t2,t11,CC(0,1,k),CC(0,10,k)) PMC (t3,t10,CC(0,2,k),CC( 0, 9,k)) PMC (t4,t9 ,CC(0,3,k),CC(0, 8,k)) PMC (t5,t8 ,CC(0,4 ,k),CC(0, 7,k)) PMC (t6,t7 ,CC(0,5,k),CC(0, 6,k)) CH(0,k,0).r =t1.r+t2.r+t3.r+t4.r+t5.r+t6.r; CH(0,k,0).i=t1.i+t2.i+t3.i+t4 .i+t5.i+t6.i; | |||
746 | PARTSTEP11a(1,10,tw1r,tw2r,tw3r,tw4r,tw5r,+tw1i,+tw2i,+tw3i,+tw4i,+tw5i){ cmplx ca,cb; ca.r=t1.r+tw1r*t2.r+tw2r*t3.r+tw3r*t4.r+tw4r*t5 .r+tw5r*t6.r; ca.i=t1.i+tw1r*t2.i+tw2r*t3.i+tw3r*t4.i+tw4r*t5 .i+tw5r*t6.i; cb.i=+tw1i*t11.r +tw2i*t10.r +tw3i*t9.r +tw4i*t8 .r +tw5i*t7.r; cb.r=-(+tw1i*t11.i +tw2i*t10.i +tw3i*t9.i +tw4i *t8.i +tw5i*t7.i ); PMC(CH(0,k,1),CH(0,k,10),ca,cb) } | |||
747 | PARTSTEP11a(2, 9,tw2r,tw4r,tw5r,tw3r,tw1r,+tw2i,+tw4i,-tw5i,-tw3i,-tw1i){ cmplx ca,cb; ca.r=t1.r+tw2r*t2.r+tw4r*t3.r+tw5r*t4.r+tw3r*t5 .r+tw1r*t6.r; ca.i=t1.i+tw2r*t2.i+tw4r*t3.i+tw5r*t4.i+tw3r*t5 .i+tw1r*t6.i; cb.i=+tw2i*t11.r +tw4i*t10.r -tw5i*t9.r -tw3i*t8 .r -tw1i*t7.r; cb.r=-(+tw2i*t11.i +tw4i*t10.i -tw5i*t9.i -tw3i *t8.i -tw1i*t7.i ); PMC(CH(0,k,2),CH(0,k,9),ca,cb) } | |||
748 | PARTSTEP11a(3, 8,tw3r,tw5r,tw2r,tw1r,tw4r,+tw3i,-tw5i,-tw2i,+tw1i,+tw4i){ cmplx ca,cb; ca.r=t1.r+tw3r*t2.r+tw5r*t3.r+tw2r*t4.r+tw1r*t5 .r+tw4r*t6.r; ca.i=t1.i+tw3r*t2.i+tw5r*t3.i+tw2r*t4.i+tw1r*t5 .i+tw4r*t6.i; cb.i=+tw3i*t11.r -tw5i*t10.r -tw2i*t9.r +tw1i*t8 .r +tw4i*t7.r; cb.r=-(+tw3i*t11.i -tw5i*t10.i -tw2i*t9.i +tw1i *t8.i +tw4i*t7.i ); PMC(CH(0,k,3),CH(0,k,8),ca,cb) } | |||
749 | PARTSTEP11a(4, 7,tw4r,tw3r,tw1r,tw5r,tw2r,+tw4i,-tw3i,+tw1i,+tw5i,-tw2i){ cmplx ca,cb; ca.r=t1.r+tw4r*t2.r+tw3r*t3.r+tw1r*t4.r+tw5r*t5 .r+tw2r*t6.r; ca.i=t1.i+tw4r*t2.i+tw3r*t3.i+tw1r*t4.i+tw5r*t5 .i+tw2r*t6.i; cb.i=+tw4i*t11.r -tw3i*t10.r +tw1i*t9.r +tw5i*t8 .r -tw2i*t7.r; cb.r=-(+tw4i*t11.i -tw3i*t10.i +tw1i*t9.i +tw5i *t8.i -tw2i*t7.i ); PMC(CH(0,k,4),CH(0,k,7),ca,cb) } | |||
750 | PARTSTEP11a(5, 6,tw5r,tw1r,tw4r,tw2r,tw3r,+tw5i,-tw1i,+tw4i,-tw2i,+tw3i){ cmplx ca,cb; ca.r=t1.r+tw5r*t2.r+tw1r*t3.r+tw4r*t4.r+tw2r*t5 .r+tw3r*t6.r; ca.i=t1.i+tw5r*t2.i+tw1r*t3.i+tw4r*t4.i+tw2r*t5 .i+tw3r*t6.i; cb.i=+tw5i*t11.r -tw1i*t10.r +tw4i*t9.r -tw2i*t8 .r +tw3i*t7.r; cb.r=-(+tw5i*t11.i -tw1i*t10.i +tw4i*t9.i -tw2i *t8.i +tw3i*t7.i ); PMC(CH(0,k,5),CH(0,k,6),ca,cb) } | |||
751 | } | |||
752 | else | |||
753 | for (size_t k=0; k<l1; ++k) | |||
754 | { | |||
755 | { | |||
756 | PREP11(0)cmplx t1 = CC(0,0,k), t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 ; PMC (t2,t11,CC(0,1,k),CC(0,10,k)) PMC (t3,t10,CC(0,2,k),CC( 0, 9,k)) PMC (t4,t9 ,CC(0,3,k),CC(0, 8,k)) PMC (t5,t8 ,CC(0,4 ,k),CC(0, 7,k)) PMC (t6,t7 ,CC(0,5,k),CC(0, 6,k)) CH(0,k,0).r =t1.r+t2.r+t3.r+t4.r+t5.r+t6.r; CH(0,k,0).i=t1.i+t2.i+t3.i+t4 .i+t5.i+t6.i; | |||
757 | PARTSTEP11a(1,10,tw1r,tw2r,tw3r,tw4r,tw5r,+tw1i,+tw2i,+tw3i,+tw4i,+tw5i){ cmplx ca,cb; ca.r=t1.r+tw1r*t2.r+tw2r*t3.r+tw3r*t4.r+tw4r*t5 .r+tw5r*t6.r; ca.i=t1.i+tw1r*t2.i+tw2r*t3.i+tw3r*t4.i+tw4r*t5 .i+tw5r*t6.i; cb.i=+tw1i*t11.r +tw2i*t10.r +tw3i*t9.r +tw4i*t8 .r +tw5i*t7.r; cb.r=-(+tw1i*t11.i +tw2i*t10.i +tw3i*t9.i +tw4i *t8.i +tw5i*t7.i ); PMC(CH(0,k,1),CH(0,k,10),ca,cb) } | |||
758 | PARTSTEP11a(2, 9,tw2r,tw4r,tw5r,tw3r,tw1r,+tw2i,+tw4i,-tw5i,-tw3i,-tw1i){ cmplx ca,cb; ca.r=t1.r+tw2r*t2.r+tw4r*t3.r+tw5r*t4.r+tw3r*t5 .r+tw1r*t6.r; ca.i=t1.i+tw2r*t2.i+tw4r*t3.i+tw5r*t4.i+tw3r*t5 .i+tw1r*t6.i; cb.i=+tw2i*t11.r +tw4i*t10.r -tw5i*t9.r -tw3i*t8 .r -tw1i*t7.r; cb.r=-(+tw2i*t11.i +tw4i*t10.i -tw5i*t9.i -tw3i *t8.i -tw1i*t7.i ); PMC(CH(0,k,2),CH(0,k,9),ca,cb) } | |||
759 | PARTSTEP11a(3, 8,tw3r,tw5r,tw2r,tw1r,tw4r,+tw3i,-tw5i,-tw2i,+tw1i,+tw4i){ cmplx ca,cb; ca.r=t1.r+tw3r*t2.r+tw5r*t3.r+tw2r*t4.r+tw1r*t5 .r+tw4r*t6.r; ca.i=t1.i+tw3r*t2.i+tw5r*t3.i+tw2r*t4.i+tw1r*t5 .i+tw4r*t6.i; cb.i=+tw3i*t11.r -tw5i*t10.r -tw2i*t9.r +tw1i*t8 .r +tw4i*t7.r; cb.r=-(+tw3i*t11.i -tw5i*t10.i -tw2i*t9.i +tw1i *t8.i +tw4i*t7.i ); PMC(CH(0,k,3),CH(0,k,8),ca,cb) } | |||
760 | PARTSTEP11a(4, 7,tw4r,tw3r,tw1r,tw5r,tw2r,+tw4i,-tw3i,+tw1i,+tw5i,-tw2i){ cmplx ca,cb; ca.r=t1.r+tw4r*t2.r+tw3r*t3.r+tw1r*t4.r+tw5r*t5 .r+tw2r*t6.r; ca.i=t1.i+tw4r*t2.i+tw3r*t3.i+tw1r*t4.i+tw5r*t5 .i+tw2r*t6.i; cb.i=+tw4i*t11.r -tw3i*t10.r +tw1i*t9.r +tw5i*t8 .r -tw2i*t7.r; cb.r=-(+tw4i*t11.i -tw3i*t10.i +tw1i*t9.i +tw5i *t8.i -tw2i*t7.i ); PMC(CH(0,k,4),CH(0,k,7),ca,cb) } | |||
761 | PARTSTEP11a(5, 6,tw5r,tw1r,tw4r,tw2r,tw3r,+tw5i,-tw1i,+tw4i,-tw2i,+tw3i){ cmplx ca,cb; ca.r=t1.r+tw5r*t2.r+tw1r*t3.r+tw4r*t4.r+tw2r*t5 .r+tw3r*t6.r; ca.i=t1.i+tw5r*t2.i+tw1r*t3.i+tw4r*t4.i+tw2r*t5 .i+tw3r*t6.i; cb.i=+tw5i*t11.r -tw1i*t10.r +tw4i*t9.r -tw2i*t8 .r +tw3i*t7.r; cb.r=-(+tw5i*t11.i -tw1i*t10.i +tw4i*t9.i -tw2i *t8.i +tw3i*t7.i ); PMC(CH(0,k,5),CH(0,k,6),ca,cb) } | |||
762 | } | |||
763 | for (size_t i=1; i<ido; ++i) | |||
764 | { | |||
765 | PREP11(i)cmplx t1 = CC(i,0,k), t2, t3, t4, t5, t6, t7, t8, t9, t10, t11 ; PMC (t2,t11,CC(i,1,k),CC(i,10,k)) PMC (t3,t10,CC(i,2,k),CC( i, 9,k)) PMC (t4,t9 ,CC(i,3,k),CC(i, 8,k)) PMC (t5,t8 ,CC(i,4 ,k),CC(i, 7,k)) PMC (t6,t7 ,CC(i,5,k),CC(i, 6,k)) CH(i,k,0).r =t1.r+t2.r+t3.r+t4.r+t5.r+t6.r; CH(i,k,0).i=t1.i+t2.i+t3.i+t4 .i+t5.i+t6.i; | |||
766 | PARTSTEP11(1,10,tw1r,tw2r,tw3r,tw4r,tw5r,+tw1i,+tw2i,+tw3i,+tw4i,+tw5i){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+tw1r*t2.r+tw2r*t3.r+tw3r *t4.r+tw4r*t5.r+tw5r*t6.r; ca.i=t1.i+tw1r*t2.i+tw2r*t3.i+tw3r *t4.i+tw4r*t5.i+tw5r*t6.i; cb.i=+tw1i*t11.r +tw2i*t10.r +tw3i *t9.r +tw4i*t8.r +tw5i*t7.r; cb.r=-(+tw1i*t11.i +tw2i*t10.i + tw3i*t9.i +tw4i*t8.i +tw5i*t7.i ); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,1),WA(1 -1,i),da) MULPMSIGNC (CH(i,k,10),WA(10 -1,i) ,db) } | |||
767 | PARTSTEP11(2, 9,tw2r,tw4r,tw5r,tw3r,tw1r,+tw2i,+tw4i,-tw5i,-tw3i,-tw1i){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+tw2r*t2.r+tw4r*t3.r+tw5r *t4.r+tw3r*t5.r+tw1r*t6.r; ca.i=t1.i+tw2r*t2.i+tw4r*t3.i+tw5r *t4.i+tw3r*t5.i+tw1r*t6.i; cb.i=+tw2i*t11.r +tw4i*t10.r -tw5i *t9.r -tw3i*t8.r -tw1i*t7.r; cb.r=-(+tw2i*t11.i +tw4i*t10.i - tw5i*t9.i -tw3i*t8.i -tw1i*t7.i ); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,2),WA(2 -1,i),da) MULPMSIGNC (CH(i,k,9),WA(9 -1,i),db ) } | |||
768 | PARTSTEP11(3, 8,tw3r,tw5r,tw2r,tw1r,tw4r,+tw3i,-tw5i,-tw2i,+tw1i,+tw4i){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+tw3r*t2.r+tw5r*t3.r+tw2r *t4.r+tw1r*t5.r+tw4r*t6.r; ca.i=t1.i+tw3r*t2.i+tw5r*t3.i+tw2r *t4.i+tw1r*t5.i+tw4r*t6.i; cb.i=+tw3i*t11.r -tw5i*t10.r -tw2i *t9.r +tw1i*t8.r +tw4i*t7.r; cb.r=-(+tw3i*t11.i -tw5i*t10.i - tw2i*t9.i +tw1i*t8.i +tw4i*t7.i ); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,3),WA(3 -1,i),da) MULPMSIGNC (CH(i,k,8),WA(8 -1,i),db ) } | |||
769 | PARTSTEP11(4, 7,tw4r,tw3r,tw1r,tw5r,tw2r,+tw4i,-tw3i,+tw1i,+tw5i,-tw2i){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+tw4r*t2.r+tw3r*t3.r+tw1r *t4.r+tw5r*t5.r+tw2r*t6.r; ca.i=t1.i+tw4r*t2.i+tw3r*t3.i+tw1r *t4.i+tw5r*t5.i+tw2r*t6.i; cb.i=+tw4i*t11.r -tw3i*t10.r +tw1i *t9.r +tw5i*t8.r -tw2i*t7.r; cb.r=-(+tw4i*t11.i -tw3i*t10.i + tw1i*t9.i +tw5i*t8.i -tw2i*t7.i ); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,4),WA(4 -1,i),da) MULPMSIGNC (CH(i,k,7),WA(7 -1,i),db ) } | |||
770 | PARTSTEP11(5, 6,tw5r,tw1r,tw4r,tw2r,tw3r,+tw5i,-tw1i,+tw4i,-tw2i,+tw3i){ cmplx da,db; { cmplx ca,cb; ca.r=t1.r+tw5r*t2.r+tw1r*t3.r+tw4r *t4.r+tw2r*t5.r+tw3r*t6.r; ca.i=t1.i+tw5r*t2.i+tw1r*t3.i+tw4r *t4.i+tw2r*t5.i+tw3r*t6.i; cb.i=+tw5i*t11.r -tw1i*t10.r +tw4i *t9.r -tw2i*t8.r +tw3i*t7.r; cb.r=-(+tw5i*t11.i -tw1i*t10.i + tw4i*t9.i -tw2i*t8.i +tw3i*t7.i ); PMC(da,db,ca,cb) } MULPMSIGNC (CH(i,k,5),WA(5 -1,i),da) MULPMSIGNC (CH(i,k,6),WA(6 -1,i),db ) } | |||
771 | } | |||
772 | } | |||
773 | } | |||
774 | ||||
775 | #define CX(a,b,c) cc[(a)+ido*((b)+l1*(c))] | |||
776 | #define CX2(a,b) cc[(a)+idl1*(b)] | |||
777 | #define CH2(a,b) ch[(a)+idl1*(b)] | |||
778 | ||||
779 | NOINLINE__attribute__((noinline)) static int passg (size_t ido, size_t ip, size_t l1, | |||
780 | cmplx * restrictrestrict cc, cmplx * restrictrestrict ch, const cmplx * restrictrestrict wa, | |||
781 | const cmplx * restrictrestrict csarr, const int sign) | |||
782 | { | |||
783 | const size_t cdim=ip; | |||
784 | size_t ipph = (ip+1)/2; | |||
785 | size_t idl1 = ido*l1; | |||
786 | ||||
787 | cmplx * restrictrestrict wal=RALLOC(cmplx,ip)((cmplx *)malloc((ip)*sizeof(cmplx))); | |||
788 | if (!wal) return -1; | |||
789 | wal[0]=(cmplx){1.,0.}; | |||
790 | for (size_t i=1; i<ip; ++i) | |||
791 | wal[i]=(cmplx){csarr[i].r,sign*csarr[i].i}; | |||
792 | ||||
793 | for (size_t k=0; k<l1; ++k) | |||
794 | for (size_t i=0; i<ido; ++i) | |||
795 | CH(i,k,0) = CC(i,0,k); | |||
796 | for (size_t j=1, jc=ip-1; j<ipph; ++j, --jc) | |||
797 | for (size_t k=0; k<l1; ++k) | |||
798 | for (size_t i=0; i<ido; ++i) | |||
799 | PMC(CH(i,k,j),CH(i,k,jc),CC(i,j,k),CC(i,jc,k)) | |||
800 | for (size_t k=0; k<l1; ++k) | |||
801 | for (size_t i=0; i<ido; ++i) | |||
802 | { | |||
803 | cmplx tmp = CH(i,k,0); | |||
804 | for (size_t j=1; j<ipph; ++j) | |||
805 | ADDC(tmp,tmp,CH(i,k,j)) | |||
806 | CX(i,k,0) = tmp; | |||
807 | } | |||
808 | for (size_t l=1, lc=ip-1; l<ipph; ++l, --lc) | |||
809 | { | |||
810 | // j=0 | |||
811 | for (size_t ik=0; ik<idl1; ++ik) | |||
812 | { | |||
813 | CX2(ik,l).r = CH2(ik,0).r+wal[l].r*CH2(ik,1).r+wal[2*l].r*CH2(ik,2).r; | |||
814 | CX2(ik,l).i = CH2(ik,0).i+wal[l].r*CH2(ik,1).i+wal[2*l].r*CH2(ik,2).i; | |||
815 | CX2(ik,lc).r=-wal[l].i*CH2(ik,ip-1).i-wal[2*l].i*CH2(ik,ip-2).i; | |||
816 | CX2(ik,lc).i=wal[l].i*CH2(ik,ip-1).r+wal[2*l].i*CH2(ik,ip-2).r; | |||
817 | } | |||
818 | ||||
819 | size_t iwal=2*l; | |||
820 | size_t j=3, jc=ip-3; | |||
821 | for (; j<ipph-1; j+=2, jc-=2) | |||
822 | { | |||
823 | iwal+=l; if (iwal>ip) iwal-=ip; | |||
824 | cmplx xwal=wal[iwal]; | |||
825 | iwal+=l; if (iwal>ip) iwal-=ip; | |||
826 | cmplx xwal2=wal[iwal]; | |||
827 | for (size_t ik=0; ik<idl1; ++ik) | |||
828 | { | |||
829 | CX2(ik,l).r += CH2(ik,j).r*xwal.r+CH2(ik,j+1).r*xwal2.r; | |||
830 | CX2(ik,l).i += CH2(ik,j).i*xwal.r+CH2(ik,j+1).i*xwal2.r; | |||
831 | CX2(ik,lc).r -= CH2(ik,jc).i*xwal.i+CH2(ik,jc-1).i*xwal2.i; | |||
832 | CX2(ik,lc).i += CH2(ik,jc).r*xwal.i+CH2(ik,jc-1).r*xwal2.i; | |||
833 | } | |||
834 | } | |||
835 | for (; j<ipph; ++j, --jc) | |||
836 | { | |||
837 | iwal+=l; if (iwal>ip) iwal-=ip; | |||
838 | cmplx xwal=wal[iwal]; | |||
839 | for (size_t ik=0; ik<idl1; ++ik) | |||
840 | { | |||
841 | CX2(ik,l).r += CH2(ik,j).r*xwal.r; | |||
842 | CX2(ik,l).i += CH2(ik,j).i*xwal.r; | |||
843 | CX2(ik,lc).r -= CH2(ik,jc).i*xwal.i; | |||
844 | CX2(ik,lc).i += CH2(ik,jc).r*xwal.i; | |||
845 | } | |||
846 | } | |||
847 | } | |||
848 | DEALLOC(wal)do { free(wal); (wal)=((void*)0); } while(0); | |||
849 | ||||
850 | // shuffling and twiddling | |||
851 | if (ido==1) | |||
852 | for (size_t j=1, jc=ip-1; j<ipph; ++j, --jc) | |||
853 | for (size_t ik=0; ik<idl1; ++ik) | |||
854 | { | |||
855 | cmplx t1=CX2(ik,j), t2=CX2(ik,jc); | |||
856 | PMC(CX2(ik,j),CX2(ik,jc),t1,t2) | |||
857 | } | |||
858 | else | |||
859 | { | |||
860 | for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) | |||
861 | for (size_t k=0; k<l1; ++k) | |||
862 | { | |||
863 | cmplx t1=CX(0,k,j), t2=CX(0,k,jc); | |||
864 | PMC(CX(0,k,j),CX(0,k,jc),t1,t2) | |||
865 | for (size_t i=1; i<ido; ++i) | |||
866 | { | |||
867 | cmplx x1, x2; | |||
868 | PMC(x1,x2,CX(i,k,j),CX(i,k,jc)) | |||
869 | size_t idij=(j-1)*(ido-1)+i-1; | |||
870 | MULPMSIGNC (CX(i,k,j),wa[idij],x1) | |||
871 | idij=(jc-1)*(ido-1)+i-1; | |||
872 | MULPMSIGNC (CX(i,k,jc),wa[idij],x2) | |||
873 | } | |||
874 | } | |||
875 | } | |||
876 | return 0; | |||
877 | } | |||
878 | ||||
879 | #undef CH2 | |||
880 | #undef CX2 | |||
881 | #undef CX | |||
882 | ||||
883 | NOINLINE__attribute__((noinline)) WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) static int pass_all(cfftp_plan plan, cmplx c[], double fct, | |||
884 | const int sign) | |||
885 | { | |||
886 | if (plan->length==1) return 0; | |||
887 | size_t len=plan->length; | |||
888 | size_t l1=1, nf=plan->nfct; | |||
889 | cmplx *ch = RALLOC(cmplx, len)((cmplx *)malloc((len)*sizeof(cmplx))); | |||
890 | if (!ch) return -1; | |||
891 | cmplx *p1=c, *p2=ch; | |||
892 | ||||
893 | for(size_t k1=0; k1<nf; k1++) | |||
894 | { | |||
895 | size_t ip=plan->fct[k1].fct; | |||
896 | size_t l2=ip*l1; | |||
897 | size_t ido = len/l2; | |||
898 | if (ip==4) | |||
899 | sign>0 ? pass4b (ido, l1, p1, p2, plan->fct[k1].tw) | |||
900 | : pass4f (ido, l1, p1, p2, plan->fct[k1].tw); | |||
901 | else if(ip==2) | |||
902 | sign>0 ? pass2b (ido, l1, p1, p2, plan->fct[k1].tw) | |||
903 | : pass2f (ido, l1, p1, p2, plan->fct[k1].tw); | |||
904 | else if(ip==3) | |||
905 | sign>0 ? pass3b (ido, l1, p1, p2, plan->fct[k1].tw) | |||
906 | : pass3f (ido, l1, p1, p2, plan->fct[k1].tw); | |||
907 | else if(ip==5) | |||
908 | sign>0 ? pass5b (ido, l1, p1, p2, plan->fct[k1].tw) | |||
909 | : pass5f (ido, l1, p1, p2, plan->fct[k1].tw); | |||
910 | else if(ip==7) pass7 (ido, l1, p1, p2, plan->fct[k1].tw, sign); | |||
911 | else if(ip==11) pass11(ido, l1, p1, p2, plan->fct[k1].tw, sign); | |||
912 | else | |||
913 | { | |||
914 | if (passg(ido, ip, l1, p1, p2, plan->fct[k1].tw, plan->fct[k1].tws, sign)) | |||
915 | { DEALLOC(ch)do { free(ch); (ch)=((void*)0); } while(0); return -1; } | |||
916 | SWAP(p1,p2,cmplx *)do { cmplx * tmp_=(p1); (p1)=(p2); (p2)=tmp_; } while(0); | |||
917 | } | |||
918 | SWAP(p1,p2,cmplx *)do { cmplx * tmp_=(p1); (p1)=(p2); (p2)=tmp_; } while(0); | |||
919 | l1=l2; | |||
920 | } | |||
921 | if (p1!=c) | |||
922 | { | |||
923 | if (fct!=1.) | |||
924 | for (size_t i=0; i<len; ++i) | |||
925 | { | |||
926 | c[i].r = ch[i].r*fct; | |||
927 | c[i].i = ch[i].i*fct; | |||
928 | } | |||
929 | else | |||
930 | memcpy (c,p1,len*sizeof(cmplx)); | |||
931 | } | |||
932 | else | |||
933 | if (fct!=1.) | |||
934 | for (size_t i=0; i<len; ++i) | |||
935 | { | |||
936 | c[i].r *= fct; | |||
937 | c[i].i *= fct; | |||
938 | } | |||
939 | DEALLOC(ch)do { free(ch); (ch)=((void*)0); } while(0); | |||
940 | return 0; | |||
941 | } | |||
942 | ||||
943 | #undef PMSIGNC | |||
944 | #undef A_EQ_B_MUL_C | |||
945 | #undef A_EQ_CB_MUL_C | |||
946 | #undef MULPMSIGNC | |||
947 | #undef MULPMSIGNCEQ | |||
948 | ||||
949 | #undef WA | |||
950 | #undef CC | |||
951 | #undef CH | |||
952 | #undef ROT90 | |||
953 | #undef SCALEC | |||
954 | #undef ADDC | |||
955 | #undef PMC | |||
956 | ||||
957 | NOINLINE__attribute__((noinline)) WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
958 | static int cfftp_forward(cfftp_plan plan, double c[], double fct) | |||
959 | { return pass_all(plan,(cmplx *)c, fct, -1); } | |||
960 | ||||
961 | NOINLINE__attribute__((noinline)) WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
962 | static int cfftp_backward(cfftp_plan plan, double c[], double fct) | |||
963 | { return pass_all(plan,(cmplx *)c, fct, 1); } | |||
964 | ||||
965 | NOINLINE__attribute__((noinline)) WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
966 | static int cfftp_factorize (cfftp_plan plan) | |||
967 | { | |||
968 | size_t length=plan->length; | |||
969 | size_t nfct=0; | |||
970 | while ((length%4)==0) | |||
971 | { if (nfct>=NFCT25) return -1; plan->fct[nfct++].fct=4; length>>=2; } | |||
972 | if ((length%2)==0) | |||
973 | { | |||
974 | length>>=1; | |||
975 | // factor 2 should be at the front of the factor list | |||
976 | if (nfct>=NFCT25) return -1; | |||
977 | plan->fct[nfct++].fct=2; | |||
978 | SWAP(plan->fct[0].fct, plan->fct[nfct-1].fct,size_t)do { size_t tmp_=(plan->fct[0].fct); (plan->fct[0].fct) =(plan->fct[nfct-1].fct); (plan->fct[nfct-1].fct)=tmp_; } while(0); | |||
979 | } | |||
980 | size_t maxl=(size_t)(sqrt((double)length))+1; | |||
981 | for (size_t divisor=3; (length>1)&&(divisor<maxl); divisor+=2) | |||
982 | if ((length%divisor)==0) | |||
983 | { | |||
984 | while ((length%divisor)==0) | |||
985 | { | |||
986 | if (nfct>=NFCT25) return -1; | |||
987 | plan->fct[nfct++].fct=divisor; | |||
988 | length/=divisor; | |||
989 | } | |||
990 | maxl=(size_t)(sqrt((double)length))+1; | |||
991 | } | |||
992 | if (length>1) plan->fct[nfct++].fct=length; | |||
993 | plan->nfct=nfct; | |||
994 | return 0; | |||
995 | } | |||
996 | ||||
997 | NOINLINE__attribute__((noinline)) static size_t cfftp_twsize (cfftp_plan plan) | |||
998 | { | |||
999 | size_t twsize=0, l1=1; | |||
1000 | for (size_t k=0; k<plan->nfct; ++k) | |||
1001 | { | |||
1002 | size_t ip=plan->fct[k].fct, ido= plan->length/(l1*ip); | |||
1003 | twsize+=(ip-1)*(ido-1); | |||
1004 | if (ip>11) | |||
1005 | twsize+=ip; | |||
1006 | l1*=ip; | |||
1007 | } | |||
1008 | return twsize; | |||
1009 | } | |||
1010 | ||||
1011 | NOINLINE__attribute__((noinline)) WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) static int cfftp_comp_twiddle (cfftp_plan plan) | |||
1012 | { | |||
1013 | size_t length=plan->length; | |||
1014 | double *twid = RALLOC(double, 2*length)((double *)malloc((2*length)*sizeof(double))); | |||
1015 | if (!twid) return -1; | |||
1016 | sincos_2pibyn(length, twid); | |||
1017 | size_t l1=1; | |||
1018 | size_t memofs=0; | |||
1019 | for (size_t k=0; k<plan->nfct; ++k) | |||
1020 | { | |||
1021 | size_t ip=plan->fct[k].fct, ido= length/(l1*ip); | |||
1022 | plan->fct[k].tw=plan->mem+memofs; | |||
1023 | memofs+=(ip-1)*(ido-1); | |||
1024 | for (size_t j=1; j<ip; ++j) | |||
1025 | for (size_t i=1; i<ido; ++i) | |||
1026 | { | |||
1027 | plan->fct[k].tw[(j-1)*(ido-1)+i-1].r = twid[2*j*l1*i]; | |||
1028 | plan->fct[k].tw[(j-1)*(ido-1)+i-1].i = twid[2*j*l1*i+1]; | |||
1029 | } | |||
1030 | if (ip>11) | |||
1031 | { | |||
1032 | plan->fct[k].tws=plan->mem+memofs; | |||
1033 | memofs+=ip; | |||
1034 | for (size_t j=0; j<ip; ++j) | |||
1035 | { | |||
1036 | plan->fct[k].tws[j].r = twid[2*j*l1*ido]; | |||
1037 | plan->fct[k].tws[j].i = twid[2*j*l1*ido+1]; | |||
1038 | } | |||
1039 | } | |||
1040 | l1*=ip; | |||
1041 | } | |||
1042 | DEALLOC(twid)do { free(twid); (twid)=((void*)0); } while(0); | |||
1043 | return 0; | |||
1044 | } | |||
1045 | ||||
1046 | static cfftp_plan make_cfftp_plan (size_t length) | |||
1047 | { | |||
1048 | if (length==0) return NULL((void*)0); | |||
1049 | cfftp_plan plan = RALLOC(cfftp_plan_i,1)((cfftp_plan_i *)malloc((1)*sizeof(cfftp_plan_i))); | |||
1050 | if (!plan) return NULL((void*)0); | |||
1051 | plan->length=length; | |||
1052 | plan->nfct=0; | |||
1053 | for (size_t i=0; i<NFCT25; ++i) | |||
1054 | plan->fct[i]=(cfftp_fctdata){0,0,0}; | |||
1055 | plan->mem=0; | |||
1056 | if (length==1) return plan; | |||
1057 | if (cfftp_factorize(plan)!=0) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1058 | size_t tws=cfftp_twsize(plan); | |||
1059 | plan->mem=RALLOC(cmplx,tws)((cmplx *)malloc((tws)*sizeof(cmplx))); | |||
1060 | if (!plan->mem) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1061 | if (cfftp_comp_twiddle(plan)!=0) | |||
1062 | { DEALLOC(plan->mem)do { free(plan->mem); (plan->mem)=((void*)0); } while(0 ); DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1063 | return plan; | |||
1064 | } | |||
1065 | ||||
1066 | static void destroy_cfftp_plan (cfftp_plan plan) | |||
1067 | { | |||
1068 | DEALLOC(plan->mem)do { free(plan->mem); (plan->mem)=((void*)0); } while(0 ); | |||
1069 | DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); | |||
1070 | } | |||
1071 | ||||
1072 | typedef struct rfftp_fctdata | |||
1073 | { | |||
1074 | size_t fct; | |||
1075 | double *tw, *tws; | |||
1076 | } rfftp_fctdata; | |||
1077 | ||||
1078 | typedef struct rfftp_plan_i | |||
1079 | { | |||
1080 | size_t length, nfct; | |||
1081 | double *mem; | |||
1082 | rfftp_fctdata fct[NFCT25]; | |||
1083 | } rfftp_plan_i; | |||
1084 | typedef struct rfftp_plan_i * rfftp_plan; | |||
1085 | ||||
1086 | #define WA(x,i) wa[(i)+(x)*(ido-1)] | |||
1087 | #define PM(a,b,c,d) { a=c+d; b=c-d; } | |||
1088 | /* (a+ib) = conj(c+id) * (e+if) */ | |||
1089 | #define MULPM(a,b,c,d,e,f) { a=c*e+d*f; b=c*f-d*e; } | |||
1090 | ||||
1091 | #define CC(a,b,c) cc[(a)+ido*((b)+l1*(c))] | |||
1092 | #define CH(a,b,c) ch[(a)+ido*((b)+cdim*(c))] | |||
1093 | ||||
1094 | NOINLINE__attribute__((noinline)) static void radf2 (size_t ido, size_t l1, const double * restrictrestrict cc, | |||
1095 | double * restrictrestrict ch, const double * restrictrestrict wa) | |||
1096 | { | |||
1097 | const size_t cdim=2; | |||
1098 | ||||
1099 | for (size_t k=0; k<l1; k++) | |||
1100 | PM (CH(0,0,k),CH(ido-1,1,k),CC(0,k,0),CC(0,k,1)) | |||
1101 | if ((ido&1)==0) | |||
1102 | for (size_t k=0; k<l1; k++) | |||
1103 | { | |||
1104 | CH( 0,1,k) = -CC(ido-1,k,1); | |||
1105 | CH(ido-1,0,k) = CC(ido-1,k,0); | |||
1106 | } | |||
1107 | if (ido<=2) return; | |||
1108 | for (size_t k=0; k<l1; k++) | |||
1109 | for (size_t i=2; i<ido; i+=2) | |||
1110 | { | |||
1111 | size_t ic=ido-i; | |||
1112 | double tr2, ti2; | |||
1113 | MULPM (tr2,ti2,WA(0,i-2),WA(0,i-1),CC(i-1,k,1),CC(i,k,1)) | |||
1114 | PM (CH(i-1,0,k),CH(ic-1,1,k),CC(i-1,k,0),tr2) | |||
1115 | PM (CH(i ,0,k),CH(ic ,1,k),ti2,CC(i ,k,0)) | |||
1116 | } | |||
1117 | } | |||
1118 | ||||
1119 | NOINLINE__attribute__((noinline)) static void radf3(size_t ido, size_t l1, const double * restrictrestrict cc, | |||
1120 | double * restrictrestrict ch, const double * restrictrestrict wa) | |||
1121 | { | |||
1122 | const size_t cdim=3; | |||
1123 | static const double taur=-0.5, taui=0.86602540378443864676; | |||
1124 | ||||
1125 | for (size_t k=0; k<l1; k++) | |||
1126 | { | |||
1127 | double cr2=CC(0,k,1)+CC(0,k,2); | |||
1128 | CH(0,0,k) = CC(0,k,0)+cr2; | |||
1129 | CH(0,2,k) = taui*(CC(0,k,2)-CC(0,k,1)); | |||
1130 | CH(ido-1,1,k) = CC(0,k,0)+taur*cr2; | |||
1131 | } | |||
1132 | if (ido==1) return; | |||
1133 | for (size_t k=0; k<l1; k++) | |||
1134 | for (size_t i=2; i<ido; i+=2) | |||
1135 | { | |||
1136 | size_t ic=ido-i; | |||
1137 | double di2, di3, dr2, dr3; | |||
1138 | MULPM (dr2,di2,WA(0,i-2),WA(0,i-1),CC(i-1,k,1),CC(i,k,1)) // d2=conj(WA0)*CC1 | |||
1139 | MULPM (dr3,di3,WA(1,i-2),WA(1,i-1),CC(i-1,k,2),CC(i,k,2)) // d3=conj(WA1)*CC2 | |||
1140 | double cr2=dr2+dr3; // c add | |||
1141 | double ci2=di2+di3; | |||
1142 | CH(i-1,0,k) = CC(i-1,k,0)+cr2; // c add | |||
1143 | CH(i ,0,k) = CC(i ,k,0)+ci2; | |||
1144 | double tr2 = CC(i-1,k,0)+taur*cr2; // c add | |||
1145 | double ti2 = CC(i ,k,0)+taur*ci2; | |||
1146 | double tr3 = taui*(di2-di3); // t3 = taui*i*(d3-d2)? | |||
1147 | double ti3 = taui*(dr3-dr2); | |||
1148 | PM(CH(i-1,2,k),CH(ic-1,1,k),tr2,tr3) // PM(i) = t2+t3 | |||
1149 | PM(CH(i ,2,k),CH(ic ,1,k),ti3,ti2) // PM(ic) = conj(t2-t3) | |||
1150 | } | |||
1151 | } | |||
1152 | ||||
1153 | NOINLINE__attribute__((noinline)) static void radf4(size_t ido, size_t l1, const double * restrictrestrict cc, | |||
1154 | double * restrictrestrict ch, const double * restrictrestrict wa) | |||
1155 | { | |||
1156 | const size_t cdim=4; | |||
1157 | static const double hsqt2=0.70710678118654752440; | |||
1158 | ||||
1159 | for (size_t k=0; k<l1; k++) | |||
1160 | { | |||
1161 | double tr1,tr2; | |||
1162 | PM (tr1,CH(0,2,k),CC(0,k,3),CC(0,k,1)) | |||
1163 | PM (tr2,CH(ido-1,1,k),CC(0,k,0),CC(0,k,2)) | |||
1164 | PM (CH(0,0,k),CH(ido-1,3,k),tr2,tr1) | |||
1165 | } | |||
1166 | if ((ido&1)==0) | |||
1167 | for (size_t k=0; k<l1; k++) | |||
1168 | { | |||
1169 | double ti1=-hsqt2*(CC(ido-1,k,1)+CC(ido-1,k,3)); | |||
1170 | double tr1= hsqt2*(CC(ido-1,k,1)-CC(ido-1,k,3)); | |||
1171 | PM (CH(ido-1,0,k),CH(ido-1,2,k),CC(ido-1,k,0),tr1) | |||
1172 | PM (CH( 0,3,k),CH( 0,1,k),ti1,CC(ido-1,k,2)) | |||
1173 | } | |||
1174 | if (ido<=2) return; | |||
1175 | for (size_t k=0; k<l1; k++) | |||
1176 | for (size_t i=2; i<ido; i+=2) | |||
1177 | { | |||
1178 | size_t ic=ido-i; | |||
1179 | double ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4; | |||
1180 | MULPM(cr2,ci2,WA(0,i-2),WA(0,i-1),CC(i-1,k,1),CC(i,k,1)) | |||
1181 | MULPM(cr3,ci3,WA(1,i-2),WA(1,i-1),CC(i-1,k,2),CC(i,k,2)) | |||
1182 | MULPM(cr4,ci4,WA(2,i-2),WA(2,i-1),CC(i-1,k,3),CC(i,k,3)) | |||
1183 | PM(tr1,tr4,cr4,cr2) | |||
1184 | PM(ti1,ti4,ci2,ci4) | |||
1185 | PM(tr2,tr3,CC(i-1,k,0),cr3) | |||
1186 | PM(ti2,ti3,CC(i ,k,0),ci3) | |||
1187 | PM(CH(i-1,0,k),CH(ic-1,3,k),tr2,tr1) | |||
1188 | PM(CH(i ,0,k),CH(ic ,3,k),ti1,ti2) | |||
1189 | PM(CH(i-1,2,k),CH(ic-1,1,k),tr3,ti4) | |||
1190 | PM(CH(i ,2,k),CH(ic ,1,k),tr4,ti3) | |||
1191 | } | |||
1192 | } | |||
1193 | ||||
1194 | NOINLINE__attribute__((noinline)) static void radf5(size_t ido, size_t l1, const double * restrictrestrict cc, | |||
1195 | double * restrictrestrict ch, const double * restrictrestrict wa) | |||
1196 | { | |||
1197 | const size_t cdim=5; | |||
1198 | static const double tr11= 0.3090169943749474241, ti11=0.95105651629515357212, | |||
1199 | tr12=-0.8090169943749474241, ti12=0.58778525229247312917; | |||
1200 | ||||
1201 | for (size_t k=0; k<l1; k++) | |||
1202 | { | |||
1203 | double cr2, cr3, ci4, ci5; | |||
1204 | PM (cr2,ci5,CC(0,k,4),CC(0,k,1)) | |||
1205 | PM (cr3,ci4,CC(0,k,3),CC(0,k,2)) | |||
1206 | CH(0,0,k)=CC(0,k,0)+cr2+cr3; | |||
1207 | CH(ido-1,1,k)=CC(0,k,0)+tr11*cr2+tr12*cr3; | |||
1208 | CH(0,2,k)=ti11*ci5+ti12*ci4; | |||
1209 | CH(ido-1,3,k)=CC(0,k,0)+tr12*cr2+tr11*cr3; | |||
1210 | CH(0,4,k)=ti12*ci5-ti11*ci4; | |||
1211 | } | |||
1212 | if (ido==1) return; | |||
1213 | for (size_t k=0; k<l1;++k) | |||
1214 | for (size_t i=2; i<ido; i+=2) | |||
1215 | { | |||
1216 | double ci2, di2, ci4, ci5, di3, di4, di5, ci3, cr2, cr3, dr2, dr3, | |||
1217 | dr4, dr5, cr5, cr4, ti2, ti3, ti5, ti4, tr2, tr3, tr4, tr5; | |||
1218 | size_t ic=ido-i; | |||
1219 | MULPM (dr2,di2,WA(0,i-2),WA(0,i-1),CC(i-1,k,1),CC(i,k,1)) | |||
1220 | MULPM (dr3,di3,WA(1,i-2),WA(1,i-1),CC(i-1,k,2),CC(i,k,2)) | |||
1221 | MULPM (dr4,di4,WA(2,i-2),WA(2,i-1),CC(i-1,k,3),CC(i,k,3)) | |||
1222 | MULPM (dr5,di5,WA(3,i-2),WA(3,i-1),CC(i-1,k,4),CC(i,k,4)) | |||
1223 | PM(cr2,ci5,dr5,dr2) | |||
1224 | PM(ci2,cr5,di2,di5) | |||
1225 | PM(cr3,ci4,dr4,dr3) | |||
1226 | PM(ci3,cr4,di3,di4) | |||
1227 | CH(i-1,0,k)=CC(i-1,k,0)+cr2+cr3; | |||
1228 | CH(i ,0,k)=CC(i ,k,0)+ci2+ci3; | |||
1229 | tr2=CC(i-1,k,0)+tr11*cr2+tr12*cr3; | |||
1230 | ti2=CC(i ,k,0)+tr11*ci2+tr12*ci3; | |||
1231 | tr3=CC(i-1,k,0)+tr12*cr2+tr11*cr3; | |||
1232 | ti3=CC(i ,k,0)+tr12*ci2+tr11*ci3; | |||
1233 | MULPM(tr5,tr4,cr5,cr4,ti11,ti12) | |||
1234 | MULPM(ti5,ti4,ci5,ci4,ti11,ti12) | |||
1235 | PM(CH(i-1,2,k),CH(ic-1,1,k),tr2,tr5) | |||
1236 | PM(CH(i ,2,k),CH(ic ,1,k),ti5,ti2) | |||
1237 | PM(CH(i-1,4,k),CH(ic-1,3,k),tr3,tr4) | |||
1238 | PM(CH(i ,4,k),CH(ic ,3,k),ti4,ti3) | |||
1239 | } | |||
1240 | } | |||
1241 | ||||
1242 | #undef CC | |||
1243 | #undef CH | |||
1244 | #define C1(a,b,c) cc[(a)+ido*((b)+l1*(c))] | |||
1245 | #define C2(a,b) cc[(a)+idl1*(b)] | |||
1246 | #define CH2(a,b) ch[(a)+idl1*(b)] | |||
1247 | #define CC(a,b,c) cc[(a)+ido*((b)+cdim*(c))] | |||
1248 | #define CH(a,b,c) ch[(a)+ido*((b)+l1*(c))] | |||
1249 | NOINLINE__attribute__((noinline)) static void radfg(size_t ido, size_t ip, size_t l1, | |||
1250 | double * restrictrestrict cc, double * restrictrestrict ch, const double * restrictrestrict wa, | |||
1251 | const double * restrictrestrict csarr) | |||
1252 | { | |||
1253 | const size_t cdim=ip; | |||
1254 | size_t ipph=(ip+1)/2; | |||
1255 | size_t idl1 = ido*l1; | |||
1256 | ||||
1257 | if (ido>1) | |||
1258 | { | |||
1259 | for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 114 | |||
1260 | { | |||
1261 | size_t is=(j-1)*(ido-1), | |||
1262 | is2=(jc-1)*(ido-1); | |||
1263 | for (size_t k=0; k<l1; ++k) // 113 | |||
1264 | { | |||
1265 | size_t idij=is; | |||
1266 | size_t idij2=is2; | |||
1267 | for (size_t i=1; i<=ido-2; i+=2) // 112 | |||
1268 | { | |||
1269 | double t1=C1(i,k,j ), t2=C1(i+1,k,j ), | |||
1270 | t3=C1(i,k,jc), t4=C1(i+1,k,jc); | |||
1271 | double x1=wa[idij]*t1 + wa[idij+1]*t2, | |||
1272 | x2=wa[idij]*t2 - wa[idij+1]*t1, | |||
1273 | x3=wa[idij2]*t3 + wa[idij2+1]*t4, | |||
1274 | x4=wa[idij2]*t4 - wa[idij2+1]*t3; | |||
1275 | C1(i ,k,j ) = x1+x3; | |||
1276 | C1(i ,k,jc) = x2-x4; | |||
1277 | C1(i+1,k,j ) = x2+x4; | |||
1278 | C1(i+1,k,jc) = x3-x1; | |||
1279 | idij+=2; | |||
1280 | idij2+=2; | |||
1281 | } | |||
1282 | } | |||
1283 | } | |||
1284 | } | |||
1285 | ||||
1286 | for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 123 | |||
1287 | for (size_t k=0; k<l1; ++k) // 122 | |||
1288 | { | |||
1289 | double t1=C1(0,k,j), t2=C1(0,k,jc); | |||
1290 | C1(0,k,j ) = t1+t2; | |||
1291 | C1(0,k,jc) = t2-t1; | |||
1292 | } | |||
1293 | ||||
1294 | //everything in C | |||
1295 | //memset(ch,0,ip*l1*ido*sizeof(double)); | |||
1296 | ||||
1297 | for (size_t l=1,lc=ip-1; l<ipph; ++l,--lc) // 127 | |||
1298 | { | |||
1299 | for (size_t ik=0; ik<idl1; ++ik) // 124 | |||
1300 | { | |||
1301 | CH2(ik,l ) = C2(ik,0)+csarr[2*l]*C2(ik,1)+csarr[4*l]*C2(ik,2); | |||
1302 | CH2(ik,lc) = csarr[2*l+1]*C2(ik,ip-1)+csarr[4*l+1]*C2(ik,ip-2); | |||
1303 | } | |||
1304 | size_t iang = 2*l; | |||
1305 | size_t j=3, jc=ip-3; | |||
1306 | for (; j<ipph-3; j+=4,jc-=4) // 126 | |||
1307 | { | |||
1308 | iang+=l; if (iang>=ip) iang-=ip; | |||
1309 | double ar1=csarr[2*iang], ai1=csarr[2*iang+1]; | |||
1310 | iang+=l; if (iang>=ip) iang-=ip; | |||
1311 | double ar2=csarr[2*iang], ai2=csarr[2*iang+1]; | |||
1312 | iang+=l; if (iang>=ip) iang-=ip; | |||
1313 | double ar3=csarr[2*iang], ai3=csarr[2*iang+1]; | |||
1314 | iang+=l; if (iang>=ip) iang-=ip; | |||
1315 | double ar4=csarr[2*iang], ai4=csarr[2*iang+1]; | |||
1316 | for (size_t ik=0; ik<idl1; ++ik) // 125 | |||
1317 | { | |||
1318 | CH2(ik,l ) += ar1*C2(ik,j )+ar2*C2(ik,j +1) | |||
1319 | +ar3*C2(ik,j +2)+ar4*C2(ik,j +3); | |||
1320 | CH2(ik,lc) += ai1*C2(ik,jc)+ai2*C2(ik,jc-1) | |||
1321 | +ai3*C2(ik,jc-2)+ai4*C2(ik,jc-3); | |||
1322 | } | |||
1323 | } | |||
1324 | for (; j<ipph-1; j+=2,jc-=2) // 126 | |||
1325 | { | |||
1326 | iang+=l; if (iang>=ip) iang-=ip; | |||
1327 | double ar1=csarr[2*iang], ai1=csarr[2*iang+1]; | |||
1328 | iang+=l; if (iang>=ip) iang-=ip; | |||
1329 | double ar2=csarr[2*iang], ai2=csarr[2*iang+1]; | |||
1330 | for (size_t ik=0; ik<idl1; ++ik) // 125 | |||
1331 | { | |||
1332 | CH2(ik,l ) += ar1*C2(ik,j )+ar2*C2(ik,j +1); | |||
1333 | CH2(ik,lc) += ai1*C2(ik,jc)+ai2*C2(ik,jc-1); | |||
1334 | } | |||
1335 | } | |||
1336 | for (; j<ipph; ++j,--jc) // 126 | |||
1337 | { | |||
1338 | iang+=l; if (iang>=ip) iang-=ip; | |||
1339 | double ar=csarr[2*iang], ai=csarr[2*iang+1]; | |||
1340 | for (size_t ik=0; ik<idl1; ++ik) // 125 | |||
1341 | { | |||
1342 | CH2(ik,l ) += ar*C2(ik,j ); | |||
1343 | CH2(ik,lc) += ai*C2(ik,jc); | |||
1344 | } | |||
1345 | } | |||
1346 | } | |||
1347 | for (size_t ik=0; ik<idl1; ++ik) // 101 | |||
1348 | CH2(ik,0) = C2(ik,0); | |||
1349 | for (size_t j=1; j<ipph; ++j) // 129 | |||
1350 | for (size_t ik=0; ik<idl1; ++ik) // 128 | |||
1351 | CH2(ik,0) += C2(ik,j); | |||
1352 | ||||
1353 | // everything in CH at this point! | |||
1354 | //memset(cc,0,ip*l1*ido*sizeof(double)); | |||
1355 | ||||
1356 | for (size_t k=0; k<l1; ++k) // 131 | |||
1357 | for (size_t i=0; i<ido; ++i) // 130 | |||
1358 | CC(i,0,k) = CH(i,k,0); | |||
1359 | ||||
1360 | for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 137 | |||
1361 | { | |||
1362 | size_t j2=2*j-1; | |||
1363 | for (size_t k=0; k<l1; ++k) // 136 | |||
1364 | { | |||
1365 | CC(ido-1,j2,k) = CH(0,k,j); | |||
1366 | CC(0,j2+1,k) = CH(0,k,jc); | |||
1367 | } | |||
1368 | } | |||
1369 | ||||
1370 | if (ido==1) return; | |||
1371 | ||||
1372 | for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 140 | |||
1373 | { | |||
1374 | size_t j2=2*j-1; | |||
1375 | for(size_t k=0; k<l1; ++k) // 139 | |||
1376 | for(size_t i=1, ic=ido-i-2; i<=ido-2; i+=2, ic-=2) // 138 | |||
1377 | { | |||
1378 | CC(i ,j2+1,k) = CH(i ,k,j )+CH(i ,k,jc); | |||
1379 | CC(ic ,j2 ,k) = CH(i ,k,j )-CH(i ,k,jc); | |||
1380 | CC(i+1 ,j2+1,k) = CH(i+1,k,j )+CH(i+1,k,jc); | |||
1381 | CC(ic+1,j2 ,k) = CH(i+1,k,jc)-CH(i+1,k,j ); | |||
1382 | } | |||
1383 | } | |||
1384 | } | |||
1385 | #undef C1 | |||
1386 | #undef C2 | |||
1387 | #undef CH2 | |||
1388 | ||||
1389 | #undef CH | |||
1390 | #undef CC | |||
1391 | #define CH(a,b,c) ch[(a)+ido*((b)+l1*(c))] | |||
1392 | #define CC(a,b,c) cc[(a)+ido*((b)+cdim*(c))] | |||
1393 | ||||
1394 | NOINLINE__attribute__((noinline)) static void radb2(size_t ido, size_t l1, const double * restrictrestrict cc, | |||
1395 | double * restrictrestrict ch, const double * restrictrestrict wa) | |||
1396 | { | |||
1397 | const size_t cdim=2; | |||
1398 | ||||
1399 | for (size_t k=0; k<l1; k++) | |||
1400 | PM (CH(0,k,0),CH(0,k,1),CC(0,0,k),CC(ido-1,1,k)) | |||
1401 | if ((ido&1)==0) | |||
1402 | for (size_t k=0; k<l1; k++) | |||
1403 | { | |||
1404 | CH(ido-1,k,0) = 2.*CC(ido-1,0,k); | |||
1405 | CH(ido-1,k,1) =-2.*CC(0 ,1,k); | |||
1406 | } | |||
1407 | if (ido<=2) return; | |||
1408 | for (size_t k=0; k<l1;++k) | |||
1409 | for (size_t i=2; i<ido; i+=2) | |||
1410 | { | |||
1411 | size_t ic=ido-i; | |||
1412 | double ti2, tr2; | |||
1413 | PM (CH(i-1,k,0),tr2,CC(i-1,0,k),CC(ic-1,1,k)) | |||
1414 | PM (ti2,CH(i ,k,0),CC(i ,0,k),CC(ic ,1,k)) | |||
1415 | MULPM (CH(i,k,1),CH(i-1,k,1),WA(0,i-2),WA(0,i-1),ti2,tr2) | |||
1416 | } | |||
1417 | } | |||
1418 | ||||
1419 | NOINLINE__attribute__((noinline)) static void radb3(size_t ido, size_t l1, const double * restrictrestrict cc, | |||
1420 | double * restrictrestrict ch, const double * restrictrestrict wa) | |||
1421 | { | |||
1422 | const size_t cdim=3; | |||
1423 | static const double taur=-0.5, taui=0.86602540378443864676; | |||
1424 | ||||
1425 | for (size_t k=0; k<l1; k++) | |||
1426 | { | |||
1427 | double tr2=2.*CC(ido-1,1,k); | |||
1428 | double cr2=CC(0,0,k)+taur*tr2; | |||
1429 | CH(0,k,0)=CC(0,0,k)+tr2; | |||
1430 | double ci3=2.*taui*CC(0,2,k); | |||
1431 | PM (CH(0,k,2),CH(0,k,1),cr2,ci3); | |||
1432 | } | |||
1433 | if (ido==1) return; | |||
1434 | for (size_t k=0; k<l1; k++) | |||
1435 | for (size_t i=2; i<ido; i+=2) | |||
1436 | { | |||
1437 | size_t ic=ido-i; | |||
1438 | double tr2=CC(i-1,2,k)+CC(ic-1,1,k); // t2=CC(I) + conj(CC(ic)) | |||
1439 | double ti2=CC(i ,2,k)-CC(ic ,1,k); | |||
1440 | double cr2=CC(i-1,0,k)+taur*tr2; // c2=CC +taur*t2 | |||
1441 | double ci2=CC(i ,0,k)+taur*ti2; | |||
1442 | CH(i-1,k,0)=CC(i-1,0,k)+tr2; // CH=CC+t2 | |||
1443 | CH(i ,k,0)=CC(i ,0,k)+ti2; | |||
1444 | double cr3=taui*(CC(i-1,2,k)-CC(ic-1,1,k));// c3=taui*(CC(i)-conj(CC(ic))) | |||
1445 | double ci3=taui*(CC(i ,2,k)+CC(ic ,1,k)); | |||
1446 | double di2, di3, dr2, dr3; | |||
1447 | PM(dr3,dr2,cr2,ci3) // d2= (cr2-ci3, ci2+cr3) = c2+i*c3 | |||
1448 | PM(di2,di3,ci2,cr3) // d3= (cr2+ci3, ci2-cr3) = c2-i*c3 | |||
1449 | MULPM(CH(i,k,1),CH(i-1,k,1),WA(0,i-2),WA(0,i-1),di2,dr2) // ch = WA*d2 | |||
1450 | MULPM(CH(i,k,2),CH(i-1,k,2),WA(1,i-2),WA(1,i-1),di3,dr3) | |||
1451 | } | |||
1452 | } | |||
1453 | ||||
1454 | NOINLINE__attribute__((noinline)) static void radb4(size_t ido, size_t l1, const double * restrictrestrict cc, | |||
1455 | double * restrictrestrict ch, const double * restrictrestrict wa) | |||
1456 | { | |||
1457 | const size_t cdim=4; | |||
1458 | static const double sqrt2=1.41421356237309504880; | |||
1459 | ||||
1460 | for (size_t k=0; k<l1; k++) | |||
1461 | { | |||
1462 | double tr1, tr2; | |||
1463 | PM (tr2,tr1,CC(0,0,k),CC(ido-1,3,k)) | |||
1464 | double tr3=2.*CC(ido-1,1,k); | |||
1465 | double tr4=2.*CC(0,2,k); | |||
1466 | PM (CH(0,k,0),CH(0,k,2),tr2,tr3) | |||
1467 | PM (CH(0,k,3),CH(0,k,1),tr1,tr4) | |||
1468 | } | |||
1469 | if ((ido&1)==0) | |||
1470 | for (size_t k=0; k<l1; k++) | |||
1471 | { | |||
1472 | double tr1,tr2,ti1,ti2; | |||
1473 | PM (ti1,ti2,CC(0 ,3,k),CC(0 ,1,k)) | |||
1474 | PM (tr2,tr1,CC(ido-1,0,k),CC(ido-1,2,k)) | |||
1475 | CH(ido-1,k,0)=tr2+tr2; | |||
1476 | CH(ido-1,k,1)=sqrt2*(tr1-ti1); | |||
1477 | CH(ido-1,k,2)=ti2+ti2; | |||
1478 | CH(ido-1,k,3)=-sqrt2*(tr1+ti1); | |||
1479 | } | |||
1480 | if (ido<=2) return; | |||
1481 | for (size_t k=0; k<l1;++k) | |||
1482 | for (size_t i=2; i<ido; i+=2) | |||
1483 | { | |||
1484 | double ci2, ci3, ci4, cr2, cr3, cr4, ti1, ti2, ti3, ti4, tr1, tr2, tr3, tr4; | |||
1485 | size_t ic=ido-i; | |||
1486 | PM (tr2,tr1,CC(i-1,0,k),CC(ic-1,3,k)) | |||
1487 | PM (ti1,ti2,CC(i ,0,k),CC(ic ,3,k)) | |||
1488 | PM (tr4,ti3,CC(i ,2,k),CC(ic ,1,k)) | |||
1489 | PM (tr3,ti4,CC(i-1,2,k),CC(ic-1,1,k)) | |||
1490 | PM (CH(i-1,k,0),cr3,tr2,tr3) | |||
1491 | PM (CH(i ,k,0),ci3,ti2,ti3) | |||
1492 | PM (cr4,cr2,tr1,tr4) | |||
1493 | PM (ci2,ci4,ti1,ti4) | |||
1494 | MULPM (CH(i,k,1),CH(i-1,k,1),WA(0,i-2),WA(0,i-1),ci2,cr2) | |||
1495 | MULPM (CH(i,k,2),CH(i-1,k,2),WA(1,i-2),WA(1,i-1),ci3,cr3) | |||
1496 | MULPM (CH(i,k,3),CH(i-1,k,3),WA(2,i-2),WA(2,i-1),ci4,cr4) | |||
1497 | } | |||
1498 | } | |||
1499 | ||||
1500 | NOINLINE__attribute__((noinline)) static void radb5(size_t ido, size_t l1, const double * restrictrestrict cc, | |||
1501 | double * restrictrestrict ch, const double * restrictrestrict wa) | |||
1502 | { | |||
1503 | const size_t cdim=5; | |||
1504 | static const double tr11= 0.3090169943749474241, ti11=0.95105651629515357212, | |||
1505 | tr12=-0.8090169943749474241, ti12=0.58778525229247312917; | |||
1506 | ||||
1507 | for (size_t k=0; k<l1; k++) | |||
1508 | { | |||
1509 | double ti5=CC(0,2,k)+CC(0,2,k); | |||
1510 | double ti4=CC(0,4,k)+CC(0,4,k); | |||
1511 | double tr2=CC(ido-1,1,k)+CC(ido-1,1,k); | |||
1512 | double tr3=CC(ido-1,3,k)+CC(ido-1,3,k); | |||
1513 | CH(0,k,0)=CC(0,0,k)+tr2+tr3; | |||
1514 | double cr2=CC(0,0,k)+tr11*tr2+tr12*tr3; | |||
1515 | double cr3=CC(0,0,k)+tr12*tr2+tr11*tr3; | |||
1516 | double ci4, ci5; | |||
1517 | MULPM(ci5,ci4,ti5,ti4,ti11,ti12) | |||
1518 | PM(CH(0,k,4),CH(0,k,1),cr2,ci5) | |||
1519 | PM(CH(0,k,3),CH(0,k,2),cr3,ci4) | |||
1520 | } | |||
1521 | if (ido==1) return; | |||
1522 | for (size_t k=0; k<l1;++k) | |||
1523 | for (size_t i=2; i<ido; i+=2) | |||
1524 | { | |||
1525 | size_t ic=ido-i; | |||
1526 | double tr2, tr3, tr4, tr5, ti2, ti3, ti4, ti5; | |||
1527 | PM(tr2,tr5,CC(i-1,2,k),CC(ic-1,1,k)) | |||
1528 | PM(ti5,ti2,CC(i ,2,k),CC(ic ,1,k)) | |||
1529 | PM(tr3,tr4,CC(i-1,4,k),CC(ic-1,3,k)) | |||
1530 | PM(ti4,ti3,CC(i ,4,k),CC(ic ,3,k)) | |||
1531 | CH(i-1,k,0)=CC(i-1,0,k)+tr2+tr3; | |||
1532 | CH(i ,k,0)=CC(i ,0,k)+ti2+ti3; | |||
1533 | double cr2=CC(i-1,0,k)+tr11*tr2+tr12*tr3; | |||
1534 | double ci2=CC(i ,0,k)+tr11*ti2+tr12*ti3; | |||
1535 | double cr3=CC(i-1,0,k)+tr12*tr2+tr11*tr3; | |||
1536 | double ci3=CC(i ,0,k)+tr12*ti2+tr11*ti3; | |||
1537 | double ci4, ci5, cr5, cr4; | |||
1538 | MULPM(cr5,cr4,tr5,tr4,ti11,ti12) | |||
1539 | MULPM(ci5,ci4,ti5,ti4,ti11,ti12) | |||
1540 | double dr2, dr3, dr4, dr5, di2, di3, di4, di5; | |||
1541 | PM(dr4,dr3,cr3,ci4) | |||
1542 | PM(di3,di4,ci3,cr4) | |||
1543 | PM(dr5,dr2,cr2,ci5) | |||
1544 | PM(di2,di5,ci2,cr5) | |||
1545 | MULPM(CH(i,k,1),CH(i-1,k,1),WA(0,i-2),WA(0,i-1),di2,dr2) | |||
1546 | MULPM(CH(i,k,2),CH(i-1,k,2),WA(1,i-2),WA(1,i-1),di3,dr3) | |||
1547 | MULPM(CH(i,k,3),CH(i-1,k,3),WA(2,i-2),WA(2,i-1),di4,dr4) | |||
1548 | MULPM(CH(i,k,4),CH(i-1,k,4),WA(3,i-2),WA(3,i-1),di5,dr5) | |||
1549 | } | |||
1550 | } | |||
1551 | ||||
1552 | #undef CC | |||
1553 | #undef CH | |||
1554 | #define CC(a,b,c) cc[(a)+ido*((b)+cdim*(c))] | |||
1555 | #define CH(a,b,c) ch[(a)+ido*((b)+l1*(c))] | |||
1556 | #define C1(a,b,c) cc[(a)+ido*((b)+l1*(c))] | |||
1557 | #define C2(a,b) cc[(a)+idl1*(b)] | |||
1558 | #define CH2(a,b) ch[(a)+idl1*(b)] | |||
1559 | ||||
1560 | NOINLINE__attribute__((noinline)) static void radbg(size_t ido, size_t ip, size_t l1, | |||
1561 | double * restrictrestrict cc, double * restrictrestrict ch, const double * restrictrestrict wa, | |||
1562 | const double * restrictrestrict csarr) | |||
1563 | { | |||
1564 | const size_t cdim=ip; | |||
1565 | size_t ipph=(ip+1)/ 2; | |||
1566 | size_t idl1 = ido*l1; | |||
1567 | ||||
1568 | for (size_t k=0; k<l1; ++k) // 102 | |||
1569 | for (size_t i=0; i<ido; ++i) // 101 | |||
1570 | CH(i,k,0) = CC(i,0,k); | |||
1571 | for (size_t j=1, jc=ip-1; j<ipph; ++j, --jc) // 108 | |||
1572 | { | |||
1573 | size_t j2=2*j-1; | |||
1574 | for (size_t k=0; k<l1; ++k) | |||
1575 | { | |||
1576 | CH(0,k,j ) = 2*CC(ido-1,j2,k); | |||
1577 | CH(0,k,jc) = 2*CC(0,j2+1,k); | |||
1578 | } | |||
1579 | } | |||
1580 | ||||
1581 | if (ido!=1) | |||
1582 | { | |||
1583 | for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 111 | |||
1584 | { | |||
1585 | size_t j2=2*j-1; | |||
1586 | for (size_t k=0; k<l1; ++k) | |||
1587 | for (size_t i=1, ic=ido-i-2; i<=ido-2; i+=2, ic-=2) // 109 | |||
1588 | { | |||
1589 | CH(i ,k,j ) = CC(i ,j2+1,k)+CC(ic ,j2,k); | |||
1590 | CH(i ,k,jc) = CC(i ,j2+1,k)-CC(ic ,j2,k); | |||
1591 | CH(i+1,k,j ) = CC(i+1,j2+1,k)-CC(ic+1,j2,k); | |||
1592 | CH(i+1,k,jc) = CC(i+1,j2+1,k)+CC(ic+1,j2,k); | |||
1593 | } | |||
1594 | } | |||
1595 | } | |||
1596 | for (size_t l=1,lc=ip-1; l<ipph; ++l,--lc) | |||
1597 | { | |||
1598 | for (size_t ik=0; ik<idl1; ++ik) | |||
1599 | { | |||
1600 | C2(ik,l ) = CH2(ik,0)+csarr[2*l]*CH2(ik,1)+csarr[4*l]*CH2(ik,2); | |||
1601 | C2(ik,lc) = csarr[2*l+1]*CH2(ik,ip-1)+csarr[4*l+1]*CH2(ik,ip-2); | |||
1602 | } | |||
1603 | size_t iang=2*l; | |||
1604 | size_t j=3,jc=ip-3; | |||
1605 | for(; j<ipph-3; j+=4,jc-=4) | |||
1606 | { | |||
1607 | iang+=l; if(iang>ip) iang-=ip; | |||
1608 | double ar1=csarr[2*iang], ai1=csarr[2*iang+1]; | |||
1609 | iang+=l; if(iang>ip) iang-=ip; | |||
1610 | double ar2=csarr[2*iang], ai2=csarr[2*iang+1]; | |||
1611 | iang+=l; if(iang>ip) iang-=ip; | |||
1612 | double ar3=csarr[2*iang], ai3=csarr[2*iang+1]; | |||
1613 | iang+=l; if(iang>ip) iang-=ip; | |||
1614 | double ar4=csarr[2*iang], ai4=csarr[2*iang+1]; | |||
1615 | for (size_t ik=0; ik<idl1; ++ik) | |||
1616 | { | |||
1617 | C2(ik,l ) += ar1*CH2(ik,j )+ar2*CH2(ik,j +1) | |||
1618 | +ar3*CH2(ik,j +2)+ar4*CH2(ik,j +3); | |||
1619 | C2(ik,lc) += ai1*CH2(ik,jc)+ai2*CH2(ik,jc-1) | |||
1620 | +ai3*CH2(ik,jc-2)+ai4*CH2(ik,jc-3); | |||
1621 | } | |||
1622 | } | |||
1623 | for(; j<ipph-1; j+=2,jc-=2) | |||
1624 | { | |||
1625 | iang+=l; if(iang>ip) iang-=ip; | |||
1626 | double ar1=csarr[2*iang], ai1=csarr[2*iang+1]; | |||
1627 | iang+=l; if(iang>ip) iang-=ip; | |||
1628 | double ar2=csarr[2*iang], ai2=csarr[2*iang+1]; | |||
1629 | for (size_t ik=0; ik<idl1; ++ik) | |||
1630 | { | |||
1631 | C2(ik,l ) += ar1*CH2(ik,j )+ar2*CH2(ik,j +1); | |||
1632 | C2(ik,lc) += ai1*CH2(ik,jc)+ai2*CH2(ik,jc-1); | |||
1633 | } | |||
1634 | } | |||
1635 | for(; j<ipph; ++j,--jc) | |||
1636 | { | |||
1637 | iang+=l; if(iang>ip) iang-=ip; | |||
1638 | double war=csarr[2*iang], wai=csarr[2*iang+1]; | |||
1639 | for (size_t ik=0; ik<idl1; ++ik) | |||
1640 | { | |||
1641 | C2(ik,l ) += war*CH2(ik,j ); | |||
1642 | C2(ik,lc) += wai*CH2(ik,jc); | |||
1643 | } | |||
1644 | } | |||
1645 | } | |||
1646 | for (size_t j=1; j<ipph; ++j) | |||
1647 | for (size_t ik=0; ik<idl1; ++ik) | |||
1648 | CH2(ik,0) += CH2(ik,j); | |||
1649 | for (size_t j=1, jc=ip-1; j<ipph; ++j,--jc) // 124 | |||
1650 | for (size_t k=0; k<l1; ++k) | |||
1651 | { | |||
1652 | CH(0,k,j ) = C1(0,k,j)-C1(0,k,jc); | |||
1653 | CH(0,k,jc) = C1(0,k,j)+C1(0,k,jc); | |||
1654 | } | |||
1655 | ||||
1656 | if (ido==1) return; | |||
1657 | ||||
1658 | for (size_t j=1, jc=ip-1; j<ipph; ++j, --jc) // 127 | |||
1659 | for (size_t k=0; k<l1; ++k) | |||
1660 | for (size_t i=1; i<=ido-2; i+=2) | |||
1661 | { | |||
1662 | CH(i ,k,j ) = C1(i ,k,j)-C1(i+1,k,jc); | |||
1663 | CH(i ,k,jc) = C1(i ,k,j)+C1(i+1,k,jc); | |||
1664 | CH(i+1,k,j ) = C1(i+1,k,j)+C1(i ,k,jc); | |||
1665 | CH(i+1,k,jc) = C1(i+1,k,j)-C1(i ,k,jc); | |||
1666 | } | |||
1667 | ||||
1668 | // All in CH | |||
1669 | ||||
1670 | for (size_t j=1; j<ip; ++j) | |||
1671 | { | |||
1672 | size_t is = (j-1)*(ido-1); | |||
1673 | for (size_t k=0; k<l1; ++k) | |||
1674 | { | |||
1675 | size_t idij = is; | |||
1676 | for (size_t i=1; i<=ido-2; i+=2) | |||
1677 | { | |||
1678 | double t1=CH(i,k,j), t2=CH(i+1,k,j); | |||
1679 | CH(i ,k,j) = wa[idij]*t1-wa[idij+1]*t2; | |||
1680 | CH(i+1,k,j) = wa[idij]*t2+wa[idij+1]*t1; | |||
1681 | idij+=2; | |||
1682 | } | |||
1683 | } | |||
1684 | } | |||
1685 | } | |||
1686 | #undef C1 | |||
1687 | #undef C2 | |||
1688 | #undef CH2 | |||
1689 | ||||
1690 | #undef CC | |||
1691 | #undef CH | |||
1692 | #undef PM | |||
1693 | #undef MULPM | |||
1694 | #undef WA | |||
1695 | ||||
1696 | static void copy_and_norm(double *c, double *p1, size_t n, double fct) | |||
1697 | { | |||
1698 | if (p1!=c) | |||
1699 | { | |||
1700 | if (fct!=1.) | |||
1701 | for (size_t i=0; i<n; ++i) | |||
1702 | c[i] = fct*p1[i]; | |||
1703 | else | |||
1704 | memcpy (c,p1,n*sizeof(double)); | |||
1705 | } | |||
1706 | else | |||
1707 | if (fct!=1.) | |||
1708 | for (size_t i=0; i<n; ++i) | |||
1709 | c[i] *= fct; | |||
1710 | } | |||
1711 | ||||
1712 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
1713 | static int rfftp_forward(rfftp_plan plan, double c[], double fct) | |||
1714 | { | |||
1715 | if (plan->length==1) return 0; | |||
1716 | size_t n=plan->length; | |||
1717 | size_t l1=n, nf=plan->nfct; | |||
1718 | double *ch = RALLOC(double, n)((double *)malloc((n)*sizeof(double))); | |||
1719 | if (!ch) return -1; | |||
1720 | double *p1=c, *p2=ch; | |||
1721 | ||||
1722 | for(size_t k1=0; k1<nf;++k1) | |||
1723 | { | |||
1724 | size_t k=nf-k1-1; | |||
1725 | size_t ip=plan->fct[k].fct; | |||
1726 | size_t ido=n / l1; | |||
1727 | l1 /= ip; | |||
1728 | if(ip==4) | |||
1729 | radf4(ido, l1, p1, p2, plan->fct[k].tw); | |||
1730 | else if(ip==2) | |||
1731 | radf2(ido, l1, p1, p2, plan->fct[k].tw); | |||
1732 | else if(ip==3) | |||
1733 | radf3(ido, l1, p1, p2, plan->fct[k].tw); | |||
1734 | else if(ip==5) | |||
1735 | radf5(ido, l1, p1, p2, plan->fct[k].tw); | |||
1736 | else | |||
1737 | { | |||
1738 | radfg(ido, ip, l1, p1, p2, plan->fct[k].tw, plan->fct[k].tws); | |||
1739 | SWAP (p1,p2,double *)do { double * tmp_=(p1); (p1)=(p2); (p2)=tmp_; } while(0); | |||
1740 | } | |||
1741 | SWAP (p1,p2,double *)do { double * tmp_=(p1); (p1)=(p2); (p2)=tmp_; } while(0); | |||
1742 | } | |||
1743 | copy_and_norm(c,p1,n,fct); | |||
1744 | DEALLOC(ch)do { free(ch); (ch)=((void*)0); } while(0); | |||
1745 | return 0; | |||
1746 | } | |||
1747 | ||||
1748 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
1749 | static int rfftp_backward(rfftp_plan plan, double c[], double fct) | |||
1750 | { | |||
1751 | if (plan->length==1) return 0; | |||
1752 | size_t n=plan->length; | |||
1753 | size_t l1=1, nf=plan->nfct; | |||
1754 | double *ch = RALLOC(double, n)((double *)malloc((n)*sizeof(double))); | |||
1755 | if (!ch) return -1; | |||
1756 | double *p1=c, *p2=ch; | |||
1757 | ||||
1758 | for(size_t k=0; k<nf; k++) | |||
1759 | { | |||
1760 | size_t ip = plan->fct[k].fct, | |||
1761 | ido= n/(ip*l1); | |||
1762 | if(ip==4) | |||
1763 | radb4(ido, l1, p1, p2, plan->fct[k].tw); | |||
1764 | else if(ip==2) | |||
1765 | radb2(ido, l1, p1, p2, plan->fct[k].tw); | |||
1766 | else if(ip==3) | |||
1767 | radb3(ido, l1, p1, p2, plan->fct[k].tw); | |||
1768 | else if(ip==5) | |||
1769 | radb5(ido, l1, p1, p2, plan->fct[k].tw); | |||
1770 | else | |||
1771 | radbg(ido, ip, l1, p1, p2, plan->fct[k].tw, plan->fct[k].tws); | |||
1772 | SWAP (p1,p2,double *)do { double * tmp_=(p1); (p1)=(p2); (p2)=tmp_; } while(0); | |||
1773 | l1*=ip; | |||
1774 | } | |||
1775 | copy_and_norm(c,p1,n,fct); | |||
1776 | DEALLOC(ch)do { free(ch); (ch)=((void*)0); } while(0); | |||
1777 | return 0; | |||
1778 | } | |||
1779 | ||||
1780 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
1781 | static int rfftp_factorize (rfftp_plan plan) | |||
1782 | { | |||
1783 | size_t length=plan->length; | |||
1784 | size_t nfct=0; | |||
1785 | while ((length%4)==0) | |||
1786 | { if (nfct>=NFCT25) return -1; plan->fct[nfct++].fct=4; length>>=2; } | |||
1787 | if ((length%2)==0) | |||
1788 | { | |||
1789 | length>>=1; | |||
1790 | // factor 2 should be at the front of the factor list | |||
1791 | if (nfct>=NFCT25) return -1; | |||
1792 | plan->fct[nfct++].fct=2; | |||
1793 | SWAP(plan->fct[0].fct, plan->fct[nfct-1].fct,size_t)do { size_t tmp_=(plan->fct[0].fct); (plan->fct[0].fct) =(plan->fct[nfct-1].fct); (plan->fct[nfct-1].fct)=tmp_; } while(0); | |||
1794 | } | |||
1795 | size_t maxl=(size_t)(sqrt((double)length))+1; | |||
1796 | for (size_t divisor=3; (length>1)&&(divisor<maxl); divisor+=2) | |||
1797 | if ((length%divisor)==0) | |||
1798 | { | |||
1799 | while ((length%divisor)==0) | |||
1800 | { | |||
1801 | if (nfct>=NFCT25) return -1; | |||
1802 | plan->fct[nfct++].fct=divisor; | |||
1803 | length/=divisor; | |||
1804 | } | |||
1805 | maxl=(size_t)(sqrt((double)length))+1; | |||
1806 | } | |||
1807 | if (length>1) plan->fct[nfct++].fct=length; | |||
1808 | plan->nfct=nfct; | |||
1809 | return 0; | |||
1810 | } | |||
1811 | ||||
1812 | static size_t rfftp_twsize(rfftp_plan plan) | |||
1813 | { | |||
1814 | size_t twsize=0, l1=1; | |||
1815 | for (size_t k=0; k<plan->nfct; ++k) | |||
1816 | { | |||
1817 | size_t ip=plan->fct[k].fct, ido= plan->length/(l1*ip); | |||
1818 | twsize+=(ip-1)*(ido-1); | |||
1819 | if (ip>5) twsize+=2*ip; | |||
1820 | l1*=ip; | |||
1821 | } | |||
1822 | return twsize; | |||
1823 | return 0; | |||
1824 | } | |||
1825 | ||||
1826 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) NOINLINE__attribute__((noinline)) static int rfftp_comp_twiddle (rfftp_plan plan) | |||
1827 | { | |||
1828 | size_t length=plan->length; | |||
1829 | double *twid = RALLOC(double, 2*length)((double *)malloc((2*length)*sizeof(double))); | |||
1830 | if (!twid) return -1; | |||
1831 | sincos_2pibyn_half(length, twid); | |||
1832 | size_t l1=1; | |||
1833 | double *ptr=plan->mem; | |||
1834 | for (size_t k=0; k<plan->nfct; ++k) | |||
1835 | { | |||
1836 | size_t ip=plan->fct[k].fct, ido=length/(l1*ip); | |||
1837 | if (k<plan->nfct-1) // last factor doesn't need twiddles | |||
1838 | { | |||
1839 | plan->fct[k].tw=ptr; ptr+=(ip-1)*(ido-1); | |||
1840 | for (size_t j=1; j<ip; ++j) | |||
1841 | for (size_t i=1; i<=(ido-1)/2; ++i) | |||
1842 | { | |||
1843 | plan->fct[k].tw[(j-1)*(ido-1)+2*i-2] = twid[2*j*l1*i]; | |||
1844 | plan->fct[k].tw[(j-1)*(ido-1)+2*i-1] = twid[2*j*l1*i+1]; | |||
1845 | } | |||
1846 | } | |||
1847 | if (ip>5) // special factors required by *g functions | |||
1848 | { | |||
1849 | plan->fct[k].tws=ptr; ptr+=2*ip; | |||
1850 | plan->fct[k].tws[0] = 1.; | |||
1851 | plan->fct[k].tws[1] = 0.; | |||
1852 | for (size_t i=1; i<=(ip>>1); ++i) | |||
1853 | { | |||
1854 | plan->fct[k].tws[2*i ] = twid[2*i*(length/ip)]; | |||
1855 | plan->fct[k].tws[2*i+1] = twid[2*i*(length/ip)+1]; | |||
1856 | plan->fct[k].tws[2*(ip-i) ] = twid[2*i*(length/ip)]; | |||
1857 | plan->fct[k].tws[2*(ip-i)+1] = -twid[2*i*(length/ip)+1]; | |||
1858 | } | |||
1859 | } | |||
1860 | l1*=ip; | |||
1861 | } | |||
1862 | DEALLOC(twid)do { free(twid); (twid)=((void*)0); } while(0); | |||
1863 | return 0; | |||
1864 | } | |||
1865 | ||||
1866 | NOINLINE__attribute__((noinline)) static rfftp_plan make_rfftp_plan (size_t length) | |||
1867 | { | |||
1868 | if (length==0) return NULL((void*)0); | |||
1869 | rfftp_plan plan = RALLOC(rfftp_plan_i,1)((rfftp_plan_i *)malloc((1)*sizeof(rfftp_plan_i))); | |||
1870 | if (!plan) return NULL((void*)0); | |||
1871 | plan->length=length; | |||
1872 | plan->nfct=0; | |||
1873 | plan->mem=NULL((void*)0); | |||
1874 | for (size_t i=0; i<NFCT25; ++i) | |||
1875 | plan->fct[i]=(rfftp_fctdata){0,0,0}; | |||
1876 | if (length==1) return plan; | |||
1877 | if (rfftp_factorize(plan)!=0) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1878 | size_t tws=rfftp_twsize(plan); | |||
1879 | plan->mem=RALLOC(double,tws)((double *)malloc((tws)*sizeof(double))); | |||
1880 | if (!plan->mem) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1881 | if (rfftp_comp_twiddle(plan)!=0) | |||
1882 | { DEALLOC(plan->mem)do { free(plan->mem); (plan->mem)=((void*)0); } while(0 ); DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1883 | return plan; | |||
1884 | } | |||
1885 | ||||
1886 | NOINLINE__attribute__((noinline)) static void destroy_rfftp_plan (rfftp_plan plan) | |||
1887 | { | |||
1888 | DEALLOC(plan->mem)do { free(plan->mem); (plan->mem)=((void*)0); } while(0 ); | |||
1889 | DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); | |||
1890 | } | |||
1891 | ||||
1892 | typedef struct fftblue_plan_i | |||
1893 | { | |||
1894 | size_t n, n2; | |||
1895 | cfftp_plan plan; | |||
1896 | double *mem; | |||
1897 | double *bk, *bkf; | |||
1898 | } fftblue_plan_i; | |||
1899 | typedef struct fftblue_plan_i * fftblue_plan; | |||
1900 | ||||
1901 | NOINLINE__attribute__((noinline)) static fftblue_plan make_fftblue_plan (size_t length) | |||
1902 | { | |||
1903 | fftblue_plan plan = RALLOC(fftblue_plan_i,1)((fftblue_plan_i *)malloc((1)*sizeof(fftblue_plan_i))); | |||
1904 | if (!plan) return NULL((void*)0); | |||
1905 | plan->n = length; | |||
1906 | plan->n2 = good_size(plan->n*2-1); | |||
1907 | plan->mem = RALLOC(double, 2*plan->n+2*plan->n2)((double *)malloc((2*plan->n+2*plan->n2)*sizeof(double) )); | |||
1908 | if (!plan->mem) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1909 | plan->bk = plan->mem; | |||
1910 | plan->bkf = plan->bk+2*plan->n; | |||
1911 | ||||
1912 | /* initialize b_k */ | |||
1913 | double *tmp = RALLOC(double,4*plan->n)((double *)malloc((4*plan->n)*sizeof(double))); | |||
1914 | if (!tmp) { DEALLOC(plan->mem)do { free(plan->mem); (plan->mem)=((void*)0); } while(0 ); DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1915 | sincos_2pibyn(2*plan->n,tmp); | |||
1916 | plan->bk[0] = 1; | |||
1917 | plan->bk[1] = 0; | |||
1918 | ||||
1919 | size_t coeff=0; | |||
1920 | for (size_t m=1; m<plan->n; ++m) | |||
1921 | { | |||
1922 | coeff+=2*m-1; | |||
1923 | if (coeff>=2*plan->n) coeff-=2*plan->n; | |||
1924 | plan->bk[2*m ] = tmp[2*coeff ]; | |||
1925 | plan->bk[2*m+1] = tmp[2*coeff+1]; | |||
1926 | } | |||
1927 | ||||
1928 | /* initialize the zero-padded, Fourier transformed b_k. Add normalisation. */ | |||
1929 | double xn2 = 1./plan->n2; | |||
1930 | plan->bkf[0] = plan->bk[0]*xn2; | |||
1931 | plan->bkf[1] = plan->bk[1]*xn2; | |||
1932 | for (size_t m=2; m<2*plan->n; m+=2) | |||
1933 | { | |||
1934 | plan->bkf[m] = plan->bkf[2*plan->n2-m] = plan->bk[m] *xn2; | |||
1935 | plan->bkf[m+1] = plan->bkf[2*plan->n2-m+1] = plan->bk[m+1] *xn2; | |||
1936 | } | |||
1937 | for (size_t m=2*plan->n;m<=(2*plan->n2-2*plan->n+1);++m) | |||
1938 | plan->bkf[m]=0.; | |||
1939 | plan->plan=make_cfftp_plan(plan->n2); | |||
1940 | if (!plan->plan) | |||
1941 | { DEALLOC(tmp)do { free(tmp); (tmp)=((void*)0); } while(0); DEALLOC(plan->mem)do { free(plan->mem); (plan->mem)=((void*)0); } while(0 ); DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1942 | if (cfftp_forward(plan->plan,plan->bkf,1.)!=0) | |||
1943 | { DEALLOC(tmp)do { free(tmp); (tmp)=((void*)0); } while(0); DEALLOC(plan->mem)do { free(plan->mem); (plan->mem)=((void*)0); } while(0 ); DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
1944 | DEALLOC(tmp)do { free(tmp); (tmp)=((void*)0); } while(0); | |||
1945 | ||||
1946 | return plan; | |||
1947 | } | |||
1948 | ||||
1949 | NOINLINE__attribute__((noinline)) static void destroy_fftblue_plan (fftblue_plan plan) | |||
1950 | { | |||
1951 | DEALLOC(plan->mem)do { free(plan->mem); (plan->mem)=((void*)0); } while(0 ); | |||
1952 | destroy_cfftp_plan(plan->plan); | |||
1953 | DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); | |||
1954 | } | |||
1955 | ||||
1956 | NOINLINE__attribute__((noinline)) WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
1957 | static int fftblue_fft(fftblue_plan plan, double c[], int isign, double fct) | |||
1958 | { | |||
1959 | size_t n=plan->n; | |||
1960 | size_t n2=plan->n2; | |||
1961 | double *bk = plan->bk; | |||
1962 | double *bkf = plan->bkf; | |||
1963 | double *akf = RALLOC(double, 2*n2)((double *)malloc((2*n2)*sizeof(double))); | |||
1964 | if (!akf) return -1; | |||
1965 | ||||
1966 | /* initialize a_k and FFT it */ | |||
1967 | if (isign>0) | |||
1968 | for (size_t m=0; m<2*n; m+=2) | |||
1969 | { | |||
1970 | akf[m] = c[m]*bk[m] - c[m+1]*bk[m+1]; | |||
1971 | akf[m+1] = c[m]*bk[m+1] + c[m+1]*bk[m]; | |||
1972 | } | |||
1973 | else | |||
1974 | for (size_t m=0; m<2*n; m+=2) | |||
1975 | { | |||
1976 | akf[m] = c[m]*bk[m] + c[m+1]*bk[m+1]; | |||
1977 | akf[m+1] =-c[m]*bk[m+1] + c[m+1]*bk[m]; | |||
1978 | } | |||
1979 | for (size_t m=2*n; m<2*n2; ++m) | |||
1980 | akf[m]=0; | |||
1981 | ||||
1982 | if (cfftp_forward (plan->plan,akf,fct)!=0) | |||
1983 | { DEALLOC(akf)do { free(akf); (akf)=((void*)0); } while(0); return -1; } | |||
1984 | ||||
1985 | /* do the convolution */ | |||
1986 | if (isign>0) | |||
1987 | for (size_t m=0; m<2*n2; m+=2) | |||
1988 | { | |||
1989 | double im = -akf[m]*bkf[m+1] + akf[m+1]*bkf[m]; | |||
1990 | akf[m ] = akf[m]*bkf[m] + akf[m+1]*bkf[m+1]; | |||
1991 | akf[m+1] = im; | |||
1992 | } | |||
1993 | else | |||
1994 | for (size_t m=0; m<2*n2; m+=2) | |||
1995 | { | |||
1996 | double im = akf[m]*bkf[m+1] + akf[m+1]*bkf[m]; | |||
1997 | akf[m ] = akf[m]*bkf[m] - akf[m+1]*bkf[m+1]; | |||
1998 | akf[m+1] = im; | |||
1999 | } | |||
2000 | ||||
2001 | /* inverse FFT */ | |||
2002 | if (cfftp_backward (plan->plan,akf,1.)!=0) | |||
2003 | { DEALLOC(akf)do { free(akf); (akf)=((void*)0); } while(0); return -1; } | |||
2004 | ||||
2005 | /* multiply by b_k */ | |||
2006 | if (isign>0) | |||
2007 | for (size_t m=0; m<2*n; m+=2) | |||
2008 | { | |||
2009 | c[m] = bk[m] *akf[m] - bk[m+1]*akf[m+1]; | |||
2010 | c[m+1] = bk[m+1]*akf[m] + bk[m] *akf[m+1]; | |||
2011 | } | |||
2012 | else | |||
2013 | for (size_t m=0; m<2*n; m+=2) | |||
2014 | { | |||
2015 | c[m] = bk[m] *akf[m] + bk[m+1]*akf[m+1]; | |||
2016 | c[m+1] =-bk[m+1]*akf[m] + bk[m] *akf[m+1]; | |||
2017 | } | |||
2018 | DEALLOC(akf)do { free(akf); (akf)=((void*)0); } while(0); | |||
2019 | return 0; | |||
2020 | } | |||
2021 | ||||
2022 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
2023 | static int cfftblue_backward(fftblue_plan plan, double c[], double fct) | |||
2024 | { return fftblue_fft(plan,c,1,fct); } | |||
2025 | ||||
2026 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
2027 | static int cfftblue_forward(fftblue_plan plan, double c[], double fct) | |||
2028 | { return fftblue_fft(plan,c,-1,fct); } | |||
2029 | ||||
2030 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
2031 | static int rfftblue_backward(fftblue_plan plan, double c[], double fct) | |||
2032 | { | |||
2033 | size_t n=plan->n; | |||
2034 | double *tmp = RALLOC(double,2*n)((double *)malloc((2*n)*sizeof(double))); | |||
2035 | if (!tmp) return -1; | |||
2036 | tmp[0]=c[0]; | |||
2037 | tmp[1]=0.; | |||
2038 | memcpy (tmp+2,c+1, (n-1)*sizeof(double)); | |||
2039 | if ((n&1)==0) tmp[n+1]=0.; | |||
2040 | for (size_t m=2; m<n; m+=2) | |||
2041 | { | |||
2042 | tmp[2*n-m]=tmp[m]; | |||
2043 | tmp[2*n-m+1]=-tmp[m+1]; | |||
2044 | } | |||
2045 | if (fftblue_fft(plan,tmp,1,fct)!=0) | |||
2046 | { DEALLOC(tmp)do { free(tmp); (tmp)=((void*)0); } while(0); return -1; } | |||
2047 | for (size_t m=0; m<n; ++m) | |||
2048 | c[m] = tmp[2*m]; | |||
2049 | DEALLOC(tmp)do { free(tmp); (tmp)=((void*)0); } while(0); | |||
2050 | return 0; | |||
2051 | } | |||
2052 | ||||
2053 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) | |||
2054 | static int rfftblue_forward(fftblue_plan plan, double c[], double fct) | |||
2055 | { | |||
2056 | size_t n=plan->n; | |||
2057 | double *tmp = RALLOC(double,2*n)((double *)malloc((2*n)*sizeof(double))); | |||
2058 | if (!tmp) return -1; | |||
2059 | for (size_t m=0; m<n; ++m) | |||
2060 | { | |||
2061 | tmp[2*m] = c[m]; | |||
2062 | tmp[2*m+1] = 0.; | |||
2063 | } | |||
2064 | if (fftblue_fft(plan,tmp,-1,fct)!=0) | |||
2065 | { DEALLOC(tmp)do { free(tmp); (tmp)=((void*)0); } while(0); return -1; } | |||
2066 | c[0] = tmp[0]; | |||
2067 | memcpy (c+1, tmp+2, (n-1)*sizeof(double)); | |||
2068 | DEALLOC(tmp)do { free(tmp); (tmp)=((void*)0); } while(0); | |||
2069 | return 0; | |||
2070 | } | |||
2071 | ||||
2072 | typedef struct cfft_plan_i | |||
2073 | { | |||
2074 | cfftp_plan packplan; | |||
2075 | fftblue_plan blueplan; | |||
2076 | } cfft_plan_i; | |||
2077 | ||||
2078 | static cfft_plan make_cfft_plan (size_t length) | |||
2079 | { | |||
2080 | if (length==0) return NULL((void*)0); | |||
2081 | cfft_plan plan = RALLOC(cfft_plan_i,1)((cfft_plan_i *)malloc((1)*sizeof(cfft_plan_i))); | |||
2082 | if (!plan) return NULL((void*)0); | |||
2083 | plan->blueplan=0; | |||
2084 | plan->packplan=0; | |||
2085 | if ((length<50) || (largest_prime_factor(length)<=sqrt(length))) | |||
2086 | { | |||
2087 | plan->packplan=make_cfftp_plan(length); | |||
2088 | if (!plan->packplan) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
2089 | return plan; | |||
2090 | } | |||
2091 | double comp1 = cost_guess(length); | |||
2092 | double comp2 = 2*cost_guess(good_size(2*length-1)); | |||
2093 | comp2*=1.5; /* fudge factor that appears to give good overall performance */ | |||
2094 | if (comp2<comp1) // use Bluestein | |||
2095 | { | |||
2096 | plan->blueplan=make_fftblue_plan(length); | |||
2097 | if (!plan->blueplan) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
2098 | } | |||
2099 | else | |||
2100 | { | |||
2101 | plan->packplan=make_cfftp_plan(length); | |||
2102 | if (!plan->packplan) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
2103 | } | |||
2104 | return plan; | |||
2105 | } | |||
2106 | ||||
2107 | static void destroy_cfft_plan (cfft_plan plan) | |||
2108 | { | |||
2109 | if (plan->blueplan) | |||
2110 | destroy_fftblue_plan(plan->blueplan); | |||
2111 | if (plan->packplan) | |||
2112 | destroy_cfftp_plan(plan->packplan); | |||
2113 | DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); | |||
2114 | } | |||
2115 | ||||
2116 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) static int cfft_backward(cfft_plan plan, double c[], double fct) | |||
2117 | { | |||
2118 | if (plan->packplan) | |||
2119 | return cfftp_backward(plan->packplan,c,fct); | |||
2120 | // if (plan->blueplan) | |||
2121 | return cfftblue_backward(plan->blueplan,c,fct); | |||
2122 | } | |||
2123 | ||||
2124 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) static int cfft_forward(cfft_plan plan, double c[], double fct) | |||
2125 | { | |||
2126 | if (plan->packplan) | |||
2127 | return cfftp_forward(plan->packplan,c,fct); | |||
2128 | // if (plan->blueplan) | |||
2129 | return cfftblue_forward(plan->blueplan,c,fct); | |||
2130 | } | |||
2131 | ||||
2132 | typedef struct rfft_plan_i | |||
2133 | { | |||
2134 | rfftp_plan packplan; | |||
2135 | fftblue_plan blueplan; | |||
2136 | } rfft_plan_i; | |||
2137 | ||||
2138 | static rfft_plan make_rfft_plan (size_t length) | |||
2139 | { | |||
2140 | if (length==0) return NULL((void*)0); | |||
2141 | rfft_plan plan = RALLOC(rfft_plan_i,1)((rfft_plan_i *)malloc((1)*sizeof(rfft_plan_i))); | |||
2142 | if (!plan) return NULL((void*)0); | |||
2143 | plan->blueplan=0; | |||
2144 | plan->packplan=0; | |||
2145 | if ((length<50) || (largest_prime_factor(length)<=sqrt(length))) | |||
2146 | { | |||
2147 | plan->packplan=make_rfftp_plan(length); | |||
2148 | if (!plan->packplan) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
2149 | return plan; | |||
2150 | } | |||
2151 | double comp1 = 0.5*cost_guess(length); | |||
2152 | double comp2 = 2*cost_guess(good_size(2*length-1)); | |||
2153 | comp2*=1.5; /* fudge factor that appears to give good overall performance */ | |||
2154 | if (comp2<comp1) // use Bluestein | |||
2155 | { | |||
2156 | plan->blueplan=make_fftblue_plan(length); | |||
2157 | if (!plan->blueplan) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
2158 | } | |||
2159 | else | |||
2160 | { | |||
2161 | plan->packplan=make_rfftp_plan(length); | |||
2162 | if (!plan->packplan) { DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); return NULL((void*)0); } | |||
2163 | } | |||
2164 | return plan; | |||
2165 | } | |||
2166 | ||||
2167 | static void destroy_rfft_plan (rfft_plan plan) | |||
2168 | { | |||
2169 | if (plan->blueplan) | |||
2170 | destroy_fftblue_plan(plan->blueplan); | |||
2171 | if (plan->packplan) | |||
2172 | destroy_rfftp_plan(plan->packplan); | |||
2173 | DEALLOC(plan)do { free(plan); (plan)=((void*)0); } while(0); | |||
2174 | } | |||
2175 | ||||
2176 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) static int rfft_backward(rfft_plan plan, double c[], double fct) | |||
2177 | { | |||
2178 | if (plan->packplan) | |||
2179 | return rfftp_backward(plan->packplan,c,fct); | |||
2180 | else // if (plan->blueplan) | |||
2181 | return rfftblue_backward(plan->blueplan,c,fct); | |||
2182 | } | |||
2183 | ||||
2184 | WARN_UNUSED_RESULT__attribute__ ((warn_unused_result)) static int rfft_forward(rfft_plan plan, double c[], double fct) | |||
2185 | { | |||
2186 | if (plan->packplan) | |||
2187 | return rfftp_forward(plan->packplan,c,fct); | |||
2188 | else // if (plan->blueplan) | |||
2189 | return rfftblue_forward(plan->blueplan,c,fct); | |||
2190 | } | |||
2191 | ||||
2192 | static PyObject * | |||
2193 | execute_complex(PyObject *a1, int is_forward, double fct) | |||
2194 | { | |||
2195 | PyArrayObject *data = (PyArrayObject *)PyArray_FromAny(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) PyArray_API[69])(a1, | |||
2196 | PyArray_DescrFromType(*(PyArray_Descr * (*)(int)) PyArray_API[45])(NPY_CDOUBLE), 1, 0, | |||
2197 | NPY_ARRAY_ENSURECOPY0x0020 | NPY_ARRAY_DEFAULT((0x0001 | (0x0100 | 0x0400))) | | |||
2198 | NPY_ARRAY_ENSUREARRAY0x0040 | NPY_ARRAY_FORCECAST0x0010, | |||
2199 | NULL((void*)0)); | |||
2200 | if (!data) return NULL((void*)0); | |||
2201 | ||||
2202 | int npts = PyArray_DIM(data, PyArray_NDIM(data) - 1); | |||
2203 | cfft_plan plan=NULL((void*)0); | |||
2204 | ||||
2205 | int nrepeats = PyArray_SIZE(data)(*(npy_intp (*)(npy_intp const *, int)) PyArray_API[158])(PyArray_DIMS (data), PyArray_NDIM(data))/npts; | |||
2206 | double *dptr = (double *)PyArray_DATA(data); | |||
2207 | int fail=0; | |||
2208 | Py_BEGIN_ALLOW_THREADS{ PyThreadState *_save; _save = PyEval_SaveThread();; | |||
2209 | plan = make_cfft_plan(npts); | |||
2210 | if (!plan) fail=1; | |||
2211 | if (!fail) | |||
2212 | for (int i = 0; i < nrepeats; i++) { | |||
2213 | int res = is_forward ? | |||
2214 | cfft_forward(plan, dptr, fct) : cfft_backward(plan, dptr, fct); | |||
2215 | if (res!=0) { fail=1; break; } | |||
2216 | dptr += npts*2; | |||
2217 | } | |||
2218 | if (plan) destroy_cfft_plan(plan); | |||
2219 | Py_END_ALLOW_THREADSPyEval_RestoreThread(_save); }; | |||
2220 | if (fail) { | |||
2221 | Py_XDECREF(data)_Py_XDECREF(((PyObject*)(data))); | |||
2222 | return PyErr_NoMemory(); | |||
2223 | } | |||
2224 | return (PyObject *)data; | |||
2225 | } | |||
2226 | ||||
2227 | static PyObject * | |||
2228 | execute_real_forward(PyObject *a1, double fct) | |||
2229 | { | |||
2230 | rfft_plan plan=NULL((void*)0); | |||
2231 | int fail = 0; | |||
2232 | PyArrayObject *data = (PyArrayObject *)PyArray_FromAny(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) PyArray_API[69])(a1, | |||
2233 | PyArray_DescrFromType(*(PyArray_Descr * (*)(int)) PyArray_API[45])(NPY_DOUBLE), 1, 0, | |||
2234 | NPY_ARRAY_DEFAULT((0x0001 | (0x0100 | 0x0400))) | NPY_ARRAY_ENSUREARRAY0x0040 | NPY_ARRAY_FORCECAST0x0010, | |||
2235 | NULL((void*)0)); | |||
2236 | if (!data) return NULL((void*)0); | |||
2237 | ||||
2238 | int ndim = PyArray_NDIM(data); | |||
2239 | const npy_intp *odim = PyArray_DIMS(data); | |||
2240 | int npts = odim[ndim - 1]; | |||
2241 | npy_intp *tdim=(npy_intp *)malloc(ndim*sizeof(npy_intp)); | |||
2242 | if (!tdim) | |||
2243 | { Py_XDECREF(data)_Py_XDECREF(((PyObject*)(data))); return NULL((void*)0); } | |||
2244 | for (int d=0; d<ndim-1; ++d) | |||
2245 | tdim[d] = odim[d]; | |||
2246 | tdim[ndim-1] = npts/2 + 1; | |||
2247 | PyArrayObject *ret = (PyArrayObject *)PyArray_Empty(*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int )) PyArray_API[184])(ndim, | |||
2248 | tdim, PyArray_DescrFromType(*(PyArray_Descr * (*)(int)) PyArray_API[45])(NPY_CDOUBLE), 0); | |||
2249 | free(tdim); | |||
2250 | if (!ret) fail=1; | |||
2251 | if (!fail) { | |||
2252 | int rstep = PyArray_DIM(ret, PyArray_NDIM(ret) - 1)*2; | |||
2253 | ||||
2254 | int nrepeats = PyArray_SIZE(data)(*(npy_intp (*)(npy_intp const *, int)) PyArray_API[158])(PyArray_DIMS (data), PyArray_NDIM(data))/npts; | |||
2255 | double *rptr = (double *)PyArray_DATA(ret), | |||
2256 | *dptr = (double *)PyArray_DATA(data); | |||
2257 | ||||
2258 | Py_BEGIN_ALLOW_THREADS{ PyThreadState *_save; _save = PyEval_SaveThread();; | |||
2259 | plan = make_rfft_plan(npts); | |||
2260 | if (!plan) fail=1; | |||
2261 | if (!fail) | |||
2262 | for (int i = 0; i < nrepeats; i++) { | |||
2263 | rptr[rstep-1] = 0.0; | |||
2264 | memcpy((char *)(rptr+1), dptr, npts*sizeof(double)); | |||
2265 | if (rfft_forward(plan, rptr+1, fct)!=0) {fail=1; break;} | |||
2266 | rptr[0] = rptr[1]; | |||
2267 | rptr[1] = 0.0; | |||
2268 | rptr += rstep; | |||
2269 | dptr += npts; | |||
2270 | } | |||
2271 | if (plan) destroy_rfft_plan(plan); | |||
2272 | Py_END_ALLOW_THREADSPyEval_RestoreThread(_save); }; | |||
2273 | } | |||
2274 | if (fail) { | |||
2275 | Py_XDECREF(data)_Py_XDECREF(((PyObject*)(data))); | |||
2276 | Py_XDECREF(ret)_Py_XDECREF(((PyObject*)(ret))); | |||
2277 | return PyErr_NoMemory(); | |||
2278 | } | |||
2279 | Py_DECREF(data)_Py_DECREF(((PyObject*)(data))); | |||
2280 | return (PyObject *)ret; | |||
2281 | } | |||
2282 | static PyObject * | |||
2283 | execute_real_backward(PyObject *a1, double fct) | |||
2284 | { | |||
2285 | rfft_plan plan=NULL((void*)0); | |||
2286 | PyArrayObject *data = (PyArrayObject *)PyArray_FromAny(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) PyArray_API[69])(a1, | |||
2287 | PyArray_DescrFromType(*(PyArray_Descr * (*)(int)) PyArray_API[45])(NPY_CDOUBLE), 1, 0, | |||
2288 | NPY_ARRAY_DEFAULT((0x0001 | (0x0100 | 0x0400))) | NPY_ARRAY_ENSUREARRAY0x0040 | NPY_ARRAY_FORCECAST0x0010, | |||
2289 | NULL((void*)0)); | |||
2290 | if (!data) return NULL((void*)0); | |||
2291 | int npts = PyArray_DIM(data, PyArray_NDIM(data) - 1); | |||
2292 | PyArrayObject *ret = (PyArrayObject *)PyArray_Empty(*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int )) PyArray_API[184])(PyArray_NDIM(data), | |||
2293 | PyArray_DIMS(data), PyArray_DescrFromType(*(PyArray_Descr * (*)(int)) PyArray_API[45])(NPY_DOUBLE), 0); | |||
2294 | int fail = 0; | |||
2295 | if (!ret) fail=1; | |||
2296 | if (!fail) { | |||
2297 | int nrepeats = PyArray_SIZE(ret)(*(npy_intp (*)(npy_intp const *, int)) PyArray_API[158])(PyArray_DIMS (ret), PyArray_NDIM(ret))/npts; | |||
2298 | double *rptr = (double *)PyArray_DATA(ret), | |||
2299 | *dptr = (double *)PyArray_DATA(data); | |||
2300 | ||||
2301 | Py_BEGIN_ALLOW_THREADS{ PyThreadState *_save; _save = PyEval_SaveThread();; | |||
2302 | plan = make_rfft_plan(npts); | |||
2303 | if (!plan) fail=1; | |||
2304 | if (!fail) { | |||
2305 | for (int i = 0; i < nrepeats; i++) { | |||
2306 | memcpy((char *)(rptr + 1), (dptr + 2), (npts - 1)*sizeof(double)); | |||
2307 | rptr[0] = dptr[0]; | |||
2308 | if (rfft_backward(plan, rptr, fct)!=0) {fail=1; break;} | |||
2309 | rptr += npts; | |||
2310 | dptr += npts*2; | |||
2311 | } | |||
2312 | } | |||
2313 | if (plan) destroy_rfft_plan(plan); | |||
2314 | Py_END_ALLOW_THREADSPyEval_RestoreThread(_save); }; | |||
2315 | } | |||
2316 | if (fail) { | |||
2317 | Py_XDECREF(data)_Py_XDECREF(((PyObject*)(data))); | |||
2318 | Py_XDECREF(ret)_Py_XDECREF(((PyObject*)(ret))); | |||
2319 | return PyErr_NoMemory(); | |||
2320 | } | |||
2321 | Py_DECREF(data)_Py_DECREF(((PyObject*)(data))); | |||
2322 | return (PyObject *)ret; | |||
2323 | } | |||
2324 | ||||
2325 | static PyObject * | |||
2326 | execute_real(PyObject *a1, int is_forward, double fct) | |||
2327 | { | |||
2328 | return is_forward ? execute_real_forward(a1, fct) | |||
2329 | : execute_real_backward(a1, fct); | |||
2330 | } | |||
2331 | ||||
2332 | static const char execute__doc__[] = ""; | |||
2333 | ||||
2334 | static PyObject * | |||
2335 | execute(PyObject *NPY_UNUSED(self)(__NPY_UNUSED_TAGGEDself) __attribute__ ((__unused__)), PyObject *args) | |||
2336 | { | |||
2337 | PyObject *a1; | |||
2338 | int is_real, is_forward; | |||
2339 | double fct; | |||
2340 | ||||
2341 | if(!PyArg_ParseTuple(args, "Oiid:execute", &a1, &is_real, &is_forward, &fct)) { | |||
2342 | return NULL((void*)0); | |||
2343 | } | |||
2344 | ||||
2345 | return is_real ? execute_real(a1, is_forward, fct) | |||
2346 | : execute_complex(a1, is_forward, fct); | |||
2347 | } | |||
2348 | ||||
2349 | /* List of methods defined in the module */ | |||
2350 | ||||
2351 | static struct PyMethodDef methods[] = { | |||
2352 | {"execute", execute, 1, execute__doc__}, | |||
2353 | {NULL((void*)0), NULL((void*)0), 0, NULL((void*)0)} /* sentinel */ | |||
2354 | }; | |||
2355 | ||||
2356 | static struct PyModuleDef moduledef = { | |||
2357 | PyModuleDef_HEAD_INIT{ { 1, ((void*)0) }, ((void*)0), 0, ((void*)0), }, | |||
2358 | "_pocketfft_internal", | |||
2359 | NULL((void*)0), | |||
2360 | -1, | |||
2361 | methods, | |||
2362 | NULL((void*)0), | |||
2363 | NULL((void*)0), | |||
2364 | NULL((void*)0), | |||
2365 | NULL((void*)0) | |||
2366 | }; | |||
2367 | ||||
2368 | /* Initialization function for the module */ | |||
2369 | PyMODINIT_FUNCPyObject* PyInit__pocketfft_internal(void) | |||
2370 | { | |||
2371 | PyObject *m; | |||
2372 | m = PyModule_Create(&moduledef)PyModule_Create2(&moduledef, 1013); | |||
| ||||
| ||||
2373 | if (m == NULL((void*)0)) { | |||
2374 | return NULL((void*)0); | |||
2375 | } | |||
2376 | ||||
2377 | /* Import the array object */ | |||
2378 | import_array(){if (_import_array() < 0) {PyErr_Print(); PyErr_SetString( PyExc_ImportError, "numpy.core.multiarray failed to import"); return ((void*)0); } }; | |||
2379 | ||||
2380 | /* XXXX Add constants here */ | |||
2381 | ||||
2382 | return m; | |||
2383 | } |
1 | #ifndef PyModule_Create2 |
2 | struct _object; |
3 | typedef struct _object PyObject; |
4 | PyObject* clang_analyzer_PyObject_New_Reference(); |
5 | PyObject* PyModule_Create2(PyModuleDef *def, int module_api_version) { |
6 | return clang_analyzer_PyObject_New_Reference(); |
7 | } |
8 | #else |
9 | #warning "API PyModule_Create2 is defined as a macro." |
10 | #endif |