| File: | numpy/core/src/multiarray/array_method.c |
| Warning: | line 474, column 24 PyObject ownership leak with reference count of 1 |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
| 1 | /* | |||
| 2 | * This file implements an abstraction layer for "Array methods", which | |||
| 3 | * work with a specific DType class input and provide low-level C function | |||
| 4 | * pointers to do fast operations on the given input functions. | |||
| 5 | * It thus adds an abstraction layer around individual ufunc loops. | |||
| 6 | * | |||
| 7 | * Unlike methods, a ArrayMethod can have multiple inputs and outputs. | |||
| 8 | * This has some serious implication for garbage collection, and as far | |||
| 9 | * as I (@seberg) understands, it is not possible to always guarantee correct | |||
| 10 | * cyclic garbage collection of dynamically created DTypes with methods. | |||
| 11 | * The keyword (or rather the solution) for this seems to be an "ephemeron" | |||
| 12 | * which I believe should allow correct garbage collection but seems | |||
| 13 | * not implemented in Python at this time. | |||
| 14 | * The vast majority of use-cases will not require correct garbage collection. | |||
| 15 | * Some use cases may require the user to be careful. | |||
| 16 | * | |||
| 17 | * Generally there are two main ways to solve this issue: | |||
| 18 | * | |||
| 19 | * 1. A method with a single input (or inputs of all the same DTypes) can | |||
| 20 | * be "owned" by that DType (it becomes unusable when the DType is deleted). | |||
| 21 | * This holds especially for all casts, which must have a defined output | |||
| 22 | * DType and must hold on to it strongly. | |||
| 23 | * 2. A method which can infer the output DType(s) from the input types does | |||
| 24 | * not need to keep the output type alive. (It can use NULL for the type, | |||
| 25 | * or an abstract base class which is known to be persistent.) | |||
| 26 | * It is then sufficient for a ufunc (or other owner) to only hold a | |||
| 27 | * weak reference to the input DTypes. | |||
| 28 | */ | |||
| 29 | ||||
| 30 | ||||
| 31 | #define NPY_NO_DEPRECATED_API0x0000000E NPY_API_VERSION0x0000000E | |||
| 32 | #define _MULTIARRAYMODULE | |||
| 33 | #include <npy_pycompat.h> | |||
| 34 | #include "arrayobject.h" | |||
| 35 | #include "array_method.h" | |||
| 36 | #include "dtypemeta.h" | |||
| 37 | #include "common_dtype.h" | |||
| 38 | #include "convert_datatype.h" | |||
| 39 | ||||
| 40 | ||||
| 41 | /* | |||
| 42 | * The default descriptor resolution function. The logic is as follows: | |||
| 43 | * | |||
| 44 | * 1. The output is ensured to be canonical (currently native byte order), | |||
| 45 | * if it is of the correct DType. | |||
| 46 | * 2. If any DType is was not defined, it is replaced by the common DType | |||
| 47 | * of all inputs. (If that common DType is parametric, this is an error.) | |||
| 48 | * | |||
| 49 | * We could allow setting the output descriptors specifically to simplify | |||
| 50 | * this step. | |||
| 51 | */ | |||
| 52 | static NPY_CASTING | |||
| 53 | default_resolve_descriptors( | |||
| 54 | PyArrayMethodObject *method, | |||
| 55 | PyArray_DTypeMeta **dtypes, | |||
| 56 | PyArray_Descr **input_descrs, | |||
| 57 | PyArray_Descr **output_descrs) | |||
| 58 | { | |||
| 59 | int nin = method->nin; | |||
| 60 | int nout = method->nout; | |||
| 61 | int all_defined = 1; | |||
| 62 | ||||
| 63 | for (int i = 0; i < nin + nout; i++) { | |||
| 64 | PyArray_DTypeMeta *dtype = dtypes[i]; | |||
| 65 | if (dtype == NULL((void*)0)) { | |||
| 66 | output_descrs[i] = NULL((void*)0); | |||
| 67 | all_defined = 0; | |||
| 68 | continue; | |||
| 69 | } | |||
| 70 | if (NPY_DTYPE(input_descrs[i])((PyArray_DTypeMeta *)(((PyObject*)(input_descrs[i]))->ob_type )) == dtype) { | |||
| 71 | output_descrs[i] = ensure_dtype_nbo(input_descrs[i]); | |||
| 72 | } | |||
| 73 | else { | |||
| 74 | output_descrs[i] = dtype->default_descr(dtype); | |||
| 75 | } | |||
| 76 | if (NPY_UNLIKELY(output_descrs[i] == NULL)__builtin_expect(!!(output_descrs[i] == ((void*)0)), 0)) { | |||
| 77 | goto fail; | |||
| 78 | } | |||
| 79 | } | |||
| 80 | if (all_defined) { | |||
| 81 | return method->casting; | |||
| 82 | } | |||
| 83 | ||||
| 84 | if (NPY_UNLIKELY(nin == 0 || dtypes[0] == NULL)__builtin_expect(!!(nin == 0 || dtypes[0] == ((void*)0)), 0)) { | |||
| 85 | /* Registration should reject this, so this would be indicates a bug */ | |||
| 86 | PyErr_SetString(PyExc_RuntimeError, | |||
| 87 | "Invalid use of default resolver without inputs or with " | |||
| 88 | "input or output DType incorrectly missing."); | |||
| 89 | goto fail; | |||
| 90 | } | |||
| 91 | /* We find the common dtype of all inputs, and use it for the unknowns */ | |||
| 92 | PyArray_DTypeMeta *common_dtype = dtypes[0]; | |||
| 93 | assert(common_dtype != NULL)((void) (0)); | |||
| 94 | for (int i = 1; i < nin; i++) { | |||
| 95 | Py_SETREF(common_dtype, PyArray_CommonDType(common_dtype, dtypes[i]))do { PyObject *_py_tmp = ((PyObject*)(common_dtype)); (common_dtype ) = (PyArray_CommonDType(common_dtype, dtypes[i])); _Py_DECREF (((PyObject*)(_py_tmp))); } while (0); | |||
| 96 | if (common_dtype == NULL((void*)0)) { | |||
| 97 | goto fail; | |||
| 98 | } | |||
| 99 | } | |||
| 100 | for (int i = nin; i < nin + nout; i++) { | |||
| 101 | if (output_descrs[i] != NULL((void*)0)) { | |||
| 102 | continue; | |||
| 103 | } | |||
| 104 | if (NPY_DTYPE(input_descrs[i])((PyArray_DTypeMeta *)(((PyObject*)(input_descrs[i]))->ob_type )) == common_dtype) { | |||
| 105 | output_descrs[i] = ensure_dtype_nbo(input_descrs[i]); | |||
| 106 | } | |||
| 107 | else { | |||
| 108 | output_descrs[i] = common_dtype->default_descr(common_dtype); | |||
| 109 | } | |||
| 110 | if (NPY_UNLIKELY(output_descrs[i] == NULL)__builtin_expect(!!(output_descrs[i] == ((void*)0)), 0)) { | |||
| 111 | goto fail; | |||
| 112 | } | |||
| 113 | } | |||
| 114 | ||||
| 115 | return method->casting; | |||
| 116 | ||||
| 117 | fail: | |||
| 118 | for (int i = 0; i < nin + nout; i++) { | |||
| 119 | Py_XDECREF(output_descrs[i])_Py_XDECREF(((PyObject*)(output_descrs[i]))); | |||
| 120 | } | |||
| 121 | return -1; | |||
| 122 | } | |||
| 123 | ||||
| 124 | ||||
| 125 | NPY_INLINEinline static int | |||
| 126 | is_contiguous( | |||
| 127 | npy_intp const *strides, PyArray_Descr *const *descriptors, int nargs) | |||
| 128 | { | |||
| 129 | for (int i = 0; i < nargs; i++) { | |||
| 130 | if (strides[i] != descriptors[i]->elsize) { | |||
| 131 | return 0; | |||
| 132 | } | |||
| 133 | } | |||
| 134 | return 1; | |||
| 135 | } | |||
| 136 | ||||
| 137 | ||||
| 138 | /** | |||
| 139 | * The default method to fetch the correct loop for a cast or ufunc | |||
| 140 | * (at the time of writing only casts). | |||
| 141 | * The default version can return loops explicitly registered during method | |||
| 142 | * creation. It does specialize contiguous loops, although has to check | |||
| 143 | * all descriptors itemsizes for this. | |||
| 144 | * | |||
| 145 | * @param context | |||
| 146 | * @param aligned | |||
| 147 | * @param move_references UNUSED. | |||
| 148 | * @param strides | |||
| 149 | * @param descriptors | |||
| 150 | * @param out_loop | |||
| 151 | * @param out_transferdata | |||
| 152 | * @param flags | |||
| 153 | * @return 0 on success -1 on failure. | |||
| 154 | */ | |||
| 155 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) int | |||
| 156 | npy_default_get_strided_loop( | |||
| 157 | PyArrayMethod_Context *context, | |||
| 158 | int aligned, int NPY_UNUSED(move_references)(__NPY_UNUSED_TAGGEDmove_references) __attribute__ ((__unused__ )), npy_intp *strides, | |||
| 159 | PyArrayMethod_StridedLoop **out_loop, NpyAuxData **out_transferdata, | |||
| 160 | NPY_ARRAYMETHOD_FLAGS *flags) | |||
| 161 | { | |||
| 162 | PyArray_Descr **descrs = context->descriptors; | |||
| 163 | PyArrayMethodObject *meth = context->method; | |||
| 164 | *flags = meth->flags & NPY_METH_RUNTIME_FLAGS; | |||
| 165 | *out_transferdata = NULL((void*)0); | |||
| 166 | ||||
| 167 | int nargs = meth->nin + meth->nout; | |||
| 168 | if (aligned) { | |||
| 169 | if (meth->contiguous_loop == NULL((void*)0) || | |||
| 170 | !is_contiguous(strides, descrs, nargs)) { | |||
| 171 | *out_loop = meth->strided_loop; | |||
| 172 | return 0; | |||
| 173 | } | |||
| 174 | *out_loop = meth->contiguous_loop; | |||
| 175 | } | |||
| 176 | else { | |||
| 177 | if (meth->unaligned_contiguous_loop == NULL((void*)0) || | |||
| 178 | !is_contiguous(strides, descrs, nargs)) { | |||
| 179 | *out_loop = meth->unaligned_strided_loop; | |||
| 180 | return 0; | |||
| 181 | } | |||
| 182 | *out_loop = meth->unaligned_contiguous_loop; | |||
| 183 | } | |||
| 184 | return 0; | |||
| 185 | } | |||
| 186 | ||||
| 187 | ||||
| 188 | /** | |||
| 189 | * Validate that the input is usable to create a new ArrayMethod. | |||
| 190 | * | |||
| 191 | * @param spec | |||
| 192 | * @return 0 on success -1 on error. | |||
| 193 | */ | |||
| 194 | static int | |||
| 195 | validate_spec(PyArrayMethod_Spec *spec) | |||
| 196 | { | |||
| 197 | int nargs = spec->nin + spec->nout; | |||
| 198 | /* Check the passed spec for invalid fields/values */ | |||
| 199 | if (spec->nin < 0 || spec->nout < 0 || nargs > NPY_MAXARGS32) { | |||
| 200 | PyErr_Format(PyExc_ValueError, | |||
| 201 | "ArrayMethod inputs and outputs must be greater zero and" | |||
| 202 | "not exceed %d. (method: %s)", NPY_MAXARGS32, spec->name); | |||
| 203 | return -1; | |||
| 204 | } | |||
| 205 | switch (spec->casting & ~_NPY_CAST_IS_VIEW) { | |||
| 206 | case NPY_NO_CASTING: | |||
| 207 | case NPY_EQUIV_CASTING: | |||
| 208 | case NPY_SAFE_CASTING: | |||
| 209 | case NPY_SAME_KIND_CASTING: | |||
| 210 | case NPY_UNSAFE_CASTING: | |||
| 211 | break; | |||
| 212 | default: | |||
| 213 | if (spec->casting != -1) { | |||
| 214 | PyErr_Format(PyExc_TypeError, | |||
| 215 | "ArrayMethod has invalid casting `%d`. (method: %s)", | |||
| 216 | spec->casting, spec->name); | |||
| 217 | return -1; | |||
| 218 | } | |||
| 219 | } | |||
| 220 | ||||
| 221 | for (int i = 0; i < nargs; i++) { | |||
| 222 | if (spec->dtypes[i] == NULL((void*)0) && i < spec->nin) { | |||
| 223 | PyErr_Format(PyExc_TypeError, | |||
| 224 | "ArrayMethod must have well defined input DTypes. " | |||
| 225 | "(method: %s)", spec->name); | |||
| 226 | return -1; | |||
| 227 | } | |||
| 228 | if (!PyObject_TypeCheck(spec->dtypes[i], &PyArrayDTypeMeta_Type)((((PyObject*)(spec->dtypes[i]))->ob_type) == (&PyArrayDTypeMeta_Type ) || PyType_IsSubtype((((PyObject*)(spec->dtypes[i]))-> ob_type), (&PyArrayDTypeMeta_Type)))) { | |||
| 229 | PyErr_Format(PyExc_TypeError, | |||
| 230 | "ArrayMethod provided object %R is not a DType." | |||
| 231 | "(method: %s)", spec->dtypes[i], spec->name); | |||
| 232 | return -1; | |||
| 233 | } | |||
| 234 | if (spec->dtypes[i]->abstract && i < spec->nin) { | |||
| 235 | PyErr_Format(PyExc_TypeError, | |||
| 236 | "abstract DType %S are currently not allowed for inputs." | |||
| 237 | "(method: %s defined at %s)", spec->dtypes[i], spec->name); | |||
| 238 | return -1; | |||
| 239 | } | |||
| 240 | } | |||
| 241 | return 0; | |||
| 242 | } | |||
| 243 | ||||
| 244 | ||||
| 245 | /** | |||
| 246 | * Initialize a new BoundArrayMethodObject from slots. Slots which are | |||
| 247 | * not provided may be filled with defaults. | |||
| 248 | * | |||
| 249 | * @param res The new PyBoundArrayMethodObject to be filled. | |||
| 250 | * @param spec The specification list passed by the user. | |||
| 251 | * @param private Private flag to limit certain slots to use in NumPy. | |||
| 252 | * @return -1 on error 0 on success | |||
| 253 | */ | |||
| 254 | static int | |||
| 255 | fill_arraymethod_from_slots( | |||
| 256 | PyBoundArrayMethodObject *res, PyArrayMethod_Spec *spec, | |||
| 257 | int private) | |||
| 258 | { | |||
| 259 | PyArrayMethodObject *meth = res->method; | |||
| 260 | ||||
| 261 | /* Set the defaults */ | |||
| 262 | meth->get_strided_loop = &npy_default_get_strided_loop; | |||
| 263 | meth->resolve_descriptors = &default_resolve_descriptors; | |||
| 264 | ||||
| 265 | /* Fill in the slots passed by the user */ | |||
| 266 | /* | |||
| 267 | * TODO: This is reasonable for now, but it would be nice to find a | |||
| 268 | * shorter solution, and add some additional error checking (e.g. | |||
| 269 | * the same slot used twice). Python uses an array of slot offsets. | |||
| 270 | */ | |||
| 271 | for (PyType_Slot *slot = &spec->slots[0]; slot->slot != 0; slot++) { | |||
| 272 | switch (slot->slot) { | |||
| 273 | case NPY_METH_resolve_descriptors1: | |||
| 274 | meth->resolve_descriptors = slot->pfunc; | |||
| 275 | continue; | |||
| 276 | case NPY_METH_get_loop2: | |||
| 277 | if (private) { | |||
| 278 | /* Only allow override for private functions initially */ | |||
| 279 | meth->get_strided_loop = slot->pfunc; | |||
| 280 | continue; | |||
| 281 | } | |||
| 282 | break; | |||
| 283 | case NPY_METH_strided_loop3: | |||
| 284 | meth->strided_loop = slot->pfunc; | |||
| 285 | continue; | |||
| 286 | case NPY_METH_contiguous_loop4: | |||
| 287 | meth->contiguous_loop = slot->pfunc; | |||
| 288 | continue; | |||
| 289 | case NPY_METH_unaligned_strided_loop5: | |||
| 290 | meth->unaligned_strided_loop = slot->pfunc; | |||
| 291 | continue; | |||
| 292 | case NPY_METH_unaligned_contiguous_loop6: | |||
| 293 | meth->unaligned_contiguous_loop = slot->pfunc; | |||
| 294 | continue; | |||
| 295 | default: | |||
| 296 | break; | |||
| 297 | } | |||
| 298 | PyErr_Format(PyExc_RuntimeError, | |||
| 299 | "invalid slot number %d to ArrayMethod: %s", | |||
| 300 | slot->slot, spec->name); | |||
| 301 | return -1; | |||
| 302 | } | |||
| 303 | ||||
| 304 | /* Check whether the slots are valid: */ | |||
| 305 | if (meth->resolve_descriptors == &default_resolve_descriptors) { | |||
| 306 | if (spec->casting == -1) { | |||
| 307 | PyErr_Format(PyExc_TypeError, | |||
| 308 | "Cannot set casting to -1 (invalid) when not providing " | |||
| 309 | "the default `resolve_descriptors` function. " | |||
| 310 | "(method: %s)", spec->name); | |||
| 311 | return -1; | |||
| 312 | } | |||
| 313 | for (int i = 0; i < meth->nin + meth->nout; i++) { | |||
| 314 | if (res->dtypes[i] == NULL((void*)0)) { | |||
| 315 | if (i < meth->nin) { | |||
| 316 | PyErr_Format(PyExc_TypeError, | |||
| 317 | "All input DTypes must be specified when using " | |||
| 318 | "the default `resolve_descriptors` function. " | |||
| 319 | "(method: %s)", spec->name); | |||
| 320 | return -1; | |||
| 321 | } | |||
| 322 | else if (meth->nin == 0) { | |||
| 323 | PyErr_Format(PyExc_TypeError, | |||
| 324 | "Must specify output DTypes or use custom " | |||
| 325 | "`resolve_descriptors` when there are no inputs. " | |||
| 326 | "(method: %s defined at %s)", spec->name); | |||
| 327 | return -1; | |||
| 328 | } | |||
| 329 | } | |||
| 330 | if (i >= meth->nin && res->dtypes[i]->parametric) { | |||
| 331 | PyErr_Format(PyExc_TypeError, | |||
| 332 | "must provide a `resolve_descriptors` function if any " | |||
| 333 | "output DType is parametric. (method: %s)", | |||
| 334 | spec->name); | |||
| 335 | return -1; | |||
| 336 | } | |||
| 337 | } | |||
| 338 | } | |||
| 339 | if (meth->get_strided_loop != &npy_default_get_strided_loop) { | |||
| 340 | /* Do not check the actual loop fields. */ | |||
| 341 | return 0; | |||
| 342 | } | |||
| 343 | ||||
| 344 | /* Check whether the provided loops make sense. */ | |||
| 345 | if (meth->strided_loop == NULL((void*)0)) { | |||
| 346 | PyErr_Format(PyExc_TypeError, | |||
| 347 | "Must provide a strided inner loop function. (method: %s)", | |||
| 348 | spec->name); | |||
| 349 | return -1; | |||
| 350 | } | |||
| 351 | if (meth->contiguous_loop == NULL((void*)0)) { | |||
| 352 | meth->contiguous_loop = meth->strided_loop; | |||
| 353 | } | |||
| 354 | if (meth->unaligned_contiguous_loop != NULL((void*)0) && | |||
| 355 | meth->unaligned_strided_loop == NULL((void*)0)) { | |||
| 356 | PyErr_Format(PyExc_TypeError, | |||
| 357 | "Must provide unaligned strided inner loop when providing " | |||
| 358 | "a contiguous version. (method: %s)", spec->name); | |||
| 359 | return -1; | |||
| 360 | } | |||
| 361 | if ((meth->unaligned_strided_loop == NULL((void*)0)) != | |||
| 362 | !(meth->flags & NPY_METH_SUPPORTS_UNALIGNED)) { | |||
| 363 | PyErr_Format(PyExc_TypeError, | |||
| 364 | "Must provide unaligned strided inner loop when providing " | |||
| 365 | "a contiguous version. (method: %s)", spec->name); | |||
| 366 | return -1; | |||
| 367 | } | |||
| 368 | ||||
| 369 | return 0; | |||
| 370 | } | |||
| 371 | ||||
| 372 | ||||
| 373 | /** | |||
| 374 | * Create a new ArrayMethod (internal version). | |||
| 375 | * | |||
| 376 | * @param name A name for the individual method, may be NULL. | |||
| 377 | * @param spec A filled context object to pass generic information about | |||
| 378 | * the method (such as usually needing the API, and the DTypes). | |||
| 379 | * Unused fields must be NULL. | |||
| 380 | * @param slots Slots with the correct pair of IDs and (function) pointers. | |||
| 381 | * @param private Some slots are currently considered private, if not true, | |||
| 382 | * these will be rejected. | |||
| 383 | * | |||
| 384 | * @returns A new (bound) ArrayMethod object. | |||
| 385 | */ | |||
| 386 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyBoundArrayMethodObject * | |||
| 387 | PyArrayMethod_FromSpec_int(PyArrayMethod_Spec *spec, int private) | |||
| 388 | { | |||
| 389 | int nargs = spec->nin + spec->nout; | |||
| 390 | ||||
| 391 | if (spec->name == NULL((void*)0)) { | |||
| 392 | spec->name = "<unknown>"; | |||
| 393 | } | |||
| 394 | ||||
| 395 | if (validate_spec(spec) < 0) { | |||
| 396 | return NULL((void*)0); | |||
| 397 | } | |||
| 398 | ||||
| 399 | PyBoundArrayMethodObject *res; | |||
| 400 | res = PyObject_New(PyBoundArrayMethodObject, &PyBoundArrayMethod_Type)( (PyBoundArrayMethodObject *) _PyObject_New(&PyBoundArrayMethod_Type ) ); | |||
| 401 | if (res == NULL((void*)0)) { | |||
| 402 | return NULL((void*)0); | |||
| 403 | } | |||
| 404 | res->method = NULL((void*)0); | |||
| 405 | ||||
| 406 | res->dtypes = PyMem_Malloc(sizeof(PyArray_DTypeMeta *) * nargs); | |||
| 407 | if (res->dtypes == NULL((void*)0)) { | |||
| 408 | Py_DECREF(res)_Py_DECREF(((PyObject*)(res))); | |||
| 409 | PyErr_NoMemory(); | |||
| 410 | return NULL((void*)0); | |||
| 411 | } | |||
| 412 | for (int i = 0; i < nargs ; i++) { | |||
| 413 | Py_XINCREF(spec->dtypes[i])_Py_XINCREF(((PyObject*)(spec->dtypes[i]))); | |||
| 414 | res->dtypes[i] = spec->dtypes[i]; | |||
| 415 | } | |||
| 416 | ||||
| 417 | res->method = PyObject_New(PyArrayMethodObject, &PyArrayMethod_Type)( (PyArrayMethodObject *) _PyObject_New(&PyArrayMethod_Type ) ); | |||
| 418 | if (res->method == NULL((void*)0)) { | |||
| 419 | Py_DECREF(res)_Py_DECREF(((PyObject*)(res))); | |||
| 420 | PyErr_NoMemory(); | |||
| 421 | return NULL((void*)0); | |||
| 422 | } | |||
| 423 | memset((char *)(res->method) + sizeof(PyObject), 0, | |||
| 424 | sizeof(PyArrayMethodObject) - sizeof(PyObject)); | |||
| 425 | ||||
| 426 | res->method->nin = spec->nin; | |||
| 427 | res->method->nout = spec->nout; | |||
| 428 | res->method->flags = spec->flags; | |||
| 429 | res->method->casting = spec->casting; | |||
| 430 | if (fill_arraymethod_from_slots(res, spec, private) < 0) { | |||
| 431 | Py_DECREF(res)_Py_DECREF(((PyObject*)(res))); | |||
| 432 | return NULL((void*)0); | |||
| 433 | } | |||
| 434 | ||||
| 435 | Py_ssize_t length = strlen(spec->name); | |||
| 436 | res->method->name = PyMem_Malloc(length + 1); | |||
| 437 | if (res->method->name == NULL((void*)0)) { | |||
| 438 | Py_DECREF(res)_Py_DECREF(((PyObject*)(res))); | |||
| 439 | PyErr_NoMemory(); | |||
| 440 | return NULL((void*)0); | |||
| 441 | } | |||
| 442 | strcpy(res->method->name, spec->name); | |||
| 443 | ||||
| 444 | return res; | |||
| 445 | } | |||
| 446 | ||||
| 447 | ||||
| 448 | static void | |||
| 449 | arraymethod_dealloc(PyObject *self) | |||
| 450 | { | |||
| 451 | PyArrayMethodObject *meth; | |||
| 452 | meth = ((PyArrayMethodObject *)self); | |||
| 453 | ||||
| 454 | PyMem_Free(meth->name); | |||
| 455 | ||||
| 456 | Py_TYPE(self)(((PyObject*)(self))->ob_type)->tp_free(self); | |||
| 457 | } | |||
| 458 | ||||
| 459 | ||||
| 460 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyTypeObject PyArrayMethod_Type = { | |||
| 461 | PyVarObject_HEAD_INIT(NULL, 0){ { 1, ((void*)0) }, 0 }, | |||
| 462 | .tp_name = "numpy._ArrayMethod", | |||
| 463 | .tp_basicsize = sizeof(PyArrayMethodObject), | |||
| 464 | .tp_flags = Py_TPFLAGS_DEFAULT( 0 | (1UL << 18) | 0), | |||
| 465 | .tp_dealloc = arraymethod_dealloc, | |||
| 466 | }; | |||
| 467 | ||||
| 468 | ||||
| 469 | ||||
| 470 | static PyObject * | |||
| 471 | boundarraymethod_repr(PyBoundArrayMethodObject *self) | |||
| 472 | { | |||
| 473 | int nargs = self->method->nin + self->method->nout; | |||
| 474 | PyObject *dtypes = PyTuple_New(nargs); | |||
| ||||
| ||||
| 475 | if (dtypes == NULL((void*)0)) { | |||
| 476 | return NULL((void*)0); | |||
| 477 | } | |||
| 478 | for (int i = 0; i < nargs; i++) { | |||
| 479 | Py_INCREF(self->dtypes[i])_Py_INCREF(((PyObject*)(self->dtypes[i]))); | |||
| 480 | PyTuple_SET_ITEM(dtypes, i, (PyObject *)self->dtypes[i])PyTuple_SetItem(dtypes, i, (PyObject *)self->dtypes[i]); | |||
| 481 | } | |||
| 482 | return PyUnicode_FromFormat( | |||
| 483 | "<np._BoundArrayMethod `%s` for dtypes %S>", | |||
| 484 | self->method->name, dtypes); | |||
| 485 | } | |||
| 486 | ||||
| 487 | ||||
| 488 | static void | |||
| 489 | boundarraymethod_dealloc(PyObject *self) | |||
| 490 | { | |||
| 491 | PyBoundArrayMethodObject *meth; | |||
| 492 | meth = ((PyBoundArrayMethodObject *)self); | |||
| 493 | int nargs = meth->method->nin + meth->method->nout; | |||
| 494 | ||||
| 495 | for (int i = 0; i < nargs; i++) { | |||
| 496 | Py_XDECREF(meth->dtypes[i])_Py_XDECREF(((PyObject*)(meth->dtypes[i]))); | |||
| 497 | } | |||
| 498 | PyMem_Free(meth->dtypes); | |||
| 499 | ||||
| 500 | Py_XDECREF(meth->method)_Py_XDECREF(((PyObject*)(meth->method))); | |||
| 501 | ||||
| 502 | Py_TYPE(self)(((PyObject*)(self))->ob_type)->tp_free(self); | |||
| 503 | } | |||
| 504 | ||||
| 505 | ||||
| 506 | /* | |||
| 507 | * Calls resolve_descriptors() and returns the casting level and the resolved | |||
| 508 | * descriptors as a tuple. If the operation is impossible returns (-1, None). | |||
| 509 | * May raise an error, but usually should not. | |||
| 510 | * The function validates the casting attribute compared to the returned | |||
| 511 | * casting level. | |||
| 512 | * | |||
| 513 | * TODO: This function is not public API, and certain code paths will need | |||
| 514 | * changes and especially testing if they were to be made public. | |||
| 515 | */ | |||
| 516 | static PyObject * | |||
| 517 | boundarraymethod__resolve_descripors( | |||
| 518 | PyBoundArrayMethodObject *self, PyObject *descr_tuple) | |||
| 519 | { | |||
| 520 | int nin = self->method->nin; | |||
| 521 | int nout = self->method->nout; | |||
| 522 | ||||
| 523 | PyArray_Descr *given_descrs[NPY_MAXARGS32]; | |||
| 524 | PyArray_Descr *loop_descrs[NPY_MAXARGS32]; | |||
| 525 | ||||
| 526 | if (!PyTuple_CheckExact(descr_tuple)((((PyObject*)(descr_tuple))->ob_type) == &PyTuple_Type ) || | |||
| 527 | PyTuple_Size(descr_tuple) != nin + nout) { | |||
| 528 | PyErr_Format(PyExc_TypeError, | |||
| 529 | "_resolve_descriptors() takes exactly one tuple with as many " | |||
| 530 | "elements as the method takes arguments (%d+%d).", nin, nout); | |||
| 531 | return NULL((void*)0); | |||
| 532 | } | |||
| 533 | ||||
| 534 | for (int i = 0; i < nin + nout; i++) { | |||
| 535 | PyObject *tmp = PyTuple_GetItem(descr_tuple, i); | |||
| 536 | if (tmp == NULL((void*)0)) { | |||
| 537 | return NULL((void*)0); | |||
| 538 | } | |||
| 539 | else if (tmp == Py_None(&_Py_NoneStruct)) { | |||
| 540 | if (i < nin) { | |||
| 541 | PyErr_SetString(PyExc_TypeError, | |||
| 542 | "only output dtypes may be omitted (set to None)."); | |||
| 543 | return NULL((void*)0); | |||
| 544 | } | |||
| 545 | given_descrs[i] = NULL((void*)0); | |||
| 546 | } | |||
| 547 | else if (PyArray_DescrCheck(tmp)((((PyObject*)(tmp))->ob_type) == (&(*(PyTypeObject *) (&PyArrayDescr_TypeFull))) || PyType_IsSubtype((((PyObject *)(tmp))->ob_type), (&(*(PyTypeObject *)(&PyArrayDescr_TypeFull )))))) { | |||
| 548 | if (Py_TYPE(tmp)(((PyObject*)(tmp))->ob_type) != (PyTypeObject *)self->dtypes[i]) { | |||
| 549 | PyErr_Format(PyExc_TypeError, | |||
| 550 | "input dtype %S was not an exact instance of the bound " | |||
| 551 | "DType class %S.", tmp, self->dtypes[i]); | |||
| 552 | return NULL((void*)0); | |||
| 553 | } | |||
| 554 | given_descrs[i] = (PyArray_Descr *)tmp; | |||
| 555 | } | |||
| 556 | else { | |||
| 557 | PyErr_SetString(PyExc_TypeError, | |||
| 558 | "dtype tuple can only contain dtype instances or None."); | |||
| 559 | return NULL((void*)0); | |||
| 560 | } | |||
| 561 | } | |||
| 562 | ||||
| 563 | NPY_CASTING casting = self->method->resolve_descriptors( | |||
| 564 | self->method, self->dtypes, given_descrs, loop_descrs); | |||
| 565 | ||||
| 566 | if (casting < 0 && PyErr_Occurred()) { | |||
| 567 | return NULL((void*)0); | |||
| 568 | } | |||
| 569 | else if (casting < 0) { | |||
| 570 | return Py_BuildValue("iO", casting, Py_None(&_Py_NoneStruct)); | |||
| 571 | } | |||
| 572 | ||||
| 573 | PyObject *result_tuple = PyTuple_New(nin + nout); | |||
| 574 | if (result_tuple == NULL((void*)0)) { | |||
| 575 | return NULL((void*)0); | |||
| 576 | } | |||
| 577 | for (int i = 0; i < nin + nout; i++) { | |||
| 578 | /* transfer ownership to the tuple. */ | |||
| 579 | PyTuple_SET_ITEM(result_tuple, i, (PyObject *)loop_descrs[i])PyTuple_SetItem(result_tuple, i, (PyObject *)loop_descrs[i]); | |||
| 580 | } | |||
| 581 | ||||
| 582 | /* | |||
| 583 | * The casting flags should be the most generic casting level (except the | |||
| 584 | * cast-is-view flag. If no input is parametric, it must match exactly. | |||
| 585 | * | |||
| 586 | * (Note that these checks are only debugging checks.) | |||
| 587 | */ | |||
| 588 | int parametric = 0; | |||
| 589 | for (int i = 0; i < nin + nout; i++) { | |||
| 590 | if (self->dtypes[i]->parametric) { | |||
| 591 | parametric = 1; | |||
| 592 | break; | |||
| 593 | } | |||
| 594 | } | |||
| 595 | if (self->method->casting != -1) { | |||
| 596 | NPY_CASTING cast = casting & ~_NPY_CAST_IS_VIEW; | |||
| 597 | if (self->method->casting != | |||
| 598 | PyArray_MinCastSafety(cast, self->method->casting)) { | |||
| 599 | PyErr_Format(PyExc_RuntimeError, | |||
| 600 | "resolve_descriptors cast level did not match stored one. " | |||
| 601 | "(set level is %d, got %d for method %s)", | |||
| 602 | self->method->casting, cast, self->method->name); | |||
| 603 | Py_DECREF(result_tuple)_Py_DECREF(((PyObject*)(result_tuple))); | |||
| 604 | return NULL((void*)0); | |||
| 605 | } | |||
| 606 | if (!parametric) { | |||
| 607 | /* | |||
| 608 | * Non-parametric can only mismatch if it switches from equiv to no | |||
| 609 | * (e.g. due to byteorder changes). | |||
| 610 | */ | |||
| 611 | if (cast != self->method->casting && | |||
| 612 | self->method->casting != NPY_EQUIV_CASTING) { | |||
| 613 | PyErr_Format(PyExc_RuntimeError, | |||
| 614 | "resolve_descriptors cast level changed even though " | |||
| 615 | "the cast is non-parametric where the only possible " | |||
| 616 | "change should be from equivalent to no casting. " | |||
| 617 | "(set level is %d, got %d for method %s)", | |||
| 618 | self->method->casting, cast, self->method->name); | |||
| 619 | Py_DECREF(result_tuple)_Py_DECREF(((PyObject*)(result_tuple))); | |||
| 620 | return NULL((void*)0); | |||
| 621 | } | |||
| 622 | } | |||
| 623 | } | |||
| 624 | ||||
| 625 | return Py_BuildValue("iN", casting, result_tuple); | |||
| 626 | } | |||
| 627 | ||||
| 628 | ||||
| 629 | /* | |||
| 630 | * TODO: This function is not public API, and certain code paths will need | |||
| 631 | * changes and especially testing if they were to be made public. | |||
| 632 | */ | |||
| 633 | static PyObject * | |||
| 634 | boundarraymethod__simple_strided_call( | |||
| 635 | PyBoundArrayMethodObject *self, PyObject *arr_tuple) | |||
| 636 | { | |||
| 637 | PyArrayObject *arrays[NPY_MAXARGS32]; | |||
| 638 | PyArray_Descr *descrs[NPY_MAXARGS32]; | |||
| 639 | PyArray_Descr *out_descrs[NPY_MAXARGS32]; | |||
| 640 | Py_ssize_t length = -1; | |||
| 641 | int aligned = 1; | |||
| 642 | char *args[NPY_MAXARGS32]; | |||
| 643 | npy_intp strides[NPY_MAXARGS32]; | |||
| 644 | int nin = self->method->nin; | |||
| 645 | int nout = self->method->nout; | |||
| 646 | ||||
| 647 | if (!PyTuple_CheckExact(arr_tuple)((((PyObject*)(arr_tuple))->ob_type) == &PyTuple_Type) || | |||
| 648 | PyTuple_Size(arr_tuple) != nin + nout) { | |||
| 649 | PyErr_Format(PyExc_TypeError, | |||
| 650 | "_simple_strided_call() takes exactly one tuple with as many " | |||
| 651 | "arrays as the method takes arguments (%d+%d).", nin, nout); | |||
| 652 | return NULL((void*)0); | |||
| 653 | } | |||
| 654 | ||||
| 655 | for (int i = 0; i < nin + nout; i++) { | |||
| 656 | PyObject *tmp = PyTuple_GetItem(arr_tuple, i); | |||
| 657 | if (tmp == NULL((void*)0)) { | |||
| 658 | return NULL((void*)0); | |||
| 659 | } | |||
| 660 | else if (!PyArray_CheckExact(tmp)(((PyObject*)(tmp))->ob_type == &PyArray_Type)) { | |||
| 661 | PyErr_SetString(PyExc_TypeError, | |||
| 662 | "All inputs must be NumPy arrays."); | |||
| 663 | return NULL((void*)0); | |||
| 664 | } | |||
| 665 | arrays[i] = (PyArrayObject *)tmp; | |||
| 666 | descrs[i] = PyArray_DESCR(arrays[i]); | |||
| 667 | ||||
| 668 | /* Check that the input is compatible with a simple method call. */ | |||
| 669 | if (Py_TYPE(descrs[i])(((PyObject*)(descrs[i]))->ob_type) != (PyTypeObject *)self->dtypes[i]) { | |||
| 670 | PyErr_Format(PyExc_TypeError, | |||
| 671 | "input dtype %S was not an exact instance of the bound " | |||
| 672 | "DType class %S.", descrs[i], self->dtypes[i]); | |||
| 673 | return NULL((void*)0); | |||
| 674 | } | |||
| 675 | if (PyArray_NDIM(arrays[i]) != 1) { | |||
| 676 | PyErr_SetString(PyExc_ValueError, | |||
| 677 | "All arrays must be one dimensional."); | |||
| 678 | return NULL((void*)0); | |||
| 679 | } | |||
| 680 | if (i == 0) { | |||
| 681 | length = PyArray_SIZE(arrays[i])PyArray_MultiplyList(PyArray_DIMS(arrays[i]), PyArray_NDIM(arrays [i])); | |||
| 682 | } | |||
| 683 | else if (PyArray_SIZE(arrays[i])PyArray_MultiplyList(PyArray_DIMS(arrays[i]), PyArray_NDIM(arrays [i])) != length) { | |||
| 684 | PyErr_SetString(PyExc_ValueError, | |||
| 685 | "All arrays must have the same length."); | |||
| 686 | return NULL((void*)0); | |||
| 687 | } | |||
| 688 | if (i >= nout) { | |||
| 689 | if (PyArray_FailUnlessWriteable( | |||
| 690 | arrays[i], "_simple_strided_call() output") < 0) { | |||
| 691 | return NULL((void*)0); | |||
| 692 | } | |||
| 693 | } | |||
| 694 | ||||
| 695 | args[i] = PyArray_BYTES(arrays[i]); | |||
| 696 | strides[i] = PyArray_STRIDES(arrays[i])[0]; | |||
| 697 | /* TODO: We may need to distinguish aligned and itemsize-aligned */ | |||
| 698 | aligned &= PyArray_ISALIGNED(arrays[i])PyArray_CHKFLAGS((arrays[i]), 0x0100); | |||
| 699 | } | |||
| 700 | if (!aligned && !(self->method->flags & NPY_METH_SUPPORTS_UNALIGNED)) { | |||
| 701 | PyErr_SetString(PyExc_ValueError, | |||
| 702 | "method does not support unaligned input."); | |||
| 703 | return NULL((void*)0); | |||
| 704 | } | |||
| 705 | ||||
| 706 | NPY_CASTING casting = self->method->resolve_descriptors( | |||
| 707 | self->method, self->dtypes, descrs, out_descrs); | |||
| 708 | ||||
| 709 | if (casting < 0) { | |||
| 710 | PyObject *err_type = NULL((void*)0), *err_value = NULL((void*)0), *err_traceback = NULL((void*)0); | |||
| 711 | PyErr_Fetch(&err_type, &err_value, &err_traceback); | |||
| 712 | PyErr_SetString(PyExc_TypeError, | |||
| 713 | "cannot perform method call with the given dtypes."); | |||
| 714 | npy_PyErr_ChainExceptions(err_type, err_value, err_traceback); | |||
| 715 | return NULL((void*)0); | |||
| 716 | } | |||
| 717 | ||||
| 718 | int dtypes_were_adapted = 0; | |||
| 719 | for (int i = 0; i < nin + nout; i++) { | |||
| 720 | /* NOTE: This check is probably much stricter than necessary... */ | |||
| 721 | dtypes_were_adapted |= descrs[i] != out_descrs[i]; | |||
| 722 | Py_DECREF(out_descrs[i])_Py_DECREF(((PyObject*)(out_descrs[i]))); | |||
| 723 | } | |||
| 724 | if (dtypes_were_adapted) { | |||
| 725 | PyErr_SetString(PyExc_TypeError, | |||
| 726 | "_simple_strided_call(): requires dtypes to not require a cast " | |||
| 727 | "(must match exactly with `_resolve_descriptors()`)."); | |||
| 728 | return NULL((void*)0); | |||
| 729 | } | |||
| 730 | ||||
| 731 | PyArrayMethod_Context context = { | |||
| 732 | .caller = NULL((void*)0), | |||
| 733 | .method = self->method, | |||
| 734 | .descriptors = descrs, | |||
| 735 | }; | |||
| 736 | PyArrayMethod_StridedLoop *strided_loop = NULL((void*)0); | |||
| 737 | NpyAuxData *loop_data = NULL((void*)0); | |||
| 738 | NPY_ARRAYMETHOD_FLAGS flags = 0; | |||
| 739 | ||||
| 740 | if (self->method->get_strided_loop( | |||
| 741 | &context, aligned, 0, strides, | |||
| 742 | &strided_loop, &loop_data, &flags) < 0) { | |||
| 743 | return NULL((void*)0); | |||
| 744 | } | |||
| 745 | ||||
| 746 | /* | |||
| 747 | * TODO: Add floating point error checks if requested and | |||
| 748 | * possibly release GIL if allowed by the flags. | |||
| 749 | */ | |||
| 750 | int res = strided_loop(&context, args, &length, strides, loop_data); | |||
| 751 | if (loop_data != NULL((void*)0)) { | |||
| 752 | loop_data->free(loop_data); | |||
| 753 | } | |||
| 754 | if (res < 0) { | |||
| 755 | return NULL((void*)0); | |||
| 756 | } | |||
| 757 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
| 758 | } | |||
| 759 | ||||
| 760 | ||||
| 761 | PyMethodDef boundarraymethod_methods[] = { | |||
| 762 | {"_resolve_descriptors", (PyCFunction)boundarraymethod__resolve_descripors, | |||
| 763 | METH_O0x0008, "Resolve the given dtypes."}, | |||
| 764 | {"_simple_strided_call", (PyCFunction)boundarraymethod__simple_strided_call, | |||
| 765 | METH_O0x0008, "call on 1-d inputs and pre-allocated outputs (single call)."}, | |||
| 766 | {NULL((void*)0), 0, 0, NULL((void*)0)}, | |||
| 767 | }; | |||
| 768 | ||||
| 769 | ||||
| 770 | static PyObject * | |||
| 771 | boundarraymethod__supports_unaligned(PyBoundArrayMethodObject *self) | |||
| 772 | { | |||
| 773 | return PyBool_FromLong(self->method->flags & NPY_METH_SUPPORTS_UNALIGNED); | |||
| 774 | } | |||
| 775 | ||||
| 776 | ||||
| 777 | PyGetSetDef boundarraymethods_getters[] = { | |||
| 778 | {"_supports_unaligned", | |||
| 779 | (getter)boundarraymethod__supports_unaligned, NULL((void*)0), | |||
| 780 | "whether the method supports unaligned inputs/outputs.", NULL((void*)0)}, | |||
| 781 | {NULL((void*)0), NULL((void*)0), NULL((void*)0), NULL((void*)0), NULL((void*)0)}, | |||
| 782 | }; | |||
| 783 | ||||
| 784 | ||||
| 785 | NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyTypeObject PyBoundArrayMethod_Type = { | |||
| 786 | PyVarObject_HEAD_INIT(NULL, 0){ { 1, ((void*)0) }, 0 }, | |||
| 787 | .tp_name = "numpy._BoundArrayMethod", | |||
| 788 | .tp_basicsize = sizeof(PyBoundArrayMethodObject), | |||
| 789 | .tp_flags = Py_TPFLAGS_DEFAULT( 0 | (1UL << 18) | 0), | |||
| 790 | .tp_repr = (reprfunc)boundarraymethod_repr, | |||
| 791 | .tp_dealloc = boundarraymethod_dealloc, | |||
| 792 | .tp_methods = boundarraymethod_methods, | |||
| 793 | .tp_getset = boundarraymethods_getters, | |||
| 794 | }; |
| 1 | #ifndef PyTuple_New |
| 2 | struct _object; |
| 3 | typedef struct _object PyObject; |
| 4 | PyObject* clang_analyzer_PyObject_New_Reference(); |
| 5 | PyObject* PyTuple_New(Py_ssize_t len) { |
| 6 | return clang_analyzer_PyObject_New_Reference(); |
| 7 | } |
| 8 | #else |
| 9 | #warning "API PyTuple_New is defined as a macro." |
| 10 | #endif |