Bug Summary

File:numpy/core/src/multiarray/array_method.c
Warning:line 474, column 24
PyObject ownership leak with reference count of 1

Annotated Source Code

Press '?' to see keyboard shortcuts

clang -cc1 -cc1 -triple x86_64-unknown-linux-gnu -analyze -disable-free -disable-llvm-verifier -discard-value-names -main-file-name array_method.c -analyzer-store=region -analyzer-opt-analyze-nested-blocks -analyzer-checker=core -analyzer-checker=apiModeling -analyzer-checker=unix -analyzer-checker=deadcode -analyzer-checker=security.insecureAPI.UncheckedReturn -analyzer-checker=security.insecureAPI.getpw -analyzer-checker=security.insecureAPI.gets -analyzer-checker=security.insecureAPI.mktemp -analyzer-checker=security.insecureAPI.mkstemp -analyzer-checker=security.insecureAPI.vfork -analyzer-checker=nullability.NullPassedToNonnull -analyzer-checker=nullability.NullReturnedFromNonnull -analyzer-output plist -w -analyzer-output=html -analyzer-checker=python -analyzer-disable-checker=deadcode -analyzer-config prune-paths=true,suppress-c++-stdlib=true,suppress-null-return-paths=false,crosscheck-with-z3=true,model-path=/opt/pyrefcon/lib/pyrefcon/models/models -analyzer-config experimental-enable-naive-ctu-analysis=true,ctu-dir=/tmp/pyrefcon/numpy/csa-scan,ctu-index-name=/tmp/pyrefcon/numpy/csa-scan/externalDefMap.txt,ctu-invocation-list=/tmp/pyrefcon/numpy/csa-scan/invocations.yaml,display-ctu-progress=false -setup-static-analyzer -analyzer-config-compatibility-mode=true -mrelocation-model pic -pic-level 2 -fhalf-no-semantic-interposition -mframe-pointer=none -fmath-errno -fno-rounding-math -mconstructor-aliases -munwind-tables -target-cpu x86-64 -target-feature +sse -target-feature +sse2 -target-feature +sse3 -tune-cpu generic -debug-info-kind=limited -dwarf-version=4 -debugger-tuning=gdb -fcoverage-compilation-dir=/tmp/pyrefcon/numpy -resource-dir /opt/pyrefcon/lib/clang/13.0.0 -isystem /opt/pyrefcon/lib/pyrefcon/models/python3.8 -D NDEBUG -D _FORTIFY_SOURCE=2 -D NPY_INTERNAL_BUILD=1 -D HAVE_NPY_CONFIG_H=1 -D _FILE_OFFSET_BITS=64 -D _LARGEFILE_SOURCE=1 -D _LARGEFILE64_SOURCE=1 -I build/src.linux-x86_64-3.8/numpy/core/src/common -I build/src.linux-x86_64-3.8/numpy/core/src/umath -I numpy/core/include -I build/src.linux-x86_64-3.8/numpy/core/include/numpy -I build/src.linux-x86_64-3.8/numpy/distutils/include -I numpy/core/src/common -I numpy/core/src -I numpy/core -I numpy/core/src/npymath -I numpy/core/src/multiarray -I numpy/core/src/umath -I numpy/core/src/npysort -I numpy/core/src/_simd -I build/src.linux-x86_64-3.8/numpy/core/src/common -I build/src.linux-x86_64-3.8/numpy/core/src/npymath -internal-isystem /opt/pyrefcon/lib/clang/13.0.0/include -internal-isystem /usr/local/include -internal-isystem /usr/lib/gcc/x86_64-linux-gnu/10/../../../../x86_64-linux-gnu/include -internal-externc-isystem /usr/include/x86_64-linux-gnu -internal-externc-isystem /include -internal-externc-isystem /usr/include -O2 -Wno-unused-result -Wsign-compare -Wall -Wformat -Werror=format-security -Wformat -Werror=format-security -Wdate-time -fdebug-compilation-dir=/tmp/pyrefcon/numpy -ferror-limit 19 -fwrapv -pthread -stack-protector 2 -fgnuc-version=4.2.1 -vectorize-loops -vectorize-slp -faddrsig -D__GCC_HAVE_DWARF2_CFI_ASM=1 -o /tmp/pyrefcon/numpy/csa-scan/reports -x c numpy/core/src/multiarray/array_method.c

numpy/core/src/multiarray/array_method.c

1/*
2 * This file implements an abstraction layer for "Array methods", which
3 * work with a specific DType class input and provide low-level C function
4 * pointers to do fast operations on the given input functions.
5 * It thus adds an abstraction layer around individual ufunc loops.
6 *
7 * Unlike methods, a ArrayMethod can have multiple inputs and outputs.
8 * This has some serious implication for garbage collection, and as far
9 * as I (@seberg) understands, it is not possible to always guarantee correct
10 * cyclic garbage collection of dynamically created DTypes with methods.
11 * The keyword (or rather the solution) for this seems to be an "ephemeron"
12 * which I believe should allow correct garbage collection but seems
13 * not implemented in Python at this time.
14 * The vast majority of use-cases will not require correct garbage collection.
15 * Some use cases may require the user to be careful.
16 *
17 * Generally there are two main ways to solve this issue:
18 *
19 * 1. A method with a single input (or inputs of all the same DTypes) can
20 * be "owned" by that DType (it becomes unusable when the DType is deleted).
21 * This holds especially for all casts, which must have a defined output
22 * DType and must hold on to it strongly.
23 * 2. A method which can infer the output DType(s) from the input types does
24 * not need to keep the output type alive. (It can use NULL for the type,
25 * or an abstract base class which is known to be persistent.)
26 * It is then sufficient for a ufunc (or other owner) to only hold a
27 * weak reference to the input DTypes.
28 */
29
30
31#define NPY_NO_DEPRECATED_API0x0000000E NPY_API_VERSION0x0000000E
32#define _MULTIARRAYMODULE
33#include <npy_pycompat.h>
34#include "arrayobject.h"
35#include "array_method.h"
36#include "dtypemeta.h"
37#include "common_dtype.h"
38#include "convert_datatype.h"
39
40
41/*
42 * The default descriptor resolution function. The logic is as follows:
43 *
44 * 1. The output is ensured to be canonical (currently native byte order),
45 * if it is of the correct DType.
46 * 2. If any DType is was not defined, it is replaced by the common DType
47 * of all inputs. (If that common DType is parametric, this is an error.)
48 *
49 * We could allow setting the output descriptors specifically to simplify
50 * this step.
51 */
52static NPY_CASTING
53default_resolve_descriptors(
54 PyArrayMethodObject *method,
55 PyArray_DTypeMeta **dtypes,
56 PyArray_Descr **input_descrs,
57 PyArray_Descr **output_descrs)
58{
59 int nin = method->nin;
60 int nout = method->nout;
61 int all_defined = 1;
62
63 for (int i = 0; i < nin + nout; i++) {
64 PyArray_DTypeMeta *dtype = dtypes[i];
65 if (dtype == NULL((void*)0)) {
66 output_descrs[i] = NULL((void*)0);
67 all_defined = 0;
68 continue;
69 }
70 if (NPY_DTYPE(input_descrs[i])((PyArray_DTypeMeta *)(((PyObject*)(input_descrs[i]))->ob_type
))
== dtype) {
71 output_descrs[i] = ensure_dtype_nbo(input_descrs[i]);
72 }
73 else {
74 output_descrs[i] = dtype->default_descr(dtype);
75 }
76 if (NPY_UNLIKELY(output_descrs[i] == NULL)__builtin_expect(!!(output_descrs[i] == ((void*)0)), 0)) {
77 goto fail;
78 }
79 }
80 if (all_defined) {
81 return method->casting;
82 }
83
84 if (NPY_UNLIKELY(nin == 0 || dtypes[0] == NULL)__builtin_expect(!!(nin == 0 || dtypes[0] == ((void*)0)), 0)) {
85 /* Registration should reject this, so this would be indicates a bug */
86 PyErr_SetString(PyExc_RuntimeError,
87 "Invalid use of default resolver without inputs or with "
88 "input or output DType incorrectly missing.");
89 goto fail;
90 }
91 /* We find the common dtype of all inputs, and use it for the unknowns */
92 PyArray_DTypeMeta *common_dtype = dtypes[0];
93 assert(common_dtype != NULL)((void) (0));
94 for (int i = 1; i < nin; i++) {
95 Py_SETREF(common_dtype, PyArray_CommonDType(common_dtype, dtypes[i]))do { PyObject *_py_tmp = ((PyObject*)(common_dtype)); (common_dtype
) = (PyArray_CommonDType(common_dtype, dtypes[i])); _Py_DECREF
(((PyObject*)(_py_tmp))); } while (0)
;
96 if (common_dtype == NULL((void*)0)) {
97 goto fail;
98 }
99 }
100 for (int i = nin; i < nin + nout; i++) {
101 if (output_descrs[i] != NULL((void*)0)) {
102 continue;
103 }
104 if (NPY_DTYPE(input_descrs[i])((PyArray_DTypeMeta *)(((PyObject*)(input_descrs[i]))->ob_type
))
== common_dtype) {
105 output_descrs[i] = ensure_dtype_nbo(input_descrs[i]);
106 }
107 else {
108 output_descrs[i] = common_dtype->default_descr(common_dtype);
109 }
110 if (NPY_UNLIKELY(output_descrs[i] == NULL)__builtin_expect(!!(output_descrs[i] == ((void*)0)), 0)) {
111 goto fail;
112 }
113 }
114
115 return method->casting;
116
117 fail:
118 for (int i = 0; i < nin + nout; i++) {
119 Py_XDECREF(output_descrs[i])_Py_XDECREF(((PyObject*)(output_descrs[i])));
120 }
121 return -1;
122}
123
124
125NPY_INLINEinline static int
126is_contiguous(
127 npy_intp const *strides, PyArray_Descr *const *descriptors, int nargs)
128{
129 for (int i = 0; i < nargs; i++) {
130 if (strides[i] != descriptors[i]->elsize) {
131 return 0;
132 }
133 }
134 return 1;
135}
136
137
138/**
139 * The default method to fetch the correct loop for a cast or ufunc
140 * (at the time of writing only casts).
141 * The default version can return loops explicitly registered during method
142 * creation. It does specialize contiguous loops, although has to check
143 * all descriptors itemsizes for this.
144 *
145 * @param context
146 * @param aligned
147 * @param move_references UNUSED.
148 * @param strides
149 * @param descriptors
150 * @param out_loop
151 * @param out_transferdata
152 * @param flags
153 * @return 0 on success -1 on failure.
154 */
155NPY_NO_EXPORT__attribute__((visibility("hidden"))) int
156npy_default_get_strided_loop(
157 PyArrayMethod_Context *context,
158 int aligned, int NPY_UNUSED(move_references)(__NPY_UNUSED_TAGGEDmove_references) __attribute__ ((__unused__
))
, npy_intp *strides,
159 PyArrayMethod_StridedLoop **out_loop, NpyAuxData **out_transferdata,
160 NPY_ARRAYMETHOD_FLAGS *flags)
161{
162 PyArray_Descr **descrs = context->descriptors;
163 PyArrayMethodObject *meth = context->method;
164 *flags = meth->flags & NPY_METH_RUNTIME_FLAGS;
165 *out_transferdata = NULL((void*)0);
166
167 int nargs = meth->nin + meth->nout;
168 if (aligned) {
169 if (meth->contiguous_loop == NULL((void*)0) ||
170 !is_contiguous(strides, descrs, nargs)) {
171 *out_loop = meth->strided_loop;
172 return 0;
173 }
174 *out_loop = meth->contiguous_loop;
175 }
176 else {
177 if (meth->unaligned_contiguous_loop == NULL((void*)0) ||
178 !is_contiguous(strides, descrs, nargs)) {
179 *out_loop = meth->unaligned_strided_loop;
180 return 0;
181 }
182 *out_loop = meth->unaligned_contiguous_loop;
183 }
184 return 0;
185}
186
187
188/**
189 * Validate that the input is usable to create a new ArrayMethod.
190 *
191 * @param spec
192 * @return 0 on success -1 on error.
193 */
194static int
195validate_spec(PyArrayMethod_Spec *spec)
196{
197 int nargs = spec->nin + spec->nout;
198 /* Check the passed spec for invalid fields/values */
199 if (spec->nin < 0 || spec->nout < 0 || nargs > NPY_MAXARGS32) {
200 PyErr_Format(PyExc_ValueError,
201 "ArrayMethod inputs and outputs must be greater zero and"
202 "not exceed %d. (method: %s)", NPY_MAXARGS32, spec->name);
203 return -1;
204 }
205 switch (spec->casting & ~_NPY_CAST_IS_VIEW) {
206 case NPY_NO_CASTING:
207 case NPY_EQUIV_CASTING:
208 case NPY_SAFE_CASTING:
209 case NPY_SAME_KIND_CASTING:
210 case NPY_UNSAFE_CASTING:
211 break;
212 default:
213 if (spec->casting != -1) {
214 PyErr_Format(PyExc_TypeError,
215 "ArrayMethod has invalid casting `%d`. (method: %s)",
216 spec->casting, spec->name);
217 return -1;
218 }
219 }
220
221 for (int i = 0; i < nargs; i++) {
222 if (spec->dtypes[i] == NULL((void*)0) && i < spec->nin) {
223 PyErr_Format(PyExc_TypeError,
224 "ArrayMethod must have well defined input DTypes. "
225 "(method: %s)", spec->name);
226 return -1;
227 }
228 if (!PyObject_TypeCheck(spec->dtypes[i], &PyArrayDTypeMeta_Type)((((PyObject*)(spec->dtypes[i]))->ob_type) == (&PyArrayDTypeMeta_Type
) || PyType_IsSubtype((((PyObject*)(spec->dtypes[i]))->
ob_type), (&PyArrayDTypeMeta_Type)))
) {
229 PyErr_Format(PyExc_TypeError,
230 "ArrayMethod provided object %R is not a DType."
231 "(method: %s)", spec->dtypes[i], spec->name);
232 return -1;
233 }
234 if (spec->dtypes[i]->abstract && i < spec->nin) {
235 PyErr_Format(PyExc_TypeError,
236 "abstract DType %S are currently not allowed for inputs."
237 "(method: %s defined at %s)", spec->dtypes[i], spec->name);
238 return -1;
239 }
240 }
241 return 0;
242}
243
244
245/**
246 * Initialize a new BoundArrayMethodObject from slots. Slots which are
247 * not provided may be filled with defaults.
248 *
249 * @param res The new PyBoundArrayMethodObject to be filled.
250 * @param spec The specification list passed by the user.
251 * @param private Private flag to limit certain slots to use in NumPy.
252 * @return -1 on error 0 on success
253 */
254static int
255fill_arraymethod_from_slots(
256 PyBoundArrayMethodObject *res, PyArrayMethod_Spec *spec,
257 int private)
258{
259 PyArrayMethodObject *meth = res->method;
260
261 /* Set the defaults */
262 meth->get_strided_loop = &npy_default_get_strided_loop;
263 meth->resolve_descriptors = &default_resolve_descriptors;
264
265 /* Fill in the slots passed by the user */
266 /*
267 * TODO: This is reasonable for now, but it would be nice to find a
268 * shorter solution, and add some additional error checking (e.g.
269 * the same slot used twice). Python uses an array of slot offsets.
270 */
271 for (PyType_Slot *slot = &spec->slots[0]; slot->slot != 0; slot++) {
272 switch (slot->slot) {
273 case NPY_METH_resolve_descriptors1:
274 meth->resolve_descriptors = slot->pfunc;
275 continue;
276 case NPY_METH_get_loop2:
277 if (private) {
278 /* Only allow override for private functions initially */
279 meth->get_strided_loop = slot->pfunc;
280 continue;
281 }
282 break;
283 case NPY_METH_strided_loop3:
284 meth->strided_loop = slot->pfunc;
285 continue;
286 case NPY_METH_contiguous_loop4:
287 meth->contiguous_loop = slot->pfunc;
288 continue;
289 case NPY_METH_unaligned_strided_loop5:
290 meth->unaligned_strided_loop = slot->pfunc;
291 continue;
292 case NPY_METH_unaligned_contiguous_loop6:
293 meth->unaligned_contiguous_loop = slot->pfunc;
294 continue;
295 default:
296 break;
297 }
298 PyErr_Format(PyExc_RuntimeError,
299 "invalid slot number %d to ArrayMethod: %s",
300 slot->slot, spec->name);
301 return -1;
302 }
303
304 /* Check whether the slots are valid: */
305 if (meth->resolve_descriptors == &default_resolve_descriptors) {
306 if (spec->casting == -1) {
307 PyErr_Format(PyExc_TypeError,
308 "Cannot set casting to -1 (invalid) when not providing "
309 "the default `resolve_descriptors` function. "
310 "(method: %s)", spec->name);
311 return -1;
312 }
313 for (int i = 0; i < meth->nin + meth->nout; i++) {
314 if (res->dtypes[i] == NULL((void*)0)) {
315 if (i < meth->nin) {
316 PyErr_Format(PyExc_TypeError,
317 "All input DTypes must be specified when using "
318 "the default `resolve_descriptors` function. "
319 "(method: %s)", spec->name);
320 return -1;
321 }
322 else if (meth->nin == 0) {
323 PyErr_Format(PyExc_TypeError,
324 "Must specify output DTypes or use custom "
325 "`resolve_descriptors` when there are no inputs. "
326 "(method: %s defined at %s)", spec->name);
327 return -1;
328 }
329 }
330 if (i >= meth->nin && res->dtypes[i]->parametric) {
331 PyErr_Format(PyExc_TypeError,
332 "must provide a `resolve_descriptors` function if any "
333 "output DType is parametric. (method: %s)",
334 spec->name);
335 return -1;
336 }
337 }
338 }
339 if (meth->get_strided_loop != &npy_default_get_strided_loop) {
340 /* Do not check the actual loop fields. */
341 return 0;
342 }
343
344 /* Check whether the provided loops make sense. */
345 if (meth->strided_loop == NULL((void*)0)) {
346 PyErr_Format(PyExc_TypeError,
347 "Must provide a strided inner loop function. (method: %s)",
348 spec->name);
349 return -1;
350 }
351 if (meth->contiguous_loop == NULL((void*)0)) {
352 meth->contiguous_loop = meth->strided_loop;
353 }
354 if (meth->unaligned_contiguous_loop != NULL((void*)0) &&
355 meth->unaligned_strided_loop == NULL((void*)0)) {
356 PyErr_Format(PyExc_TypeError,
357 "Must provide unaligned strided inner loop when providing "
358 "a contiguous version. (method: %s)", spec->name);
359 return -1;
360 }
361 if ((meth->unaligned_strided_loop == NULL((void*)0)) !=
362 !(meth->flags & NPY_METH_SUPPORTS_UNALIGNED)) {
363 PyErr_Format(PyExc_TypeError,
364 "Must provide unaligned strided inner loop when providing "
365 "a contiguous version. (method: %s)", spec->name);
366 return -1;
367 }
368
369 return 0;
370}
371
372
373/**
374 * Create a new ArrayMethod (internal version).
375 *
376 * @param name A name for the individual method, may be NULL.
377 * @param spec A filled context object to pass generic information about
378 * the method (such as usually needing the API, and the DTypes).
379 * Unused fields must be NULL.
380 * @param slots Slots with the correct pair of IDs and (function) pointers.
381 * @param private Some slots are currently considered private, if not true,
382 * these will be rejected.
383 *
384 * @returns A new (bound) ArrayMethod object.
385 */
386NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyBoundArrayMethodObject *
387PyArrayMethod_FromSpec_int(PyArrayMethod_Spec *spec, int private)
388{
389 int nargs = spec->nin + spec->nout;
390
391 if (spec->name == NULL((void*)0)) {
392 spec->name = "<unknown>";
393 }
394
395 if (validate_spec(spec) < 0) {
396 return NULL((void*)0);
397 }
398
399 PyBoundArrayMethodObject *res;
400 res = PyObject_New(PyBoundArrayMethodObject, &PyBoundArrayMethod_Type)( (PyBoundArrayMethodObject *) _PyObject_New(&PyBoundArrayMethod_Type
) )
;
401 if (res == NULL((void*)0)) {
402 return NULL((void*)0);
403 }
404 res->method = NULL((void*)0);
405
406 res->dtypes = PyMem_Malloc(sizeof(PyArray_DTypeMeta *) * nargs);
407 if (res->dtypes == NULL((void*)0)) {
408 Py_DECREF(res)_Py_DECREF(((PyObject*)(res)));
409 PyErr_NoMemory();
410 return NULL((void*)0);
411 }
412 for (int i = 0; i < nargs ; i++) {
413 Py_XINCREF(spec->dtypes[i])_Py_XINCREF(((PyObject*)(spec->dtypes[i])));
414 res->dtypes[i] = spec->dtypes[i];
415 }
416
417 res->method = PyObject_New(PyArrayMethodObject, &PyArrayMethod_Type)( (PyArrayMethodObject *) _PyObject_New(&PyArrayMethod_Type
) )
;
418 if (res->method == NULL((void*)0)) {
419 Py_DECREF(res)_Py_DECREF(((PyObject*)(res)));
420 PyErr_NoMemory();
421 return NULL((void*)0);
422 }
423 memset((char *)(res->method) + sizeof(PyObject), 0,
424 sizeof(PyArrayMethodObject) - sizeof(PyObject));
425
426 res->method->nin = spec->nin;
427 res->method->nout = spec->nout;
428 res->method->flags = spec->flags;
429 res->method->casting = spec->casting;
430 if (fill_arraymethod_from_slots(res, spec, private) < 0) {
431 Py_DECREF(res)_Py_DECREF(((PyObject*)(res)));
432 return NULL((void*)0);
433 }
434
435 Py_ssize_t length = strlen(spec->name);
436 res->method->name = PyMem_Malloc(length + 1);
437 if (res->method->name == NULL((void*)0)) {
438 Py_DECREF(res)_Py_DECREF(((PyObject*)(res)));
439 PyErr_NoMemory();
440 return NULL((void*)0);
441 }
442 strcpy(res->method->name, spec->name);
443
444 return res;
445}
446
447
448static void
449arraymethod_dealloc(PyObject *self)
450{
451 PyArrayMethodObject *meth;
452 meth = ((PyArrayMethodObject *)self);
453
454 PyMem_Free(meth->name);
455
456 Py_TYPE(self)(((PyObject*)(self))->ob_type)->tp_free(self);
457}
458
459
460NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyTypeObject PyArrayMethod_Type = {
461 PyVarObject_HEAD_INIT(NULL, 0){ { 1, ((void*)0) }, 0 },
462 .tp_name = "numpy._ArrayMethod",
463 .tp_basicsize = sizeof(PyArrayMethodObject),
464 .tp_flags = Py_TPFLAGS_DEFAULT( 0 | (1UL << 18) | 0),
465 .tp_dealloc = arraymethod_dealloc,
466};
467
468
469
470static PyObject *
471boundarraymethod_repr(PyBoundArrayMethodObject *self)
472{
473 int nargs = self->method->nin + self->method->nout;
474 PyObject *dtypes = PyTuple_New(nargs);
1
Calling 'PyTuple_New'
3
Returning from 'PyTuple_New'
8
PyObject ownership leak with reference count of 1
475 if (dtypes == NULL((void*)0)) {
4
Assuming 'dtypes' is not equal to NULL
5
Taking false branch
476 return NULL((void*)0);
477 }
478 for (int i = 0; i < nargs; i++) {
6
Assuming 'i' is >= 'nargs'
7
Loop condition is false. Execution continues on line 482
479 Py_INCREF(self->dtypes[i])_Py_INCREF(((PyObject*)(self->dtypes[i])));
480 PyTuple_SET_ITEM(dtypes, i, (PyObject *)self->dtypes[i])PyTuple_SetItem(dtypes, i, (PyObject *)self->dtypes[i]);
481 }
482 return PyUnicode_FromFormat(
483 "<np._BoundArrayMethod `%s` for dtypes %S>",
484 self->method->name, dtypes);
485}
486
487
488static void
489boundarraymethod_dealloc(PyObject *self)
490{
491 PyBoundArrayMethodObject *meth;
492 meth = ((PyBoundArrayMethodObject *)self);
493 int nargs = meth->method->nin + meth->method->nout;
494
495 for (int i = 0; i < nargs; i++) {
496 Py_XDECREF(meth->dtypes[i])_Py_XDECREF(((PyObject*)(meth->dtypes[i])));
497 }
498 PyMem_Free(meth->dtypes);
499
500 Py_XDECREF(meth->method)_Py_XDECREF(((PyObject*)(meth->method)));
501
502 Py_TYPE(self)(((PyObject*)(self))->ob_type)->tp_free(self);
503}
504
505
506/*
507 * Calls resolve_descriptors() and returns the casting level and the resolved
508 * descriptors as a tuple. If the operation is impossible returns (-1, None).
509 * May raise an error, but usually should not.
510 * The function validates the casting attribute compared to the returned
511 * casting level.
512 *
513 * TODO: This function is not public API, and certain code paths will need
514 * changes and especially testing if they were to be made public.
515 */
516static PyObject *
517boundarraymethod__resolve_descripors(
518 PyBoundArrayMethodObject *self, PyObject *descr_tuple)
519{
520 int nin = self->method->nin;
521 int nout = self->method->nout;
522
523 PyArray_Descr *given_descrs[NPY_MAXARGS32];
524 PyArray_Descr *loop_descrs[NPY_MAXARGS32];
525
526 if (!PyTuple_CheckExact(descr_tuple)((((PyObject*)(descr_tuple))->ob_type) == &PyTuple_Type
)
||
527 PyTuple_Size(descr_tuple) != nin + nout) {
528 PyErr_Format(PyExc_TypeError,
529 "_resolve_descriptors() takes exactly one tuple with as many "
530 "elements as the method takes arguments (%d+%d).", nin, nout);
531 return NULL((void*)0);
532 }
533
534 for (int i = 0; i < nin + nout; i++) {
535 PyObject *tmp = PyTuple_GetItem(descr_tuple, i);
536 if (tmp == NULL((void*)0)) {
537 return NULL((void*)0);
538 }
539 else if (tmp == Py_None(&_Py_NoneStruct)) {
540 if (i < nin) {
541 PyErr_SetString(PyExc_TypeError,
542 "only output dtypes may be omitted (set to None).");
543 return NULL((void*)0);
544 }
545 given_descrs[i] = NULL((void*)0);
546 }
547 else if (PyArray_DescrCheck(tmp)((((PyObject*)(tmp))->ob_type) == (&(*(PyTypeObject *)
(&PyArrayDescr_TypeFull))) || PyType_IsSubtype((((PyObject
*)(tmp))->ob_type), (&(*(PyTypeObject *)(&PyArrayDescr_TypeFull
)))))
) {
548 if (Py_TYPE(tmp)(((PyObject*)(tmp))->ob_type) != (PyTypeObject *)self->dtypes[i]) {
549 PyErr_Format(PyExc_TypeError,
550 "input dtype %S was not an exact instance of the bound "
551 "DType class %S.", tmp, self->dtypes[i]);
552 return NULL((void*)0);
553 }
554 given_descrs[i] = (PyArray_Descr *)tmp;
555 }
556 else {
557 PyErr_SetString(PyExc_TypeError,
558 "dtype tuple can only contain dtype instances or None.");
559 return NULL((void*)0);
560 }
561 }
562
563 NPY_CASTING casting = self->method->resolve_descriptors(
564 self->method, self->dtypes, given_descrs, loop_descrs);
565
566 if (casting < 0 && PyErr_Occurred()) {
567 return NULL((void*)0);
568 }
569 else if (casting < 0) {
570 return Py_BuildValue("iO", casting, Py_None(&_Py_NoneStruct));
571 }
572
573 PyObject *result_tuple = PyTuple_New(nin + nout);
574 if (result_tuple == NULL((void*)0)) {
575 return NULL((void*)0);
576 }
577 for (int i = 0; i < nin + nout; i++) {
578 /* transfer ownership to the tuple. */
579 PyTuple_SET_ITEM(result_tuple, i, (PyObject *)loop_descrs[i])PyTuple_SetItem(result_tuple, i, (PyObject *)loop_descrs[i]);
580 }
581
582 /*
583 * The casting flags should be the most generic casting level (except the
584 * cast-is-view flag. If no input is parametric, it must match exactly.
585 *
586 * (Note that these checks are only debugging checks.)
587 */
588 int parametric = 0;
589 for (int i = 0; i < nin + nout; i++) {
590 if (self->dtypes[i]->parametric) {
591 parametric = 1;
592 break;
593 }
594 }
595 if (self->method->casting != -1) {
596 NPY_CASTING cast = casting & ~_NPY_CAST_IS_VIEW;
597 if (self->method->casting !=
598 PyArray_MinCastSafety(cast, self->method->casting)) {
599 PyErr_Format(PyExc_RuntimeError,
600 "resolve_descriptors cast level did not match stored one. "
601 "(set level is %d, got %d for method %s)",
602 self->method->casting, cast, self->method->name);
603 Py_DECREF(result_tuple)_Py_DECREF(((PyObject*)(result_tuple)));
604 return NULL((void*)0);
605 }
606 if (!parametric) {
607 /*
608 * Non-parametric can only mismatch if it switches from equiv to no
609 * (e.g. due to byteorder changes).
610 */
611 if (cast != self->method->casting &&
612 self->method->casting != NPY_EQUIV_CASTING) {
613 PyErr_Format(PyExc_RuntimeError,
614 "resolve_descriptors cast level changed even though "
615 "the cast is non-parametric where the only possible "
616 "change should be from equivalent to no casting. "
617 "(set level is %d, got %d for method %s)",
618 self->method->casting, cast, self->method->name);
619 Py_DECREF(result_tuple)_Py_DECREF(((PyObject*)(result_tuple)));
620 return NULL((void*)0);
621 }
622 }
623 }
624
625 return Py_BuildValue("iN", casting, result_tuple);
626}
627
628
629/*
630 * TODO: This function is not public API, and certain code paths will need
631 * changes and especially testing if they were to be made public.
632 */
633static PyObject *
634boundarraymethod__simple_strided_call(
635 PyBoundArrayMethodObject *self, PyObject *arr_tuple)
636{
637 PyArrayObject *arrays[NPY_MAXARGS32];
638 PyArray_Descr *descrs[NPY_MAXARGS32];
639 PyArray_Descr *out_descrs[NPY_MAXARGS32];
640 Py_ssize_t length = -1;
641 int aligned = 1;
642 char *args[NPY_MAXARGS32];
643 npy_intp strides[NPY_MAXARGS32];
644 int nin = self->method->nin;
645 int nout = self->method->nout;
646
647 if (!PyTuple_CheckExact(arr_tuple)((((PyObject*)(arr_tuple))->ob_type) == &PyTuple_Type) ||
648 PyTuple_Size(arr_tuple) != nin + nout) {
649 PyErr_Format(PyExc_TypeError,
650 "_simple_strided_call() takes exactly one tuple with as many "
651 "arrays as the method takes arguments (%d+%d).", nin, nout);
652 return NULL((void*)0);
653 }
654
655 for (int i = 0; i < nin + nout; i++) {
656 PyObject *tmp = PyTuple_GetItem(arr_tuple, i);
657 if (tmp == NULL((void*)0)) {
658 return NULL((void*)0);
659 }
660 else if (!PyArray_CheckExact(tmp)(((PyObject*)(tmp))->ob_type == &PyArray_Type)) {
661 PyErr_SetString(PyExc_TypeError,
662 "All inputs must be NumPy arrays.");
663 return NULL((void*)0);
664 }
665 arrays[i] = (PyArrayObject *)tmp;
666 descrs[i] = PyArray_DESCR(arrays[i]);
667
668 /* Check that the input is compatible with a simple method call. */
669 if (Py_TYPE(descrs[i])(((PyObject*)(descrs[i]))->ob_type) != (PyTypeObject *)self->dtypes[i]) {
670 PyErr_Format(PyExc_TypeError,
671 "input dtype %S was not an exact instance of the bound "
672 "DType class %S.", descrs[i], self->dtypes[i]);
673 return NULL((void*)0);
674 }
675 if (PyArray_NDIM(arrays[i]) != 1) {
676 PyErr_SetString(PyExc_ValueError,
677 "All arrays must be one dimensional.");
678 return NULL((void*)0);
679 }
680 if (i == 0) {
681 length = PyArray_SIZE(arrays[i])PyArray_MultiplyList(PyArray_DIMS(arrays[i]), PyArray_NDIM(arrays
[i]))
;
682 }
683 else if (PyArray_SIZE(arrays[i])PyArray_MultiplyList(PyArray_DIMS(arrays[i]), PyArray_NDIM(arrays
[i]))
!= length) {
684 PyErr_SetString(PyExc_ValueError,
685 "All arrays must have the same length.");
686 return NULL((void*)0);
687 }
688 if (i >= nout) {
689 if (PyArray_FailUnlessWriteable(
690 arrays[i], "_simple_strided_call() output") < 0) {
691 return NULL((void*)0);
692 }
693 }
694
695 args[i] = PyArray_BYTES(arrays[i]);
696 strides[i] = PyArray_STRIDES(arrays[i])[0];
697 /* TODO: We may need to distinguish aligned and itemsize-aligned */
698 aligned &= PyArray_ISALIGNED(arrays[i])PyArray_CHKFLAGS((arrays[i]), 0x0100);
699 }
700 if (!aligned && !(self->method->flags & NPY_METH_SUPPORTS_UNALIGNED)) {
701 PyErr_SetString(PyExc_ValueError,
702 "method does not support unaligned input.");
703 return NULL((void*)0);
704 }
705
706 NPY_CASTING casting = self->method->resolve_descriptors(
707 self->method, self->dtypes, descrs, out_descrs);
708
709 if (casting < 0) {
710 PyObject *err_type = NULL((void*)0), *err_value = NULL((void*)0), *err_traceback = NULL((void*)0);
711 PyErr_Fetch(&err_type, &err_value, &err_traceback);
712 PyErr_SetString(PyExc_TypeError,
713 "cannot perform method call with the given dtypes.");
714 npy_PyErr_ChainExceptions(err_type, err_value, err_traceback);
715 return NULL((void*)0);
716 }
717
718 int dtypes_were_adapted = 0;
719 for (int i = 0; i < nin + nout; i++) {
720 /* NOTE: This check is probably much stricter than necessary... */
721 dtypes_were_adapted |= descrs[i] != out_descrs[i];
722 Py_DECREF(out_descrs[i])_Py_DECREF(((PyObject*)(out_descrs[i])));
723 }
724 if (dtypes_were_adapted) {
725 PyErr_SetString(PyExc_TypeError,
726 "_simple_strided_call(): requires dtypes to not require a cast "
727 "(must match exactly with `_resolve_descriptors()`).");
728 return NULL((void*)0);
729 }
730
731 PyArrayMethod_Context context = {
732 .caller = NULL((void*)0),
733 .method = self->method,
734 .descriptors = descrs,
735 };
736 PyArrayMethod_StridedLoop *strided_loop = NULL((void*)0);
737 NpyAuxData *loop_data = NULL((void*)0);
738 NPY_ARRAYMETHOD_FLAGS flags = 0;
739
740 if (self->method->get_strided_loop(
741 &context, aligned, 0, strides,
742 &strided_loop, &loop_data, &flags) < 0) {
743 return NULL((void*)0);
744 }
745
746 /*
747 * TODO: Add floating point error checks if requested and
748 * possibly release GIL if allowed by the flags.
749 */
750 int res = strided_loop(&context, args, &length, strides, loop_data);
751 if (loop_data != NULL((void*)0)) {
752 loop_data->free(loop_data);
753 }
754 if (res < 0) {
755 return NULL((void*)0);
756 }
757 Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (&
_Py_NoneStruct)
;
758}
759
760
761PyMethodDef boundarraymethod_methods[] = {
762 {"_resolve_descriptors", (PyCFunction)boundarraymethod__resolve_descripors,
763 METH_O0x0008, "Resolve the given dtypes."},
764 {"_simple_strided_call", (PyCFunction)boundarraymethod__simple_strided_call,
765 METH_O0x0008, "call on 1-d inputs and pre-allocated outputs (single call)."},
766 {NULL((void*)0), 0, 0, NULL((void*)0)},
767};
768
769
770static PyObject *
771boundarraymethod__supports_unaligned(PyBoundArrayMethodObject *self)
772{
773 return PyBool_FromLong(self->method->flags & NPY_METH_SUPPORTS_UNALIGNED);
774}
775
776
777PyGetSetDef boundarraymethods_getters[] = {
778 {"_supports_unaligned",
779 (getter)boundarraymethod__supports_unaligned, NULL((void*)0),
780 "whether the method supports unaligned inputs/outputs.", NULL((void*)0)},
781 {NULL((void*)0), NULL((void*)0), NULL((void*)0), NULL((void*)0), NULL((void*)0)},
782};
783
784
785NPY_NO_EXPORT__attribute__((visibility("hidden"))) PyTypeObject PyBoundArrayMethod_Type = {
786 PyVarObject_HEAD_INIT(NULL, 0){ { 1, ((void*)0) }, 0 },
787 .tp_name = "numpy._BoundArrayMethod",
788 .tp_basicsize = sizeof(PyBoundArrayMethodObject),
789 .tp_flags = Py_TPFLAGS_DEFAULT( 0 | (1UL << 18) | 0),
790 .tp_repr = (reprfunc)boundarraymethod_repr,
791 .tp_dealloc = boundarraymethod_dealloc,
792 .tp_methods = boundarraymethod_methods,
793 .tp_getset = boundarraymethods_getters,
794};

/opt/pyrefcon/lib/pyrefcon/models/models/PyTuple_New.model

1#ifndef PyTuple_New
2struct _object;
3typedef struct _object PyObject;
4PyObject* clang_analyzer_PyObject_New_Reference();
5PyObject* PyTuple_New(Py_ssize_t len) {
6 return clang_analyzer_PyObject_New_Reference();
2
Setting reference count to 1
7}
8#else
9#warning "API PyTuple_New is defined as a macro."
10#endif