File: | /tmp/pyrefcon/scipy/scipy/signal/sigtoolsmodule.c |
Warning: | line 1425, column 9 PyObject ownership leak with reference count of 1 |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* SIGTOOLS module by Travis Oliphant | |||
2 | ||||
3 | Copyright 2005 Travis Oliphant | |||
4 | Permission to use, copy, modify, and distribute this software without fee | |||
5 | is granted under the SciPy License. | |||
6 | */ | |||
7 | #include <Python.h> | |||
8 | #define PY_ARRAY_UNIQUE_SYMBOL_scipy_signal_ARRAY_API _scipy_signal_ARRAY_API | |||
9 | #include "numpy/ndarrayobject.h" | |||
10 | ||||
11 | #include "sigtools.h" | |||
12 | #include <setjmp.h> | |||
13 | #include <stdlib.h> | |||
14 | ||||
15 | #define PYERR(message){PyErr_SetString(PyExc_ValueError, message); goto fail;} {PyErr_SetString(PyExc_ValueError, message); goto fail;} | |||
16 | ||||
17 | ||||
18 | jmp_buf MALLOC_FAIL; | |||
19 | ||||
20 | char *check_malloc(size_t size) | |||
21 | { | |||
22 | char *the_block = malloc(size); | |||
23 | if (the_block == NULL((void*)0)) { | |||
24 | printf("\nERROR: unable to allocate %zu bytes!\n", size)__printf_chk (2 - 1, "\nERROR: unable to allocate %zu bytes!\n" , size); | |||
25 | longjmp(MALLOC_FAIL,-1); | |||
26 | } | |||
27 | return the_block; | |||
28 | } | |||
29 | ||||
30 | ||||
31 | /************************************************************************ | |||
32 | * Start of portable, non-python specific routines. * | |||
33 | ************************************************************************/ | |||
34 | ||||
35 | /* Some core routines are written | |||
36 | in a portable way so that they could be used in other applications. The | |||
37 | order filtering, however uses python-specific constructs in its guts | |||
38 | and is therefore Python dependent. This could be changed in a | |||
39 | straightforward way but I haven't done it for lack of time.*/ | |||
40 | ||||
41 | static int index_out_of_bounds(npy_intp *indices, npy_intp *max_indices, int ndims) { | |||
42 | int bad_index = 0, k = 0; | |||
43 | ||||
44 | while (!bad_index && (k++ < ndims)) { | |||
45 | bad_index = ((*(indices) >= *(max_indices++)) || (*(indices) < 0)); | |||
46 | indices++; | |||
47 | } | |||
48 | return bad_index; | |||
49 | } | |||
50 | ||||
51 | /* This maybe could be redone with stride information so it could be | |||
52 | * called with non-contiguous arrays: I think offsets is related to | |||
53 | * the difference between the strides. I'm not sure about init_offset | |||
54 | * just yet. I think it needs to be calculated because of mode_dep | |||
55 | * but probably with dim1 being the size of the "original, unsliced" array | |||
56 | */ | |||
57 | ||||
58 | static npy_intp compute_offsets (npy_uintp *offsets, npy_intp *offsets2, npy_intp *dim1, | |||
59 | npy_intp *dim2, npy_intp *dim3, npy_intp *mode_dep, | |||
60 | int nd) { | |||
61 | int k,i; | |||
62 | npy_intp init_offset = 0; | |||
63 | ||||
64 | for (k = 0; k < nd - 1; k++) | |||
65 | { | |||
66 | init_offset += mode_dep[k]; | |||
67 | init_offset *= dim1[k+1]; | |||
68 | } | |||
69 | init_offset += mode_dep[k] - 2; | |||
70 | ||||
71 | k = nd; | |||
72 | while(k--) { | |||
73 | offsets[k] = 0; | |||
74 | offsets2[k] = 0; | |||
75 | for (i = k + 1; i < nd - 1; i++) { | |||
76 | offsets[k] += dim1[i] - dim2[i]; | |||
77 | offsets[k] *= dim1[i+1]; | |||
78 | ||||
79 | offsets2[k] += dim1[i] - dim3[i]; | |||
80 | offsets2[k] *= dim1[i+1]; | |||
81 | } | |||
82 | ||||
83 | if (k < nd - 1) { | |||
84 | offsets[k] += dim1[i] - dim2[i]; | |||
85 | offsets2[k] += dim1[i] - dim3[i]; | |||
86 | } | |||
87 | offsets[k] += 1; | |||
88 | offsets2[k] += 1; | |||
89 | } | |||
90 | return init_offset; | |||
91 | } | |||
92 | ||||
93 | /* increment by 1 the index into an N-D array, doing the necessary | |||
94 | carrying when the index reaches the dimension along that axis */ | |||
95 | static int increment(npy_intp *ret_ind, int nd, npy_intp *max_ind) { | |||
96 | int k, incr = 1; | |||
97 | ||||
98 | k = nd - 1; | |||
99 | if (++ret_ind[k] >= max_ind[k]) { | |||
100 | while (k >= 0 && (ret_ind[k] >= max_ind[k]-1)) { | |||
101 | incr++; | |||
102 | ret_ind[k--] = 0; | |||
103 | } | |||
104 | if (k >= 0) ret_ind[k]++; | |||
105 | } | |||
106 | return incr; | |||
107 | } | |||
108 | ||||
109 | /******************************************************** | |||
110 | * | |||
111 | * Code taken from remez.c by Erik Kvaleberg which was | |||
112 | * converted from an original FORTRAN by | |||
113 | * | |||
114 | * AUTHORS: JAMES H. MCCLELLAN | |||
115 | * | |||
116 | * DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE | |||
117 | * MASSACHUSETTS INSTITUTE OF TECHNOLOGY | |||
118 | * CAMBRIDGE, MASS. 02139 | |||
119 | * | |||
120 | * THOMAS W. PARKS | |||
121 | * DEPARTMENT OF ELECTRICAL ENGINEERING | |||
122 | * RICE UNIVERSITY | |||
123 | * HOUSTON, TEXAS 77001 | |||
124 | * | |||
125 | * LAWRENCE R. RABINER | |||
126 | * BELL LABORATORIES | |||
127 | * MURRAY HILL, NEW JERSEY 07974 | |||
128 | * | |||
129 | * | |||
130 | * Adaptation to C by | |||
131 | * egil kvaleberg | |||
132 | * husebybakken 14a | |||
133 | * 0379 oslo, norway | |||
134 | * Email: | |||
135 | * egil@kvaleberg.no | |||
136 | * Web: | |||
137 | * http://www.kvaleberg.com/ | |||
138 | * | |||
139 | * | |||
140 | *********************************************************/ | |||
141 | ||||
142 | ||||
143 | #define BANDPASS1 1 | |||
144 | #define DIFFERENTIATOR2 2 | |||
145 | #define HILBERT3 3 | |||
146 | ||||
147 | #define GOBACKgoto goto | |||
148 | #define DOloop(a,from,to)for ( (a) = (from); (a) <= (to); ++(a)) for ( (a) = (from); (a) <= (to); ++(a)) | |||
149 | #define PI3.14159265358979323846 3.14159265358979323846 | |||
150 | #define TWOPI(3.14159265358979323846 +3.14159265358979323846) (PI3.14159265358979323846+PI3.14159265358979323846) | |||
151 | ||||
152 | /* | |||
153 | *----------------------------------------------------------------------- | |||
154 | * FUNCTION: lagrange_interp (d) | |||
155 | * FUNCTION TO CALCULATE THE LAGRANGE INTERPOLATION | |||
156 | * COEFFICIENTS FOR USE IN THE FUNCTION gee. | |||
157 | *----------------------------------------------------------------------- | |||
158 | */ | |||
159 | static double lagrange_interp(int k, int n, int m, double *x) | |||
160 | { | |||
161 | int j, l; | |||
162 | double q, retval; | |||
163 | ||||
164 | retval = 1.0; | |||
165 | q = x[k]; | |||
166 | DOloop(l,1,m)for ( (l) = (1); (l) <= (m); ++(l)) { | |||
167 | for (j = l; j <= n; j += m) { | |||
168 | if (j != k) | |||
169 | retval *= 2.0 * (q - x[j]); | |||
170 | } | |||
171 | } | |||
172 | return 1.0 / retval; | |||
173 | } | |||
174 | ||||
175 | /* | |||
176 | *----------------------------------------------------------------------- | |||
177 | * FUNCTION: freq_eval (gee) | |||
178 | * FUNCTION TO EVALUATE THE FREQUENCY RESPONSE USING THE | |||
179 | * LAGRANGE INTERPOLATION FORMULA IN THE BARYCENTRIC FORM | |||
180 | *----------------------------------------------------------------------- | |||
181 | */ | |||
182 | static double freq_eval(int k, int n, double *grid, double *x, double *y, double *ad) | |||
183 | { | |||
184 | int j; | |||
185 | double p,c,d,xf; | |||
186 | ||||
187 | d = 0.0; | |||
188 | p = 0.0; | |||
189 | xf = cos(TWOPI(3.14159265358979323846 +3.14159265358979323846) * grid[k]); | |||
190 | ||||
191 | DOloop(j,1,n)for ( (j) = (1); (j) <= (n); ++(j)) { | |||
192 | c = ad[j] / (xf - x[j]); | |||
193 | d += c; | |||
194 | p += c * y[j]; | |||
195 | } | |||
196 | ||||
197 | return p/d; | |||
198 | } | |||
199 | ||||
200 | ||||
201 | /* | |||
202 | *----------------------------------------------------------------------- | |||
203 | * SUBROUTINE: remez | |||
204 | * THIS SUBROUTINE IMPLEMENTS THE REMEZ EXCHANGE ALGORITHM | |||
205 | * FOR THE WEIGHTED CHEBYSHEV APPROXIMATION OF A CONTINUOUS | |||
206 | * FUNCTION WITH A SUM OF COSINES. INPUTS TO THE SUBROUTINE | |||
207 | * ARE A DENSE GRID WHICH REPLACES THE FREQUENCY AXIS, THE | |||
208 | * DESIRED FUNCTION ON THIS GRID, THE WEIGHT FUNCTION ON THE | |||
209 | * GRID, THE NUMBER OF COSINES, AND AN INITIAL GUESS OF THE | |||
210 | * EXTREMAL FREQUENCIES. THE PROGRAM MINIMIZES THE CHEBYSHEV | |||
211 | * ERROR BY DETERMINING THE BSMINEST LOCATION OF THE EXTREMAL | |||
212 | * FREQUENCIES (POINTS OF MAXIMUM ERROR) AND THEN CALCULATES | |||
213 | * THE COEFFICIENTS OF THE BEST APPROXIMATION. | |||
214 | *----------------------------------------------------------------------- | |||
215 | */ | |||
216 | static int remez(double *dev, double des[], double grid[], double edge[], | |||
217 | double wt[], int ngrid, int nbands, int iext[], double alpha[], | |||
218 | int nfcns, int itrmax, double *work, int dimsize, int *niter_out) | |||
219 | /* dev, iext, alpha are output types */ | |||
220 | /* des, grid, edge, wt, ngrid, nbands, nfcns are input types */ | |||
221 | { | |||
222 | int k, k1, kkk, kn, knz, klow, kup, nz, nzz, nm1; | |||
223 | int cn; | |||
224 | int j, jchnge, jet, jm1, jp1; | |||
225 | int l, luck=0, nu, nut, nut1=0, niter; | |||
226 | ||||
227 | double ynz=0.0, comp=0.0, devl, gtemp, fsh, y1=0.0, err, dtemp, delf, dnum, dden; | |||
228 | double aa=0.0, bb=0.0, ft, xe, xt; | |||
229 | ||||
230 | static double *a, *p, *q; | |||
231 | static double *ad, *x, *y; | |||
232 | ||||
233 | a = work; p = a + dimsize+1; q = p + dimsize+1; | |||
234 | ad = q + dimsize+1; x = ad + dimsize+1; y = x + dimsize+1; | |||
235 | devl = -1.0; | |||
236 | nz = nfcns+1; | |||
237 | nzz = nfcns+2; | |||
238 | niter = 0; | |||
239 | ||||
240 | do { | |||
241 | L100: | |||
242 | iext[nzz] = ngrid + 1; | |||
243 | ++niter; | |||
244 | ||||
245 | if (niter > itrmax) break; | |||
246 | ||||
247 | /* printf("ITERATION %2d: ",niter); */ | |||
248 | ||||
249 | DOloop(j,1,nz)for ( (j) = (1); (j) <= (nz); ++(j)) { | |||
250 | x[j] = cos(grid[iext[j]]*TWOPI(3.14159265358979323846 +3.14159265358979323846)); | |||
251 | } | |||
252 | jet = (nfcns-1) / 15 + 1; | |||
253 | ||||
254 | DOloop(j,1,nz)for ( (j) = (1); (j) <= (nz); ++(j)) { | |||
255 | ad[j] = lagrange_interp(j,nz,jet,x); | |||
256 | } | |||
257 | ||||
258 | dnum = 0.0; | |||
259 | dden = 0.0; | |||
260 | k = 1; | |||
261 | ||||
262 | DOloop(j,1,nz)for ( (j) = (1); (j) <= (nz); ++(j)) { | |||
263 | l = iext[j]; | |||
264 | dnum += ad[j] * des[l]; | |||
265 | dden += (double)k * ad[j] / wt[l]; | |||
266 | k = -k; | |||
267 | } | |||
268 | *dev = dnum / dden; | |||
269 | ||||
270 | /* printf("DEVIATION = %lg\n",*dev); */ | |||
271 | ||||
272 | nu = 1; | |||
273 | if ( (*dev) > 0.0 ) nu = -1; | |||
274 | (*dev) = -(double)nu * (*dev); | |||
275 | k = nu; | |||
276 | DOloop(j,1,nz)for ( (j) = (1); (j) <= (nz); ++(j)) { | |||
277 | l = iext[j]; | |||
278 | y[j] = des[l] + (double)k * (*dev) / wt[l]; | |||
279 | k = -k; | |||
280 | } | |||
281 | if ( (*dev) <= devl ) { | |||
282 | /* finished */ | |||
283 | *niter_out = niter; | |||
284 | return -1; | |||
285 | } | |||
286 | devl = (*dev); | |||
287 | jchnge = 0; | |||
288 | k1 = iext[1]; | |||
289 | knz = iext[nz]; | |||
290 | klow = 0; | |||
291 | nut = -nu; | |||
292 | j = 1; | |||
293 | ||||
294 | /* | |||
295 | * SEARCH FOR THE EXTREMAL FREQUENCIES OF THE BEST APPROXIMATION | |||
296 | */ | |||
297 | ||||
298 | L200: | |||
299 | if (j == nzz) ynz = comp; | |||
300 | if (j >= nzz) goto L300; | |||
301 | kup = iext[j+1]; | |||
302 | l = iext[j]+1; | |||
303 | nut = -nut; | |||
304 | if (j == 2) y1 = comp; | |||
305 | comp = (*dev); | |||
306 | if (l >= kup) goto L220; | |||
307 | err = (freq_eval(l,nz,grid,x,y,ad)-des[l]) * wt[l]; | |||
308 | if (((double)nut*err-comp) <= 0.0) goto L220; | |||
309 | comp = (double)nut * err; | |||
310 | L210: | |||
311 | if (++l >= kup) goto L215; | |||
312 | err = (freq_eval(l,nz,grid,x,y,ad)-des[l]) * wt[l]; | |||
313 | if (((double)nut*err-comp) <= 0.0) goto L215; | |||
314 | comp = (double)nut * err; | |||
315 | GOBACKgoto L210; | |||
316 | ||||
317 | L215: | |||
318 | iext[j++] = l - 1; | |||
319 | klow = l - 1; | |||
320 | ++jchnge; | |||
321 | GOBACKgoto L200; | |||
322 | ||||
323 | L220: | |||
324 | --l; | |||
325 | L225: | |||
326 | if (--l <= klow) goto L250; | |||
327 | err = (freq_eval(l,nz,grid,x,y,ad)-des[l]) * wt[l]; | |||
328 | if (((double)nut*err-comp) > 0.0) goto L230; | |||
329 | if (jchnge <= 0) goto L225; | |||
330 | goto L260; | |||
331 | ||||
332 | L230: | |||
333 | comp = (double)nut * err; | |||
334 | L235: | |||
335 | if (--l <= klow) goto L240; | |||
336 | err = (freq_eval(l,nz,grid,x,y,ad)-des[l]) * wt[l]; | |||
337 | if (((double)nut*err-comp) <= 0.0) goto L240; | |||
338 | comp = (double)nut * err; | |||
339 | GOBACKgoto L235; | |||
340 | L240: | |||
341 | klow = iext[j]; | |||
342 | iext[j] = l+1; | |||
343 | ++j; | |||
344 | ++jchnge; | |||
345 | GOBACKgoto L200; | |||
346 | ||||
347 | L250: | |||
348 | l = iext[j]+1; | |||
349 | if (jchnge > 0) GOBACKgoto L215; | |||
350 | ||||
351 | L255: | |||
352 | if (++l >= kup) goto L260; | |||
353 | err = (freq_eval(l,nz,grid,x,y,ad)-des[l]) * wt[l]; | |||
354 | if (((double)nut*err-comp) <= 0.0) GOBACKgoto L255; | |||
355 | comp = (double)nut * err; | |||
356 | ||||
357 | GOBACKgoto L210; | |||
358 | L260: | |||
359 | klow = iext[j++]; | |||
360 | GOBACKgoto L200; | |||
361 | ||||
362 | L300: | |||
363 | if (j > nzz) goto L320; | |||
364 | if (k1 > iext[1] ) k1 = iext[1]; | |||
365 | if (knz < iext[nz]) knz = iext[nz]; | |||
366 | nut1 = nut; | |||
367 | nut = -nu; | |||
368 | l = 0; | |||
369 | kup = k1; | |||
370 | comp = ynz*(1.00001); | |||
371 | luck = 1; | |||
372 | L310: | |||
373 | if (++l >= kup) goto L315; | |||
374 | err = (freq_eval(l,nz,grid,x,y,ad)-des[l]) * wt[l]; | |||
375 | if (((double)nut*err-comp) <= 0.0) GOBACKgoto L310; | |||
376 | comp = (double) nut * err; | |||
377 | j = nzz; | |||
378 | GOBACKgoto L210; | |||
379 | ||||
380 | L315: | |||
381 | luck = 6; | |||
382 | goto L325; | |||
383 | ||||
384 | L320: | |||
385 | if (luck > 9) goto L350; | |||
386 | if (comp > y1) y1 = comp; | |||
387 | k1 = iext[nzz]; | |||
388 | L325: | |||
389 | l = ngrid+1; | |||
390 | klow = knz; | |||
391 | nut = -nut1; | |||
392 | comp = y1*(1.00001); | |||
393 | L330: | |||
394 | if (--l <= klow) goto L340; | |||
395 | err = (freq_eval(l,nz,grid,x,y,ad)-des[l]) * wt[l]; | |||
396 | if (((double)nut*err-comp) <= 0.0) GOBACKgoto L330; | |||
397 | j = nzz; | |||
398 | comp = (double) nut * err; | |||
399 | luck = luck + 10; | |||
400 | GOBACKgoto L235; | |||
401 | L340: | |||
402 | if (luck == 6) goto L370; | |||
403 | DOloop(j,1,nfcns)for ( (j) = (1); (j) <= (nfcns); ++(j)) { | |||
404 | iext[nzz-j] = iext[nz-j]; | |||
405 | } | |||
406 | iext[1] = k1; | |||
407 | GOBACKgoto L100; | |||
408 | L350: | |||
409 | kn = iext[nzz]; | |||
410 | DOloop(j,1,nfcns)for ( (j) = (1); (j) <= (nfcns); ++(j)) iext[j] = iext[j+1]; | |||
411 | iext[nz] = kn; | |||
412 | ||||
413 | GOBACKgoto L100; | |||
414 | L370: | |||
415 | ; | |||
416 | } while (jchnge > 0); | |||
417 | ||||
418 | /* | |||
419 | * CALCULATION OF THE COEFFICIENTS OF THE BEST APPROXIMATION | |||
420 | * USING THE INVERSE DISCRETE FOURIER TRANSFORM | |||
421 | */ | |||
422 | nm1 = nfcns - 1; | |||
423 | fsh = 1.0e-06; | |||
424 | gtemp = grid[1]; | |||
425 | x[nzz] = -2.0; | |||
426 | cn = 2*nfcns - 1; | |||
427 | delf = 1.0/cn; | |||
428 | l = 1; | |||
429 | kkk = 0; | |||
430 | ||||
431 | if (edge[1] == 0.0 && edge[2*nbands] == 0.5) kkk = 1; | |||
432 | ||||
433 | if (nfcns <= 3) kkk = 1; | |||
434 | if (kkk != 1) { | |||
435 | dtemp = cos(TWOPI(3.14159265358979323846 +3.14159265358979323846)*grid[1]); | |||
436 | dnum = cos(TWOPI(3.14159265358979323846 +3.14159265358979323846)*grid[ngrid]); | |||
437 | aa = 2.0/(dtemp-dnum); | |||
438 | bb = -(dtemp+dnum)/(dtemp-dnum); | |||
439 | } | |||
440 | ||||
441 | DOloop(j,1,nfcns)for ( (j) = (1); (j) <= (nfcns); ++(j)) { | |||
442 | ft = (j - 1) * delf; | |||
443 | xt = cos(TWOPI(3.14159265358979323846 +3.14159265358979323846)*ft); | |||
444 | if (kkk != 1) { | |||
445 | xt = (xt-bb)/aa; | |||
446 | #if 0 | |||
447 | /*XX* ckeck up !! */ | |||
448 | xt1 = sqrt(1.0-xt*xt); | |||
449 | ft = atan2(xt1,xt)/TWOPI(3.14159265358979323846 +3.14159265358979323846); | |||
450 | #else | |||
451 | ft = acos(xt)/TWOPI(3.14159265358979323846 +3.14159265358979323846); | |||
452 | #endif | |||
453 | } | |||
454 | L410: | |||
455 | xe = x[l]; | |||
456 | if (xt > xe) goto L420; | |||
457 | if ((xe-xt) < fsh) goto L415; | |||
458 | ++l; | |||
459 | GOBACKgoto L410; | |||
460 | L415: | |||
461 | a[j] = y[l]; | |||
462 | goto L425; | |||
463 | L420: | |||
464 | if ((xt-xe) < fsh) GOBACKgoto L415; | |||
465 | grid[1] = ft; | |||
466 | a[j] = freq_eval(1,nz,grid,x,y,ad); | |||
467 | L425: | |||
468 | if (l > 1) l = l-1; | |||
469 | } | |||
470 | ||||
471 | grid[1] = gtemp; | |||
472 | dden = TWOPI(3.14159265358979323846 +3.14159265358979323846) / cn; | |||
473 | DOloop (j,1,nfcns)for ( (j) = (1); (j) <= (nfcns); ++(j)) { | |||
474 | dtemp = 0.0; | |||
475 | dnum = (j-1) * dden; | |||
476 | if (nm1 >= 1) { | |||
477 | DOloop(k,1,nm1)for ( (k) = (1); (k) <= (nm1); ++(k)) { | |||
478 | dtemp += a[k+1] * cos(dnum*k); | |||
479 | } | |||
480 | } | |||
481 | alpha[j] = 2.0 * dtemp + a[1]; | |||
482 | } | |||
483 | ||||
484 | DOloop(j,2,nfcns)for ( (j) = (2); (j) <= (nfcns); ++(j)) alpha[j] *= 2.0 / cn; | |||
485 | alpha[1] /= cn; | |||
486 | ||||
487 | if (kkk != 1) { | |||
488 | p[1] = 2.0*alpha[nfcns]*bb+alpha[nm1]; | |||
489 | p[2] = 2.0*aa*alpha[nfcns]; | |||
490 | q[1] = alpha[nfcns-2]-alpha[nfcns]; | |||
491 | DOloop(j,2,nm1)for ( (j) = (2); (j) <= (nm1); ++(j)) { | |||
492 | if (j >= nm1) { | |||
493 | aa *= 0.5; | |||
494 | bb *= 0.5; | |||
495 | } | |||
496 | p[j+1] = 0.0; | |||
497 | DOloop(k,1,j)for ( (k) = (1); (k) <= (j); ++(k)) { | |||
498 | a[k] = p[k]; | |||
499 | p[k] = 2.0 * bb * a[k]; | |||
500 | } | |||
501 | p[2] += a[1] * 2.0 *aa; | |||
502 | jm1 = j - 1; | |||
503 | DOloop(k,1,jm1)for ( (k) = (1); (k) <= (jm1); ++(k)) p[k] += q[k] + aa * a[k+1]; | |||
504 | jp1 = j + 1; | |||
505 | DOloop(k,3,jp1)for ( (k) = (3); (k) <= (jp1); ++(k)) p[k] += aa * a[k-1]; | |||
506 | ||||
507 | if (j != nm1) { | |||
508 | DOloop(k,1,j)for ( (k) = (1); (k) <= (j); ++(k)) q[k] = -a[k]; | |||
509 | q[1] += alpha[nfcns - 1 - j]; | |||
510 | } | |||
511 | } | |||
512 | DOloop(j,1,nfcns)for ( (j) = (1); (j) <= (nfcns); ++(j)) alpha[j] = p[j]; | |||
513 | } | |||
514 | ||||
515 | if (nfcns <= 3) { | |||
516 | alpha[nfcns+1] = alpha[nfcns+2] = 0.0; | |||
517 | } | |||
518 | return 0; | |||
519 | } | |||
520 | ||||
521 | ||||
522 | /* | |||
523 | *----------------------------------------------------------------------- | |||
524 | * FUNCTION: eff | |||
525 | * FUNCTION TO CALCULATE THE DESIRED MAGNITUDE RESPONSE | |||
526 | * AS A FUNCTION OF FREQUENCY. | |||
527 | * AN ARBITRARY FUNCTION OF FREQUENCY CAN BE | |||
528 | * APPROXIMATED IF THE USER REPLACES THIS FUNCTION | |||
529 | * WITH THE APPROPRIATE CODE TO EVALUATE THE IDEAL | |||
530 | * MAGNITUDE. NOTE THAT THE PARAMETER FREQ IS THE | |||
531 | * VALUE OF NORMALIZED FREQUENCY NEEDED FOR EVALUATION. | |||
532 | *----------------------------------------------------------------------- | |||
533 | */ | |||
534 | static double eff(double freq, double *fx, int lband, int jtype) | |||
535 | { | |||
536 | if (jtype != 2) return fx[lband]; | |||
537 | else return fx[lband] * freq; | |||
538 | } | |||
539 | ||||
540 | /* | |||
541 | *----------------------------------------------------------------------- | |||
542 | * FUNCTION: wate | |||
543 | * FUNCTION TO CALCULATE THE WEIGHT FUNCTION AS A FUNCTION | |||
544 | * OF FREQUENCY. SIMILAR TO THE FUNCTION eff, THIS FUNCTION CAN | |||
545 | * BE REPLACED BY A USER-WRITTEN ROUTINE TO CALCULATE ANY | |||
546 | * DESIRED WEIGHTING FUNCTION. | |||
547 | *----------------------------------------------------------------------- | |||
548 | */ | |||
549 | static double wate(double freq, double *fx, double *wtx, int lband, int jtype) | |||
550 | { | |||
551 | if (jtype != 2) return wtx[lband]; | |||
552 | if (fx[lband] >= 0.0001) return wtx[lband] / freq; | |||
553 | return wtx[lband]; | |||
554 | } | |||
555 | ||||
556 | /*********************************************************/ | |||
557 | ||||
558 | /* This routine accepts basic input information and puts it in | |||
559 | * the form expected by remez. | |||
560 | ||||
561 | * Adpated from main() by Travis Oliphant | |||
562 | */ | |||
563 | ||||
564 | static int pre_remez(double *h2, int numtaps, int numbands, double *bands, | |||
565 | double *response, double *weight, int type, int maxiter, | |||
566 | int grid_density, int *niter_out) { | |||
567 | ||||
568 | int jtype, nbands, nfilt, lgrid, nz; | |||
569 | int neg, nodd, nm1; | |||
570 | int j, k, l, lband, dimsize; | |||
571 | double delf, change, fup, temp; | |||
572 | double *tempstor, *edge, *h, *fx, *wtx; | |||
573 | double *des, *grid, *wt, *alpha, *work; | |||
574 | double dev; | |||
575 | int ngrid; | |||
576 | int *iext; | |||
577 | int nfcns, wrksize, total_dsize, total_isize; | |||
578 | ||||
579 | lgrid = grid_density; | |||
580 | dimsize = (int) ceil(numtaps/2.0 + 2); | |||
581 | wrksize = grid_density * dimsize; | |||
582 | nfilt = numtaps; | |||
583 | jtype = type; nbands = numbands; | |||
584 | /* Note: code assumes these arrays start at 1 */ | |||
585 | edge = bands-1; | |||
586 | h = h2 - 1; | |||
587 | fx = response - 1; | |||
588 | wtx = weight - 1; | |||
589 | ||||
590 | total_dsize = (dimsize+1)*7 + 3*(wrksize+1); | |||
591 | total_isize = (dimsize+1); | |||
592 | /* Need space for: (all arrays ignore the first element). | |||
593 | ||||
594 | des (wrksize+1) | |||
595 | grid (wrksize+1) | |||
596 | wt (wrksize+1) | |||
597 | iext (dimsize+1) (integer) | |||
598 | alpha (dimsize+1) | |||
599 | work (dimsize+1)*6 | |||
600 | ||||
601 | */ | |||
602 | tempstor = malloc((total_dsize)*sizeof(double)+(total_isize)*sizeof(int)); | |||
603 | if (tempstor == NULL((void*)0)) return -2; | |||
604 | ||||
605 | des = tempstor; grid = des + wrksize+1; | |||
606 | wt = grid + wrksize+1; alpha = wt + wrksize+1; | |||
607 | work = alpha + dimsize+1; iext = (int *)(work + (dimsize+1)*6); | |||
608 | ||||
609 | /* Set up problem on dense_grid */ | |||
610 | ||||
611 | neg = 1; | |||
612 | if (jtype == 1) neg = 0; | |||
613 | nodd = nfilt % 2; | |||
614 | nfcns = nfilt / 2; | |||
615 | if (nodd == 1 && neg == 0) nfcns = nfcns + 1; | |||
616 | ||||
617 | /* | |||
618 | * SET UP THE DENSE GRID. THE NUMBER OF POINTS IN THE GRID | |||
619 | * IS (FILTER LENGTH + 1)*GRID DENSITY/2 | |||
620 | */ | |||
621 | grid[1] = edge[1]; | |||
622 | delf = lgrid * nfcns; | |||
623 | delf = 0.5 / delf; | |||
624 | if (neg != 0) { | |||
625 | if (edge[1] < delf) grid[1] = delf; | |||
626 | } | |||
627 | j = 1; | |||
628 | l = 1; | |||
629 | lband = 1; | |||
630 | ||||
631 | /* | |||
632 | * CALCULATE THE DESIRED MAGNITUDE RESPONSE AND THE WEIGHT | |||
633 | * FUNCTION ON THE GRID | |||
634 | */ | |||
635 | for (;;) { | |||
636 | fup = edge[l + 1]; | |||
637 | do { | |||
638 | temp = grid[j]; | |||
639 | des[j] = eff(temp,fx,lband,jtype); | |||
640 | wt[j] = wate(temp,fx,wtx,lband,jtype); | |||
641 | if (++j > wrksize) { | |||
642 | /* too many points, or too dense grid */ | |||
643 | free(tempstor); | |||
644 | return -1; | |||
645 | } | |||
646 | grid[j] = temp + delf; | |||
647 | } while (grid[j] <= fup); | |||
648 | ||||
649 | grid[j-1] = fup; | |||
650 | des[j-1] = eff(fup,fx,lband,jtype); | |||
651 | wt[j-1] = wate(fup,fx,wtx,lband,jtype); | |||
652 | ++lband; | |||
653 | l += 2; | |||
654 | if (lband > nbands) break; | |||
655 | grid[j] = edge[l]; | |||
656 | } | |||
657 | ||||
658 | ngrid = j - 1; | |||
659 | if (neg == nodd) { | |||
660 | if (grid[ngrid] > (0.5-delf)) --ngrid; | |||
661 | } | |||
662 | ||||
663 | /* | |||
664 | * SET UP A NEW APPROXIMATION PROBLEM WHICH IS EQUIVALENT | |||
665 | * TO THE ORIGINAL PROBLEM | |||
666 | */ | |||
667 | if (neg <= 0) { | |||
668 | if (nodd != 1) { | |||
669 | DOloop(j,1,ngrid)for ( (j) = (1); (j) <= (ngrid); ++(j)) { | |||
670 | change = cos(PI3.14159265358979323846*grid[j]); | |||
671 | des[j] = des[j] / change; | |||
672 | wt[j] = wt[j] * change; | |||
673 | } | |||
674 | } | |||
675 | } else { | |||
676 | if (nodd != 1) { | |||
677 | DOloop(j,1,ngrid)for ( (j) = (1); (j) <= (ngrid); ++(j)) { | |||
678 | change = sin(PI3.14159265358979323846*grid[j]); | |||
679 | des[j] = des[j] / change; | |||
680 | wt[j] = wt[j] * change; | |||
681 | } | |||
682 | } else { | |||
683 | DOloop(j,1,ngrid)for ( (j) = (1); (j) <= (ngrid); ++(j)) { | |||
684 | change = sin(TWOPI(3.14159265358979323846 +3.14159265358979323846) * grid[j]); | |||
685 | des[j] = des[j] / change; | |||
686 | wt[j] = wt[j] * change; | |||
687 | } | |||
688 | } | |||
689 | } | |||
690 | ||||
691 | /*XX*/ | |||
692 | temp = (double)(ngrid-1) / (double)nfcns; | |||
693 | DOloop(j,1,nfcns)for ( (j) = (1); (j) <= (nfcns); ++(j)) { | |||
694 | iext[j] = (int)((j-1)*temp) + 1; /* round? !! */ | |||
695 | } | |||
696 | iext[nfcns+1] = ngrid; | |||
697 | nm1 = nfcns - 1; | |||
698 | nz = nfcns + 1; | |||
699 | ||||
700 | if (remez(&dev, des, grid, edge, wt, ngrid, numbands, iext, alpha, nfcns, | |||
701 | maxiter, work, dimsize, niter_out) < 0) { | |||
702 | free(tempstor); | |||
703 | return -1; | |||
704 | } | |||
705 | ||||
706 | /* | |||
707 | * CALCULATE THE IMPULSE RESPONSE. | |||
708 | */ | |||
709 | if (neg <= 0) { | |||
710 | ||||
711 | if (nodd != 0) { | |||
712 | DOloop(j,1,nm1)for ( (j) = (1); (j) <= (nm1); ++(j)) { | |||
713 | h[j] = 0.5 * alpha[nz-j]; | |||
714 | } | |||
715 | h[nfcns] = alpha[1]; | |||
716 | } else { | |||
717 | h[1] = 0.25 * alpha[nfcns]; | |||
718 | DOloop(j,2,nm1)for ( (j) = (2); (j) <= (nm1); ++(j)) { | |||
719 | h[j] = 0.25 * (alpha[nz-j] + alpha[nfcns+2-j]); | |||
720 | } | |||
721 | h[nfcns] = 0.5*alpha[1] + 0.25*alpha[2]; | |||
722 | } | |||
723 | } else { | |||
724 | if (nodd != 0) { | |||
725 | h[1] = 0.25 * alpha[nfcns]; | |||
726 | h[2] = 0.25 * alpha[nm1]; | |||
727 | DOloop(j,3,nm1)for ( (j) = (3); (j) <= (nm1); ++(j)) { | |||
728 | h[j] = 0.25 * (alpha[nz-j] - alpha[nfcns+3-j]); | |||
729 | } | |||
730 | h[nfcns] = 0.5 * alpha[1] - 0.25 * alpha[3]; | |||
731 | h[nz] = 0.0; | |||
732 | } else { | |||
733 | h[1] = 0.25 * alpha[nfcns]; | |||
734 | DOloop(j,2,nm1)for ( (j) = (2); (j) <= (nm1); ++(j)) { | |||
735 | h[j] = 0.25 * (alpha[nz-j] - alpha[nfcns+2-j]); | |||
736 | } | |||
737 | h[nfcns] = 0.5 * alpha[1] - 0.25 * alpha[2]; | |||
738 | } | |||
739 | } | |||
740 | ||||
741 | DOloop(j,1,nfcns)for ( (j) = (1); (j) <= (nfcns); ++(j)){ | |||
742 | k = nfilt + 1 - j; | |||
743 | if (neg == 0) | |||
744 | h[k] = h[j]; | |||
745 | else | |||
746 | h[k] = -h[j]; | |||
747 | } | |||
748 | if (neg == 1 && nodd == 1) h[nz] = 0.0; | |||
749 | ||||
750 | free(tempstor); | |||
751 | return 0; | |||
752 | ||||
753 | } | |||
754 | ||||
755 | /************************************************************** | |||
756 | * End of remez routines | |||
757 | **************************************************************/ | |||
758 | ||||
759 | ||||
760 | /****************************************************/ | |||
761 | /* End of python-independent routines */ | |||
762 | /****************************************************/ | |||
763 | ||||
764 | /************************/ | |||
765 | /* N-D Order Filtering. */ | |||
766 | ||||
767 | ||||
768 | static void fill_buffer(char *ip1, PyArrayObject *ap1, PyArrayObject *ap2, | |||
769 | char *sort_buffer, int nels2, int check, | |||
770 | npy_intp *loop_ind, npy_intp *temp_ind, npy_uintp *offset){ | |||
771 | int i, k, incr = 1; | |||
772 | int ndims = PyArray_NDIM(ap1); | |||
773 | npy_intp *dims2 = PyArray_DIMS(ap2); | |||
774 | npy_intp *dims1 = PyArray_DIMS(ap1); | |||
775 | npy_intp is1 = PyArray_ITEMSIZE(ap1); | |||
776 | npy_intp is2 = PyArray_ITEMSIZE(ap2); | |||
777 | char *ip2 = PyArray_DATA(ap2); | |||
778 | int elsize = PyArray_ITEMSIZE(ap1); | |||
779 | char *ptr; | |||
780 | ||||
781 | i = nels2; | |||
782 | ptr = PyArray_Zero(*(char * (*)(PyArrayObject *)) _scipy_signal_ARRAY_API[47])(ap2); | |||
783 | temp_ind[ndims-1]--; | |||
784 | while (i--) { | |||
785 | /* Adjust index array and move ptr1 to right place */ | |||
786 | k = ndims - 1; | |||
787 | while(--incr) { | |||
788 | temp_ind[k] -= dims2[k] - 1; /* Return to start for these dimensions */ | |||
789 | k--; | |||
790 | } | |||
791 | ip1 += offset[k]*is1; /* Precomputed offset array */ | |||
792 | temp_ind[k]++; | |||
793 | ||||
794 | if (!(check && index_out_of_bounds(temp_ind,dims1,ndims)) && \ | |||
795 | memcmp(ip2, ptr, PyArray_ITEMSIZE(ap2))) { | |||
796 | memcpy(sort_buffer, ip1, elsize); | |||
797 | sort_buffer += elsize; | |||
798 | } | |||
799 | /* Returns number of N-D indices incremented. */ | |||
800 | incr = increment(loop_ind, ndims, dims2); | |||
801 | ip2 += is2; | |||
802 | ||||
803 | } | |||
804 | PyDataMem_FREE(*(void (*)(void *)) _scipy_signal_ARRAY_API[289])(ptr); | |||
805 | return; | |||
806 | } | |||
807 | ||||
808 | #define COMPARE(fname, type)int fname(type *ip1, type *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } \ | |||
809 | int fname(type *ip1, type *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
810 | ||||
811 | COMPARE(DOUBLE_compare, double)int DOUBLE_compare(double *ip1, double *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
812 | COMPARE(FLOAT_compare, float)int FLOAT_compare(float *ip1, float *ip2) { return *ip1 < * ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
813 | COMPARE(LONGDOUBLE_compare, npy_longdouble)int LONGDOUBLE_compare(npy_longdouble *ip1, npy_longdouble *ip2 ) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
814 | COMPARE(BYTE_compare, npy_byte)int BYTE_compare(npy_byte *ip1, npy_byte *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
815 | COMPARE(SHORT_compare, short)int SHORT_compare(short *ip1, short *ip2) { return *ip1 < * ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
816 | COMPARE(INT_compare, int)int INT_compare(int *ip1, int *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
817 | COMPARE(LONG_compare, long)int LONG_compare(long *ip1, long *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
818 | COMPARE(LONGLONG_compare, npy_longlong)int LONGLONG_compare(npy_longlong *ip1, npy_longlong *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
819 | COMPARE(UBYTE_compare, npy_ubyte)int UBYTE_compare(npy_ubyte *ip1, npy_ubyte *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
820 | COMPARE(USHORT_compare, npy_ushort)int USHORT_compare(npy_ushort *ip1, npy_ushort *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
821 | COMPARE(UINT_compare, npy_uint)int UINT_compare(npy_uint *ip1, npy_uint *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
822 | COMPARE(ULONG_compare, npy_ulong)int ULONG_compare(npy_ulong *ip1, npy_ulong *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
823 | COMPARE(ULONGLONG_compare, npy_ulonglong)int ULONGLONG_compare(npy_ulonglong *ip1, npy_ulonglong *ip2) { return *ip1 < *ip2 ? -1 : *ip1 == *ip2 ? 0 : 1; } | |||
824 | ||||
825 | ||||
826 | int OBJECT_compare(PyObject **ip1, PyObject **ip2) { | |||
827 | /* PyObject_RichCompareBool returns -1 on error; not handled here */ | |||
828 | if(PyObject_RichCompareBool(*ip1, *ip2, Py_LT0) == 1) | |||
829 | return -1; | |||
830 | else if(PyObject_RichCompareBool(*ip1, *ip2, Py_EQ2) == 1) | |||
831 | return 0; | |||
832 | else | |||
833 | return 1; | |||
834 | } | |||
835 | ||||
836 | typedef int (*CompareFunction)(const void *, const void *); | |||
837 | ||||
838 | CompareFunction compare_functions[] = \ | |||
839 | {NULL((void*)0), (CompareFunction)BYTE_compare,(CompareFunction)UBYTE_compare,\ | |||
840 | (CompareFunction)SHORT_compare,(CompareFunction)USHORT_compare, \ | |||
841 | (CompareFunction)INT_compare,(CompareFunction)UINT_compare, \ | |||
842 | (CompareFunction)LONG_compare,(CompareFunction)ULONG_compare, \ | |||
843 | (CompareFunction)LONGLONG_compare,(CompareFunction)ULONGLONG_compare, | |||
844 | (CompareFunction)FLOAT_compare,(CompareFunction)DOUBLE_compare, | |||
845 | (CompareFunction)LONGDOUBLE_compare, NULL((void*)0), NULL((void*)0), NULL((void*)0), | |||
846 | (CompareFunction)OBJECT_compare, NULL((void*)0), NULL((void*)0), NULL((void*)0)}; | |||
847 | ||||
848 | PyObject *PyArray_OrderFilterND(PyObject *op1, PyObject *op2, int order) { | |||
849 | PyArrayObject *ap1=NULL((void*)0), *ap2=NULL((void*)0), *ret=NULL((void*)0); | |||
850 | npy_intp *a_ind=NULL((void*)0), *b_ind=NULL((void*)0), *temp_ind=NULL((void*)0), *mode_dep=NULL((void*)0), *check_ind=NULL((void*)0); | |||
851 | npy_uintp *offsets=NULL((void*)0); | |||
852 | npy_intp *offsets2=NULL((void*)0); | |||
853 | npy_uintp offset1; | |||
854 | int i, n2, n2_nonzero, k, check, incr = 1; | |||
855 | int typenum, bytes_in_array; | |||
856 | int is1, os; | |||
857 | char *op, *ap1_ptr, *ap2_ptr, *sort_buffer=NULL((void*)0); | |||
858 | npy_intp *ret_ind=NULL((void*)0); | |||
859 | CompareFunction compare_func=NULL((void*)0); | |||
860 | char *zptr=NULL((void*)0); | |||
861 | PyArray_CopySwapFunc *copyswap; | |||
862 | ||||
863 | /* Get Array objects from input */ | |||
864 | typenum = PyArray_ObjectType(*(int (*)(PyObject *, int)) _scipy_signal_ARRAY_API[54])(op1, 0); | |||
865 | typenum = PyArray_ObjectType(*(int (*)(PyObject *, int)) _scipy_signal_ARRAY_API[54])(op2, typenum); | |||
866 | ||||
867 | ap1 = (PyArrayObject *)PyArray_ContiguousFromObject(op1, typenum, 0, 0)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(op1, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(typenum), 0, 0, ((0x0001 | (0x0100 | 0x0400))) | 0x0040, ((void*)0)); | |||
868 | if (ap1 == NULL((void*)0)) return NULL((void*)0); | |||
869 | ap2 = (PyArrayObject *)PyArray_ContiguousFromObject(op2, typenum, 0, 0)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(op2, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(typenum), 0, 0, ((0x0001 | (0x0100 | 0x0400))) | 0x0040, ((void*)0)); | |||
870 | if (ap2 == NULL((void*)0)) goto fail; | |||
871 | ||||
872 | if (PyArray_NDIM(ap1) != PyArray_NDIM(ap2)) { | |||
873 | PyErr_SetString(PyExc_ValueError, | |||
874 | "All input arrays must have the same number of dimensions."); | |||
875 | goto fail; | |||
876 | } | |||
877 | ||||
878 | n2 = PyArray_Size(*(npy_intp (*)(PyObject *)) _scipy_signal_ARRAY_API[59])((PyObject *)ap2); | |||
879 | n2_nonzero = 0; | |||
880 | ap2_ptr = PyArray_DATA(ap2); | |||
881 | /* | |||
882 | * Find out the number of non-zero entries in domain (allows for | |||
883 | * different shapped rank-filters to be used besides just rectangles) | |||
884 | */ | |||
885 | zptr = PyArray_Zero(*(char * (*)(PyArrayObject *)) _scipy_signal_ARRAY_API[47])(ap2); | |||
886 | if (zptr == NULL((void*)0)) goto fail; | |||
887 | for (k=0; k < n2; k++) { | |||
888 | n2_nonzero += (memcmp(ap2_ptr,zptr,PyArray_ITEMSIZE(ap2)) != 0); | |||
889 | ap2_ptr += PyArray_ITEMSIZE(ap2); | |||
890 | } | |||
891 | ||||
892 | if ((order >= n2_nonzero) || (order < 0)) { | |||
893 | PyErr_SetString(PyExc_ValueError, | |||
894 | "Order must be non-negative and less than number of nonzero elements in domain."); | |||
895 | goto fail; | |||
896 | } | |||
897 | ||||
898 | ret = (PyArrayObject *)PyArray_SimpleNew(PyArray_NDIM(ap1),(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _scipy_signal_ARRAY_API [93])(&(*(PyTypeObject *)_scipy_signal_ARRAY_API[2]), PyArray_NDIM (ap1), PyArray_DIMS(ap1), typenum, ((void*)0), ((void*)0), 0, 0, ((void*)0)) | |||
899 | PyArray_DIMS(ap1),(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _scipy_signal_ARRAY_API [93])(&(*(PyTypeObject *)_scipy_signal_ARRAY_API[2]), PyArray_NDIM (ap1), PyArray_DIMS(ap1), typenum, ((void*)0), ((void*)0), 0, 0, ((void*)0)) | |||
900 | typenum)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _scipy_signal_ARRAY_API [93])(&(*(PyTypeObject *)_scipy_signal_ARRAY_API[2]), PyArray_NDIM (ap1), PyArray_DIMS(ap1), typenum, ((void*)0), ((void*)0), 0, 0, ((void*)0)); | |||
901 | if (ret == NULL((void*)0)) goto fail; | |||
902 | ||||
903 | if (PyArray_TYPE(ap1) < sizeof(compare_functions) / sizeof(compare_functions[0])) { | |||
904 | compare_func = compare_functions[PyArray_TYPE(ap1)]; | |||
905 | } | |||
906 | if (compare_func == NULL((void*)0)) { | |||
907 | PyErr_SetString(PyExc_ValueError, | |||
908 | "order_filterND not available for this type"); | |||
909 | goto fail; | |||
910 | } | |||
911 | ||||
912 | is1 = PyArray_ITEMSIZE(ap1); | |||
913 | ||||
914 | if (!(sort_buffer = malloc(n2_nonzero*is1))) goto fail; | |||
915 | ||||
916 | os = PyArray_ITEMSIZE(ret); | |||
917 | op = PyArray_DATA(ret); | |||
918 | ||||
919 | copyswap = PyArray_DESCR(ret)->f->copyswap; | |||
920 | ||||
921 | bytes_in_array = PyArray_NDIM(ap1)*sizeof(npy_intp); | |||
922 | mode_dep = malloc(bytes_in_array); | |||
923 | if (mode_dep == NULL((void*)0)) goto fail; | |||
924 | for (k = 0; k < PyArray_NDIM(ap1); k++) { | |||
925 | mode_dep[k] = -((PyArray_DIMS(ap2)[k]-1) >> 1); | |||
926 | } | |||
927 | ||||
928 | b_ind = (npy_intp *)malloc(bytes_in_array); /* loop variables */ | |||
929 | if (b_ind == NULL((void*)0)) goto fail; | |||
930 | memset(b_ind,0,bytes_in_array); | |||
931 | a_ind = (npy_intp *)malloc(bytes_in_array); | |||
932 | ret_ind = (npy_intp *)malloc(bytes_in_array); | |||
933 | if (a_ind == NULL((void*)0) || ret_ind == NULL((void*)0)) goto fail; | |||
934 | memset(ret_ind,0,bytes_in_array); | |||
935 | temp_ind = (npy_intp *)malloc(bytes_in_array); | |||
936 | check_ind = (npy_intp*)malloc(bytes_in_array); | |||
937 | offsets = (npy_uintp *)malloc(PyArray_NDIM(ap1)*sizeof(npy_uintp)); | |||
938 | offsets2 = (npy_intp *)malloc(PyArray_NDIM(ap1)*sizeof(npy_intp)); | |||
939 | if (temp_ind == NULL((void*)0) || check_ind == NULL((void*)0) || offsets == NULL((void*)0) || offsets2 == NULL((void*)0)) goto fail; | |||
940 | offset1 = compute_offsets(offsets, offsets2, PyArray_DIMS(ap1), | |||
941 | PyArray_DIMS(ap2), PyArray_DIMS(ret), | |||
942 | mode_dep, PyArray_NDIM(ap1)); | |||
943 | /* The filtering proceeds by looping through the output array | |||
944 | and for each value filling a buffer from the | |||
945 | element-by-element product of the two input arrays. The buffer | |||
946 | is then sorted and the order_th element is kept as output. Index | |||
947 | counters are used for book-keeping in the area so that we | |||
948 | can tell where we are in all of the arrays and be sure that | |||
949 | we are not trying to access areas outside the arrays definition. | |||
950 | ||||
951 | The inner loop is implemented separately but equivalently for each | |||
952 | datatype. The outer loop is similar in structure and form to | |||
953 | to the inner loop. | |||
954 | */ | |||
955 | /* Need to keep track of a ptr to place in big (first) input | |||
956 | array where we start the multiplication (we pass over it in the | |||
957 | inner loop (and not dereferenced) | |||
958 | if it is pointing outside dataspace) | |||
959 | */ | |||
960 | /* Calculate it once and the just move it around appropriately */ | |||
961 | PyDataMem_FREE(*(void (*)(void *)) _scipy_signal_ARRAY_API[289])(zptr); | |||
962 | zptr = PyArray_Zero(*(char * (*)(PyArrayObject *)) _scipy_signal_ARRAY_API[47])(ap1); | |||
963 | if (zptr == NULL((void*)0)) goto fail; | |||
964 | ap1_ptr = (char *)PyArray_DATA(ap1) + offset1*is1; | |||
965 | for (k=0; k < PyArray_NDIM(ap1); k++) { | |||
966 | a_ind[k] = mode_dep[k]; | |||
967 | check_ind[k] = PyArray_DIMS(ap1)[k] - PyArray_DIMS(ap2)[k] - mode_dep[k] - 1; | |||
968 | } | |||
969 | a_ind[PyArray_NDIM(ap1)-1]--; | |||
970 | i = PyArray_Size(*(npy_intp (*)(PyObject *)) _scipy_signal_ARRAY_API[59])((PyObject *)ret); | |||
971 | while (i--) { | |||
972 | /* | |||
973 | * Zero out the sort_buffer (has effect of zero-padding | |||
974 | * on boundaries). Treat object arrays right. | |||
975 | */ | |||
976 | ap2_ptr = sort_buffer; | |||
977 | for (k=0; k < n2_nonzero; k++) { | |||
978 | memcpy(ap2_ptr,zptr,is1); | |||
979 | ap2_ptr += is1; | |||
980 | } | |||
981 | ||||
982 | k = PyArray_NDIM(ap1) - 1; | |||
983 | while(--incr) { | |||
984 | a_ind[k] -= PyArray_DIMS(ret)[k] - 1; /* Return to start */ | |||
985 | k--; | |||
986 | } | |||
987 | ap1_ptr += offsets2[k]*is1; | |||
988 | a_ind[k]++; | |||
989 | memcpy(temp_ind, a_ind, bytes_in_array); | |||
990 | ||||
991 | check = 0; k = -1; | |||
992 | while(!check && (++k < PyArray_NDIM(ap1))) | |||
993 | check = (check || (ret_ind[k] < -mode_dep[k]) || | |||
994 | (ret_ind[k] > check_ind[k])); | |||
995 | ||||
996 | fill_buffer(ap1_ptr,ap1,ap2,sort_buffer,n2,check,b_ind,temp_ind,offsets); | |||
997 | qsort(sort_buffer, n2_nonzero, is1, compare_func); | |||
998 | ||||
999 | /* | |||
1000 | * Use copyswap for correct refcounting with object arrays | |||
1001 | * (sort_buffer has borrowed references, op owns references). Note | |||
1002 | * also that os == PyArray_ITEMSIZE(ret) and we are copying a single | |||
1003 | * scalar here. | |||
1004 | */ | |||
1005 | copyswap(op, sort_buffer + order*is1, 0, NULL((void*)0)); | |||
1006 | ||||
1007 | /* increment index counter */ | |||
1008 | incr = increment(ret_ind,PyArray_NDIM(ret),PyArray_DIMS(ret)); | |||
1009 | /* increment to next output index */ | |||
1010 | op += os; | |||
1011 | ||||
1012 | } | |||
1013 | free(b_ind); free(a_ind); free(ret_ind); | |||
1014 | free(offsets); free(offsets2); free(temp_ind); | |||
1015 | free(check_ind); free(mode_dep); | |||
1016 | free(sort_buffer); | |||
1017 | ||||
1018 | PyDataMem_FREE(*(void (*)(void *)) _scipy_signal_ARRAY_API[289])(zptr); | |||
1019 | Py_DECREF(ap1)_Py_DECREF(((PyObject*)(ap1))); | |||
1020 | Py_DECREF(ap2)_Py_DECREF(((PyObject*)(ap2))); | |||
1021 | ||||
1022 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _scipy_signal_ARRAY_API[76 ])(ret); | |||
1023 | ||||
1024 | fail: | |||
1025 | if (zptr) PyDataMem_FREE(*(void (*)(void *)) _scipy_signal_ARRAY_API[289])(zptr); | |||
1026 | free(sort_buffer); | |||
1027 | free(mode_dep); | |||
1028 | free(b_ind); | |||
1029 | free(a_ind); | |||
1030 | free(ret_ind); | |||
1031 | free(temp_ind); | |||
1032 | free(check_ind); | |||
1033 | free(offsets); | |||
1034 | free(offsets2); | |||
1035 | Py_XDECREF(ap1)_Py_XDECREF(((PyObject*)(ap1))); | |||
1036 | Py_XDECREF(ap2)_Py_XDECREF(((PyObject*)(ap2))); | |||
1037 | Py_XDECREF(ret)_Py_XDECREF(((PyObject*)(ret))); | |||
1038 | return NULL((void*)0); | |||
1039 | } | |||
1040 | ||||
1041 | ||||
1042 | /******************************************/ | |||
1043 | ||||
1044 | static char doc_correlateND[] = "out = _correlateND(a,kernel,mode) \n\n mode = 0 - 'valid', 1 - 'same', \n 2 - 'full' (default)"; | |||
1045 | ||||
1046 | /*******************************************************************/ | |||
1047 | ||||
1048 | static char doc_convolve2d[] = "out = _convolve2d(in1, in2, flip, mode, boundary, fillvalue)"; | |||
1049 | ||||
1050 | extern int pylab_convolve_2d(char*, npy_intp*, char*, npy_intp*, char*, | |||
1051 | npy_intp*, npy_intp*, npy_intp*, int, char*); | |||
1052 | ||||
1053 | static PyObject *sigtools_convolve2d(PyObject *NPY_UNUSED(dummy)(__NPY_UNUSED_TAGGEDdummy) __attribute__ ((__unused__)), PyObject *args) { | |||
1054 | ||||
1055 | PyObject *in1=NULL((void*)0), *in2=NULL((void*)0), *fill_value=NULL((void*)0); | |||
1056 | int mode=2, boundary=0, typenum, flag, flip=1, ret; | |||
1057 | npy_intp *aout_dimens=NULL((void*)0); | |||
1058 | int i; | |||
1059 | PyArrayObject *ain1=NULL((void*)0), *ain2=NULL((void*)0), *aout=NULL((void*)0); | |||
1060 | PyArrayObject *afill=NULL((void*)0); | |||
1061 | ||||
1062 | if (!PyArg_ParseTuple(args, "OO|iiiO", &in1, &in2, &flip, &mode, &boundary, | |||
1063 | &fill_value)) { | |||
1064 | return NULL((void*)0); | |||
1065 | } | |||
1066 | ||||
1067 | typenum = PyArray_ObjectType(*(int (*)(PyObject *, int)) _scipy_signal_ARRAY_API[54])(in1, 0); | |||
1068 | typenum = PyArray_ObjectType(*(int (*)(PyObject *, int)) _scipy_signal_ARRAY_API[54])(in2, typenum); | |||
1069 | ain1 = (PyArrayObject *)PyArray_FromObject(in1, typenum, 2, 2)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(in1, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(typenum), 2, 2, (0x0100 | 0x0400) | 0x0040, ((void*)0)); | |||
1070 | if (ain1 == NULL((void*)0)) goto fail; | |||
1071 | ain2 = (PyArrayObject *)PyArray_FromObject(in2, typenum, 2, 2)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(in2, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(typenum), 2, 2, (0x0100 | 0x0400) | 0x0040, ((void*)0)); | |||
1072 | if (ain2 == NULL((void*)0)) goto fail; | |||
1073 | ||||
1074 | if ((boundary != PAD0) && (boundary != REFLECT4) && (boundary != CIRCULAR8)) | |||
1075 | PYERR("Incorrect boundary value."){PyErr_SetString(PyExc_ValueError, "Incorrect boundary value." ); goto fail;}; | |||
1076 | ||||
1077 | if ((boundary == PAD0) & (fill_value != NULL((void*)0))) { | |||
1078 | afill = (PyArrayObject *)PyArray_FromObject(fill_value, typenum, 0, 0)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(fill_value, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(typenum), 0, 0, (0x0100 | 0x0400) | 0x0040, ((void*)0)); | |||
1079 | if (afill == NULL((void*)0)) { | |||
1080 | /* For backwards compatibility try go via complex */ | |||
1081 | PyArrayObject *tmp; | |||
1082 | PyErr_Clear(); | |||
1083 | tmp = (PyArrayObject *)PyArray_FromObject(fill_value,(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(fill_value, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(NPY_CDOUBLE), 0, 0, (0x0100 | 0x0400) | 0x0040, ((void*)0)) | |||
1084 | NPY_CDOUBLE, 0, 0)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(fill_value, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(NPY_CDOUBLE), 0, 0, (0x0100 | 0x0400) | 0x0040, ((void*)0)); | |||
1085 | if (tmp == NULL((void*)0)) goto fail; | |||
1086 | afill = (PyArrayObject *)PyArray_Cast(tmp, typenum)(*(PyObject * (*)(PyArrayObject *, PyArray_Descr *, int)) _scipy_signal_ARRAY_API [49])(tmp, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API [45])(typenum), 0); | |||
1087 | Py_DECREF(tmp)_Py_DECREF(((PyObject*)(tmp))); | |||
1088 | if (afill == NULL((void*)0)) goto fail; | |||
1089 | /* Deprecated 2017-07, scipy version 1.0.0 */ | |||
1090 | if (DEPRECATE("could not cast `fillvalue` directly to the output "PyErr_WarnEx(PyExc_DeprecationWarning,"could not cast `fillvalue` directly to the output " "type (it was first converted to complex). " "This is deprecated and will raise an error in the " "future.",1) | |||
1091 | "type (it was first converted to complex). "PyErr_WarnEx(PyExc_DeprecationWarning,"could not cast `fillvalue` directly to the output " "type (it was first converted to complex). " "This is deprecated and will raise an error in the " "future.",1) | |||
1092 | "This is deprecated and will raise an error in the "PyErr_WarnEx(PyExc_DeprecationWarning,"could not cast `fillvalue` directly to the output " "type (it was first converted to complex). " "This is deprecated and will raise an error in the " "future.",1) | |||
1093 | "future.")PyErr_WarnEx(PyExc_DeprecationWarning,"could not cast `fillvalue` directly to the output " "type (it was first converted to complex). " "This is deprecated and will raise an error in the " "future.",1) < 0) { | |||
1094 | goto fail; | |||
1095 | } | |||
1096 | } | |||
1097 | if (PyArray_SIZE(afill)(*(npy_intp (*)(npy_intp const *, int)) _scipy_signal_ARRAY_API [158])(PyArray_DIMS(afill), PyArray_NDIM(afill)) != 1) { | |||
1098 | if (PyArray_SIZE(afill)(*(npy_intp (*)(npy_intp const *, int)) _scipy_signal_ARRAY_API [158])(PyArray_DIMS(afill), PyArray_NDIM(afill)) == 0) { | |||
1099 | PyErr_SetString(PyExc_ValueError, | |||
1100 | "`fillvalue` cannot be an empty array."); | |||
1101 | goto fail; | |||
1102 | } | |||
1103 | /* Deprecated 2017-07, scipy version 1.0.0 */ | |||
1104 | if (DEPRECATE("`fillvalue` must be scalar or an array with "PyErr_WarnEx(PyExc_DeprecationWarning,"`fillvalue` must be scalar or an array with " "one element. " "This will raise an error in the future.",1) | |||
1105 | "one element. "PyErr_WarnEx(PyExc_DeprecationWarning,"`fillvalue` must be scalar or an array with " "one element. " "This will raise an error in the future.",1) | |||
1106 | "This will raise an error in the future.")PyErr_WarnEx(PyExc_DeprecationWarning,"`fillvalue` must be scalar or an array with " "one element. " "This will raise an error in the future.",1) < 0) { | |||
1107 | goto fail; | |||
1108 | } | |||
1109 | } | |||
1110 | } | |||
1111 | else { | |||
1112 | /* Create a zero filled array */ | |||
1113 | afill = (PyArrayObject *)PyArray_ZEROS(0, NULL, typenum, 0)(*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int )) _scipy_signal_ARRAY_API[183])(0, ((void*)0), (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(typenum), 0); | |||
1114 | if (afill == NULL((void*)0)) goto fail; | |||
1115 | } | |||
1116 | ||||
1117 | aout_dimens = malloc(PyArray_NDIM(ain1)*sizeof(npy_intp)); | |||
1118 | if (aout_dimens == NULL((void*)0)) goto fail; | |||
1119 | switch(mode & OUTSIZE_MASK3) { | |||
1120 | case VALID0: | |||
1121 | for (i = 0; i < PyArray_NDIM(ain1); i++) { | |||
1122 | aout_dimens[i] = PyArray_DIMS(ain1)[i] - PyArray_DIMS(ain2)[i] + 1; | |||
1123 | if (aout_dimens[i] < 0) { | |||
1124 | PyErr_SetString(PyExc_ValueError, | |||
1125 | "no part of the output is valid, use option 1 (same) or 2 " | |||
1126 | "(full) for third argument"); | |||
1127 | goto fail; | |||
1128 | } | |||
1129 | } | |||
1130 | break; | |||
1131 | case SAME1: | |||
1132 | for (i = 0; i < PyArray_NDIM(ain1); i++) { | |||
1133 | aout_dimens[i] = PyArray_DIMS(ain1)[i]; | |||
1134 | } | |||
1135 | break; | |||
1136 | case FULL2: | |||
1137 | for (i = 0; i < PyArray_NDIM(ain1); i++) { | |||
1138 | aout_dimens[i] = PyArray_DIMS(ain1)[i] + PyArray_DIMS(ain2)[i] - 1; | |||
1139 | } | |||
1140 | break; | |||
1141 | default: | |||
1142 | PyErr_SetString(PyExc_ValueError, | |||
1143 | "mode must be 0 (valid), 1 (same), or 2 (full)"); | |||
1144 | goto fail; | |||
1145 | } | |||
1146 | ||||
1147 | aout = (PyArrayObject *)PyArray_SimpleNew(PyArray_NDIM(ain1), aout_dimens,(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _scipy_signal_ARRAY_API [93])(&(*(PyTypeObject *)_scipy_signal_ARRAY_API[2]), PyArray_NDIM (ain1), aout_dimens, typenum, ((void*)0), ((void*)0), 0, 0, ( (void*)0)) | |||
1148 | typenum)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _scipy_signal_ARRAY_API [93])(&(*(PyTypeObject *)_scipy_signal_ARRAY_API[2]), PyArray_NDIM (ain1), aout_dimens, typenum, ((void*)0), ((void*)0), 0, 0, ( (void*)0)); | |||
1149 | if (aout == NULL((void*)0)) goto fail; | |||
1150 | ||||
1151 | flag = mode + boundary + (typenum << TYPE_SHIFT5) + \ | |||
1152 | (flip != 0) * FLIP_MASK16; | |||
1153 | ||||
1154 | ret = pylab_convolve_2d (PyArray_DATA(ain1), /* Input data Ns[0] x Ns[1] */ | |||
1155 | PyArray_STRIDES(ain1), /* Input strides */ | |||
1156 | PyArray_DATA(aout), /* Output data */ | |||
1157 | PyArray_STRIDES(aout), /* Output strides */ | |||
1158 | PyArray_DATA(ain2), /* coefficients in filter */ | |||
1159 | PyArray_STRIDES(ain2), /* coefficients strides */ | |||
1160 | PyArray_DIMS(ain2), /* Size of kernel Nwin[2] */ | |||
1161 | PyArray_DIMS(ain1), /* Size of image Ns[0] x Ns[1] */ | |||
1162 | flag, /* convolution parameters */ | |||
1163 | PyArray_DATA(afill)); /* fill value */ | |||
1164 | ||||
1165 | ||||
1166 | switch (ret) { | |||
1167 | case 0: | |||
1168 | free(aout_dimens); | |||
1169 | Py_DECREF(ain1)_Py_DECREF(((PyObject*)(ain1))); | |||
1170 | Py_DECREF(ain2)_Py_DECREF(((PyObject*)(ain2))); | |||
1171 | Py_XDECREF(afill)_Py_XDECREF(((PyObject*)(afill))); | |||
1172 | return (PyObject *)aout; | |||
1173 | break; | |||
1174 | case -5: | |||
1175 | case -4: | |||
1176 | PyErr_SetString(PyExc_ValueError, | |||
1177 | "convolve2d not available for this type."); | |||
1178 | goto fail; | |||
1179 | case -3: | |||
1180 | PyErr_NoMemory(); | |||
1181 | goto fail; | |||
1182 | case -2: | |||
1183 | PyErr_SetString(PyExc_ValueError, | |||
1184 | "Invalid boundary type."); | |||
1185 | goto fail; | |||
1186 | case -1: | |||
1187 | PyErr_SetString(PyExc_ValueError, | |||
1188 | "Invalid output flag."); | |||
1189 | goto fail; | |||
1190 | } | |||
1191 | ||||
1192 | fail: | |||
1193 | free(aout_dimens); | |||
1194 | Py_XDECREF(ain1)_Py_XDECREF(((PyObject*)(ain1))); | |||
1195 | Py_XDECREF(ain2)_Py_XDECREF(((PyObject*)(ain2))); | |||
1196 | Py_XDECREF(aout)_Py_XDECREF(((PyObject*)(aout))); | |||
1197 | Py_XDECREF(afill)_Py_XDECREF(((PyObject*)(afill))); | |||
1198 | return NULL((void*)0); | |||
1199 | } | |||
1200 | ||||
1201 | /*******************************************************************/ | |||
1202 | ||||
1203 | static char doc_order_filterND[] = "out = _order_filterND(a,domain,order)"; | |||
1204 | ||||
1205 | static PyObject *sigtools_order_filterND(PyObject *NPY_UNUSED(dummy)(__NPY_UNUSED_TAGGEDdummy) __attribute__ ((__unused__)), | |||
1206 | PyObject *args) { | |||
1207 | PyObject *domain, *a0; | |||
1208 | int order=0; | |||
1209 | ||||
1210 | if (!PyArg_ParseTuple(args, "OO|i", &a0, &domain, &order)) return NULL((void*)0); | |||
1211 | ||||
1212 | return PyArray_OrderFilterND(a0, domain, order); | |||
1213 | } | |||
1214 | ||||
1215 | ||||
1216 | static char doc_remez[] = | |||
1217 | "h = _remez(numtaps, bands, des, weight, type, fs, maxiter, grid_density)\n" | |||
1218 | " returns the optimal (in the Chebyshev/minimax sense) FIR filter impulse\n" | |||
1219 | " response given a set of band edges, the desired response on those bands,\n" | |||
1220 | " and the weight given to the error in those bands. Bands is a monotonic\n" | |||
1221 | " vector with band edges given in frequency domain where fs is the sampling\n" | |||
1222 | " frequency."; | |||
1223 | ||||
1224 | static PyObject *sigtools_remez(PyObject *NPY_UNUSED(dummy)(__NPY_UNUSED_TAGGEDdummy) __attribute__ ((__unused__)), PyObject *args) | |||
1225 | { | |||
1226 | PyObject *bands, *des, *weight; | |||
1227 | int k, numtaps, numbands, type = BANDPASS1, err; | |||
1228 | PyArrayObject *a_bands=NULL((void*)0), *a_des=NULL((void*)0), *a_weight=NULL((void*)0); | |||
1229 | PyArrayObject *h=NULL((void*)0); | |||
1230 | npy_intp ret_dimens; int maxiter = 25, grid_density = 16; | |||
1231 | double oldvalue, *dptr, fs = 1.0; | |||
1232 | char mystr[255]; | |||
1233 | int niter = -1; | |||
1234 | ||||
1235 | if (!PyArg_ParseTuple(args, "iOOO|idii", &numtaps, &bands, &des, &weight, | |||
1236 | &type, &fs, &maxiter, &grid_density)) { | |||
1237 | return NULL((void*)0); | |||
1238 | } | |||
1239 | ||||
1240 | if (type != BANDPASS1 && type != DIFFERENTIATOR2 && type != HILBERT3) { | |||
1241 | PyErr_SetString(PyExc_ValueError, | |||
1242 | "The type must be BANDPASS, DIFFERENTIATOR, or HILBERT."); | |||
1243 | return NULL((void*)0); | |||
1244 | } | |||
1245 | ||||
1246 | if (numtaps < 2) { | |||
1247 | PyErr_SetString(PyExc_ValueError, | |||
1248 | "The number of taps must be greater than 1."); | |||
1249 | return NULL((void*)0); | |||
1250 | } | |||
1251 | ||||
1252 | a_bands = (PyArrayObject *)PyArray_ContiguousFromObject(bands, NPY_DOUBLE,1,1)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(bands, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(NPY_DOUBLE), 1, 1, ( (0x0001 | (0x0100 | 0x0400))) | 0x0040, ((void*)0)); | |||
1253 | if (a_bands == NULL((void*)0)) goto fail; | |||
1254 | a_des = (PyArrayObject *)PyArray_ContiguousFromObject(des, NPY_DOUBLE,1,1)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(des, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(NPY_DOUBLE), 1, 1, ( (0x0001 | (0x0100 | 0x0400))) | 0x0040, ((void*)0)); | |||
1255 | if (a_des == NULL((void*)0)) goto fail; | |||
1256 | a_weight = (PyArrayObject *)PyArray_ContiguousFromObject(weight, NPY_DOUBLE,1,1)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(weight, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(NPY_DOUBLE), 1, 1, ( (0x0001 | (0x0100 | 0x0400))) | 0x0040, ((void*)0)); | |||
1257 | if (a_weight == NULL((void*)0)) goto fail; | |||
1258 | ||||
1259 | numbands = PyArray_DIMS(a_des)[0]; | |||
1260 | if ((PyArray_DIMS(a_bands)[0] != 2*numbands) || | |||
1261 | (PyArray_DIMS(a_weight)[0] != numbands)) { | |||
1262 | PyErr_SetString(PyExc_ValueError, | |||
1263 | "The inputs desired and weight must have same length.\n " | |||
1264 | "The input bands must have twice this length."); | |||
1265 | goto fail; | |||
1266 | } | |||
1267 | ||||
1268 | /* | |||
1269 | * Check the bands input to see if it is monotonic, divide by | |||
1270 | * fs to take from range 0 to 0.5 and check to see if in that range | |||
1271 | */ | |||
1272 | dptr = (double *)PyArray_DATA(a_bands); | |||
1273 | oldvalue = 0; | |||
1274 | for (k=0; k < 2*numbands; k++) { | |||
1275 | if (*dptr < oldvalue) { | |||
1276 | PyErr_SetString(PyExc_ValueError, | |||
1277 | "Bands must be monotonic starting at zero."); | |||
1278 | goto fail; | |||
1279 | } | |||
1280 | if (*dptr * 2 > fs) { | |||
1281 | PyErr_SetString(PyExc_ValueError, | |||
1282 | "Band edges should be less than 1/2 the sampling frequency"); | |||
1283 | goto fail; | |||
1284 | } | |||
1285 | oldvalue = *dptr; | |||
1286 | *dptr = oldvalue / fs; /* Change so that sampling frequency is 1.0 */ | |||
1287 | dptr++; | |||
1288 | } | |||
1289 | ||||
1290 | ret_dimens = numtaps; | |||
1291 | h = (PyArrayObject *)PyArray_SimpleNew(1, &ret_dimens, NPY_DOUBLE)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _scipy_signal_ARRAY_API [93])(&(*(PyTypeObject *)_scipy_signal_ARRAY_API[2]), 1, & ret_dimens, NPY_DOUBLE, ((void*)0), ((void*)0), 0, 0, ((void* )0)); | |||
1292 | if (h == NULL((void*)0)) goto fail; | |||
1293 | ||||
1294 | err = pre_remez((double *)PyArray_DATA(h), numtaps, numbands, | |||
1295 | (double *)PyArray_DATA(a_bands), | |||
1296 | (double *)PyArray_DATA(a_des), | |||
1297 | (double *)PyArray_DATA(a_weight), | |||
1298 | type, maxiter, grid_density, &niter); | |||
1299 | if (err < 0) { | |||
1300 | if (err == -1) { | |||
1301 | sprintf(mystr, "Failure to converge at iteration %d, try reducing transition band width.\n", niter)__builtin___sprintf_chk (mystr, 2 - 1, __builtin_object_size ( mystr, 2 > 1), "Failure to converge at iteration %d, try reducing transition band width.\n" , niter); | |||
1302 | PyErr_SetString(PyExc_ValueError, mystr); | |||
1303 | goto fail; | |||
1304 | } | |||
1305 | else if (err == -2) { | |||
1306 | PyErr_NoMemory(); | |||
1307 | goto fail; | |||
1308 | } | |||
1309 | } | |||
1310 | ||||
1311 | Py_DECREF(a_bands)_Py_DECREF(((PyObject*)(a_bands))); | |||
1312 | Py_DECREF(a_des)_Py_DECREF(((PyObject*)(a_des))); | |||
1313 | Py_DECREF(a_weight)_Py_DECREF(((PyObject*)(a_weight))); | |||
1314 | ||||
1315 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _scipy_signal_ARRAY_API[76 ])(h); | |||
1316 | ||||
1317 | fail: | |||
1318 | Py_XDECREF(a_bands)_Py_XDECREF(((PyObject*)(a_bands))); | |||
1319 | Py_XDECREF(a_des)_Py_XDECREF(((PyObject*)(a_des))); | |||
1320 | Py_XDECREF(a_weight)_Py_XDECREF(((PyObject*)(a_weight))); | |||
1321 | Py_XDECREF(h)_Py_XDECREF(((PyObject*)(h))); | |||
1322 | return NULL((void*)0); | |||
1323 | } | |||
1324 | ||||
1325 | static char doc_median2d[] = "filt = _median2d(data, size)"; | |||
1326 | ||||
1327 | extern void f_medfilt2(float*,float*,npy_intp*,npy_intp*); | |||
1328 | extern void d_medfilt2(double*,double*,npy_intp*,npy_intp*); | |||
1329 | extern void b_medfilt2(unsigned char*,unsigned char*,npy_intp*,npy_intp*); | |||
1330 | ||||
1331 | static PyObject *sigtools_median2d(PyObject *NPY_UNUSED(dummy)(__NPY_UNUSED_TAGGEDdummy) __attribute__ ((__unused__)), PyObject *args) | |||
1332 | { | |||
1333 | PyObject *image=NULL((void*)0), *size=NULL((void*)0); | |||
1334 | int typenum; | |||
1335 | PyArrayObject *a_image=NULL((void*)0), *a_size=NULL((void*)0); | |||
1336 | PyArrayObject *a_out=NULL((void*)0); | |||
1337 | npy_intp Nwin[2] = {3,3}; | |||
1338 | ||||
1339 | if (!PyArg_ParseTuple(args, "O|O", &image, &size)) return NULL((void*)0); | |||
1340 | ||||
1341 | typenum = PyArray_ObjectType(*(int (*)(PyObject *, int)) _scipy_signal_ARRAY_API[54])(image, 0); | |||
1342 | a_image = (PyArrayObject *)PyArray_ContiguousFromObject(image, typenum, 2, 2)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(image, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(typenum), 2, 2, ((0x0001 | (0x0100 | 0x0400))) | 0x0040, ((void*)0)); | |||
1343 | if (a_image == NULL((void*)0)) goto fail; | |||
1344 | ||||
1345 | if (size != NULL((void*)0)) { | |||
1346 | a_size = (PyArrayObject *)PyArray_ContiguousFromObject(size, NPY_INTP, 1, 1)(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _scipy_signal_ARRAY_API[69])(size, (*(PyArray_Descr * (*)(int)) _scipy_signal_ARRAY_API[45])(NPY_LONG), 1, 1, (( 0x0001 | (0x0100 | 0x0400))) | 0x0040, ((void*)0)); | |||
1347 | if (a_size == NULL((void*)0)) goto fail; | |||
1348 | if ((PyArray_NDIM(a_size) != 1) || (PyArray_DIMS(a_size)[0] < 2)) | |||
1349 | PYERR("Size must be a length two sequence"){PyErr_SetString(PyExc_ValueError, "Size must be a length two sequence" ); goto fail;}; | |||
1350 | Nwin[0] = ((npy_intp *)PyArray_DATA(a_size))[0]; | |||
1351 | Nwin[1] = ((npy_intp *)PyArray_DATA(a_size))[1]; | |||
1352 | } | |||
1353 | ||||
1354 | a_out = (PyArrayObject *)PyArray_SimpleNew(2, PyArray_DIMS(a_image), typenum)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _scipy_signal_ARRAY_API [93])(&(*(PyTypeObject *)_scipy_signal_ARRAY_API[2]), 2, PyArray_DIMS (a_image), typenum, ((void*)0), ((void*)0), 0, 0, ((void*)0)); | |||
1355 | if (a_out == NULL((void*)0)) goto fail; | |||
1356 | ||||
1357 | if (setjmp(MALLOC_FAIL)_setjmp (MALLOC_FAIL)) { | |||
1358 | PYERR("Memory allocation error."){PyErr_SetString(PyExc_ValueError, "Memory allocation error." ); goto fail;}; | |||
1359 | } | |||
1360 | else { | |||
1361 | switch (typenum) { | |||
1362 | case NPY_UBYTE: | |||
1363 | b_medfilt2((unsigned char *)PyArray_DATA(a_image), | |||
1364 | (unsigned char *)PyArray_DATA(a_out), | |||
1365 | Nwin, PyArray_DIMS(a_image)); | |||
1366 | break; | |||
1367 | case NPY_FLOAT: | |||
1368 | f_medfilt2((float *)PyArray_DATA(a_image), | |||
1369 | (float *)PyArray_DATA(a_out), Nwin, | |||
1370 | PyArray_DIMS(a_image)); | |||
1371 | break; | |||
1372 | case NPY_DOUBLE: | |||
1373 | d_medfilt2((double *)PyArray_DATA(a_image), | |||
1374 | (double *)PyArray_DATA(a_out), Nwin, | |||
1375 | PyArray_DIMS(a_image)); | |||
1376 | break; | |||
1377 | default: | |||
1378 | PYERR("2D median filter only supports uint8, float32, and float64."){PyErr_SetString(PyExc_ValueError, "2D median filter only supports uint8, float32, and float64." ); goto fail;}; | |||
1379 | } | |||
1380 | } | |||
1381 | ||||
1382 | Py_DECREF(a_image)_Py_DECREF(((PyObject*)(a_image))); | |||
1383 | Py_XDECREF(a_size)_Py_XDECREF(((PyObject*)(a_size))); | |||
1384 | ||||
1385 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _scipy_signal_ARRAY_API[76 ])(a_out); | |||
1386 | ||||
1387 | fail: | |||
1388 | Py_XDECREF(a_image)_Py_XDECREF(((PyObject*)(a_image))); | |||
1389 | Py_XDECREF(a_size)_Py_XDECREF(((PyObject*)(a_size))); | |||
1390 | Py_XDECREF(a_out)_Py_XDECREF(((PyObject*)(a_out))); | |||
1391 | return NULL((void*)0); | |||
1392 | ||||
1393 | } | |||
1394 | ||||
1395 | static char doc_linear_filter[] = | |||
1396 | "(y,Vf) = _linear_filter(b,a,X,Dim=-1,Vi=None) " \ | |||
1397 | "implemented using Direct Form II transposed flow " \ | |||
1398 | "diagram. If Vi is not given, Vf is not returned."; | |||
1399 | ||||
1400 | static struct PyMethodDef toolbox_module_methods[] = { | |||
1401 | {"_correlateND", scipy_signal_sigtools_correlateND, METH_VARARGS0x0001, doc_correlateND}, | |||
1402 | {"_convolve2d", sigtools_convolve2d, METH_VARARGS0x0001, doc_convolve2d}, | |||
1403 | {"_order_filterND", sigtools_order_filterND, METH_VARARGS0x0001, doc_order_filterND}, | |||
1404 | {"_linear_filter", scipy_signal_sigtools_linear_filter, METH_VARARGS0x0001, doc_linear_filter}, | |||
1405 | {"_remez",sigtools_remez, METH_VARARGS0x0001, doc_remez}, | |||
1406 | {"_medfilt2d", sigtools_median2d, METH_VARARGS0x0001, doc_median2d}, | |||
1407 | {NULL((void*)0), NULL((void*)0), 0, NULL((void*)0)} /* sentinel */ | |||
1408 | }; | |||
1409 | ||||
1410 | static struct PyModuleDef moduledef = { | |||
1411 | PyModuleDef_HEAD_INIT{ { 1, ((void*)0) }, ((void*)0), 0, ((void*)0), }, | |||
1412 | "sigtools", | |||
1413 | NULL((void*)0), | |||
1414 | -1, | |||
1415 | toolbox_module_methods, | |||
1416 | NULL((void*)0), | |||
1417 | NULL((void*)0), | |||
1418 | NULL((void*)0), | |||
1419 | NULL((void*)0) | |||
1420 | }; | |||
1421 | PyObject *PyInit_sigtools(void) | |||
1422 | { | |||
1423 | PyObject *m; | |||
1424 | ||||
1425 | m = PyModule_Create(&moduledef)PyModule_Create2(&moduledef, 1013); | |||
| ||||
| ||||
1426 | import_array(){if (_import_array() < 0) {PyErr_Print(); PyErr_SetString( PyExc_ImportError, "numpy.core.multiarray failed to import"); return ((void*)0); } }; | |||
1427 | ||||
1428 | scipy_signal_sigtools_linear_filter_module_init(); | |||
1429 | ||||
1430 | return m; | |||
1431 | } |
1 | #ifndef PyModule_Create2 |
2 | struct _object; |
3 | typedef struct _object PyObject; |
4 | PyObject* clang_analyzer_PyObject_New_Reference(); |
5 | PyObject* PyModule_Create2(PyModuleDef *def, int module_api_version) { |
6 | return clang_analyzer_PyObject_New_Reference(); |
7 | } |
8 | #else |
9 | #warning "API PyModule_Create2 is defined as a macro." |
10 | #endif |