File: | .cache/bazel/_bazel_alan/39be661231df2a680c9b74265384c13c/execroot/org_tensorflow/tensorflow/lite/python/interpreter_wrapper/interpreter_wrapper.cc |
Warning: | line 144, column 54 PyObject ownership leak with reference count of 1 |
Press '?' to see keyboard shortcuts
Keyboard shortcuts:
1 | /* Copyright 2018 The TensorFlow Authors. All Rights Reserved. | |||
2 | ||||
3 | Licensed under the Apache License, Version 2.0 (the "License"); | |||
4 | you may not use this file except in compliance with the License. | |||
5 | You may obtain a copy of the License at | |||
6 | ||||
7 | http://www.apache.org/licenses/LICENSE-2.0 | |||
8 | ||||
9 | Unless required by applicable law or agreed to in writing, software | |||
10 | distributed under the License is distributed on an "AS IS" BASIS, | |||
11 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |||
12 | See the License for the specific language governing permissions and | |||
13 | limitations under the License. | |||
14 | ==============================================================================*/ | |||
15 | #include "tensorflow/lite/python/interpreter_wrapper/interpreter_wrapper.h" | |||
16 | ||||
17 | #include <stdarg.h> | |||
18 | ||||
19 | #include <cstring> | |||
20 | #include <functional> | |||
21 | #include <memory> | |||
22 | #include <sstream> | |||
23 | #include <string> | |||
24 | ||||
25 | #include "absl/memory/memory.h" | |||
26 | #include "absl/strings/str_format.h" | |||
27 | #include "tensorflow/lite/c/common.h" | |||
28 | #include "tensorflow/lite/core/api/error_reporter.h" | |||
29 | #include "tensorflow/lite/core/api/op_resolver.h" | |||
30 | #include "tensorflow/lite/interpreter.h" | |||
31 | #include "tensorflow/lite/kernels/internal/compatibility.h" | |||
32 | #include "tensorflow/lite/kernels/register.h" | |||
33 | #include "tensorflow/lite/kernels/register_ref.h" | |||
34 | #include "tensorflow/lite/model.h" | |||
35 | #include "tensorflow/lite/mutable_op_resolver.h" | |||
36 | #include "tensorflow/lite/python/interpreter_wrapper/numpy.h" | |||
37 | #include "tensorflow/lite/python/interpreter_wrapper/python_error_reporter.h" | |||
38 | #include "tensorflow/lite/python/interpreter_wrapper/python_utils.h" | |||
39 | #include "tensorflow/lite/shared_library.h" | |||
40 | #include "tensorflow/lite/string_util.h" | |||
41 | #include "tensorflow/lite/util.h" | |||
42 | ||||
43 | #define TFLITE_PY_CHECK(x)if ((x) != kTfLiteOk) { return error_reporter_->exception( ); } \ | |||
44 | if ((x) != kTfLiteOk) { \ | |||
45 | return error_reporter_->exception(); \ | |||
46 | } | |||
47 | ||||
48 | #define TFLITE_PY_TENSOR_BOUNDS_CHECK(i)if (i >= interpreter_->tensors_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->tensors_size()); return nullptr; } \ | |||
49 | if (i >= interpreter_->tensors_size() || i < 0) { \ | |||
50 | PyErr_Format(PyExc_ValueError, \ | |||
51 | "Invalid tensor index %d exceeds max tensor index %lu", i, \ | |||
52 | interpreter_->tensors_size()); \ | |||
53 | return nullptr; \ | |||
54 | } | |||
55 | ||||
56 | #define TFLITE_PY_SUBGRAPH_TENSOR_BOUNDS_CHECK(i, subgraph_index)if (i >= interpreter_->subgraph(subgraph_index)->tensors_size () || i < 0) { PyErr_Format(PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->subgraph(subgraph_index)->tensors_size ()); return nullptr; } \ | |||
57 | if (i >= interpreter_->subgraph(subgraph_index)->tensors_size() || i < 0) { \ | |||
58 | PyErr_Format(PyExc_ValueError, \ | |||
59 | "Invalid tensor index %d exceeds max tensor index %lu", i, \ | |||
60 | interpreter_->subgraph(subgraph_index)->tensors_size()); \ | |||
61 | return nullptr; \ | |||
62 | } | |||
63 | ||||
64 | #define TFLITE_PY_SUBGRAPH_BOUNDS_CHECK(i)if (i >= interpreter_->subgraphs_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid subgraph index %d exceeds max subgraph index %lu" , i, interpreter_->subgraphs_size()); return nullptr; } \ | |||
65 | if (i >= interpreter_->subgraphs_size() || i < 0) { \ | |||
66 | PyErr_Format(PyExc_ValueError, \ | |||
67 | "Invalid subgraph index %d exceeds max subgraph index %lu", \ | |||
68 | i, interpreter_->subgraphs_size()); \ | |||
69 | return nullptr; \ | |||
70 | } | |||
71 | ||||
72 | #define TFLITE_PY_NODES_BOUNDS_CHECK(i)if (i >= interpreter_->nodes_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid node index"); return nullptr; } \ | |||
73 | if (i >= interpreter_->nodes_size() || i < 0) { \ | |||
74 | PyErr_Format(PyExc_ValueError, "Invalid node index"); \ | |||
75 | return nullptr; \ | |||
76 | } | |||
77 | ||||
78 | #define TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; } \ | |||
79 | if (!interpreter_) { \ | |||
80 | PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized."); \ | |||
81 | return nullptr; \ | |||
82 | } | |||
83 | ||||
84 | namespace tflite { | |||
85 | namespace interpreter_wrapper { | |||
86 | ||||
87 | namespace { | |||
88 | ||||
89 | using python_utils::PyDecrefDeleter; | |||
90 | ||||
91 | std::unique_ptr<Interpreter> CreateInterpreter( | |||
92 | const InterpreterWrapper::Model* model, | |||
93 | const tflite::MutableOpResolver& resolver, bool preserve_all_tensors) { | |||
94 | if (!model) { | |||
95 | return nullptr; | |||
96 | } | |||
97 | ||||
98 | ::tflite::python::ImportNumpy(); | |||
99 | ||||
100 | std::unique_ptr<Interpreter> interpreter; | |||
101 | InterpreterBuilder builder(*model, resolver); | |||
102 | if (preserve_all_tensors) builder.PreserveAllTensorsExperimental(); | |||
103 | if (builder(&interpreter) != kTfLiteOk) { | |||
104 | return nullptr; | |||
105 | } | |||
106 | return interpreter; | |||
107 | } | |||
108 | ||||
109 | PyObject* PyArrayFromFloatVector(const float* data, npy_intp size) { | |||
110 | void* pydata = malloc(size * sizeof(float)); | |||
111 | memcpy(pydata, data, size * sizeof(float)); | |||
112 | PyObject* obj = PyArray_SimpleNewFromData(1, &size, NPY_FLOAT32, pydata)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _tflite_numpy_api [93])(&(*(PyTypeObject *)_tflite_numpy_api[2]), 1, &size , NPY_FLOAT, __null, pydata, 0, (0x0001 | (0x0100 | 0x0400)), __null); | |||
113 | PyArray_ENABLEFLAGS(reinterpret_cast<PyArrayObject*>(obj), NPY_ARRAY_OWNDATA0x0004); | |||
114 | return obj; | |||
115 | } | |||
116 | ||||
117 | PyObject* PyArrayFromIntVector(const int* data, npy_intp size) { | |||
118 | void* pydata = malloc(size * sizeof(int)); | |||
119 | memcpy(pydata, data, size * sizeof(int)); | |||
120 | PyObject* obj = PyArray_SimpleNewFromData(1, &size, NPY_INT32, pydata)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _tflite_numpy_api [93])(&(*(PyTypeObject *)_tflite_numpy_api[2]), 1, &size , NPY_INT, __null, pydata, 0, (0x0001 | (0x0100 | 0x0400)), __null ); | |||
121 | PyArray_ENABLEFLAGS(reinterpret_cast<PyArrayObject*>(obj), NPY_ARRAY_OWNDATA0x0004); | |||
122 | return obj; | |||
123 | } | |||
124 | ||||
125 | PyObject* PyTupleFromQuantizationParam(const TfLiteQuantizationParams& param) { | |||
126 | PyObject* result = PyTuple_New(2); | |||
127 | PyTuple_SET_ITEM(result, 0, PyFloat_FromDouble(param.scale))PyTuple_SetItem(result, 0, PyFloat_FromDouble(param.scale)); | |||
128 | PyTuple_SET_ITEM(result, 1, PyLong_FromLong(param.zero_point))PyTuple_SetItem(result, 1, PyLong_FromLong(param.zero_point)); | |||
129 | return result; | |||
130 | } | |||
131 | ||||
132 | PyObject* PyDictFromSparsityParam(const TfLiteSparsity& param) { | |||
133 | PyObject* result = PyDict_New(); | |||
134 | PyDict_SetItemString(result, "traversal_order", | |||
135 | PyArrayFromIntVector(param.traversal_order->data, | |||
136 | param.traversal_order->size)); | |||
137 | PyDict_SetItemString( | |||
138 | result, "block_map", | |||
139 | PyArrayFromIntVector(param.block_map->data, param.block_map->size)); | |||
140 | PyObject* dim_metadata = PyList_New(param.dim_metadata_size); | |||
141 | for (int i = 0; i < param.dim_metadata_size; i++) { | |||
142 | PyObject* dim_metadata_i = PyDict_New(); | |||
143 | if (param.dim_metadata[i].format == kTfLiteDimDense) { | |||
144 | PyDict_SetItemString(dim_metadata_i, "format", PyLong_FromSize_t(0)); | |||
| ||||
145 | PyDict_SetItemString(dim_metadata_i, "dense_size", | |||
146 | PyLong_FromSize_t(param.dim_metadata[i].dense_size)); | |||
147 | } else { | |||
148 | PyDict_SetItemString(dim_metadata_i, "format", PyLong_FromSize_t(1)); | |||
149 | const auto* array_segments = param.dim_metadata[i].array_segments; | |||
150 | const auto* array_indices = param.dim_metadata[i].array_indices; | |||
151 | PyDict_SetItemString( | |||
152 | dim_metadata_i, "array_segments", | |||
153 | PyArrayFromIntVector(array_segments->data, array_segments->size)); | |||
154 | PyDict_SetItemString( | |||
155 | dim_metadata_i, "array_indices", | |||
156 | PyArrayFromIntVector(array_indices->data, array_indices->size)); | |||
157 | } | |||
158 | PyList_SetItem(dim_metadata, i, dim_metadata_i); | |||
159 | } | |||
160 | PyDict_SetItemString(result, "dim_metadata", dim_metadata); | |||
161 | return result; | |||
162 | } | |||
163 | ||||
164 | bool RegisterCustomOpByName(const char* registerer_name, | |||
165 | tflite::MutableOpResolver* resolver, | |||
166 | std::string* error_msg) { | |||
167 | // Registerer functions take a pointer to a BuiltinOpResolver as an input | |||
168 | // parameter and return void. | |||
169 | // TODO(b/137576229): We should implement this functionality in a more | |||
170 | // principled way. | |||
171 | typedef void (*RegistererFunctionType)(tflite::MutableOpResolver*); | |||
172 | ||||
173 | // Look for the Registerer function by name. | |||
174 | RegistererFunctionType registerer = reinterpret_cast<RegistererFunctionType>( | |||
175 | SharedLibrary::GetSymbol(registerer_name)); | |||
176 | ||||
177 | // Fail in an informative way if the function was not found. | |||
178 | if (registerer == nullptr) { | |||
179 | *error_msg = | |||
180 | absl::StrFormat("Looking up symbol '%s' failed with error '%s'.", | |||
181 | registerer_name, SharedLibrary::GetError()); | |||
182 | return false; | |||
183 | } | |||
184 | ||||
185 | // Call the registerer with the resolver. | |||
186 | registerer(resolver); | |||
187 | return true; | |||
188 | } | |||
189 | ||||
190 | } // namespace | |||
191 | ||||
192 | static constexpr int kBuiltinOpResolver = 1; | |||
193 | static constexpr int kBuiltinRefOpResolver = 2; | |||
194 | static constexpr int kBuiltinOpResolverWithoutDefaultDelegates = 3; | |||
195 | ||||
196 | InterpreterWrapper* InterpreterWrapper::CreateInterpreterWrapper( | |||
197 | std::unique_ptr<InterpreterWrapper::Model> model, int op_resolver_id, | |||
198 | std::unique_ptr<PythonErrorReporter> error_reporter, | |||
199 | const std::vector<std::string>& registerers_by_name, | |||
200 | const std::vector<std::function<void(uintptr_t)>>& registerers_by_func, | |||
201 | std::string* error_msg, bool preserve_all_tensors) { | |||
202 | if (!model) { | |||
203 | *error_msg = error_reporter->message(); | |||
204 | return nullptr; | |||
205 | } | |||
206 | ||||
207 | std::unique_ptr<tflite::MutableOpResolver> resolver; | |||
208 | switch (op_resolver_id) { | |||
209 | case kBuiltinOpResolver: | |||
210 | resolver = absl::make_unique<tflite::ops::builtin::BuiltinOpResolver>(); | |||
211 | break; | |||
212 | case kBuiltinRefOpResolver: | |||
213 | resolver = | |||
214 | absl::make_unique<tflite::ops::builtin::BuiltinRefOpResolver>(); | |||
215 | break; | |||
216 | case kBuiltinOpResolverWithoutDefaultDelegates: | |||
217 | resolver = absl::make_unique< | |||
218 | tflite::ops::builtin::BuiltinOpResolverWithoutDefaultDelegates>(); | |||
219 | break; | |||
220 | default: | |||
221 | // This should not never happen because the eventual caller in | |||
222 | // interpreter.py should have passed a valid id here. | |||
223 | TFLITE_DCHECK(false)(false) ? (void)0 : (static_cast<void>(0)); | |||
224 | return nullptr; | |||
225 | } | |||
226 | ||||
227 | for (const auto& registerer : registerers_by_name) { | |||
228 | if (!RegisterCustomOpByName(registerer.c_str(), resolver.get(), error_msg)) | |||
229 | return nullptr; | |||
230 | } | |||
231 | for (const auto& registerer : registerers_by_func) { | |||
232 | registerer(reinterpret_cast<uintptr_t>(resolver.get())); | |||
233 | } | |||
234 | auto interpreter = | |||
235 | CreateInterpreter(model.get(), *resolver, preserve_all_tensors); | |||
236 | if (!interpreter) { | |||
237 | *error_msg = error_reporter->message(); | |||
238 | return nullptr; | |||
239 | } | |||
240 | ||||
241 | InterpreterWrapper* wrapper = | |||
242 | new InterpreterWrapper(std::move(model), std::move(error_reporter), | |||
243 | std::move(resolver), std::move(interpreter)); | |||
244 | return wrapper; | |||
245 | } | |||
246 | ||||
247 | InterpreterWrapper::InterpreterWrapper( | |||
248 | std::unique_ptr<InterpreterWrapper::Model> model, | |||
249 | std::unique_ptr<PythonErrorReporter> error_reporter, | |||
250 | std::unique_ptr<tflite::MutableOpResolver> resolver, | |||
251 | std::unique_ptr<Interpreter> interpreter) | |||
252 | : model_(std::move(model)), | |||
253 | error_reporter_(std::move(error_reporter)), | |||
254 | resolver_(std::move(resolver)), | |||
255 | interpreter_(std::move(interpreter)) {} | |||
256 | ||||
257 | InterpreterWrapper::~InterpreterWrapper() {} | |||
258 | ||||
259 | PyObject* InterpreterWrapper::AllocateTensors(int subgraph_index) { | |||
260 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
261 | TFLITE_PY_SUBGRAPH_BOUNDS_CHECK(subgraph_index)if (subgraph_index >= interpreter_->subgraphs_size() || subgraph_index < 0) { PyErr_Format(PyExc_ValueError, "Invalid subgraph index %d exceeds max subgraph index %lu" , subgraph_index, interpreter_->subgraphs_size()); return nullptr ; }; | |||
262 | TFLITE_PY_CHECK(interpreter_->subgraph(subgraph_index)->AllocateTensors())if ((interpreter_->subgraph(subgraph_index)->AllocateTensors ()) != kTfLiteOk) { return error_reporter_->exception(); }; | |||
263 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
264 | } | |||
265 | ||||
266 | PyObject* InterpreterWrapper::Invoke(int subgraph_index) { | |||
267 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
268 | TFLITE_PY_SUBGRAPH_BOUNDS_CHECK(subgraph_index)if (subgraph_index >= interpreter_->subgraphs_size() || subgraph_index < 0) { PyErr_Format(PyExc_ValueError, "Invalid subgraph index %d exceeds max subgraph index %lu" , subgraph_index, interpreter_->subgraphs_size()); return nullptr ; }; | |||
269 | ||||
270 | // Release the GIL so that we can run multiple interpreters in parallel | |||
271 | TfLiteStatus status_code = kTfLiteOk; | |||
272 | Py_BEGIN_ALLOW_THREADS{ PyThreadState *_save; _save = PyEval_SaveThread();; // To return can happen between this and end! | |||
273 | tflite::Subgraph* subgraph = interpreter_->subgraph(subgraph_index); | |||
274 | status_code = subgraph->Invoke(); | |||
275 | ||||
276 | if (!interpreter_->allow_buffer_handle_output_) { | |||
277 | for (int tensor_index : subgraph->outputs()) { | |||
278 | subgraph->EnsureTensorDataIsReadable(tensor_index); | |||
279 | } | |||
280 | } | |||
281 | Py_END_ALLOW_THREADSPyEval_RestoreThread(_save); }; | |||
282 | ||||
283 | TFLITE_PY_CHECK(if ((status_code) != kTfLiteOk) { return error_reporter_-> exception(); } | |||
284 | status_code)if ((status_code) != kTfLiteOk) { return error_reporter_-> exception(); }; // don't move this into the Py_BEGIN/Py_End block | |||
285 | ||||
286 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
287 | } | |||
288 | ||||
289 | PyObject* InterpreterWrapper::InputIndices() const { | |||
290 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
291 | PyObject* np_array = PyArrayFromIntVector(interpreter_->inputs().data(), | |||
292 | interpreter_->inputs().size()); | |||
293 | ||||
294 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _tflite_numpy_api[76])(reinterpret_cast<PyArrayObject*>(np_array)); | |||
295 | } | |||
296 | ||||
297 | PyObject* InterpreterWrapper::OutputIndices() const { | |||
298 | PyObject* np_array = PyArrayFromIntVector(interpreter_->outputs().data(), | |||
299 | interpreter_->outputs().size()); | |||
300 | ||||
301 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _tflite_numpy_api[76])(reinterpret_cast<PyArrayObject*>(np_array)); | |||
302 | } | |||
303 | ||||
304 | PyObject* InterpreterWrapper::ResizeInputTensorImpl(int i, PyObject* value) { | |||
305 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
306 | ||||
307 | std::unique_ptr<PyObject, PyDecrefDeleter> array_safe( | |||
308 | PyArray_FromAny(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _tflite_numpy_api[69])(value, nullptr, 0, 0, NPY_ARRAY_CARRAY(0x0001 | (0x0100 | 0x0400)), nullptr)); | |||
309 | if (!array_safe) { | |||
310 | PyErr_SetString(PyExc_ValueError, | |||
311 | "Failed to convert numpy value into readable tensor."); | |||
312 | return nullptr; | |||
313 | } | |||
314 | ||||
315 | PyArrayObject* array = reinterpret_cast<PyArrayObject*>(array_safe.get()); | |||
316 | ||||
317 | if (PyArray_NDIM(array) != 1) { | |||
318 | PyErr_Format(PyExc_ValueError, "Shape should be 1D instead of %d.", | |||
319 | PyArray_NDIM(array)); | |||
320 | return nullptr; | |||
321 | } | |||
322 | ||||
323 | if (PyArray_TYPE(array) != NPY_INT32NPY_INT) { | |||
324 | PyErr_Format(PyExc_ValueError, "Shape must be type int32 (was %d).", | |||
325 | PyArray_TYPE(array)); | |||
326 | return nullptr; | |||
327 | } | |||
328 | ||||
329 | PyArray_ENABLEFLAGS(reinterpret_cast<PyArrayObject*>(array), | |||
330 | NPY_ARRAY_OWNDATA0x0004); | |||
331 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _tflite_numpy_api[76])(reinterpret_cast<PyArrayObject*>(array)); | |||
332 | } | |||
333 | ||||
334 | PyObject* InterpreterWrapper::ResizeInputTensor(int i, PyObject* value, | |||
335 | bool strict, | |||
336 | int subgraph_index) { | |||
337 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
338 | TFLITE_PY_SUBGRAPH_BOUNDS_CHECK(subgraph_index)if (subgraph_index >= interpreter_->subgraphs_size() || subgraph_index < 0) { PyErr_Format(PyExc_ValueError, "Invalid subgraph index %d exceeds max subgraph index %lu" , subgraph_index, interpreter_->subgraphs_size()); return nullptr ; }; | |||
339 | ||||
340 | PyArrayObject* array = | |||
341 | reinterpret_cast<PyArrayObject*>(ResizeInputTensorImpl(i, value)); | |||
342 | if (array == nullptr) { | |||
343 | return nullptr; | |||
344 | } | |||
345 | ||||
346 | std::vector<int> dims(PyArray_SHAPE(array)[0]); | |||
347 | memcpy(dims.data(), PyArray_BYTES(array), dims.size() * sizeof(int)); | |||
348 | ||||
349 | if (strict) { | |||
350 | TFLITE_PY_CHECK(interpreter_->subgraph(subgraph_index)if ((interpreter_->subgraph(subgraph_index) ->ResizeInputTensorStrict (i, dims)) != kTfLiteOk) { return error_reporter_->exception (); } | |||
351 | ->ResizeInputTensorStrict(i, dims))if ((interpreter_->subgraph(subgraph_index) ->ResizeInputTensorStrict (i, dims)) != kTfLiteOk) { return error_reporter_->exception (); }; | |||
352 | } else { | |||
353 | TFLITE_PY_CHECK(if ((interpreter_->subgraph(subgraph_index)->ResizeInputTensor (i, dims)) != kTfLiteOk) { return error_reporter_->exception (); } | |||
354 | interpreter_->subgraph(subgraph_index)->ResizeInputTensor(i, dims))if ((interpreter_->subgraph(subgraph_index)->ResizeInputTensor (i, dims)) != kTfLiteOk) { return error_reporter_->exception (); }; | |||
355 | } | |||
356 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
357 | } | |||
358 | ||||
359 | int InterpreterWrapper::NumTensors() const { | |||
360 | if (!interpreter_) { | |||
361 | return 0; | |||
362 | } | |||
363 | return interpreter_->tensors_size(); | |||
364 | } | |||
365 | ||||
366 | std::string InterpreterWrapper::TensorName(int i) const { | |||
367 | if (!interpreter_ || i >= interpreter_->tensors_size() || i < 0) { | |||
368 | return ""; | |||
369 | } | |||
370 | ||||
371 | const TfLiteTensor* tensor = interpreter_->tensor(i); | |||
372 | return tensor->name ? tensor->name : ""; | |||
373 | } | |||
374 | ||||
375 | PyObject* InterpreterWrapper::TensorType(int i) const { | |||
376 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
377 | TFLITE_PY_TENSOR_BOUNDS_CHECK(i)if (i >= interpreter_->tensors_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->tensors_size()); return nullptr; }; | |||
378 | ||||
379 | const TfLiteTensor* tensor = interpreter_->tensor(i); | |||
380 | if (tensor->type == kTfLiteNoType) { | |||
381 | PyErr_Format(PyExc_ValueError, "Tensor with no type found."); | |||
382 | return nullptr; | |||
383 | } | |||
384 | ||||
385 | int code = python_utils::TfLiteTypeToPyArrayType(tensor->type); | |||
386 | if (code == -1) { | |||
387 | PyErr_Format(PyExc_ValueError, "Invalid tflite type code %d", code); | |||
388 | return nullptr; | |||
389 | } | |||
390 | return PyArray_TypeObjectFromType(*(PyObject * (*)(int)) _tflite_numpy_api[46])(code); | |||
391 | } | |||
392 | ||||
393 | PyObject* InterpreterWrapper::TensorSize(int i) const { | |||
394 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
395 | TFLITE_PY_TENSOR_BOUNDS_CHECK(i)if (i >= interpreter_->tensors_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->tensors_size()); return nullptr; }; | |||
396 | ||||
397 | const TfLiteTensor* tensor = interpreter_->tensor(i); | |||
398 | if (tensor->dims == nullptr) { | |||
399 | PyErr_Format(PyExc_ValueError, "Tensor with no shape found."); | |||
400 | return nullptr; | |||
401 | } | |||
402 | PyObject* np_array = | |||
403 | PyArrayFromIntVector(tensor->dims->data, tensor->dims->size); | |||
404 | ||||
405 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _tflite_numpy_api[76])(reinterpret_cast<PyArrayObject*>(np_array)); | |||
406 | } | |||
407 | ||||
408 | PyObject* InterpreterWrapper::TensorSizeSignature(int i) const { | |||
409 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
410 | TFLITE_PY_TENSOR_BOUNDS_CHECK(i)if (i >= interpreter_->tensors_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->tensors_size()); return nullptr; }; | |||
411 | ||||
412 | const TfLiteTensor* tensor = interpreter_->tensor(i); | |||
413 | const int32_t* size_signature_data = nullptr; | |||
414 | int32_t size_signature_size = 0; | |||
415 | if (tensor->dims_signature != nullptr && tensor->dims_signature->size != 0) { | |||
416 | size_signature_data = tensor->dims_signature->data; | |||
417 | size_signature_size = tensor->dims_signature->size; | |||
418 | } else { | |||
419 | size_signature_data = tensor->dims->data; | |||
420 | size_signature_size = tensor->dims->size; | |||
421 | } | |||
422 | PyObject* np_array = | |||
423 | PyArrayFromIntVector(size_signature_data, size_signature_size); | |||
424 | ||||
425 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _tflite_numpy_api[76])(reinterpret_cast<PyArrayObject*>(np_array)); | |||
426 | } | |||
427 | ||||
428 | PyObject* InterpreterWrapper::TensorSparsityParameters(int i) const { | |||
429 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
| ||||
430 | TFLITE_PY_TENSOR_BOUNDS_CHECK(i)if (i >= interpreter_->tensors_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->tensors_size()); return nullptr; }; | |||
431 | const TfLiteTensor* tensor = interpreter_->tensor(i); | |||
432 | if (tensor->sparsity == nullptr) { | |||
433 | return PyDict_New(); | |||
434 | } | |||
435 | ||||
436 | return PyDictFromSparsityParam(*tensor->sparsity); | |||
437 | } | |||
438 | ||||
439 | PyObject* InterpreterWrapper::TensorQuantization(int i) const { | |||
440 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
441 | TFLITE_PY_TENSOR_BOUNDS_CHECK(i)if (i >= interpreter_->tensors_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->tensors_size()); return nullptr; }; | |||
442 | const TfLiteTensor* tensor = interpreter_->tensor(i); | |||
443 | return PyTupleFromQuantizationParam(tensor->params); | |||
444 | } | |||
445 | ||||
446 | PyObject* InterpreterWrapper::TensorQuantizationParameters(int i) const { | |||
447 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
448 | TFLITE_PY_TENSOR_BOUNDS_CHECK(i)if (i >= interpreter_->tensors_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->tensors_size()); return nullptr; }; | |||
449 | const TfLiteTensor* tensor = interpreter_->tensor(i); | |||
450 | const TfLiteQuantization quantization = tensor->quantization; | |||
451 | float* scales_data = nullptr; | |||
452 | int32_t* zero_points_data = nullptr; | |||
453 | int32_t scales_size = 0; | |||
454 | int32_t zero_points_size = 0; | |||
455 | int32_t quantized_dimension = 0; | |||
456 | if (quantization.type == kTfLiteAffineQuantization) { | |||
457 | const TfLiteAffineQuantization* q_params = | |||
458 | reinterpret_cast<const TfLiteAffineQuantization*>(quantization.params); | |||
459 | if (q_params->scale) { | |||
460 | scales_data = q_params->scale->data; | |||
461 | scales_size = q_params->scale->size; | |||
462 | } | |||
463 | if (q_params->zero_point) { | |||
464 | zero_points_data = q_params->zero_point->data; | |||
465 | zero_points_size = q_params->zero_point->size; | |||
466 | } | |||
467 | quantized_dimension = q_params->quantized_dimension; | |||
468 | } | |||
469 | PyObject* scales_array = PyArrayFromFloatVector(scales_data, scales_size); | |||
470 | PyObject* zero_points_array = | |||
471 | PyArrayFromIntVector(zero_points_data, zero_points_size); | |||
472 | ||||
473 | PyObject* result = PyTuple_New(3); | |||
474 | PyTuple_SET_ITEM(result, 0, scales_array)PyTuple_SetItem(result, 0, scales_array); | |||
475 | PyTuple_SET_ITEM(result, 1, zero_points_array)PyTuple_SetItem(result, 1, zero_points_array); | |||
476 | PyTuple_SET_ITEM(result, 2, PyLong_FromLong(quantized_dimension))PyTuple_SetItem(result, 2, PyLong_FromLong(quantized_dimension )); | |||
477 | return result; | |||
478 | } | |||
479 | ||||
480 | PyObject* InterpreterWrapper::SetTensor(int i, PyObject* value, | |||
481 | int subgraph_index) { | |||
482 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
483 | TFLITE_PY_SUBGRAPH_BOUNDS_CHECK(subgraph_index)if (subgraph_index >= interpreter_->subgraphs_size() || subgraph_index < 0) { PyErr_Format(PyExc_ValueError, "Invalid subgraph index %d exceeds max subgraph index %lu" , subgraph_index, interpreter_->subgraphs_size()); return nullptr ; }; | |||
484 | TFLITE_PY_SUBGRAPH_TENSOR_BOUNDS_CHECK(i, subgraph_index)if (i >= interpreter_->subgraph(subgraph_index)->tensors_size () || i < 0) { PyErr_Format(PyExc_ValueError, "Invalid tensor index %d exceeds max tensor index %lu" , i, interpreter_->subgraph(subgraph_index)->tensors_size ()); return nullptr; }; | |||
485 | ||||
486 | std::unique_ptr<PyObject, PyDecrefDeleter> array_safe( | |||
487 | PyArray_FromAny(*(PyObject * (*)(PyObject *, PyArray_Descr *, int, int, int, PyObject *)) _tflite_numpy_api[69])(value, nullptr, 0, 0, NPY_ARRAY_CARRAY(0x0001 | (0x0100 | 0x0400)), nullptr)); | |||
488 | if (!array_safe) { | |||
489 | PyErr_SetString(PyExc_ValueError, | |||
490 | "Failed to convert value into readable tensor."); | |||
491 | return nullptr; | |||
492 | } | |||
493 | ||||
494 | PyArrayObject* array = reinterpret_cast<PyArrayObject*>(array_safe.get()); | |||
495 | TfLiteTensor* tensor = interpreter_->subgraph(subgraph_index)->tensor(i); | |||
496 | ||||
497 | if (python_utils::TfLiteTypeFromPyArray(array) != tensor->type) { | |||
498 | PyErr_Format(PyExc_ValueError, | |||
499 | "Cannot set tensor:" | |||
500 | " Got value of type %s" | |||
501 | " but expected type %s for input %d, name: %s ", | |||
502 | TfLiteTypeGetName(python_utils::TfLiteTypeFromPyArray(array)), | |||
503 | TfLiteTypeGetName(tensor->type), i, tensor->name); | |||
504 | return nullptr; | |||
505 | } | |||
506 | ||||
507 | if (PyArray_NDIM(array) != tensor->dims->size) { | |||
508 | PyErr_Format(PyExc_ValueError, | |||
509 | "Cannot set tensor: Dimension mismatch." | |||
510 | " Got %d" | |||
511 | " but expected %d for input %d.", | |||
512 | PyArray_NDIM(array), tensor->dims->size, i); | |||
513 | return nullptr; | |||
514 | } | |||
515 | ||||
516 | for (int j = 0; j < PyArray_NDIM(array); j++) { | |||
517 | if (tensor->dims->data[j] != PyArray_SHAPE(array)[j]) { | |||
518 | PyErr_Format(PyExc_ValueError, | |||
519 | "Cannot set tensor: Dimension mismatch." | |||
520 | " Got %ld" | |||
521 | " but expected %d for dimension %d of input %d.", | |||
522 | PyArray_SHAPE(array)[j], tensor->dims->data[j], j, i); | |||
523 | return nullptr; | |||
524 | } | |||
525 | } | |||
526 | ||||
527 | if (tensor->type != kTfLiteString) { | |||
528 | if (tensor->data.raw == nullptr) { | |||
529 | PyErr_Format(PyExc_ValueError, | |||
530 | "Cannot set tensor:" | |||
531 | " Tensor is unallocated. Try calling allocate_tensors()" | |||
532 | " first"); | |||
533 | return nullptr; | |||
534 | } | |||
535 | ||||
536 | size_t size = PyArray_NBYTES(array)(PyArray_ITEMSIZE(array) * (*(npy_intp (*)(npy_intp const *, int )) _tflite_numpy_api[158])(PyArray_DIMS(array), PyArray_NDIM( array))); | |||
537 | if (size != tensor->bytes) { | |||
538 | PyErr_Format(PyExc_ValueError, | |||
539 | "numpy array had %zu bytes but expected %zu bytes.", size, | |||
540 | tensor->bytes); | |||
541 | return nullptr; | |||
542 | } | |||
543 | memcpy(tensor->data.raw, PyArray_DATA(array), size); | |||
544 | } else { | |||
545 | DynamicBuffer dynamic_buffer; | |||
546 | if (!python_utils::FillStringBufferWithPyArray(value, &dynamic_buffer)) { | |||
547 | return nullptr; | |||
548 | } | |||
549 | dynamic_buffer.WriteToTensor(tensor, nullptr); | |||
550 | } | |||
551 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
552 | } | |||
553 | ||||
554 | int InterpreterWrapper::NumNodes() const { | |||
555 | if (!interpreter_) { | |||
556 | return 0; | |||
557 | } | |||
558 | return interpreter_->nodes_size(); | |||
559 | } | |||
560 | ||||
561 | PyObject* InterpreterWrapper::NodeInputs(int i) const { | |||
562 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
563 | TFLITE_PY_NODES_BOUNDS_CHECK(i)if (i >= interpreter_->nodes_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid node index"); return nullptr; }; | |||
564 | ||||
565 | const TfLiteNode* node = &(interpreter_->node_and_registration(i)->first); | |||
566 | PyObject* inputs = | |||
567 | PyArrayFromIntVector(node->inputs->data, node->inputs->size); | |||
568 | return inputs; | |||
569 | } | |||
570 | ||||
571 | PyObject* InterpreterWrapper::NodeOutputs(int i) const { | |||
572 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
573 | TFLITE_PY_NODES_BOUNDS_CHECK(i)if (i >= interpreter_->nodes_size() || i < 0) { PyErr_Format (PyExc_ValueError, "Invalid node index"); return nullptr; }; | |||
574 | ||||
575 | const TfLiteNode* node = &(interpreter_->node_and_registration(i)->first); | |||
576 | PyObject* outputs = | |||
577 | PyArrayFromIntVector(node->outputs->data, node->outputs->size); | |||
578 | return outputs; | |||
579 | } | |||
580 | ||||
581 | std::string InterpreterWrapper::NodeName(int i) const { | |||
582 | if (!interpreter_ || i >= interpreter_->nodes_size() || i < 0) { | |||
583 | return ""; | |||
584 | } | |||
585 | // Get op name from registration | |||
586 | const TfLiteRegistration* node_registration = | |||
587 | &(interpreter_->node_and_registration(i)->second); | |||
588 | int32_t op_code = node_registration->builtin_code; | |||
589 | std::string op_name; | |||
590 | if (op_code == tflite::BuiltinOperator_CUSTOM) { | |||
591 | const char* custom_name = node_registration->custom_name; | |||
592 | op_name = custom_name ? custom_name : "UnknownCustomOp"; | |||
593 | } else { | |||
594 | op_name = tflite::EnumNamesBuiltinOperator()[op_code]; | |||
595 | } | |||
596 | std::string op_name_str(op_name); | |||
597 | return op_name_str; | |||
598 | } | |||
599 | ||||
600 | namespace { | |||
601 | ||||
602 | // Checks to see if a tensor access can succeed (returns nullptr on error). | |||
603 | // Otherwise returns Py_None. | |||
604 | PyObject* CheckGetTensorArgs(Interpreter* interpreter_, int tensor_index, | |||
605 | TfLiteTensor** tensor, int* type_num, | |||
606 | int subgraph_index) { | |||
607 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
608 | TFLITE_PY_SUBGRAPH_BOUNDS_CHECK(subgraph_index)if (subgraph_index >= interpreter_->subgraphs_size() || subgraph_index < 0) { PyErr_Format(PyExc_ValueError, "Invalid subgraph index %d exceeds max subgraph index %lu" , subgraph_index, interpreter_->subgraphs_size()); return nullptr ; }; | |||
609 | TFLITE_PY_SUBGRAPH_TENSOR_BOUNDS_CHECK(tensor_index, subgraph_index)if (tensor_index >= interpreter_->subgraph(subgraph_index )->tensors_size() || tensor_index < 0) { PyErr_Format(PyExc_ValueError , "Invalid tensor index %d exceeds max tensor index %lu", tensor_index , interpreter_->subgraph(subgraph_index)->tensors_size( )); return nullptr; }; | |||
610 | ||||
611 | *tensor = interpreter_->subgraph(subgraph_index)->tensor(tensor_index); | |||
612 | if ((*tensor)->bytes == 0) { | |||
613 | PyErr_SetString(PyExc_ValueError, "Invalid tensor size."); | |||
614 | return nullptr; | |||
615 | } | |||
616 | ||||
617 | *type_num = python_utils::TfLiteTypeToPyArrayType((*tensor)->type); | |||
618 | if (*type_num == -1) { | |||
619 | PyErr_SetString(PyExc_ValueError, "Unknown tensor type."); | |||
620 | return nullptr; | |||
621 | } | |||
622 | ||||
623 | if (!(*tensor)->data.raw) { | |||
624 | PyErr_SetString(PyExc_ValueError, | |||
625 | "Tensor data is null." | |||
626 | " Run allocate_tensors() first"); | |||
627 | return nullptr; | |||
628 | } | |||
629 | ||||
630 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
631 | } | |||
632 | ||||
633 | } // namespace | |||
634 | ||||
635 | PyObject* InterpreterWrapper::GetSignatureDefs() const { | |||
636 | PyObject* result = PyDict_New(); | |||
637 | for (const auto& sig_key : interpreter_->signature_keys()) { | |||
638 | PyObject* signature_def = PyDict_New(); | |||
639 | PyObject* inputs = PyDict_New(); | |||
640 | PyObject* outputs = PyDict_New(); | |||
641 | const auto& signature_def_inputs = | |||
642 | interpreter_->signature_inputs(sig_key->c_str()); | |||
643 | const auto& signature_def_outputs = | |||
644 | interpreter_->signature_outputs(sig_key->c_str()); | |||
645 | for (const auto& input : signature_def_inputs) { | |||
646 | PyDict_SetItemString(inputs, input.first.c_str(), | |||
647 | PyLong_FromLong(input.second)); | |||
648 | } | |||
649 | for (const auto& output : signature_def_outputs) { | |||
650 | PyDict_SetItemString(outputs, output.first.c_str(), | |||
651 | PyLong_FromLong(output.second)); | |||
652 | } | |||
653 | ||||
654 | PyDict_SetItemString(signature_def, "inputs", inputs); | |||
655 | PyDict_SetItemString(signature_def, "outputs", outputs); | |||
656 | PyDict_SetItemString(result, sig_key->c_str(), signature_def); | |||
657 | } | |||
658 | return result; | |||
659 | } | |||
660 | ||||
661 | PyObject* InterpreterWrapper::GetSubgraphIndexFromSignature( | |||
662 | const char* signature_key) { | |||
663 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
664 | ||||
665 | int32_t subgraph_index = | |||
666 | interpreter_->GetSubgraphIndexFromSignature(signature_key); | |||
667 | ||||
668 | if (subgraph_index < 0) { | |||
669 | PyErr_SetString(PyExc_ValueError, "No matching signature."); | |||
670 | return nullptr; | |||
671 | } | |||
672 | return PyLong_FromLong(static_cast<int64_t>(subgraph_index)); | |||
673 | } | |||
674 | ||||
675 | PyObject* InterpreterWrapper::GetTensor(int i, int subgraph_index) const { | |||
676 | // Sanity check accessor | |||
677 | TfLiteTensor* tensor = nullptr; | |||
678 | int type_num = 0; | |||
679 | ||||
680 | PyObject* check_result = CheckGetTensorArgs(interpreter_.get(), i, &tensor, | |||
681 | &type_num, subgraph_index); | |||
682 | if (check_result == nullptr) return check_result; | |||
683 | Py_XDECREF(check_result)_Py_XDECREF(((PyObject*)(check_result))); | |||
684 | ||||
685 | std::vector<npy_intp> dims(tensor->dims->data, | |||
686 | tensor->dims->data + tensor->dims->size); | |||
687 | if (tensor->type != kTfLiteString && tensor->type != kTfLiteResource && | |||
688 | tensor->type != kTfLiteVariant) { | |||
689 | // Make a buffer copy but we must tell Numpy It owns that data or else | |||
690 | // it will leak. | |||
691 | void* data = malloc(tensor->bytes); | |||
692 | if (!data) { | |||
693 | PyErr_SetString(PyExc_ValueError, "Malloc to copy tensor failed."); | |||
694 | return nullptr; | |||
695 | } | |||
696 | memcpy(data, tensor->data.raw, tensor->bytes); | |||
697 | PyObject* np_array; | |||
698 | if (tensor->sparsity == nullptr) { | |||
699 | np_array = | |||
700 | PyArray_SimpleNewFromData(dims.size(), dims.data(), type_num, data)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _tflite_numpy_api [93])(&(*(PyTypeObject *)_tflite_numpy_api[2]), dims.size (), dims.data(), type_num, __null, data, 0, (0x0001 | (0x0100 | 0x0400)), __null); | |||
701 | } else { | |||
702 | std::vector<npy_intp> sparse_buffer_dims(1); | |||
703 | size_t size_of_type; | |||
704 | if (GetSizeOfType(nullptr, tensor->type, &size_of_type) != kTfLiteOk) { | |||
705 | PyErr_SetString(PyExc_ValueError, "Unknown tensor type."); | |||
706 | free(data); | |||
707 | return nullptr; | |||
708 | } | |||
709 | sparse_buffer_dims[0] = tensor->bytes / size_of_type; | |||
710 | np_array = PyArray_SimpleNewFromData((*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _tflite_numpy_api [93])(&(*(PyTypeObject *)_tflite_numpy_api[2]), sparse_buffer_dims .size(), sparse_buffer_dims.data(), type_num, __null, data, 0 , (0x0001 | (0x0100 | 0x0400)), __null) | |||
711 | sparse_buffer_dims.size(), sparse_buffer_dims.data(), type_num, data)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _tflite_numpy_api [93])(&(*(PyTypeObject *)_tflite_numpy_api[2]), sparse_buffer_dims .size(), sparse_buffer_dims.data(), type_num, __null, data, 0 , (0x0001 | (0x0100 | 0x0400)), __null); | |||
712 | } | |||
713 | PyArray_ENABLEFLAGS(reinterpret_cast<PyArrayObject*>(np_array), | |||
714 | NPY_ARRAY_OWNDATA0x0004); | |||
715 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _tflite_numpy_api[76])(reinterpret_cast<PyArrayObject*>(np_array)); | |||
716 | } else { | |||
717 | // Create a C-order array so the data is contiguous in memory. | |||
718 | const int32_t kCOrder = 0; | |||
719 | PyObject* py_object = | |||
720 | PyArray_EMPTY(dims.size(), dims.data(), NPY_OBJECT, kCOrder)(*(PyObject * (*)(int, npy_intp const *, PyArray_Descr *, int )) _tflite_numpy_api[184])(dims.size(), dims.data(), (*(PyArray_Descr * (*)(int)) _tflite_numpy_api[45])(NPY_OBJECT), kCOrder); | |||
721 | ||||
722 | if (py_object == nullptr) { | |||
723 | PyErr_SetString(PyExc_MemoryError, "Failed to allocate PyArray."); | |||
724 | return nullptr; | |||
725 | } | |||
726 | ||||
727 | PyArrayObject* py_array = reinterpret_cast<PyArrayObject*>(py_object); | |||
728 | PyObject** data = reinterpret_cast<PyObject**>(PyArray_DATA(py_array)); | |||
729 | auto num_strings = GetStringCount(tensor); | |||
730 | for (int j = 0; j < num_strings; ++j) { | |||
731 | auto ref = GetString(tensor, j); | |||
732 | ||||
733 | PyObject* bytes = PyBytes_FromStringAndSize(ref.str, ref.len); | |||
734 | if (bytes == nullptr) { | |||
735 | Py_DECREF(py_object)_Py_DECREF(((PyObject*)(py_object))); | |||
736 | PyErr_Format(PyExc_ValueError, | |||
737 | "Could not create PyBytes from string %d of input %d.", j, | |||
738 | i); | |||
739 | return nullptr; | |||
740 | } | |||
741 | // PyArray_EMPTY produces an array full of Py_None, which we must decref. | |||
742 | Py_DECREF(data[j])_Py_DECREF(((PyObject*)(data[j]))); | |||
743 | data[j] = bytes; | |||
744 | } | |||
745 | return py_object; | |||
746 | } | |||
747 | } | |||
748 | ||||
749 | PyObject* InterpreterWrapper::tensor(PyObject* base_object, int tensor_index, | |||
750 | int subgraph_index) { | |||
751 | // Sanity check accessor | |||
752 | TfLiteTensor* tensor = nullptr; | |||
753 | int type_num = 0; | |||
754 | ||||
755 | PyObject* check_result = CheckGetTensorArgs( | |||
756 | interpreter_.get(), tensor_index, &tensor, &type_num, subgraph_index); | |||
757 | if (check_result == nullptr) return check_result; | |||
758 | Py_XDECREF(check_result)_Py_XDECREF(((PyObject*)(check_result))); | |||
759 | ||||
760 | std::vector<npy_intp> dims(tensor->dims->data, | |||
761 | tensor->dims->data + tensor->dims->size); | |||
762 | PyArrayObject* np_array = | |||
763 | reinterpret_cast<PyArrayObject*>(PyArray_SimpleNewFromData((*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _tflite_numpy_api [93])(&(*(PyTypeObject *)_tflite_numpy_api[2]), dims.size (), dims.data(), type_num, __null, tensor->data.raw, 0, (0x0001 | (0x0100 | 0x0400)), __null) | |||
764 | dims.size(), dims.data(), type_num, tensor->data.raw)(*(PyObject * (*)(PyTypeObject *, int, npy_intp const *, int, npy_intp const *, void *, int, int, PyObject *)) _tflite_numpy_api [93])(&(*(PyTypeObject *)_tflite_numpy_api[2]), dims.size (), dims.data(), type_num, __null, tensor->data.raw, 0, (0x0001 | (0x0100 | 0x0400)), __null)); | |||
765 | Py_INCREF(base_object)_Py_INCREF(((PyObject*)(base_object))); // SetBaseObject steals, so we need to add. | |||
766 | PyArray_SetBaseObject(*(int (*)(PyArrayObject *, PyObject *)) _tflite_numpy_api[282 ])(np_array, base_object); | |||
767 | return PyArray_Return(*(PyObject * (*)(PyArrayObject *)) _tflite_numpy_api[76])(np_array); | |||
768 | } | |||
769 | ||||
770 | InterpreterWrapper* InterpreterWrapper::CreateWrapperCPPFromFile( | |||
771 | const char* model_path, int op_resolver_id, | |||
772 | const std::vector<std::string>& registerers_by_name, | |||
773 | const std::vector<std::function<void(uintptr_t)>>& registerers_by_func, | |||
774 | std::string* error_msg, bool preserve_all_tensors) { | |||
775 | std::unique_ptr<PythonErrorReporter> error_reporter(new PythonErrorReporter); | |||
776 | std::unique_ptr<InterpreterWrapper::Model> model = | |||
777 | Model::BuildFromFile(model_path, error_reporter.get()); | |||
778 | return CreateInterpreterWrapper(std::move(model), op_resolver_id, | |||
779 | std::move(error_reporter), | |||
780 | registerers_by_name, registerers_by_func, | |||
781 | error_msg, preserve_all_tensors); | |||
782 | } | |||
783 | ||||
784 | InterpreterWrapper* InterpreterWrapper::CreateWrapperCPPFromFile( | |||
785 | const char* model_path, int op_resolver_id, | |||
786 | const std::vector<std::string>& registerers, std::string* error_msg, | |||
787 | bool preserve_all_tensors) { | |||
788 | return CreateWrapperCPPFromFile(model_path, op_resolver_id, registerers, | |||
789 | {} /*registerers_by_func*/, error_msg, | |||
790 | preserve_all_tensors); | |||
791 | } | |||
792 | ||||
793 | InterpreterWrapper* InterpreterWrapper::CreateWrapperCPPFromBuffer( | |||
794 | PyObject* data, int op_resolver_id, | |||
795 | const std::vector<std::string>& registerers_by_name, | |||
796 | const std::vector<std::function<void(uintptr_t)>>& registerers_by_func, | |||
797 | std::string* error_msg, bool preserve_all_tensors) { | |||
798 | char* buf = nullptr; | |||
799 | Py_ssize_t length; | |||
800 | std::unique_ptr<PythonErrorReporter> error_reporter(new PythonErrorReporter); | |||
801 | ||||
802 | if (python_utils::ConvertFromPyString(data, &buf, &length) == -1) { | |||
803 | return nullptr; | |||
804 | } | |||
805 | std::unique_ptr<InterpreterWrapper::Model> model = | |||
806 | Model::BuildFromBuffer(buf, length, error_reporter.get()); | |||
807 | return CreateInterpreterWrapper(std::move(model), op_resolver_id, | |||
808 | std::move(error_reporter), | |||
809 | registerers_by_name, registerers_by_func, | |||
810 | error_msg, preserve_all_tensors); | |||
811 | } | |||
812 | ||||
813 | InterpreterWrapper* InterpreterWrapper::CreateWrapperCPPFromBuffer( | |||
814 | PyObject* data, int op_resolver_id, | |||
815 | const std::vector<std::string>& registerers, std::string* error_msg, | |||
816 | bool preserve_all_tensors) { | |||
817 | return CreateWrapperCPPFromBuffer(data, op_resolver_id, registerers, {}, | |||
818 | error_msg, preserve_all_tensors); | |||
819 | } | |||
820 | ||||
821 | PyObject* InterpreterWrapper::ResetVariableTensors() { | |||
822 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
823 | TFLITE_PY_CHECK(interpreter_->ResetVariableTensors())if ((interpreter_->ResetVariableTensors()) != kTfLiteOk) { return error_reporter_->exception(); }; | |||
824 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
825 | } | |||
826 | ||||
827 | PyObject* InterpreterWrapper::SetNumThreads(int num_threads) { | |||
828 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
829 | interpreter_->SetNumThreads(num_threads); | |||
830 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
831 | } | |||
832 | ||||
833 | PyObject* InterpreterWrapper::ModifyGraphWithDelegate( | |||
834 | TfLiteDelegate* delegate) { | |||
835 | TFLITE_PY_ENSURE_VALID_INTERPRETER()if (!interpreter_) { PyErr_SetString(PyExc_ValueError, "Interpreter was not initialized." ); return nullptr; }; | |||
836 | TFLITE_PY_CHECK(interpreter_->ModifyGraphWithDelegate(delegate))if ((interpreter_->ModifyGraphWithDelegate(delegate)) != kTfLiteOk ) { return error_reporter_->exception(); }; | |||
837 | Py_RETURN_NONEreturn _Py_INCREF(((PyObject*)((&_Py_NoneStruct)))), (& _Py_NoneStruct); | |||
838 | } | |||
839 | ||||
840 | } // namespace interpreter_wrapper | |||
841 | } // namespace tflite |
1 | #ifndef PyLong_FromSize_t |
2 | struct _object; |
3 | typedef struct _object PyObject; |
4 | PyObject* clang_analyzer_PyObject_New_Reference(); |
5 | PyObject* PyLong_FromSize_t(size_t v) { |
6 | return clang_analyzer_PyObject_New_Reference(); |
7 | } |
8 | #else |
9 | #warning "API PyLong_FromSize_t is defined as a macro." |
10 | #endif |