
Detecting Memory-Related Bugs by Tracking

Heap Memory Management of C++ Smart Pointers

Xutong Ma1,3, Jiwei Yan2,3, Wei Wang1,3, Jun Yan1,2,3,§ Jian Zhang1,3,§ and Zongyan Qiu4

1State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2Technology Center of Software Engineering, Institute of Software, Chinese Academy of Sciences

3University of Chinese Academy of Sciences
4School of Mathematical Sciences, Peking University

Emails: {maxt, yanjw, wangwei19, yanjun, zj}@ios.ac.cn, qzy@math.pku.edu.cn

Abstract—The smart pointer mechanism, which is improved
in the continuous versions of the C++ standards over the last
decade, is designed to prevent memory-leak bugs by automat-
ically deallocating the managed memory blocks. However, not
all kinds of memory errors can be immunized by adopting this
mechanism. For example, dereferencing a null smart pointer will
lead to a software failure. Due to the lack of specialized support
for smart pointers, the off-the-shelf C++ static analyzers cannot
effectively reveal these bugs.

In this paper, we propose a static approach to detecting
memory-related bugs by tracking the heap memory management
of smart pointers. The behaviors of smart pointers are modeled
during their lifetime to trace the state transitions of managed
memory blocks. And the specially designed checkers are used to
check the state changes according to five collected bug patterns.
To evaluate the effectiveness of our approach, we implement it
on the top of the Clang Static Analyzer. A set of handmade code
snippets, as well as nine popular open-source C++ projects, are
used to compare our tool against four other analyzers. The results
show that our approach can successfully discover nearly all the
built-in bugs. And 442 out of 648 reports generated from the
open-source projects are true positives after manual reviewing,
where the bugs of dereferencing null smart pointers are most
frequently reported. To further confirm our reports, we design
patches for Aria2, Restbed, MySQL and LLVM, in which seven
pull requests covering 76 bug reports have been merged by the
developers up to now. The results indicate that pointers should
always be carefully used even after migrated to smart pointers
and static analysis upon specialized models can effectively detect
such bugs.

Index Terms—C++ Smart Pointer, Memory Errors

I. INTRODUCTION

Due to the bug-prone and inconvenient approaches of

managing heap memory manually in the C/C++ languages,

developers and maintainers have fought for decades against

memory errors, such as memory leak, null pointer dereference,

and so on. Fortunately, the new C++ standards (the continuous

versions since C++11) provide the Smart Pointer mechanism

to save them from the morass, which have been widely used

in recent years.

Figure 1 presents the trend of smart pointer usages crossing

the last decade. The lines represent the statistics on GitHub

when searching with keywords of unique ptr, shared ptr,

weak ptr and smart pointer. The entries in the figure indicate

§Corresponding authors

2011 2013 2015 2017 2019 2021

0

0.2

0.4

0.6

0.8

1

1.2

·106

(a) Commits

2011 2013 2015 2017 2019 2021

0

1

2

·104

(b) Issues

2011 2013 2015 2017 2019 2021

0

200

400

600

(c) Repositories

2011 2013 2015 2017 2019 2021

0

1,000

2,000

3,000

4,000

(d) Wiki

unique ptr shared ptr weak ptr smart pointer

Fig. 1: Trend of smart pointer usages on GitHub

the number of the entities which explicitly mention these key-

words. According to the results, more and more projects begin

to use smart pointers to manage heap memory approximately

since 2013 and 2014.

Smart pointers are designed to prevent memory-leak bugs.

The memory blocks assigned to smart pointers can be au-

tomatically deallocated when the smart pointers go out of

scope. Besides, as the calls to destructors are scheduled by the

compiler, smart pointers can also prevent use-after-free bugs

caused by improperly scheduled manual deallocations [1].

However, using smart pointers cannot immunize all kinds

of memory errors. The undefined behaviors of smart pointer

methods presented in the CPP Reference [2] can lead to

memory errors such as dereferencing null smart pointers and

so on. In addition, improper usages of smart pointers, which

are prohibited by the C++ Core Guidelines [3] and widely

used coding regulations [4, 5], can also lead to memory leaks

and efficiency issues [6, 7]. In this paper, we call all these

memory-related bugs caused by smart pointers the Misuses of

Smart Pointers (MisSP).

Static analysis is an effective way to check program defects.

880

2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE)

2643-1572/21/$31.00 ©2021 IEEE
DOI 10.1109/ASE51524.2021.00082

However, according to our experiments on a handmade bench-

mark presented in Section V-B1, the off-the-shelf tools cannot

provide satisfactory results. On one hand, some coding style

checkers like CppCheck [8] and SPrinter [6] can only detect

coding style problems and a few intra-procedural MisSPs in

some simple functions. On the other hand, static analyzers like

Clang Static Analyzer [9] and Facebook Infer [10] will miss

a lot of real bugs according to our experiments.

The shortcomings of the off-the-shelf analyzers can be

summarized into two aspects: model and checker. On one

hand, it is a straightforward approach to model smart point-

ers by directly analyzing their implementations in the C++

Standard Library. However, as those most commonly used

implementations (GCC libstdc++, Clang libc++ and MSVC

Standard Library) are all very complex, it is difficult and

inefficient to model the behaviors in this way. On the other

hand, new checkers should also be specially designed to reveal

the MisSPs that cannot be reported by memory error checkers.

Facing the shortcomings, we propose our models of smart

pointers and checkers on MisSPs, which can be seen as

a smart-pointer extension of the typestate analysis on heap

memory blocks [11, 12]. We extend a general heap memory

model [13, 14] to handle C++ memory management operations

and cooperate with the model of smart pointers. And a set of

meta-operations are defined to model the method calls and

record the states of smart pointer objects. Besides, we also

define new checkers based on five error patterns extracted from

the C++ standard and famous coding regulations. And MisSPs

are checked with these checkers according to the states of heap

memory and smart pointers.

We implement an analyzer, Spelton, on the top of the Clang

Static Analyzer [9] and evaluate it with a handmade benchmark

and nine open-source C++ projects. The experimental results

indicate that our approach can effectively detect MisSPs. Our

main contributions are listed as follows:

• We model the behavior of smart pointers via a set of

meta-operations. And the states of heap memory blocks

are also extended to be managed by smart pointers;

• An analyzer with checkers specially designed for five

extracted bug patterns is implemented to systematically

scan for MisSPs on C++ projects;

• Our discoveries and suggestions on using smart pointers

are also presented based on our statistics and bug reports.

II. BACKGROUND

In this section, we will introduce the usages of smart

pointers, the basic concepts that smart pointers are based on,

as well as the different kinds of smart pointers defined in the

C++ standard.

A. Usage of C++ Smart Pointers

To roughly understand how smart pointers work, we present

the comparison of managing memory manually and using

smart pointers. The following two functions implement the

same functionality line by line. They first allocate a Dog

object, then call its method bark and deallocate it at last.

The left snippet manages the object manually, whereas the

one on the right-hand side uses smart pointers.

void ManualBark() {

Dog *dog = new Dog;

dog->bark();

delete dog;

}

void AutoBark() {

unique_ptr<Dog> dog(new Dog);

dog->bark();

// No manual deallocations.

}

The comparison shows their two main differences. First, a

smart pointer object instead of a raw pointer is used to point

to the allocated memory. And second, manual deallocation for

the managed memory is not needed when using smart pointers.

B. RAII and Memory Ownership

1) RAII based Resource Management: C++ smart pointers

are designed based on a common programming idiom in

Object-Oriented Programming called Resource Acquisition Is

Initialization (RAII) or Scope-Bound Resource Management

(SBRM) [15]. The names explain this idiom from its two

main characteristics. First, the resource is allocated during the

initialization of a manager object. And second, their lifetimes

are bound to the corresponding scope via the variable of

the manager object. Therefore, the resource can be properly

deallocated when it is no longer accessible.

The smart pointers take this idiom to manage the memory

blocks assigned to them. More specifically, the manually

allocated objects and arrays will be automatically deallocated

during the destruction of the smart pointer objects that they

are assigned to. And a smart pointer object will be destructed

when it goes out of scope as expected (e.g. the function

normally returns) or accidentally (e.g. an exception is thrown

from this scope). As the destruction is scheduled by compilers,

the idiom can significantly help to prevent memory errors

caused by improperly scheduled manual deallocations, such

as double-free and use-after-free bugs [1].

2) Ownership of Heap Memory Blocks: Different from

other RAII-based manager classes, such as the file IO stream,

whose resources can only be used through the manager object,

the allocated memory can also be used via a raw pointer.

To take advantage of both smart pointers and raw pointers,

it is suggested by some coding guidelines [3, 4, 5] to use

the memory block through a raw pointer, and leave the smart

pointers managing the deallocation of memory blocks only.

These suggestions indicate that smart pointers are the owners

of their managed memory blocks.

The ownership of a heap memory block represents the

responsibility of deallocation [16]. If an object has a field

pointing to a heap memory block and deallocates the block

in its destructor, such as smart pointers, we call these kinds

of objects owners. While for other blocks that are manually

deallocated via a raw pointer, their ownership is held by

the programmer. Ownership can be either transferred between

owners or shared by a group of owners. When ownership is

uniquely held by one owner, it can be transferred to other

owners. And this unique owner is responsible to deallocate

the memory. While if the ownership is shared, it cannot be

881

TABLE I: Smart pointers in C++ standard and their features

Name Standard Ownership Dereference Array

auto_ptr C++ 98 unique Yes No
unique_ptr C++ 11 unique Yes Yes
shared_ptr C++ 11 shared Yes Yes
weak_ptr C++ 11 N/A No Yes

transferred but can only be released by one of these owners,

and the last owner reserved will deallocate the memory.

C. Smart Pointer Implementations in C++ Standard

We summarize all kinds of smart pointer classes of the

C++ standard in Table I. The entries presented in the table

include the class Name, the Standard in which the class is

introduced, the kind of Ownership management, whether users

can Dereference the smart pointer, and whether managing

dynamic Array (allocated with operator new[]) is supported.

In C++ 98 standard, the auto pointer (auto_ptr), the first

smart pointer class, is introduced. However, as a consequence

of its ill-formed copy semantics, it is not widely used. And

it is replaced by the unique pointer (unique_ptr) in the

C++11 standard and fully removed in the C++17 standard.

Then in C++11 standard, the concept of smart pointers is

further perfected with three new smart pointers. The unique

pointer is designed as a unique owner, in contrast with the

shared pointer (shared_ptr), which is used as a shared

owner. Besides, to prevent possible memory leaks caused

by circular referencing of shared pointers [17], the weak

pointer (weak_ptr) is also introduced in the C++11 standard.

Different from the two kinds of owners, the weak pointers are

not owners, and they only reference the ownership managed

by a group of shared pointers. Therefore, they cannot be

dereferenced. To access the memory, a weak pointer needs

to be cast to a shared pointer.

Since the auto pointers are deprecated and become seldom

used, we mainly focus on the weak pointers and two owner

pointers (the unique and shared pointer) in this paper.

III. MISUSES OF SMART POINTERS

In this section, we will introduce the Misuses of Smart

Pointers (MisSP). A motivating example will first show the

real-world MisSPs, then each pattern that we extracted is

explained with a simple example.

A. Motivating Example

The code presented in Figure 2 is composed of three real-

world MisSPs found in three different projects [18, 19, 20].

Among them, bug 1 and 2 are found and reported by us,

and bug 3 is found from the commit history and can also

be reported by our tool. There is one class and two functions

in the code. Class Request on line 1 has three methods,

and the other two functions, HandleRequest (line 6) and

Entry (line 11), work with a Request object managed by

a unique pointer.

When using an instance of class Request, users can add

a buffer to the instance via method addBuffer and handle

1 struct Request {

2 bool addBuffer(char *b);

3 static void HandleWithBuf(Request &R);

4 static void HandleWithoutBuf(Request &R);

5 };

6 void HandleRequest(unique_ptr<Request> r,

7 bool hasBuffer) {

8 if (r && hasBuffer) Request::HandleWithBuf(*r);

9 else Request::HandleWithoutBuf(*r); // Bug 1

10 }

11 void Entry(unique_ptr<Request> R) {

12 unique_ptr<char> b(new char[size]); // Bug 2

13 HandleRequest(move(R),

14 R->addBuffer(b.get())); // Bug 3

15 }

Fig. 2: The motivating example

the request with method HandleWithBuf, or users can

call function HandleWithoutBuf directly without adding

a buffer. The buffer added with method addBuffer will not

be deallocated in the class, and the function returns true if

the buffer is successfully added.

Function HandleRequest and Entry implement an

example of handling requests. The execution of the example

starts from function Entry. A buffer is allocated and assigned

to a unique pointer. Then the buffer is lent to the argument

instance of class Request. Then the request is moved to

function HandleRequest to be handled.

The three bugs are commented in the example. On line 8,

the nullity of unique pointer r is checked. And it can be

inferred that if pointer r is null, the operator * call on the else

branch (line 9) will dereference a null smart pointer (Bug 1).

On line 12, a buffer is allocated with operator new[] and is

then assigned to a unique pointer of type char. This indicates

that operator delete will be used during deallocation, which

cannot be matched with the allocator operator (Bug 2). And

on line 13, the unique pointer R is moved to the parameter

r of function HandleRequest. Then the operator -> will

dereference a null smart pointer on line 14 (Bug 3).

Although the three bugs can all trigger program crashes,

the off-the-shelf memory error checkers cannot provide us

with desired reports. We tried to scan the example code

with the latest version of two static analyzers (Clang Static

Analyzer (CSA) [9] and Infer [10]) and two coding style

checkers (CppCheck [8] and SPrinter [6]). Among these four

tools, CSA can only report a use-after-moved bug on line 14,

which seems less important than dereferencing a null smart

pointer; whereas SPrinter can correctly report bug 2 on line 12,

but the report will be suppressed if there is an intermediate

raw pointer forwarding the address. And the other two tools

fail to report any of the bugs.

B. Patterns of MisSPs

The bug patterns of Misuses of Smart Pointers (MisSP) are

extracted from the undefined behaviors in the C++ standard

(according to the introductions on the CPP Reference [2]) as

well as the rules in the C++ Core Guidelines [3] and the Smart

Pointer guidelines of the Chromium project [5]. Five patterns

are finally selected, as they are likely to cause a crash or have

882

void DereferenceNull() {

unique_ptr<int> p;

*p = 5;

}

(a) Dereference Null (DN)

void BadAssignment() {

int a = 5;

unique_ptr<int> p(&a);

}

(b) Bad Assignment (BA)

void TypeMismatch() {

unique_ptr<int> op;

op.reset(new int[5]);

unique_ptr<int[]> ap;

ap.reset(new int(5));

}

(c) Type Mismatch (TM)

struct T

{ shared_ptr<T> t; };

void CircularReference() {

shared_ptr<T> t(new T);

t->t = t;

}

(d) Circular Reference (CR)

int use(shared_ptr<int> p2) {

return p2 ? *p2 + 5 : 0;

}

int UniqueShared() {

shared_ptr<int> p1(new int(5));

return use(p1) + 5;

}

(e) Unique Shared (US)

Fig. 3: Examples of Misuses of Smart Pointers

efficiency issues that have not been paid enough attention

to. We will further introduce the reason why these patterns

are selected and what the other patterns are in Section VI.

These five kinds of MisSPs can be illustrated with the simple

examples presented in Figure 3.

Dereference Null (DN). The term dereference null is short

for dereferencing a null smart pointer. Similar to raw pointers,

dereferencing a null smart pointer will also lead to a crash. For

the two kinds of owner smart pointers, i.e. the unique and the

shared pointers, they can be dereferenced via the overridden

operator arrow (->), star (*) and subscription ([]). There-

fore, we report a dereference null bug if these operators are

called with a null smart pointer.

Bad Assignment (BA). The memory managed by owner

smart pointers will always be deallocated. Therefore, when a

smart pointer points to a memory block that should not be

deallocated, such as stack memory and so on, we will report

the assignment as a bad assignment bug.

Type Mismatch (TM). The type argument of the

smart pointer will determine whether operator delete or

delete[] will be used to deallocate the memory. If it does

not match with the allocator of the managed memory, we will

report a type mismatch bug on the assignment.

Circular Reference (CR). All reference-counting-based

memory management mechanisms suffer the circular referenc-

ing problem, so are the shared pointers. However, a garbage

collector is not available for shared pointers to reclaim the

memory in the cyclic structures. When a ring of memory

blocks is connected with smart pointers, we will report a

circular reference bug.

Unique Shared (US). Shared pointers consume more

memory and time than unique pointers [7] during execution.

Besides, shared pointers are infectious. When a shared pointer

is used, all related pointers should also be replaced with shared

pointers. Since there would be many shared pointers used, it is

usually hard to infer which shared pointer actually deallocates

the managed memory [5]. Therefore, as a consideration of

program efficiency and maintainability, unique pointers should

be used if the ownership is not semantically shared [3].

In the example, the parameter p2 is only dereferenced

without sharing the ownership to other objects or containers.

And pointer p1 is used to automatically deallocate the memory

and satisfy the interface of calling function use. In this case,

we will report a unique shared bug for pointers p1 and p2.

The solution is to change pointer p1 to a unique pointer to

manage the memory block and replace p2 with a raw pointer

to dereference the memory.

IV. APPROACH OF CHECKING MISSPS

In this section, starting with the workflow, we will intro-

duce our extension of memory block states, models of smart

pointers, as well as checkers for the bug patterns. And a case

study on the motivating example will be presented at the end

of this section to concretely illustrate our approach.

A. Overview of Workflow

To explain how MisSPs are checked, we present the work-

flow of our approach in Figure 4. The components surrounded

with dashed lines represent the ones that are newly added to

model and check smart pointers.

Fig. 4: Workflow of checking MisSPs

The Statement Evaluator will parse the input file and

analyze each function according to the topological order of

the call graph. It is used to explore program paths and

evaluate the encountered statements that are not related to

heap memory and smart pointers. For the operations on raw

pointers and memory blocks, they are modeled by the Memory

Modeler (Section IV-C), which is a typestate analysis on the

heap memory blocks. And the Smart Pointer Modeler (Sec-

tion IV-D) extends the typestate analysis with new states and

operations of heap memory and smart pointers.

The modelers will modify the Program State (Section IV-B)

according to the operations executed. And if a smart pointer

operation needs to modify the state of its managed memory

block, the Memory Modeler will be invoked by the Smart

Pointer Modeler to handle the corresponding memory op-

erations. When applying the model, the states of memory

blocks and smart pointers will be checked by the Checkers

for MisSPs (Section IV-E) and bug reports will be generated

if any MisSPs are found.

B. Program State

The program states record the states of memory blocks

and smart pointers. We use Mem to represent the set of

all valid heap memory blocks, which is composed of the

883

allocated memory set AM , the set of captured memory from

external contexts EM and the set of null pointer values Λ. For

simplicity, we use λ to refer to the global null pointer constant.

And Set Ptr is used to denote all of the smart pointer objects

among the entire program, together with set Var to represent

all variable names in the code.

In the C++ language, three pairs of allocators and dealloca-

tors are used to manage heap memory: managing raw blocks

with function malloc, free and so on, managing dynamic

objects with the operator new and delete, and managing

dynamic arrays with the operator new[] and delete[].

We use enumerate value Raw , Object and Array to rep-

resent the type of the allocators and deallocators that are

used in these three kinds of memory management approaches

respectively. And for simplicity, the set {Raw ,Object ,Array}
is represented as ADT . Besides, value Any is used as the

type of the allocator of a memory block captured from the

external context, which indicates that we do not know how

it is allocated, and it can be reclaimed with all kinds of

deallocators. And there are no deallocators of type Any .

With the definitions of the above sets, we define the program

state as a triplet S = 〈M,P,Q〉 where

• M ⊆ Mem is the set of monitored memory blocks that

are being analyzed in the current context;

• P ⊆ Ptr indicates the set of all traced smart pointers;

• Q : M → P(P) represents the map from a monitored

memory block to the set of all its owner smart pointers.

For a monitored memory block m ∈ M , it is defined as a

triplet m = 〈id , at , st〉 where

• id ∈ N is a natural number used as the identifier of the

memory block;

• at ∈ ADT ∪ {Any} represents its allocator type;

• st ∈ MemSt denotes the state of the memory block,

where the set of all states is MemSt = {Allocated ,
Captured ,Escaped ,Usable,Null ,Freed ,Bad}.

And we define a traced smart pointer p ∈ P as a triplet p =
〈vn, dt , tm〉 where

• vn ∈ Var is its variable name used as a unique identifier;

• dt ∈ ADT represents the type of its pending deallocator;

• tm ∈ Mem indicates the memory block it points to.

When a monitored non-null memory block m ∈ M \ Λ is

assigned to a traced owner pointer p ∈ P , we have p.tm = m.

And it is required that pointer p should be added to block m’s

owner set Q[m] and removed after unassigned.

In the following subsections, we will introduce the oper-

ations on memory blocks and smart pointers, as well as the

transitions of the program state.

C. Modeling State Transitions of Memory Blocks

The state transitions of memory blocks are modeled with the

Memory Modeler. For a memory block m, its identifier m.id
and allocator type m.at are determined when it is created, and

will not be changed then. However, the operations performed

on memory blocks will change its state m.st . To support

checking C++ code with smart pointers, we extend the state

Fig. 5: State transitions of memory blocks

transitions of heap memory, which are widely used to check

memory errors [13, 14].

The operations on a memory block are composed of three

kinds of DEALLOCATE operations of the ADT types, as

well as the CHECK, LOAD and RELINQUISH operations. To

distinguish different kinds of DEALLOCATE operations, for a

deallocator of type t, function DEL(t) is used to represent the

corresponding DEALLOCATE operation. And for a monitored

memory block m, we define another function BADDEL(m.at)
to represent the set of DEALLOCATE operations with mis-

matched deallocators, where

BADDEL(m.at) =
{
∅ m.at = Any

{DEL(t)|∀t ∈ ADT \ {m.at}} m.at ∈ ADT

Figure 5 presents the state transitions of a memory block

m, where ALLDEL represents all three kinds of DEALLOCATE

operations. The operations that will not change the states are

omitted for simplicity.

For an allocated memory block ma ∈ AM , its initial state

is Allocated. And the type of the corresponding allocator will

be stored as its allocator type ma.at . If ma is then managed

by a group of shared pointers, and one of the pointers is sent

to an uninterpreted function or inserted into an STL container,

operation RELINQUISH will change its state to Escaped.

For a memory block me captured via an external pointer

(me ∈ EM), its initial state is Captured and its allocator type

is set to Any. On one hand, if me is directly dereferenced

via operation LOAD, we will modify its state to Usable.

On the other hand, if its nullity is checked with operation

CHECK, the state will be changed to Usable on the then branch

whereas Null on the else branch. The Usable state indicates

that memory block me is confirmed to be non-null on the then

branch. While the Null state on the else branch represents me

is a null constant, and block me will also be moved from the

set of external memory EM to the null constant set Λ.

All the Allocated, Escaped and Usable memory blocks can

be deallocated. The only exception is the Escaped memory

blocks whose deallocation via shared pointer destructors will

be omitted, as we cannot know whether there are any other

owners left. When a memory block m is reclaimed with the

DEALLOCATE operations that are not in the invalid deallocator

set BADDEL(m.at), its state can be changed to Freed.

Apart from the transitions mentioned above, there are also

edges representing memory errors, which will change the state

to Bad. These errors are mismatched memory management

routines (Allocated and Escaped to Bad), use after free (Freed

to Bad) and null pointer dereference (Null to Bad).

884

D. Modeling Operations on Smart Pointers

The Smart Pointer Modeler manages the state transitions of

smart pointer objects. The states mainly focus on assignments

and ownership management. When a new smart pointer p
is defined or an external one is referred to for the first

time, we will create an object for it. Its variable name p.vn
and deallocator type p.dt are directly set according to its

declaration and will not be changed during its lifetime. Its

value p.tm will be assigned to the null pointer constant μ
before it is further used via other operations.

As the owner pointers and weak pointers have differences

in ownership management, we will separately introduce their

operations in the next two subsections.

1) Owner Smart Pointer Operations: To model the as-

signment of owner pointers, we define two meta-operations,

SET and UNSET, to assign or unassign a smart pointer. Their

operational semantics are presented below.

[SET]
p ∈ P,m ∈ M,p.tm ∈ Λ, p /∈ Q[m]

SET(p,m) : p.tm := m,Q[m] := Q[m] ∪ {p}
(1)

[UNSET]
p ∈ P,m ∈ M,p.tm = m, p ∈ Q[m]

UNSET(p) : p.tm := μ,Q[m] := Q[m] \ {p}
(2)

The SET operation assigns a memory block m to an empty

smart pointer p whereas the UNSET operation clears a previous

assignment. When assigning with operation SET(p,m), the

value of the assigned pointer p.tm will be modified to the

assigned memory block m, and p will be added to m’s owner

set Q[m]; vice versa for operation UNSET(p). After operation

UNSET, the pointer will be reassigned to null.

With the definition of two meta-operations and operations

on memory blocks, we can now define the operations on

owner pointers. The operational semantics of these operations

are presented below. Among these operations, apart from the

SHARE operation which can only be used on a shared pointer,

the others can be applied to both kinds of owner pointers.

For simplicity, we will omit the preconditions of requiring the

mentioned pointers to be traced (p ∈ P).

[CLEAR]
|Q(p.tm)| = 1

CLEAR(p) : DEL(p.dt)(p.tm); UNSET(p)
(3)

|Q(p.tm)| �= 1

CLEAR(p) : UNSET(p)
(4)

[ASSIGN] m ∈ M,m.st /∈ {Freed ,Bad}, Q[m] = ∅,

m.at = Any ∨ (m.at �= Any ∧m.at = p.dt)

ASSIGN(p,m) : CLEAR(p); SET(p,m)

(5)

[SHARE] SHARE(p1, p2) : CLEAR(p2); SET(p2, p1.tm) (6)

[MOVE] MOVE(p1, p2) : CLEAR(p2); SET(p2, p1.tm); UNSET(p1) (7)

[ACCESS]
p.tm /∈ Λ

ACCESS(p) : LOAD(p.tm)
(8)

[INSPECT] INSPECT(p) : CHECK(p.tm) (9)

Operation CLEAR is used to break the original assignment,

which is used when destructing or reassigning a smart pointer.

For a unique pointer and the last live shared pointer, defini-

tion (3) is used to deallocate the managed memory block and

set the pointer to null. Whereas when clearing an empty smart

pointer or one of a group of shared pointers, definition (4) can

unassign the pointer and leave the memory unchanged.

In contrast with operation CLEAR, three operations are used

to assign an owner pointer. Operation ASSIGN is used to re-

assign a pointer. The SHARE operation is used to share the

ownership with another shared pointer. And operation MOVE

can transfer the ownership from one smart pointer to another.

When assigning an owner pointer, the previous assignment

will be canceled with operation CLEAR, and then the new

value will be assigned with operation SET. And for the MOVE

operation, the source pointer will also be cleared.

The other two operations, ACCESS and INSPECT, are just

wrapped memory block operations. They are used to LOAD

or CHECK a memory block respectively.

The preconditions of ASSIGN and ACCESS operation are

used to check the MisSPs. We will further introduce them in

Section IV-E.

2) Weak Pointer Operations: For the weak pointers, as they

do not manage the ownership and cannot be dereferenced, they

only have two operations: CATCH and LOCK. The correspond-

ing operational semantics are presented below.

[CATCH] CATCH(pw, ps) : pw.tm := ps.tm (10)

[LOCK]
pw.tm = m ∧m.st = Captured

LOCK(ps, pw) : CHECK(m); LOCK(pw, ps)
(11)

pw.tm = m ∧m.st ∈ {Allocated ,Escaped ,Usable}

LOCK(pw, ps) : SHARE(pw, ps)
(12)

pw.tm = m ∧m.st ∈ {Null ,Freed ,Bad}

LOCK(pw, ps) : CLEAR(ps)
(13)

The CATCH operation is used to reference the ownership

of a group of shared pointers. As the weak pointers are not

owners of the managed memory block m, we will only reset

the value without adding the pointer to the owner set of the

pointee memory block Q[m].
And the LOCK operation is used to create a new shared

pointer from the referenced ownership. If a weak pointer

pointing to a memory block m with a Captured state, operation

CHECK will be first used to determine its nullity, and a shared

pointer ps will be created with a recursive call on both the

Usable and Null branches. When the state of m is Allocated,

Escaped or Usable, the created shared pointer ps will share

the ownership of m. And if m cannot be dereferenced, i.e.

Freed, Null or Bad, a null shared pointer will be created. A

weak pointer is expired when its memory block is deallocated.

E. Checkers for MisSPs

The checkers are specially designed for the five patterns.

The states of related memory blocks and smart pointers, as

well as the owner sets Q will be checked by the checkers.

The precondition of operation ACCESS (p.tm /∈ Λ) requires

the dereferenced smart pointer should not point to a null

constant, which is used to check the dereference null bugs.

Besides, to detect such bugs caused by expired weak pointers,

we suppose the first shared pointer created by operation LOCK

on an external weak pointer is always the last remaining owner.

And when the managed memory is therefore deallocated, the

885

TABLE II: State transitions of the motivating example

Line Statement Operation Monitored Memory Block Set (M) Traced Smart Pointer Set (P) Map of Owner Sets (Q)

11 BEGIN - ∅ ∅ ∅
12 new char[] Allocate Array {〈m1,Array,Allocated〉} ∅ {m1 : ∅}
12 b(m1) ASSIGN(b,m1) {〈m1,Array,Allocated〉} {〈b,Object,m1〉} {m1 : {b}}
13 R N : MOVE(R, r) {〈m1,Array,Allocated〉, 〈m2,Any,Captured〉} {〈b,Object,m1〉, 〈R,Object,m2〉} {m1 : {b},m2 : {R}}
13 move(R) MOVE(R, r) {〈m1,Array,Allocated〉, 〈m2,Any,Captured〉} {〈b,Object,m1〉, 〈R,Object, μ〉, {m1 : {b},m2 : {r}}

〈r,Object,m2〉}

6 BEGIN - ∅ ∅ ∅
8 r N : INSPECT(r) {〈m1,Any,Captured〉} {〈r,Object,m1〉} {m1 : {r}}
8 if (r) INSPECT(r) : T {〈m1,Any,Usable〉} {〈r,Object,m1〉} {m1 : {r}}
8 if (r) INSPECT(r) : F {〈m1,Any,Null〉} {〈r,Object,m1〉} ∅

weak pointer will get expired and the future calls to operation

LOCK will generate null pointers only.

For operation ASSIGN, two kinds of bugs will be checked

on the assigned memory block m. The first three clauses

of its preconditions require that block m should have been

monitored and can be deallocated (m ∈ M), and not in

deallocated or error state (m.st /∈ {Freed ,Bad}), or managed

by other owners (Q[m] = ∅). If block m violates any of the

conditions, it will trigger a bad assignment bug.

And the last clause requires that the memory block m is

either a captured external one (m.at = Any), or is allocated

in the current context (m.at 	= Any) and the deallocator type

of the assigned smart pointer p can match its allocator type

(m.at = p.dt). A type mismatch bug will be reported if the

condition is unsatisfiable.

A circular reference bug is defined as a ring of memory

blocks linked with smart pointers. We use the owner set Q of

each monitored memory block to create the point-to graph. If

a cyclic structure can be found in the graph starting from the

newly assigned memory block, it means the assignment trig-

gers a circular reference bug. The circular reference checker

is invoked every time after operation ASSIGN.

To check the unique shared bugs, the owner set of a memory

block should be tracked when it is assigned to a shared pointer.

When calling operation ASSIGN with a shared pointer p, it

will be recorded as the first owner of the assigned memory

block. And when operation CLEAR on pointer p deallocates its

managed memory (definition 3), it means that the ownership is

uniquely held by the first owner p and should be replaced with

a unique pointer. Besides, when the first owner p1 is the only

remaining owner of its managed memory block, and operation

MOVE transfers its ownership to another shared pointer p2,

pointer p2 will become the new first owner.

F. Case Study on Motivating Example

In this subsection, we use the motivating example in Fig-

ure 2 to concretely illustrate how our checkers work. The

program state transitions are presented in Table II. The suffixes

T and F of operation INSPECT represent the state on the

true or false branch respectively, and prefix N denotes

the changed state before an operation.

The analysis starts from the top-level function among the

call graph, i.e. function Entry. At the beginning of the

function (line 11), the state is empty. The first statement in

the function is the new[] operator call on line 12. It will

create a memory block object of 〈m1,Array ,Allocated〉. As

the block is not assigned to a smart pointer, its owner set

Q(m1) is left empty.

Next, the memory block m1 will be assigned to smart

pointer b via operation ASSIGN(b,m1) on line 12. Before

that, pointer b will be created as 〈b,Object , μ〉. Then in

the operation, the checkers found that the last clause of the

precondition, m1.at = Any∨(m1.at 	= Any∧m1.at = b.dt)
is violated, where b.dt = Object and m1.at = Array .

Therefore, a type mismatch bug will be reported here. As

the error will not make the program crash, the analysis will

continue. After the assignment, the pointer b will be changed

to 〈b,Object ,m1〉, and it is added to the owner set of memory

block m1.

After that, we will evaluate the arguments for the call to

function HandleRequest on line 13. As the evaluation

order of the arguments is undefined in the C++ standard, we

will first evaluate the call to function std::move and then

the arrow operator call of smart pointer R.

The function call to std::move on line 13 will trigger

operation MOVE(R, r), which moves the ownership from the

parameter R of function Entry to the parameter r of function

HandleRequest. After that, pointer R will be cleared, and

pointer r will take the ownership of memory block m2.

Finally, on the next line, operation ACCESS(R) in the arrow

operator call of pointer R will trigger a dereference null bug,

as it breaks the precondition of the ACCESS operation. And

the analysis on this path is therefore terminated here.

As there are no remaining paths for function Entry, the

analysis will restart from function HandleRequest (line 6).

When checking the nullity of smart pointer r, a memory

block m with state Captured will be recovered to pointer r.

Then operation INSPECT(r) will fork the path and change

the state of m to Usable or Null on the true or false

branch respectively. And a dereference null problem will be

then reported on the false branch with operation ACCESS(r)
when calling operator * of pointer r.

V. EVALUATION

To evaluate the effectiveness of our model and the ability

to reveal MisSPs, we carried out three groups of experiments

to answer the following three research questions.

• RQ 1: Effectiveness. How many handmade and real-world

MisSPs can be detected by our tool?

886

• RQ 2: Usability. How much time and memory will be

consumed? What are the reasons for false alarms?

• RQ 3: Discoveries. What can we know about MisSPs

from our statistics?

The first research question evaluates the effectiveness of our

tool. We use a handmade benchmark and nine open-source

C++ projects to present the effectiveness of our tool, and

compare the ability to detect MisSPs with the off-the-shelf

open-source static analysis tools. The comparison is presented

in Section V-B1 and V-B2. To evaluate the usability, we also

measure the time and memory cost of our tool on the open-

source projects. And the composition of false positives and

their reasons are also discussed in Section V-C. The third

research question is used to present the discoveries during

checking MisSPs. The corresponding empirical conclusions

and hints on using smart pointers are presented in Section V-D.

A. Setup of Experiments

1) Implementation: We implement our tool, Spelton, on top

of the symbolic execution engine of the Clang Static Analyzer

(CSA) [9] 9.0.0 with all its original checkers disabled. The

original CSA has very limited support of Cross Translation

Unit (CTU) analysis, i.e. inlining inter-file function calls. To

help Spelton to find the desired inter-file function definitions

and import them to the current analysis context, we also im-

proved the features and fixed the bugs in CSA 9.0.0. Besides,

to speed up the analysis process and take full advantage of

the system resources, GNU Make [21] is used to concurrently

generate CTU function indexes as well as analyze the code

for each source file. Therefore, our Spelton can be considered

as a standalone MisSP finding tool.

When analyzing an input file, the analysis engine of the

CSA will handle the static symbolic execution process, and

its Checker mechanism is used to model the smart pointer

method calls and check for MisSPs. When a smart pointer

method is called, instead of inlining the callee, we will apply

the corresponding operations of smart pointers and memory

blocks, and check MisSPs based on our error patterns.

2) Environment and Tools: We set up all of our exper-

iments on a Linux server with two Intel® Xeon® E5-2680

v4 CPUs of 56 threads and 256 GB of memory in total. We

evaluate our tool against four off-the-shelf tools of the latest

version including Clang Static Analyzer (CSA) 11.0.1 [9],

Infer Static Analyzer (Infer) v1.0 [10], CppCheck v2.3 [8] and

SPrinter v1.1 [6].

3) Benchmark Composition: Our benchmark is composed

of two parts: handmade snippets and open-source projects.

The first part is the 912 handmade code snippets which

are used to test the ability to model the behaviors of smart

pointers and check the inserted MisSPs. Table III presents the

detailed statistics of the handmade benchmark. The number of

Files, inserted bugs (Pos.) and corresponding fixes (Neg.) are

presented for each category.

The first group of 486 snippets is automatically generated

by imitating the Juliet Test Suite v1.3 (JTS) [22]. We manually

created 16 bug templates by replacing the invoked methods in

TABLE III: Statistics of handmade snippets. The imitated

ones are grouped with bug types and the mutated ones are

categorized with their original CWE IDs.

Types
Imitated Snippets Mutated Snippets

Total

DN BA TM CR US C415 C476 C590 C762

Files 306 36 72 54 18 36 72 238 80 912

Pos. 342 36 72 54 18 104 72 238 82 1,018

Neg. 495 66 132 99 33 132 132 343 224 1,656

TABLE IV: Information of the open-source project instances.

Statistics of smart pointer utilization are presented as follows:

the numbers of smart pointers of class members (#F), local

variables (#L) and reference variables (#R), as well as method

calls with ACCESS operations (#A) among all calls (#All).

Project Commit KLoc #F #L #R #A / #All

Aquila d5e3bd 15.92 0 3 4 9 / 9

Aria2 9d0a48 125.19 1,991 344 807 5,479 / 6,773

Celero 0d7b24 8.37 5 7 105 176 / 191

Evpp 867645 60.13 72 65 94 690 / 933

Osrm 15f0ca 746.33 11 22 83 384 / 567

Restbed 03f1f2 22.86 104 64 242 734 / 877

Spdlog 3dedb5 32.55 1 0 43 26 / 26

MySQL ee4455 3,633.72 230 234 996 2,803 / 5,088

LLVM bbd4eb 5,842.38 1,089 980 3,734 15,788 / 20,824

figure 3 with the ones of the same functionality, and adding

tests on our model of smart pointers. A part of them is

designed for both unique and shared pointers, while others are

for shared pointers only. The test code snippets are generated

by applying the bug templates on 18 control flow templates

extracted from the JTS.

The remaining 426 snippets are semi-automatically mutated

from four types of memory errors in the JTS. For each type

of memory errors selected, we first manually design how to

mutate the bug to one of the patterns we check. Then, we

carry out the mutation on the original snippets and merge the

similar ones where only their data types of the pointers are

different. And finally, the snippets are manually reviewed to

remove the invalid ones that cannot be analyzed by CSA.

The second part of our benchmark is composed of nine C++

open-source projects from GitHub, as shown in Table IV. The

selected projects are all written in C++11 or newer versions of

C++ standards whose usability is important in their application

fields: backend services, performance benchmarks, network

libraries and compilers. For each project, we use their latest

versions when carrying out the experiments. The correspond-

ing commit hashes and kilo lines of code are presented in the

second and third columns. Besides, to present their utilization

of smart pointers, we also provide the corresponding statistics

in the last four columns.

B. Evaluation on Effectiveness

We evaluate the effectiveness of Spelton against four other

off-the-shelf tools on the handmade benchmark as well as the

open-source C++ projects.

1) Effectiveness on Handmade Benchmark: In this experi-

ment, the precision and recall of all five tools are evaluated.

887

TABLE V: Effectiveness on handmade benchmark

Tool Spelton CSA Infer CppCheck SPrinter

TP 1016 72 0 172 206

TN 1656 1656 1656 1656 1656

FP 0 0 0 4 10

FN 2 946 1018 846 812

Precision 100.00% 100.00% N/A 97.73% 95.37%

Recall 99.80% 7.07% N/A 16.90% 20.24%

F1 99.90% 13.21% N/A 28.81% 33.39%

The purpose of this experiment is to use these straightforward

bugs to check their ability to reveal the MisSPs.

Table V presents the statistics of these measures. Among the

reports of these tools, the unrelated true reports are removed

before counting, while the false ones are recorded as false

positives. The first four rows present the number of True or

False, Positives or Negatives. And the last three rows show

the precision, recall, and F1-measure values.

According to the table, Spelton can find almost all bugs with

no false alarms. The only two false negatives are caused by

improperly handled switch-case statements. While other

tools can only detect a part of bugs with false positives.

2) Effectiveness on Open-Source Projects: To evaluate the

effectiveness on real-world C++ code, we run these tools on

nine popular open-source C++ projects. Compared with the

handmade benchmark, these real-world projects have massive

code (8–5,842 Kloc each project) and complex features. The

results are presented in the left two groups of Table VI, where

the empty cells indicate no bugs are reported.

The first group of columns provides how many bugs are

reported by the four other off-the-shelf tools. As there are

too many reports to review, we use the information of smart

pointer variables presented in Table IV to automatically find

the reports related to smart pointers. The filter selects 151

reports (shown with the numbers in parentheses), and only

one report of CSA and two reports of SPrinter are true bugs

with manual review. The bugs missed by Spelton are those

memory errors triggered with raw pointers cooperating with

smart pointers. We will have a discussion on such memory

errors in Section VI.

For the results of Spelton in the second group, the number

of reports is categorized with their types of bug patterns, and

the results are presented with the ratio of true positives to

all reports. According to the table, 442 out of 648 reports

generated by our tool are recognized as real bugs after a

manual review. And the most frequently reported bugs are the

dereference null bugs.

To further confirm the true positives generated by Spelton,

14 patches are designed and submitted to the developers,

where related bugs are fixed together within one patch. By

now, seven patches have been merged, and five patches have

not been reviewed yet. Besides, one has been fixed before we

submitted it; and one has been confirmed by the developers as

a true bug, but they do not intend to fix such kinds of bugs.

Among the merged patches, bugs in 76 reports are fixed.

C. Evaluation on Usability

The usability of Spelton is evaluated with the cost of time

and memory. Besides, the reasons for our false positives in the

open-source projects are also discussed in this Section.

1) Evaluation on Time and Memory Cost: The total time

and memory costs of Spelton are presented in the last two

groups of Table VI. The time cost is measured in seconds,

while for the memory cost, we measure the peak memory cost

collected from the process status. For best performance, we

optimize Spelton with -O3 option. The Max cost is measured

for each input file, and the Average value is computed for

every kilo line of source code.

According to the measurements, a project with the average

size of all evaluated projects (1,165.27 Kloc) can be ana-

lyzed with 37,421.16 seconds and 8,913.68 MB of memory

sequentially, or with approximately 1.3 hours and 69.64 GB

of memory under an eight-thread concurrency.

2) Discussion on False Positives: More than a half (115

out of 208) of the false positives are triggered by the code

that is not analyzed. They can be separated into three groups.

The first group is the uninterpreted functions, which indi-

cates Spelton cannot find the definition of a callee function.

The reasons include 1) the function is a third-party library

function whose definition is not provided, 2) it is a virtual

function call on an object with an unknown type, and 3) a

failed CTU indexing or importing of the invoked external

functions. There are 22 reports clustered to this group.

The second group is the implicit constraints. These con-

straints hold among the entire program, but fail to be collected

in the current analysis context. For example an iterator class

in LLVM, the nullity of its unique pointer field represents

whether it is the end iterator or not. When analyzing the

code, as we cannot collect this constraint in the current context,

Spelton will assume that an iterator with such a null pointer is

not the end iterator. It will therefore generate a dereference

null report at the dereference site of the iterator. And 88 false

reports can be categorized into this group.

The last group is the disabled assertions, where the assert

macros in the code are replaced with a void expression when

the code under analysis is compiled with assertions disabled.

As the conditions in the assertions are removed during pars-

ing, Spelton cannot add the corresponding constraints in the

assertions, and therefore lead to false positives. There are 5

false reports in this group.

Besides, 78 unique shared reports considered false ones may

still be true bugs or helpful to developers. In Spelton, we check

the unique shared bugs for every unique path. Therefore, we

will report the paths that do not share the ownership, when

there are other paths in this function sharing the ownership.

Since we cannot make sure whether all the involved shared

pointers can be replaced with unique and raw pointers. For

the sake of conservation, we mark them as false positives.

There are 3 false positives of type bad assignment triggered

via the feature of user-customized deleters. This feature allows

users to determine what is to be done in the DEL operation.

Therefore, it will still be correct when a non-heap memory

888

TABLE VI: Evaluation on open-source C++ projects

Projects
Reports of Compared Tools Reports of Spelton Time Cost (Sec) Memory Cost (kB)

CSA Infer CppCheck SPrinter DN BA TM CR US Max Average Max Average

Aquila 8 17 7/7 10.64 22.11 1,059.40 1,772.88

Aria2 4(1) 12 2(2) 6/7 15/28 162.87 32.68 4,327.29 1,682.89

Celero 3 3/3 0/1 0/2 21.12 16.17 1,591.04 1,233.15

Evpp 47(9) 14(6) 12 1 3/3 11/15 228.47 61.27 3,952.66 1,475.53

Osrm 14 12 20 0/1 6/6 401.43 8.69 5,226.96 259.47

Restbed 2 254(18) 34 1/1 0/2 2/4 237.73 26.76 1,931.03 463.75

Spdlog 1 3 3/3 15.10 1.91 312.88 52.67

MySQL 1637(14) 1668(2) crash 89(37) 51/59 0/4 2/2 6/14 593.48 14.94 7,530.18 400.40

LLVM 657(35) 5567(18) 326 59(9) 261/364 3/3 0/3 62/116 3,086.51 45.72 20,308.85 1,220.18

Total 2361(59) 7539(44) 412 151(48) 322/435 3/9 2/2 3/7 112/195 - 289.02 - 7,833.03

block is assigned to a smart pointer with a deleter that does

not deallocate the memory. As this feature is seldom used, we

do not model this feature in Spelton.

The remaining false reports include 7 reports for we con-

sider the reported site may be written on purpose by the

developers, and 5 reports that are too complex to be checked

and marked as false positives directly.

Although these reports may be difficult to be filtered auto-

matically, it is easy for developers to filter or suppress them

via automatic code transformation with the knowledge of the

project [23].

D. Discoveries about Smart Pointers

According to the bug reports on the open-source projects,

we have three discoveries. First, all of the real bad assignment

and type mismatch bugs are caused by not using function

std::make_unique and std::make_shared to create

a new smart pointer. Another three commits found in the

history of project Osrm and LLVM also agree with this

conclusion. Therefore, it is strongly suggested to use these

two makers to allocate memory and create smart pointers.

Second, developers should pay more attention to shared

pointers. Although the unique shared bugs will not lead to

crashes or resource depletion, such bugs will strongly affect

the efficiency of the program [7]. Besides, shared pointers may

also trigger circular reference bugs. Therefore, developers had

better have a double-check on whether the ownership needs

to be shared before using shared pointers.

Third, smart pointers cannot immunize all kinds of memory

errors, especially the null pointer dereference bugs. The C++

standard smart pointers are designed to prevent dangling

pointers with null pointer values. And null pointer values are

always used as the return values of abnormal circumstances.

Therefore, we believe these are the reasons why the derefer-

ence null bugs are reported most.

VI. THREAT TO VALIDITY

The main threats to the validity of our results lie in the

following three aspects.

• Error Pattern Selection. In this paper, we only address

the bugs that can be directly triggered by the method calls

of three kinds of smart pointers. However, there are another

two kinds of smart pointer related memory errors that can

be triggered with raw pointers: 1) the memory leak bugs due

to not deallocating a memory block after its ownership has

been dropped with the release method of unique pointers,

and 2) the dangling raw pointer bugs after a smart pointer

deallocates its managed memory block.

Although smart pointers add new deallocation sites to the

program, these two kinds of bugs are still pure raw pointer

bugs, since smart pointers are designed to avoid being dan-

gling. As they have been well studied, we prefer checking

these bugs that cannot be directly triggered by smart pointers

with the corresponding state-of-the-art approaches. And our

model of smart pointers can be integrated into them to perfect

the results.

• Benchmark Selection. The validity of our benchmark

may be subject to the threat that our handmade code snippets

may not be complete enough to test all the circumstances.

Therefore, the performance of Spelton on real-world projects

cannot be as good as the handmade benchmark. Besides, the

projects selected may not cover all language features either,

there could be false negatives or positives when analyzing

other complex projects.

• CSA Analysis Engine. When developing Spelton, the

latest release version of CSA was 9.0.0. There will be many

improvements and bug fixes in the latest version at present.

Some of our solutions and strategies during developing the tool

can be replaced with newer and better optimizations. And the

bugs from old version may also affect outcome accuracy and

exactness.

VII. RELATED WORK

Our work is mainly related to modeling and checking smart

pointers and memory-related bugs. In this section, we will

mainly present the existing researches in these aspects.

• Analysis on Smart Pointers. Currently, there is only

a little research about the C++ smart pointers on different

kinds of aspects. Babati et al. [7] researched the performance

of smart pointers under different compiler configurations,

and concluded that using shared pointers is very resource-

consuming. And Henriques et al. [24] compared the perfor-

mance of different memory deallocation methods in C++, C#

and Java with smart pointers of C++ and garbage collector

of C# and Java. Their conclusion is the garbage collector of

C# outperforms the one of Java and the smart pointers of

C++. Donchev et al. [25] and Raj et al. [26] explored teaching

smart pointer usages to newbies and experienced programmers

889

respectively. Their researches introduced their experience from

their courses. SMARTOR [27] is a tool that helps developers

to replace raw-pointer-based memory management with smart

pointers. Apart from C++ smart pointers, the smart pointers

of the Boost Libraries [28] are also involved in this tool.

And SPrinter [6] is a linter-like tool that mainly focuses on

checking coding-style problems of smart pointer usages. Some

of the bug types of SPrinter are also supported by our tool in

this paper.

• Ownership of Memory Blocks. The concept of ownership

of memory blocks has been widely used to analyze memory

errors. Svoboda et al. [16] introduced the Pointer Ownership

Model to represent a similar concept of smart pointers. Heine

et al. [29] utilized the ownership model to check for memory

leak and double-free problems. They introduced a unique

pointer like strategy to use raw pointers in C programs by

limiting the ownership of a memory block only managed

by one owner raw pointer. And they developed a tool to

check the violations of this model. And Aldrich et al. [30]

developed a tool to annotate variables in a Java program to help

programmers understanding the data flow. They introduced

a static ownership model to annotate the variables, which

requires the type of ownership of a variable cannot be changed.

• Pointer Analysis. Pointer analysis is also an important

part of our work, and pointer analysis of smart pointers

has many similarities with raw pointer analysis. Trabish

et al. [31] introduced a symbolic execution aided pointer

analysis method. The method uses the program state during

symbolic execution to help a query on a static pointer analysis.

And the results of the query are used to improve the precision

of the symbolic execution. By reusing the information avail-

able, Krainz et al. [32] employed a diff-graph-based method to

quickly analyze points-to relations incrementally. The method

uses the diff-graph to represent each function, and re-computes

the graph for a function if it is changed. In this way, the

previous analysis results of an unchanged function can be

reused. And Grech et al. [33] utilized a dynamic-snapshot-

based static analysis method to analyze Java programs. They

use dynamic analysis to make heap snapshots, and the static

analysis uses the information from the snapshots to analyze

the pointers. A scalability-focused algorithm is presented by Li

et al. [34]. They estimate the amount of information of points-

to relations that will be used when analyzing a function, and

select a proper sensitivity degree for each function to archive

high scalability together with enough precision. And Thiessen

et al. [35] presented a method of combining demand-driven

local reasoning analysis and object sensitivity for analyzing

pointers. The results indicate the method is more efficient for

context-sensitive pointer analysis.

• Typestate Analysis on Heap Memory. Checking heap

memory usages for memory errors is a typical utilization of

the typestate analysis approach. Melton [13] and Smoke [14]

are both tools for checking memory leaks. They model the

state of memory blocks to detect the ones that go out-of-

scope without being deallocated. Yan et al. [36] checked use

after free problems by using Spatio-Temporal Context to infer

the potential usages after deallocation. They summarize the

program with a k-level context-sensitive pointer analysis, and

diagnose use-after-free bugs by checking the intersection of the

pointee set of deallocation with the set of dereferences. And

TsmartGP [37] is a tool for checking memory errors according

to pointer analysis. It uses a flow-, context-, field- and quasi

path-sensitive pointer analysis to record the value of pointers

and check errors with them.

Besides, fixing memory errors related to heap memory

management will also use a typestate-like analysis approach

to model the state of heap memory blocks. MemFix [1] tries to

fix trivial memory leaks by rescheduling the calls to function

free. They model the state transitions of heap memory

blocks, and use the state to find a better place to deallocate

the memory for all paths after they have removed all frees

in a function. SAVER [38] attempts to fix heap memory errors

according to given bug reports. They use a value-flow graph to

model the operations on a memory block, and fix the given bug

by inserting and replacing the memory operations. Finally, a

typestate-like analysis is used to verify the patches generated.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we proposed an approach to modeling the

state of C++ smart pointers together with the managed heap

memory, and we defined a group of operations on them

modifying the states. To diagnose misuses of smart pointers

(MisSP), we extracted five error patterns for the operations on

smart pointers and implemented checkers for the patterns. We

evaluated our model and checkers on a handmade benchmark

and nine open-source C++ projects. The experimental results

indicate our approach can precisely detect the MisSPs.

In the future, this work can be extended in three aspects.

First, as the first tool focusing on precisely checking MisSPs,

we check five error patterns. More error patterns of MisSPs can

be added with the evolution of the C++ standard. Second, the

model can be applied to other analysis algorithms other than

static symbolic execution to make the check more precise and

efficient. And last, this paper only focuses on smart pointers of

the C++ standard. Other kinds of smart-pointer-like manager

classes or pointer-like classes also need to be checked if their

implementations cannot be precisely analyzed.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their suggestions. This work is supported in part by the Key

Research Program of Frontier Sciences, Chinese Academy of

Sciences under grant No. QYZDJ-SSW-JSC036, and the 973

Program of China (2014CB340701).

REFERENCES

[1] J. Lee, S. Hong, and H. Oh, “Memfix: static analysis-based repair of
memory deallocation errors for C,” in Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and

Symposium on the Foundations of Software Engineering, 2018, pp. 95–
106.

[2] “CppReference.” [Online]. Available: https://en.cppreference.com/
[3] B. Stroustrup and H. Sutter, “C++ core guidelines,” Web. Last accessed

February, 2018.

890

[4] E. Geisseler and P. Meier, “GslAtorPtr-C++ core guidelines pointer
checker and support library refactorings,” Ph.D. dissertation, HSR
Hochschule für Technik Rapperswil, 2016.

[5] The Chromium Projects, “Smart Pointer Guidelines.” [Online]. Avail-
able: https://www.chromium.org/developers/smart-pointer-guidelines

[6] X. Ma, J. Yan, Y. Li, J. Yan, and J. Zhang, “SPrinter: a static checker for
finding smart pointer errors in C++ programs,” in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 1122–1125.

[7] B. Babati and N. Pataki, “Comprehensive performance analysis of C++
smart pointers,” Pollack Periodica, vol. 12, no. 3, pp. 157–166, 2017.

[8] “CppCheck.” [Online]. Available: https://github.com/danmar/cppcheck
[9] “Clang Static Analyzer (CSA).” [Online]. Available: https:

//clang-analyzer.llvm.org
[10] “Infer Static Analyzer.” [Online]. Available: https://fbinfer.com
[11] R. E. Strom and S. Yemini, “Typestate: A programming language con-

cept for enhancing software reliability,” IEEE Transactions on Software

Engineering, no. 1, pp. 157–171, 1986.
[12] R. DeLine and M. Fähndrich, “Typestates for objects,” in European

Conference on Object-Oriented Programming. Springer, 2004, pp. 465–
490.

[13] Z. Xu, J. Zhang, and Z. Xu, “Melton: a practical and precise memory
leak detection tool for C programs,” Frontiers of Computer Science,
vol. 9, no. 1, pp. 34–54, 2015.

[14] G. Fan, R. Wu, Q. Shi, X. Xiao, J. Zhou, and C. Zhang, “Smoke: scalable
path-sensitive memory leak detection for millions of lines of code,” in
2019 IEEE/ACM 41st International Conference on Software Engineering

(ICSE). IEEE, 2019, pp. 72–82.
[15] “RAII - CppReference.” [Online]. Available: https://en.cppreference.

com/w/cpp/language/raii
[16] D. Svoboda and L. Wrage, “Pointer ownership model,” in 2014 47th

Hawaii International Conference on System Sciences. IEEE, 2014, pp.
5090–5099.

[17] S. Beyer, “Efficient cycle collection in a hybrid garbage collector
with reference counting and mark-and-sweep,” Ph.D. dissertation, Wien,
2020.

[18] “Restbed pull request #106.” [Online]. Available: https://github.com/
Corvusoft/restbed/pull/448

[19] “MySQL bug #101767.” [Online]. Available: https://bugs.mysql.com/
bug.php?id=101767

[20] “Aria2 pull request #106.” [Online]. Available: https://github.com/aria2/
aria2/pull/106/

[21] “GNU Make.” [Online]. Available: https://www.gnu.org/software/make
[22] P. E. Black and P. E. Black, Juliet 1.3 test suite: changes from 1.2.

US Department of Commerce, National Institute of Standards and
Technology, 2018.

[23] R. van Tonder and C. L. Goues, “Tailoring programs for static analysis
via program transformation,” in Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering, 2020, pp. 824–834.
[24] L. Henriques and J. Bernardino, “Performance of memory deallocation

in C++, C# and Java,” 2018.
[25] I. Donchev et al., “Experience in teaching C++11 within the under-

graduate informatics curriculum,” Inf. in Education, vol. 12, no. 1, pp.
59–79, 2013.

[26] A. G. S. Raj, V. Naik, J. M. Patel, and R. Halverson, “How to
teach” modern C++” to someone who already knows programming?” in
Proceedings of the 20th Australasian Computing Education Conference,
2018, pp. 97–104.

[27] A. Fröhlich and C. Mollekopf, “SMARTOR-dress naked C++ pointers
to smart pointers,” Ph.D. dissertation, HSR Hochschule für Technik
Rapperswil, 2013.

[28] “Boost C++ Libraries.” [Online]. Available: https://www.boost.org/
[29] D. L. Heine and M. S. Lam, “A practical flow-sensitive and context-

sensitive C and C++ memory leak detector,” in Proceedings of the

ACM SIGPLAN 2003 conference on Programming language design and

implementation, 2003, pp. 168–181.
[30] J. Aldrich, V. Kostadinov, and C. Chambers, “Alias annotations for

program understanding,” ACM SIGPLAN Notices, vol. 37, no. 11, pp.
311–330, 2002.

[31] D. Trabish, T. Kapus, N. Rinetzky, and C. Cadar, “Past-sensitive pointer
analysis for symbolic execution,” in Proceedings of the 28th ACM Joint

Meeting on European Software Engineering Conference and Symposium

on the Foundations of Software Engineering, 2020, pp. 197–208.
[32] J. Krainz and M. Philippsen, “Diff graphs for a fast incremental pointer

analysis,” in Proceedings of the 12th Workshop on Implementation,

Compilation, Optimization of Object-Oriented Languages, Programs

and Systems, 2017, pp. 1–10.
[33] N. Grech, G. Fourtounis, A. Francalanza, and Y. Smaragdakis, “Shooting

from the heap: Ultra-scalable static analysis with heap snapshots,” in
Proceedings of the 27th ACM SIGSOFT International Symposium on

Software Testing and Analysis, 2018, pp. 198–208.
[34] Y. Li, T. Tan, A. Møller, and Y. Smaragdakis, “Scalability-first pointer

analysis with self-tuning context-sensitivity,” in Proceedings of the 2018

26th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering, 2018, pp.
129–140.

[35] R. Thiessen and O. Lhoták, “Context transformations for pointer anal-
ysis,” ACM SIGPLAN Notices, vol. 52, no. 6, pp. 263–277, 2017.

[36] H. Yan, Y. Sui, S. Chen, and J. Xue, “Spatio-temporal context reduction:
A pointer-analysis-based static approach for detecting use-after-free
vulnerabilities,” in 2018 IEEE/ACM 40th International Conference on

Software Engineering (ICSE). IEEE, 2018, pp. 327–337.
[37] Y. Wang, G. Chen, M. Zhou, M. Gu, and J. Sun, “TsmartGP: a tool for

finding memory defects with pointer analysis,” in 2019 34th IEEE/ACM

International Conference on Automated Software Engineering (ASE).
IEEE, 2019, pp. 1170–1173.

[38] S. Hong, J. Lee, J. Lee, and H. Oh, “Saver: scalable, precise, and
safe memory-error repair,” in Proceedings of the ACM/IEEE 42nd

International Conference on Software Engineering, 2020, pp. 271–283.

891

