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Abstract. Discovering a concise schema from given XML documents is
an important problem in XML applications. In this paper, we focus on
the problem of learning an unordered schema from a given set of XM-
L examples, which is actually a problem of learning a restricted regu-
lar expression with interleaving using positive example strings. Schemas
with interleaving could present meaningful knowledge that cannot be
disclosed by previous inference techniques. Moreover, inference of the
minimal schema with interleaving is challenging. The problem of find-
ing a minimal schema with interleaving is shown to be NP-hard. There-
fore, we develop an approximation algorithm and a heuristic solution
to tackle the problem using techniques different from known inference
algorithms. We do experiments on real-world data sets to demonstrate
the effectiveness of our approaches. Our heuristic algorithm is shown to
produce results that are very close to optimal.
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1 Introduction

When XML is used for data-centric applications such as integration, there may
be no order constraint among siblings [1]. Meanwhile, the relative order with-
in siblings may be still important. For example, consider a ticket system with
two ticket machines, where there are two bunches of tourists lining up waiting
to buy tickets. Each group has two tourists. We can then define the unordered
schema for the ticket system. The ordered groups preserve only the relative order
of their members. This not only allows individual tourists to insert themselves
within a group, but also lets two groups interleave their members. The exact
XML Schema Definition (XSD) for the purchasing sequence can be essential-
ly represented as g1.m1∗g1.m2∗g2.m1∗g2.m2∗ |g2.m1∗g2.m2∗g1.m1∗g1.m2∗ |
g1.m1∗g2.m1∗g1.m2∗g2.m2∗ |g1.m1∗g2.m1∗g2.m2∗g1.m2∗ |g2.m1∗g1.m1∗g2.m2∗

g1.m2∗ |g2.m1∗g1.m1∗g1.m2∗g2.m2∗, where gi.mj∗ means the jth member in
the ith group can buy zero or more tickets. The representation is minimal by Def-
inition 2. It shows the length of the exact regular expression can be exponential
when compared to the number of members in sequences.
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Actually, (g1.m1|g1.m2|g2.m1|g2.m2)∗ is used in practice [3] instead of the
minimal ones, which may permit invalid XML documents (i.e., over-permissive).
For example, it may permit the second member in the sequence of the first
group to purchase tickets before the first member. There are many negative
consequences of over-permissive [3]. Thus it is necessary to study how to infer
an unordered minimal schema for this kind of XML documents.

Previous researches on XML Schema inference have been done mainly in the
context of ordered XML, which can be reduced to learn regular expressions.
Gold [9] showed the class of regular expressions is not identifiable in the limit.
Therefore numerous papers (e.g.[2, 5, 6, 12]) studied inference algorithms of re-
stricted classes of regular expressions. Most of them were based on properties
of automata. Bex et al. [2] proposed learning algorithms for single occurrence
regular expressions (SOREs) and chain regular expressions (CHAREs). Frey-
denberger and Kötzing [12] gave more efficient algorithms learning a minimal
generalization for the above classes. The approach is based on descriptive gen-
eralization [12] which is a natural extension of Gold-style learning.

However, there is no such kind of automata for regular expressions with
interleaving since they do not preserve the total order among symbols. Thus we
have to explore new techniques. While Ciucanu [13] proposed learning algorithms
for two unordered schema formalisms: disjunctive multiplicity schemas (DMS)
and its restriction, disjunction-free multiplicity schemas (MS), both of them
disallow concatenation within siblings. Thus they are less expressive than ours.
Moreover, the ordering information in our schema formalism can not be fully
captured by the three characterizing triples used to construct a DMS or MS.

Inference algorithms in this paper use some similar techniques with algo-
rithms mining global partial orders from sequence data [14, 15, 17]. However,
the semantic concepts there are typically quite different from ours. Mannila et
al. [15] tried to find mixture models of parallel partial orders. However, to learn
unordered regular expressions, series parallel orders may not be sufficient since
they can conflict with some data in the whole data set. Another restriction in
the above method is that it can only be applied to strings where each symbol
occurs at most once. Particularly, Gionis et al. [14] emphasised on recovering
the underlying ordering of the attributes in high-dimensional collections of 0-1
data. An implicit assumption is that attribute can also occur at most once. For
learning regular expressions with interleaving, symbols in strings can present
any times and partial orders among siblings are independent with no violations.
Hence many techniques from data mining are not directly applicable. Therefore,
learning restricted regular expressions with interleaving remains a challenging
problem.

In this paper, we address the problem of discovering a minimal regular ex-
pression with interleaving from positive examples. The main contributions of the
paper are listed as follows:

- We propose a better and more suitable formalism to specify precise unordered
XML: the subset of regular expressions with interleaving (SIREs). SIREs can
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express the content models succinctly and concisely. For example, the above
example can be depicted as (g1.m1∗g1.m2∗)&(g2.m1∗g2.m2∗).

- We introduce the notion of SIRE-minimal in the terminology of [12] and some
properties of SIRE-minimal.

- We prove the problem of finding a minimal SIRE is NP-hard and develop an
approximation algorithm conMiner to find solutions with worst-case quality
guarantees and a heuristic algorithm conDAG that mostly finds solutions of
better quality as compared to the approximation algorithm conMiner.

- We conduct experiments comparing our methods with Trang [8] on real world
data, incorporating small and large data sets. Our experiments show that
conMiner and conDAG outperform existing systems on such data.

The rest of the paper is organized as follows. Section 2 contains basic definitions.
In Section 3 we discuss properties of minimal-SIRE. In Section 4 an approx-
imation algorithm conMiner and a heuristic algorithm conDAG are proposed.
Section 5 gives the empirical results. Conclusions are drawn in Section 6.

2 Preliminaries

Let u and v be two arbitrary strings. By u&v we denote the set of strings that
is obtained by interleaving of u and v in every possible way. That is, u&ε =
ε&u = u, v&ε = ε&v = v. If both u and v are non-empty let u = au′, v = bv′,
a and b are single symbols, then u&v = a(u′&v) ∪ b(u&v′). The operator &
can be then extended to regular languages as a binary operator in the canonical
way. Let Σ be an alphabet of symbols. The regular expressions with interleaving
over Σ are defined as: ∅, ε or a ∈ Σ is a regular expression, E?

1 , E∗1 , E+
1 , E1E2,

E1|E2, or E1&E2 is a regular expression for regular expressions E1 and E2.
They are denoted as RE(&). The language described by E is defined as follows:
L(∅) = ∅; L(ε) = ε; L(a) = {a}; L(E?

1) = L(E1)?; L(E+
1 ) = L(E1)+; L(E∗1 ) =

L(E1)∗; L(E1E2) = L(E1)L(E2); L(E1|E2) = L(E1) ∪ L(E2); L(E1&E2) =
L(E1)&L(E2). We consider the subset of regular expressions with interleaving
(SIREs) defined by the following grammar.

Definition 1. The restricted class of regular expressions with interleaving (R-
REs) are RE(&) over Σ by the following grammar for any a ∈ Σ:

S :: = T&S|T
T :: = ε|a|a∗|TT

a? and a+ are used as abbreviations of a + ε and aa∗, respectively. The subset
of regular expressions with interleaving (SIREs) are those RREs in which every
symbol can occur at most once. Since SIREs disallow repetitions of symbols,
they are certainly deterministic and satisfy the UPA constraint required by the
XML specification.

A partial order M for a string s is a binary relation that is reflexive, an-
tisymmetric and transitive. We write a ≺ b if a is before b in the partial or-
der. For string s = x1 · · ·xl, the transitive closure of s is denoted by tr(s) =
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{(xi, xj)|1 ≤ i < j ≤ l}, where l is the length of s. For example s = abcd,
tr(s) = {ab, ac, ad, bc, bd, cd}.

A partial-order set t is a set of symbols together with a partial ordering. We
say ab ∈ t if a precedes b in every string in a string collection. Consistent partial
order set (CPOS) T is a set which contains all the disjoint partial-order sets
ti of the given examples. For example, consider W = {abcd, dabc}. Obviously,
a ≺ b ≺ c, T = {abc, d}. The connection between CPOS and SIRE is directly.
That is, given a CPOS, we can write it to the form of SIRE by combining all
the elements in CPOS with &. For example, in this case the corresponding SIRE
s = abc&d. Therefore, the problem of finding a minimal SIRE can be reduced
to the problem of finding a minimal CPOS.

3 Description

This section introduces the notion of minimal expressions. Roughly speaking
minimal is the greatest lower bound of a language L within a class of expressions,
which is conceptually similar with infimum in the terminology of mathematics.

Definition 2 ([12]). Let D be a class of regular expressions over some alphabet
Σ. A δ ∈ D is called D-minimal of non-empty language S ⊆ Σ∗, if L(δ) ⊇ S
and there is no γ ∈ D such that L(δ) ⊃ L(γ) ⊇ S.

Proposition 1. Let n be the number of alphabet symbols. The number of pair-
wise non-equivalent SIREs is O(n!).

Proof. Disregarding operators ?,+,*, the number of SIREs over a finite Σ is e-
quivalent to the number of ordered partitioning |Σ| symbols. The number of these
partitions is given by the |Σ|th ordered Bell numbers [11]. For instance, if Σ =
{a, b, c}, the 3th ordered Bell number a(3) = 13, and the ordered partitions of
{a, b, c} is {abc, acb, bac, bca, cab, cba, ab&c, ba&c, ac&b, ca&b, bc&a, cb&a, a&b&c}.
They are also distinct partitions of SIREs over Σ. The ordered Bell number [10]
can be approximated as a(n) =

∑n
k=0 k!

(
n
k

)
≈ n!

2(ln2)n+1 . Since every symbol a in

Σ has four forms which can be represented as a, a?, a+ and a∗, the number of
SIREs over Σ is 4na(n). Then s(n) ≈ 4nn!

2(ln2)n+1 . ut

We can then prove the existence of minimal regular expressions for SIRE.

Proposition 2. Let Σ be a finite alphabet. For every language L ⊆ Σ∗, there
exists a SIRE-minimal SIRE δs.

Proof. Assume there is a language L over Σ such that no expression α ∈ SIRE
is SIRE-minimal. This implies that there is an infinite sequence (βi)i≥0 of ex-
pressions from SIRE with α = β0 and L(βi) ⊃ L(βi+1) ⊇ L for all i ≥ 0. This
contradicts the fact that there are only a finite number of non-equivalent SIREs
over Σ by Proposition 1. ut
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Proposition 3. For any example string set E over {a1, · · · , an}, let S = s1& · · ·
&sl be a SIRE such that E ⊆ L(S). S is a minimal SIRE if and only if:
(1) the number of si is minimized and
(2) the size of each si is as large as possible.

The proof was omitted for space reasons.
In other words, a minimal SIRE is the most specific SIRE that consistent with

the given example strings. For instance, all of S1 = a&bc&d, S2 = abc&d and
S3 = ad&bc can accept E = {abcd, adbc}. However, since S1 = (ad|da)&bc =
(ad&bc)|(da&bc) = S3|(ad&bc), we can get L(S1) ⊃ L(S3) which means S1

is not minimal. As for S2 and S3, since L(S2) = {abcd, abdc, adbc, dabc} and
L(S3) = {bcad, bacd, badc, abcd, abdc, adbc}, this means S3 is not minimal. As we
shall see, S2 is a better approximation of E. In fact, S2 can be verified to be a
minimal by referring to Proposition 3.

4 Minimal SIREs

In this section, we first prove finding a minimal SIRE for a given set of strings
is NP-hard by reducing from finding a maximum independent set of a graph,
which is a well-known NP-hard graph problem [7]. Then we present learning
algorithms that construct approximatively minimal SIREs.

4.1 Exact Identification

First, we introduce the notion of maximum independent set of a graph [7].
Consider an undirected graph G(V,E), an independent set (IS) is a set that
∀u, v ∈ IS, u, v ∈ V and (u, v) /∈ E. The maximum independent set (MIS)
problem consists in computing an IS of the largest size. Next, we define the
problem all_mis which takes a graph G as input, finding a MIS S′ of G by
applying function max_independent_set, and repeating the step for subgraph
G[V − S′] until there exists no vertex in the subgraph. In other words, all_mis
is to divide V into disjoint subsets by max_independent_set. Clearly, problem
all_mis is NP-hard. For example, consider G(V,E) which V = {1, 2, 3, 4}, E =
{(1, 2), (1, 3), (2, 3), (2, 4), (3, 4)}. The result of max_independent_set(G) is {1, 4}.
The result of max_independent_set(G[V-{1,4}]) is {2}. Thus the result of
all_mis(G) is {{1, 4}, {2}, {3}}.

The main idea of finding a minimal SIRE is based on the observation that
there are sets of conflicting siblings that cannot be divided into the same subset
of CPOS. A pair xy is called forbid pair in a string database if both xy and
yx exists in the transitive closure of strings. The set of forbid pairs is called a
constraint. By Proposition 3, if we split the set of symbols in a constraint into
several subsets t1, · · · , tn such that n is minimized and for each i ∈ [1..n], ti is
the longest of its alternatives. Then the set of ti where i ∈ [1..n], is a minimal
CPOS which can be transformed to a minimal SIRE.

Lemma 1. Minimal SIRE finding problem is NP-hard.
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Proof. We demonstrate that all_mis can be reduced in polynomial time to
minimal SIRE finding problem. Given an instance of all_mis, we can generate
a corresponding instance of minimal SIRE finding as follows. For the graph G
in all_mis, the reduction algorithm computes the constraint set by adding
all edges in G to constraint, which is easily obtained in polynomial time. The
output of the reduction algorithm is the instance set constraint of minimal
SIRE finding problem. ti in CPOS is the longest of its alternatives if and only if
all_mis computes a maximum independent set at the ith step. Thus, minimal
SIRE finding problem is equivalent to the original all_mis. Since all_mis is
NP-hard, minimal SIRE finding problem is NP-hard. ut

4.2 Approximation Algorithm

The process of this approach is formalized in Algorithm 1. Algorithm 1 works in
four steps and we illustrate them on the sample E = {abcd, aadbc, bdd}. The first
step (lines 1-2) computes the non-constraint and constraint set using the func-
tion tran_reduction. The transitive closure of E is tr = {ab, ac, ad, bc, bd, cd, db,
dc}. Add uv to constraint if vu ∈ tr. Add uv to consist tr otherwise. We get
consist tr = {ab, ac, ad, bc} and constraint = {bd, cd, db, dc}. Construct an undi-
rected graph G using element in constraint as edges. The second step (lines 3-7)
is to select a MIS of G, add it to list allmis and delete the MIS and their re-
lated edges from G. The process is repeated until there exists no nodes in G.
The problem of finding a maximum independent set is an NP-hard optimization
problem. As such, it is unlikely that there exists an efficient algorithm for finding
a maximum independent set of a graph. However, we can find a MIS in polyno-
mial time with a approximation algorithm, e.g. the clique_removal algorithm
proposed in [19] that finds the approximation of maximum independent set with
performance guarantee O(n/(log n)2) by excluding subgraphs. For graph G, we
obtain allmis = {{b, c}, d}. Next, we add the non-constraint symbols to the first
MIS. Then we have allmis = {{a, b, c}, d}. The third step (lines 8-10) computes
the topological sort for all subgraphs induced by subset of consist tr and add
the result to T . For the sample, it returns T = {abc, d}. Finally, the algorithm re-
turns the SIRE whose corresponding counting operators 1, ∗,+, ? can be inferred
using technique in algorithm CRX [4]. For the sample, it returns a∗bc?&d+.

When carefully implemented, clique removal involves (|V |+ |E|) work [19],
where |E| is O(|V |2). The total running time of conMiner is (n3 + m), where
m is the sum of length of the input example strings, n the number of alphabet
symbols.

4.3 Heuristic Algorithm

Although a number of approximation algorithms and heuristic algorithms have
been developed for the maximum independent set problem, on any given in-
stance, they may produce a SIRE that is very far from optimal. We introduce a
heuristic directed acyclic graph construction algorithm directly computing a min-
imal SIRE. The main idea is to cluster the vertices of the existing directed graph
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Algorithm 1 conMiner(W )

Input: Set of words W = {w1, ..., wn}
Output: a minimal SIRE T
1: consist tr, constraint = tran reduction(W,T )
2: G = Graph(constraint)
3: while G.nodes()! = null do
4: v = clique removal(G)
5: G = G− v
6: allmis.append(v)

7: allmis[0] = allmis[0].union(alphabet(consist tr)− alphabet(constraint))
8: for each mis ∈ allmis do
9: H = Graph(mis, consist tr)

10: T.append(topological sort(H))

11: return learneroper(W,T )

into several disconnected subgraphs. The graph is constructed incrementally to
preserve CPOS within each vertex using a greedy approach. The pseudocode of
algorithm conDAG is given in Algorithm 2.

The input to this algorithm is the same as the input of the conMiner. The
algorithm maintains lists p, q as records to keep track of pairs violating the
partial order constraint and lists s, t to record pairs violating the partial order
constraint of the string under reading. Note that (a, b) violating the partial order
constraint means there exist some w1, w2 ∈ W such that a ≺ b in w1 and b ≺ a
in w2.

Let ab be two adjacent symbols in a word w. The add_or_break function
checks whether edge ab is added to the present graph G. If there exists no path
from b to a, no path from a to b in G and edge ab will not make a connection
between some p[i] and q[i], we add edge a → b in G. Self-loops such as f → f
are always ignored since they have no influence on the partial order constraints.
However, if there exist paths from b to a in G, (a, b) /∈ (p[i], q[i]), (q[i], p[i]) and
a, b are not in p[i], q[i] at the same time for all i < len(p), we should break all
paths from b to a. The breakpoint can be found as below. Suppose there exists
a path u = bα1...a, α0 = b in G, and substring of w over {b, α1, ..., a} is αi...a,
then we delete edge αi−1 → αi, add edge β → αi for all nodes β that β → b,
and add edge αi−1 → γ for all nodes γ that a → γ. In the end, append string
bα1...αi−1 to p,s and append string αi...a to q,t. Now list p, s are [bα1...αi−1]
and q, t are αi...a.

β a b c d γ

β a b c d γ

Figure 1: This is an example to find the breakpoint
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1: function consistent(G,w, p, q)
2: s, t := ∅, i := 1
3: while i < |w| − 1 do
4: if (w[i]! = w[i + 1]) ∧ ((w[i], w[i + 1]) /∈ (p, q), (q, p)) then
5: add or break(G,w,w[i], w[i + 1], p, q, s, t)

6: for j := 1 to |s| do
7: if (w[i] ∈ s[j]) ∧ ((t[j][−1], w[i + 1]) /∈ (p, q)) then
8: add or break(G,w, t[j][−1], w[i + 1], p, q, s, t)

9: if (w[i] ∈ t[j]) ∧ (s[j][−1], w[i + 1]) /∈ (p, q)) then
10: add or break(G,w, s[j][−1], w[i + 1], p, q, s, t)

11: i + +

Example in Figure 1 shows how the function works. W = {βabcdγ, cda},
initialize empty list p,q,s,t and empty graph G. After reading w1, list p,q,s,t are
still empty. When reading da ∈ w2, there already exists a path abcd and (d, a) /∈
(p[i], q[i]), (q[i], p[i]). We should break abcd. Since substring(w2, {a, b, c, d}) =
cda, breakpoint is c. Then we delete edge b→ c, and add edges β → c,b→ γ. In
the end, append string ab to list p,s and append string cd to list q,t.

The consistent function scans the whole string w by sequence to exe-
cute add_or_break function. Each time after reading two adjacent symbols ab,
for all pairs (α1aα2, α3c) or (α3c, α1aα2) ∈ (s, t), handle cb likewise. Because
(α1aα2, α3c) or (α3c, α1aα2) ∈ (s, t) declare a ≺ c and c ≺ a are in w, if a ≺ b in
w, c ≺ b is also in w. Consider acab as an example, c and a have been two parts
after reading ca, a has been added to p and s and c added to q and t. After read-
ing the next two symbols ab, add edge a→ b. Next we should consider cb since
a ∈ s[0], c ∈ t[0], thus add edge c → b. The topological_sort(g) construct a
topological ordering of DAG in linear time. The learner_oper is used to infer
operators ?,+, ∗ for each vertex.

The conDAG algorithm combines all the functions. The constructed graph is
denoted by G and the corresponding set of partitions by C. In each iteration,
it invokes consistent to update G using the ith string. Then it adds all the
paths from the set of vertices of in-degree zero to the set of vertices of out-
degree zero. To be able to calculate the largest independent partial-order plans,
a preprocessing phase is implemented. First, we consider the elements of C in
decreasing order of size. In each iteration, whenever we find two elements that
the one contains elements of p[i] and the other one contains elements of q[i],
we updates the shorter one by removing the common elements. Next, we merge
all the lists in C that share common elements. The preprocess terminates when
every symbol is included in one and only one list. The following steps of the
algorithm are the same as the third and the forth step of the conMiner.

The time complexity analysis of this algorithm is straightforward. add or brea
k(G,w, a, b, p, q, s, t) can find all possible paths between two given nodes by mod-
ifying the DFS which needs O(|V |+ |E|) steps. Breaking a circle requires O(|V |).
Therefore, an overall time complexity for add or break isO(|V |+|E|). The length
of w can at most be n and |E| is O(|V |2). So the total time of consisitent is
O(n3).
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Algorithm 2 conDAG(W )

Input: Set of unordered words W = {w1, ..., wt}
Output: a minimal SIRE
1: consist tr, constraint = tran reduction(W,T )
2: initialize graph G, p, q := ∅
3: for i := 1 to t do
4: consistent(G,wi, p, q)

5: C = all paths(G, source, destination)
6: remove the common elements from the shorter of ci, cj ∈ C if ci[m] + cj [n] ∈

constraint.
7: merge all lists that share common elements in C
8: for each mis in C do
9: H = Graph(mis, consist tr)

10: T.append(topological sort(H))

11: return learneroper(W,T )

The tran reduction computation requires O(n2) time, where n is the number
of distinct symbols. Each iteration requires O(n3) time to maintain the graph.
Computing all paths from source to destination can be done in O(n2) time, and
topological sort(g) constructs a topological ordering of DAG in linear time, thus
O(|V |+ |E|) steps are sufficient. Inference of operators ?,+, ∗ needs time O(m).
Hence the time complexity of the algorithm is O(n4 + m), where m is the sum
of length of the input example strings, n the number of alphabet symbols.

To illustrate our algorithm, consider the example E = {abcd, aadbc, bdd},
consist tr = {ab, ac, ad, bc}, constraint = {bd, cd, db, dc} in the above section. A
directed graph which consists of vertex V = {a, b, c, d} and edges E = {ab, bc, ad}
can be obtained. p = {bc} and q = {d}. All paths from source to destination are
C = {abc, ad}. Since bd ∈ constraint, C[2] is updated by removing the common
elements between C[1] and C[2]. C[2] is d. The final C is {abc, d}. The following
steps are the same.

5 Experiments

In this section, we validate our approaches on real-life DTDs, and compare them
with that of Trang [8]. All experiments were conducted on an IBM T400 laptop
computer with a Intel Core 2 Duo CPU(2.4GHz) and 2G memory. All codes
were written in python.

The number of corpora of XML documents with an interesting schema is
rather limited. We obtained our real-life DTDs from the XML DATA repository
maintained by Miklau [18]. Unfortunately, most of them are either not data-
centric or not with a DTD. Specifically, We chose the DBLP Computer Science
Bibliography corpus, a data-centric database of information on major comput-
er science journals and proceedings. The code and data can be available at
http://lcs.ios.ac.cn/~pengff/projects.html. Table 1 lists the non-trivial
element definitions in the above mentioned DTD together with the results de-
rived by exact algorithm, heuristic algorithm conMiner, approximation algorithm
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Element Original DTD
name Exact Minimal DTD
Sample Result of conMiner
size Result of conDAG

Result of Trang

inproceedings (a1|a2| · · · |a22)∗

2122274 a1
∗a12?a5

∗a9?a18?a15
∗&a3a6a11

∗&a19
∗&a13

∗&a4&a14
∗

2122274 a5
∗a18?a15

∗&a12?a9?a13
∗&a1

∗a14
∗&a6a11

∗&a3&a4&a19
∗

2122274 a1
∗a4a9?a11

∗a15
∗&a3a12?a5

∗a18?&a13
∗&a6&a14

∗&a19
∗

2122274 (a1|a3|a5|a6|a9|a11|a12|a13|a14|a15|a18|a19)+

article (a1|a2| · · · |a22)∗

111608 a1
∗a17?a∗

5a12?a15
∗&a3a6a11?&a13

∗&a8&a10?&a14
∗&a9?

111608 a17?a12?a9?a15
∗&a1

∗a6a11?&a3&a∗
5&a13

∗&a8&a10?&a14
∗

111608 a3
∗a17?a6a11?&a1

∗a8a12?a15
∗&a13

∗&a∗
5&a10?&a12?&a9?

111608 a2?(a1|a3|a5|a6|a8|a9|a10|a11|a12|a13|a14|a15|a17)+

proceedings (a1|a2| · · · |a22)∗

3007 a2
∗a3

+a18?a21?a8?a10?a13?a12?a15
∗a19?a7?a9?&a4?&a17?&a6&a∗

20&a11?
3007 a2

∗a3
+a19?a13?a∗

20a15
∗a12?&a4?a7?a8?a9?&a21?a18?a10?&a6&a17?&a11?

3007 a2
∗a3

+a8?a18?a21?a10?a9?a19?a13?a7?a15
∗&a4?a12?&a17?&a6&a∗

20&a11?
3007 a2

∗a3
+(a4|a6|a7|a8|a9|a10|a11|a12|a13|a17|a18|a19|a20|a21)+a15

∗

incollection (a1|a2| · · · |a22)∗

1009 a1
∗a3a4a17?a20?a16?a11?a15

∗a14?&a13?a19?&a5?&a6

1009 a1
∗a3a17?a6&a15

∗a13?a16?a14?&a4a11?&a20?a19?&a5?
1009 a1

∗a3a4a17?a11?a15
∗a14?&a6a20?&a5?a16?&a13?&a19?

1009 (a1|a3|a4|a5|a6|a11|a13|a16|a17|a20)+(a14|a15
∗)

phdthesis (a1|a2| · · · |a22)∗

72 a1a3a6a17?a21?a20?a9?a13?a12?&a22

72 a1a3a6a12?a21?a22a13?a20?&a17?a9?
72 a1a3a6a17?a21?a20?a13?a9?a12?&a22

72 a1a3a6(a12|a21)?(a9|a17|a22)+(a13|a20)?

Table 1: Results of exact algorithm, conMiner, conDAG and Trang on DTDs

conDAG, and Trang. We implement the exact algorithm by replacing function
clique_removal in conMiner with an exponential time algorithm proposed by
S. Tsukiyama [20]. It can be verified that all expressions learned by exact al-
gorithm, conDAG and conMiner are more strict than that of Trang and the
original DTDs which indicates there exists much more over-permissive in both
the original DTDs and the results of Trang. Moreover, although the results of
conMiner and conDAG are not the ideal optimum, they are very close to that
of exact algorithm thus are nearly as good.

There may exist many minimal expressions given a set of unordered strings.
For instance, for phdthesis, the form of the result of conDAG is the same with
the exact minimal expression. The orders among symbols of their first siblings,
however, differ widely. This is due to the fact that a diagraph may have several
different topological sorts. Therefore, we ignore the sequel in the symbols and
only compare their simplified form which concerns only the length of each sibling
and the number of interleavings. For example, the simplified result of exact algo-
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Element name
Similarity

conDAG conMiner

inproceedings 0.979610 0.729517

article 0.974022 0.838144

proceedings 0.995385 0.905593

incollection 0.732781 0.602769

phdthesis 1.000000 0.990992

Table 2: Similarity of the results of conDAG and conMiner with exact algorithm, re-
spectively.

rithm for inproceedings is 6&3&1&1&1&1. We measure the similarity by formula
sim(vec(te), vec(tc)) = simc(vec(te), vec(tc)) ∗ (length(vec(te)/length(vec(tc))),
where vec(te) are the vector of the result of exact algorithm, vec(tc) the vector
of the result of conDAG or conMiner and simc is the cosine similarity between
two vector. For the similarity between exact algorithm and conMiner for in-
proceedings, vec(te) = {6, 3, 1, 1, 1, 1, 0}, vec(tc) = {3, 3, 2, 2, 1, 1, 1}, we can get
sim(vec(te), vec(tc)) = (33/( 2

√
49 ∗ 2

√
29)) ∗ (5/6) = 0.729517. Table 2 shows

clearly that conDAG yields concise super-approximations to the exact minimal
expressions thus can find solutions of better quality as compared to the solutions
found by the approximation algorithm.

6 Conclusion

This paper proposes a strategy for learning a class of regular expressions with
interleaving: first, compute consistent partial order T , then equip each factor
with counting operators. As future work, we will investigate several interesting
problems inspired by this study. First, we would like to extend our algorithms
for more expressive schemas, for example schemas allow disjunction “|” within
siblings. Second, how to extend algorithms to mine all independent frequent
closed partial orders [17] is also an attractive topic.
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