
Deciding Determinism

of Unary Languages Is coNP-Complete�

Ping Lu1,2,3, Feifei Peng4, and Haiming Chen1

1 State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

{luping,chm}@ios.ac.cn
2 Graduate University of Chinese Academy of Sciences

3 University of Chinese Academy of Sciences
4 China Agricultural University, Beijing 100083, China

Abstract. In this paper, we give the complexity of deciding determinism
of unary languages. First, we derive a set of arithmetic progressions from
an expression E over a unary alphabet, and give the relations between
numbers in these arithmetic progressions and words in L(E). Next, we
define a problem related to arithmetic progressions and investigate the
complexity of this problem. Finally, by reduction from this problem we
show that deciding determinism of unary languages is coNP-complete.

1 Introduction

The XML schema languages, e.g., DTD and XML Schema, require that the con-
tent model should be deterministic, which ensures fast parsing documents [20,1].
Intuitively, determinism means that a symbol in the input word should be
matched to a unique position in the regular expression without looking ahead in
the word [21,4].

However, this determinism is defined in a semantic way, without a known
simple syntax definition [1]. It is not easy for users to understand such kind of
expressions. Lots of work [1,4,3,11,14,5,15] studied properties of deterministic
expressions. But most of these work merely handled determinism of expressions
and only little progress has been made about determinism of languages.

For standard regular expressions, Brüggemann-Klein and Wood [4] showed
that the problem, whether an expression denotes a deterministic language, is
decidable. Recently Bex et al. [1] proved that the problem is PSPACE-hard,
but it is unclear whether the problem is in PSPACE. The problem becomes
much harder when we consider expressions with counting. It is not known to be
decidable whether a language can be defined by a deterministic expression with
counting. In [9], Gelade et al. showed that for unary languages, deterministic
expressions with counting are expressively equivalent to standard deterministic

� Work supported by the National Natural Science Foundation of China under Grant
No. 61070038.

M.-P. Béal and O. Carton (Eds.): DLT 2013, LNCS 7907, pp. 350–361, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Deciding Determinism of Unary Languages Is coNP-Complete 351

expressions. Hence considering determinism of standard expressions over a unary
alphabet can give a lower bound for the problem. This is our starting point.

Covering systems were introduced by Paul Erdős [7,2]. This is an interesting
topic in mathematics and there are many unsolved problems about covering
systems [12]. Here, we are only concerned with the problem whether a set of
arithmetic progressions forms a covering system. This problem has been shown
to be coNP-complete [19,8].

Unary languages are actually sets of numbers. Then for an expression E,
we derive a set of arithmetic progressions and show the relations between these
arithmetic progressions and L(E). After that, we give the complexity of deciding
determinism of unary languages by reduction from covering systems.

The rest of the paper is organized as follows. Section 2 gives some basic
definitions and some facts from the number theory, which we will use later.
We associate a set of arithmetic progressions with a given regular expression
in Section 3. Section 4 shows the complexity of deciding determinism of unary
languages. Section 5 gives the conclusion and the future work.

2 Preliminaries

Let Σ be an alphabet of symbols. A regular expression over Σ is recursively
defined as follows: ∅, ε and a ∈ Σ are regular expressions; For any two regular
expressions E1 and E2, the union E1+E2, the concatenation E1E2 and the star
E∗

1 are regular expressions. For a regular expression E, we denote L(E) as the
language specified by E and |E| as the size of E, which is the number of symbols
occurrence in E.

We mark each symbol a in E with a different integer i such that each marked
symbol ai occurs only once in the marked expression. For example a∗1a2 is a
marking of a∗a. The marking of E is denoted by E. We use E� to denote the
result of dropping subscripts from the marked symbols. These notations are
extended for words and sets of symbols in the obvious way.

Deterministic regular expressions are defined as follows.

Definition 1 ([4]). An expression E is deterministic if and only if, for all words
uxv, uyw ∈ L(E) where |x| = |y| = 1, if x �= y then x� �= y�. A regular language
is deterministic if it is denoted by some deterministic expression.

For example, a∗a is not deterministic, since a2, a1a2 ∈ L(a∗1a2). A natural char-
acterization of deterministic regular expressions is that: E is deterministic if and
only if the Glushkov automaton of E is deterministic [3]. Deterministic regular
expressions denote a proper subclass of regular languages [4].

The following notations are basic mathematical operators [10]: �x� = max{ n |
n ≤ x, n ∈ Z}; x mod y = x − y�x

y �, for y �= 0; x ≡ y (mod p) ⇔
x mod p = y mod p; m|n ⇔ m > 0 and n = mx for some integer x;
gcd(x1, x2, . . . , xn) = max{k|(k|x1) ∧ (k|x2) ∧ . . . (k|xn)}; lcm(x1, x2, . . . , xn) =
min{k|k > 0∧(x1|k)∧(x2|k)∧. . . (xn|k)}. Notice that gcd(0, 0, . . . , 0) is undefined
and lcm(x1, x2, . . . , xn) is also undefined when one of the parameters is not larger

352 P. Lu, F. Peng, and H. Chen

than 0. In this paper, we denote gcd(0, 0, . . . , 0) = 0 and lcm(x1, x2, . . . , xn) = 0
when one of the parameters is 0.

Here, we give some facts, which we will use later.

Lemma 1 ([22]). Given two integers a, b > 0, each number of the form ax+by,
with x, y ≥ 0, is a multiple of gcd(a, b). Furthermore, the largest multiple of
gcd(a, b) that cannot be represented as ax+by, with x, y ≥ 0, is lcm(a, b)−(a+b).

From Lemma 1, we can obtain more generalized results as follows.

Corollary 1. Given two integers a, b > 0, each number of the form ax + by,
with x ≥ X ≥ 0 and y ≥ Y ≥ 0, is a multiple of gcd(a, b). Furthermore, the
largest multiple of gcd(a, b) that cannot be represented as ax + by, with x ≥ X
and y ≥ Y , is aX + bY + lcm(a, b)− (a+ b).

Corollary 2. Given n (n ≥ 2) integers a1 > 0, a2 > 0, . . . , an > 0, each number
of the form a1x1 + a2x2 . . . + anxn, with x1 ≥ X1 ≥ 0, x2 ≥ X2 ≥ 0, . . . , and
xn ≥ Xn ≥ 0, is a multiple of gcd(a1, a2, . . . , an). Furthermore, all multiples of

gcd(a1, a2, . . . , an) no less than
n∑

i=1

aiXi + n
n∏

i=1

ai can be represented as a1x1 +

a2x2 . . .+ anxn, with x1 ≥ X1 ≥ 0, x2 ≥ X2 ≥ 0, . . . , and xn ≥ Xn ≥ 0.

In this paper, we primarily discuss unary languages. For a regular language L
over the alphabet {a}, there is a correspondence between words in L and their
lengths. For convenience when we say the word n, we mean the word an.

3 The Arithmetic Progressions of Unary Languages

In this section, we handle the following problem: Given an expression E, how
to construct a set P = {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉} of arithmetic progressions
such that any word w ∈ L(E) satisfies |w| ≡ si (mod li) for some i (1 ≤ i ≤ n),
and P reflects some structural properties of E.

To this end, we define the following function for an expression E.

Definition 2. The function S(E) is defined as

S(ε) = {〈0, 0〉}
S(a) = {〈0, 1〉} a ∈ Σ
S(E1 + E2) = S(E1) ∪ S(E2)
S(E1E2) = {〈gcd(li, lj), si + sj〉|〈li, si〉 ∈ S(E1) ∧ 〈lj , sj〉 ∈ S(E2)}
S(E∗

1) =

{{〈0, 0〉} if S(E1) = {〈0, 0〉},
{〈l, 0〉|l = max{x|∀li∀si(〈li, si〉 ∈ S(E1) ∧ (x|li) ∧ (x|si))}}otherwise;

The intuition behind the construction of S(E) is Lemma 1. The cases ε, a, and
E1+E2 are obvious. For the case E1E2, let 〈l1, s1〉 ∈ S(E1) and 〈l2, s2〉 ∈ S(E2).
Then numbers in S(E) should be in the form k1l1+s1+k2l2+s2, where k1, k2 ∈ N.
From Lemma 1, these numbers can be written as k · gcd(l1, l2) + s1 + s2, where
k ∈ N. Moreover, we have added some extra numbers in S(E), but the number
of new natural numbers is finite. The case E∗

1 is similar.

Deciding Determinism of Unary Languages Is coNP-Complete 353

Example 1. Let E = (aaa + aa)∗ + (aaa)∗((aa)∗aaa + (aaa)∗aa). The process
of computing S is shown in Table 1. E1 in the table stands for subexpressions
of E. At last, S(E) = {〈1, 0〉, 〈1, 3〉, 〈3, 2〉}. It is easy to see that S(E) contains
all natural numbers. However, a /∈ L(E) and a is the only word, which is not in
L(E).

Table 1. The process of computing S

E1 S(E1) E1 S(E1) E1 S(E1) E1 S(E1)

a 〈0, 1〉 aa+ aaa
〈0, 2〉
〈0, 3〉 (aa+ aaa)∗ 〈1, 0〉 (aa)∗aaa+ (aaa)∗aa

〈2, 3〉
〈3, 2〉

aa 〈0, 2〉 (aa)∗ 〈2, 0〉 (aa)∗aaa 〈2, 3〉 (aaa)∗((aa)∗aaa+(aaa)∗aa)
〈1, 3〉
〈3, 2〉

aaa 〈0, 3〉 (aaa)∗ 〈3, 0〉 (aaa)∗aa 〈3, 2〉 (aaa+ aa)∗ +
(aaa)∗((aa)∗aaa+(aaa)∗aa)

〈1, 0〉
〈1, 3〉
〈3, 2〉

At first, we have the following property about the tuples in S(E).

Proposition 1. Let E be an expression. For any 〈l, s〉 ∈ S(E) there exists an
L (L ≥ 0) such that (1) : L + t · l + s ∈ L(E) for any integer t (t ≥ L); (2) : if
l �= 0, then l|L. (3) : if l = 0, then L = 0.

Proof. We prove it by induction on the structure of E. For simplicity, we denote
Q(l, s, L,E) as the conditions in the proposition. That is Q(l, s, L,E) = true if
and only if (1), (2), and (3) hold for the parameters l, s, L and E.

The cases E = ε or a, a ∈ Σ are obvious, since L = 0 satisfy the conditions.
E = E1+E2: Suppose 〈l, s〉 ∈ S(E). From the definition of S, we have 〈l, s〉 ∈

S(E1) or 〈l, s〉 ∈ S(E2). If 〈l, s〉 ∈ S(E1), then by the inductive hypothesis
there is an L1 (L1 ≥ 0) such that Q(l, s, L1, E1) = true. Then L = L1 satisfies
Q(l, s, L,E) = true. The case 〈l, s〉 ∈ S(E2) can be proved in a similar way.

E = E1E2: Suppose 〈l, s〉 ∈ S(E). From the definition of S, there are 〈l1, s1〉 ∈
S(E1) and 〈l2, s2〉 ∈ S(E2) such that l = gcd(l1, l2) and s = s1 + s2. By
the inductive hypothesis there are L1 (L1 ≥ 0) and L2 (L2 ≥ 0) such that
Q(l1, s1, L1, E1) = true and Q(l2, s2, L2, E2) = true. Let L = L1 + L2 + l1L1 +
l2L2 + lcm(l1, l2)− l1 − l2 + gcd(l1, l2). Then from Corollary 1, for any integer t
(t ≥ L) there are k1 ≥ L1 and k2 ≥ L2 such that:

L+ t · l + s
= L1+L2+ l1L1+ l2L2+ lcm(l1, l2)− l1− l2+ gcd(l1, l2)+ t · gcd(l1, l2)+ s1+ s2
= L1 + L2 + k1l1 + k2l2 + s1 + s2
= L1 + k1l1 + s1 + L2 + k2l2 + s2

From the inductive hypothesis and E = E1E2, we have L + t · l + s ∈ L(E).
If l �= 0, then l1 �= 0 or l2 �= 0. Suppose l1 �= 0 and l2 = 0. By the inductive
hypothesis, l1|L1 and L2 = 0. Hence L = L1 + l1L1. Since l = gcd(l1, l2), l|L.

354 P. Lu, F. Peng, and H. Chen

The other cases can be proved in a similar way. If l = 0, then l1 = 0 and l2 = 0.
Therefore L1 = 0 and L2 = 0 from the inductive hypothesis. Hence L = 0.

E = E∗
1 : Suppose 〈l, 0〉 ∈ S(E) and S(E1) = {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}.

Then l = gcd(l1, l2, . . . , ln, s1, s2, . . . , sn). Because S(E1) = {〈l1, s1〉, 〈l2, s2〉, . . . ,
〈ln, sn〉}, by the inductive hypothesis there are L1 ≥ 0, L2 ≥ 0, . . . , Ln ≥ 0 such
that Q(l1, s1, L1, E1) = true, Q(l2, s2, L2, E1) = true, . . . , Q(ln, sn, Ln, E1) =
true. Therefore for any integer t1 ≥ L1, t2 ≥ L2, . . . , tn ≥ Ln we have L1 +
t1l1 + s1 ∈ L(E1), L2 + t2l2 + s2 ∈ L(E1), . . . , and Ln + tnln + sn ∈ L(E1). Let

L =
n∑

i=1

2(Li + liLi+ si)+ 2n
n∏

i=1

(Li + liLi+ si)li and g = gcd(l1, l2, . . . , ln, L1 +

l1L1 + s1, L2 + l2L2 + s2, . . . , Ln + lnLn + sn). If g = 0, then l1 = 0, l2 =
0, . . . , ln = 0, L1 + l1L1 + s1 = 0, L2 + l2L2 + s2 = 0, . . . , Ln + lnLn + sn = 0,
l = 0 and L = 0. It is easy to see that the statements (1), (2) and (3) hold.
Otherwise, suppose g �= 0. Then g|L. From Corollary 2, we know that for any

integer t (t ≥ L),
n∑

i=1

2(Li + liLi + si) + 2n
n∏

i=1

(Li + liLi + si)li + t · g can be

represented as
n∑

i=1

(Li+ liLi+si)xi+
n∑

i=1

liyi, with xi ≥ 2, yi ≥ 0 (1 ≤ i ≤ n). By

the inductive hypothesis, for any 1 ≤ i ≤ n, gcd(li, Li + liLi + si) = gcd(li, si).
Then gcd(l1, l2, . . . , ln, L1 + l1L1 + s1, L2 + l2L2 + s2, . . . , Ln + lnLn + sn) =
gcd(l1, l2, . . . , ln, s1, s2, . . . , sn). Therefore for any integer t (t ≥ L),

L+ t · gcd(l1, l2, . . . , ln, s1, s2, . . . , sn)
=

n∑

i=1

2(Li + liLi + si) + 2n
n∏

i=1

(Li + liLi + si)li + t · g

=
n∑

i=1

(Li + liLi + si)xi +
n∑

i=1

liyi

=
n∑

i=1

[(Li + liLi + si)xi + liyi]

For all i (1 ≤ i ≤ n), since xi ≥ 2, (Li+liLi+si)xi+liyi = (Li+liLi+si)(xi−
1)+Li+li(Li+yi)+si. By the inductive hypothesis, we have Li+liLi+si ∈ L(E1)
and Li+ li(Li+yi)+si ∈ L(E1). Hence (Li+ liLi+si)xi+ liyi ∈ L(E). Therefore
n∑

i=1

[(Li+liLi+si)xi+liyi] ∈ L(E). That is L+t·gcd(l1, l2, . . . , ln, s1, s2, . . . , sn) ∈
L(E). If l �= 0, then l|li and l|si for any 0 ≤ i ≤ n. Hence l|L by the inductive
hypothesis. If l = 0, then li = 0 and si = 0. Therefore Li = 0. Hence L = 0. ��
This proposition means that for any 〈l, s〉 ∈ S(E) there exists an L such that
any word w, satisfying |w| = L+ t · l + s for some integer t (t ≥ L), is in L(E).

On the other hand, for any word w in L(E) there is a tuple 〈l, s〉 in S(E) such
that w satisfies |w| = t · l + s for some integer t (t ∈ Z). This statement can be
ensured by the following proposition.

Proposition 2. Let E be an expression. For all w ∈ L(E), there exists 〈l, s〉 ∈
S(E) such that if l �= 0, then |w| ≡ s (mod l), or if l = 0, then |w| = s.

Proof. We prove it by induction on the structure of E. For simplicity, we denote
R(l, s, w) as the conditions in the proposition. That is R(l, s, w) = true if and

Deciding Determinism of Unary Languages Is coNP-Complete 355

only if the following statement holds: if l �= 0, then |w| ≡ s (mod l), or if l = 0,
then |w| = s. The cases E = ε or a, a ∈ Σ are obvious.

E = E1 + E2: For all w ∈ L(E), we know that w ∈ L(E1) or w ∈ L(E2).
If w ∈ L(E1), then by the inductive hypothesis there exists 〈l1, s1〉 ∈ S(E1)
such that R(l1, s1, w) = true. Because S(E) = S(E1) ∪ S(E2), there exists
〈l1, s1〉 ∈ S(E) such that R(l1, s1, w) = true. The case w ∈ L(E2) can be proved
in a similar way.

E = E1E2: For all w ∈ L(E), there are w1 ∈ L(E1) and w2 ∈ L(E2) such
that w = w1w2. By the inductive hypothesis there exists 〈l1, s1〉 ∈ S(E1) and
〈l2, s2〉 ∈ S(E2) such that R(l1, s1, w1) = true and R(l2, s2, w2) = true. There-
fore there are k1, k2 ∈ Z such that |w1| = k1l1 + s1 and |w2| = k2l2 + s2. From
the definition of S, we know that 〈gcd(l1, l2), s1 + s2〉 ∈ S(E). Hence

|w| = |w1w2| = k1l1 + s1 + k2l2 + s2
= k1k

′
1gcd(l1, l2) + s1 + k2k

′
2gcd(l1, l2) + s2

= (k1k
′
1 + k2k

′
2)gcd(l1, l2) + s1 + s2

That is R(gcd(l1, l2), s1 + s2, w) = true.
E = E∗

1 : Suppose 〈l, 0〉 ∈ S(E). If w = ε, then clearly R(l, 0, ε) = true.
For all w ∈ L(E) and w �= ε, there are w1, w2, . . . , wn ∈ L(E1) such that w =
w1w2 . . . wn. By the inductive hypothesis there exists 〈l1, s1〉 ∈ S(E1), 〈l2, s2〉 ∈
S(E2),. . . , and 〈ln, sn〉 ∈ S(E1) satisfying R(l1, s1, w1) = true, R(l2, s2, w2) =
true,. . . , and R(ln, sn, wn) = true. From the definition of S, w ∈ L(E) and
w �= ε, it is easy to prove that l �= 0. Then for any 〈l′, s′〉 ∈ S(E1), l|l′ and l|s′.
Therefore there are k11, k12, k21, k22, . . . , kn1, kn2 ∈ Z such that |w1| = k11l+k12l,
|w2| = k21l + k22l, . . . , and |wn| = kn1l + kn2l. Hence

|w| = |w1w2 . . . wn| = k11l + k12l + k21l+ k22l + . . .+ kn1l + kn2l
= (k11 + k12 + k21 + k22 + . . .+ kn1 + kn2)l

That is R(l, 0, w) = true. ��
The following lemma is straightforward.

Lemma 2. Let E be an expression. The following statements hold: (1) For all
〈0, s〉 ∈ S(E) we have s ∈ L(E); (2) l = 0 for all 〈l, s〉 ∈ S(E) iff L(E) is finite;
(3) If there is a tuple 〈1, s〉 ∈ S(E), then there exists an L (L ≥ 0) such that
w ∈ L(E) for any w (|w| > L).

From the above properties, we build the relations between words in L(E) and
tuples in S(E). Then we can study properties of L(E) by investigating attributes
of S(E).

Now we analyze the time used to compute S(E). Given an expression E, we
compute S(E) in the following way: We first construct the syntax tree of E, after
that we use a bottom-up traversal to compute S for each node. It is known that
for two m-bit numbers, the greatest common divisor can be computed in O(m2)
time [6]. In our computation, each number has O(log |E|) bits. Then computing
S for each node takes O(|E|2 log2 |E|) time. Therefore the total time to compute
S(E) is O(|E|3 log2 |E|).

356 P. Lu, F. Peng, and H. Chen

Given an NFA N , Sawa [16] also gave an algorithm to construct a set of
arithmetic progressions such that the union of these arithmetic progressions is
the language accepted by N . The algorithm runs in O(n2(n +m)) time, where
n is the number of states in N and m is the number of transitions in N . The
advantage of our method is that it works merely on original expressions and
reaches some kind of the lower bound of the algorithm in [16], since there is
an expression En such that |En| = n and any NFA describing L(En) has Ω(n ·
(log n)2) transitions [17,13]. But the price is that we add words in the language.
However, we will see later that adding such words does not affect determinism
of the language.

4 Determinism of Unary Languages

In the previous section, we derived a set of arithmetic progressions from a given
expression E. We will show how to use these arithmetic progressions to check
determinism of L(E) in this section.

4.1 Decision Problems for Covering Systems

A covering system CS is a set of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with
0 ≤ si < li (1 ≤ i ≤ n) and

n∑

i=1

(li + si) ≤ p(n) for some polynomial function p,

such that any integer x satisfies x ≡ si (mod li) for some i (1 ≤ i ≤ n) [2]. For
example, the set of pairs {〈2, 0〉, 〈4, 1〉, 〈4, 3〉} forms a covering system. Since any
integer i satisfies one of the following conditions: i ≡ 0 (mod 2); i ≡ 1 (mod 4);
i ≡ 3 (mod 4).

The covering problem (CP) is the following problem: Whether a given set of
ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with 0 ≤ si < li (1 ≤ i ≤ n) and
n∑

i=1

(li + si) ≤ p(n) for some polynomial function p, forms a covering system?

The complexity of CP is shown in the following theorem.

Theorem 1 ([19],[8]). CP is coNP-complete1.

Similarly, an equal difference covering system (EDCS) is a set P of pairs,

{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with 0 ≤ si < li (1 ≤ i ≤ n) and
n∑

i=1

(li + si) ≤
p(n) for some polynomial function p, such that there exist two integers (y, x)
(0 ≤ x < y) satisfying the following condition: For any integer k, x ≡ k (mod y)
if and only if k ≡ si (mod li) for some i (1 ≤ i ≤ n). We define (y, x) as the
answer to P . Let P = {〈4, 1〉, 〈4, 3〉}. It is straightforward to see that P is an
EDCS, but is not a CS. The answer to P is (2, 1). Intuitively, the union of the

1 The polynomial bound is not necessary for this theorem [8]. However, we concentrate
on unary languages in this paper, and we need this condition for the definition of
CP. For this restricted case, the theorem also holds [19].

Deciding Determinism of Unary Languages Is coNP-Complete 357

numbers represented by an EDCS forms an arithmetic progression, while the
union of the numbers represented by a CS contains all integers.

The equal difference covering problem (EDCP) is defined as follows: Whether
a given set of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with 0 ≤ si < li (1 ≤
i ≤ n) and

n∑

i=1

(li+ si) ≤ p(n) for some polynomial function p, forms an EDCS?

The union of arithmetic progressions is used in the study of the evenly spaced
integer topology [18]. However, the complexity of EDCP, as far as we know,
has not been given.

We have the following properties of an EDCS.

Lemma 3. Suppose P is an EDCS. The answer to P is unique.

For a set P of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, we denote
L = gcd(l1, l2, . . . , ln) and suppose 0 < p1 < p2 < p3 . . . < pm are the distinct
divisors of L.

Lemma 4. Suppose P is an EDCS and the answer to P is (y, x). Then there
is an integer k such that y = pk, k = max{l|∀i∀j(〈li, si〉 ∈ P ∧〈lj , sj〉 ∈ P ∧ si ≡
sj (mod pl))} and x = (s1 mod pk).

Hence given a set P of ordered pairs, if we know P is an EDCS, we can find the

answer to P from the tuples in P . Since
n∑

i=1

(li + si) ≤ p(n), this computation

is polynomial-time computable. It is easy to see that the converse of the lemma
does not hold. Consider the following set of ordered pairs: {〈3, 0〉, 〈4, 0〉}. y = 1
and x = 0 satisfy all the conditions, but obviously this set is not an EDCS.

Bickel et al. [2] gave a method to construct a covering system from a set P of
ordered pairs, where the union of numbers represented by the pairs contains an
arithmetic progression. Inspired by this idea, we can prove that given an EDCS,
we can construct a covering system, and vice versa.

Theorem 2. EDCP is coNP-complete.

Proof. At first, we prove that the problem is coNP-hard. This can be proved by
reduction from CP. Given a set P of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉},
we construct the set P1 = {〈3l1, 3s1〉, 〈3l2, 3s2〉, . . . , 〈3ln, 3sn〉}. We claim that P
is a CS if and only if P1 is an EDCS and the answer to P1 is (3, 0).

Suppose P is a CS. For any integer k such that k ≡ 0 (mod 3), let k = 3k1.
Because P is a CS, there is a tuple 〈l, s〉 ∈ P satisfying k1 ≡ s (mod l). Hence
k1 = lt+ s for some integer t (t ∈ Z). Therefore 3k1 = 3lt+3s and k = 3lt+3s.
That is k ≡ 3s (mod 3l), and obviously 〈3l, 3s〉 ∈ P1. If k ≡ 3s (mod 3l) for
some tuple 〈3l, 3s〉 ∈ P1, then k = 3lt+3s for some integer t (t ∈ Z). Hence 3|k.
That is k ≡ 0 (mod 3). Therefore P1 is an EDCS and (3, 0) is the answer to P1.

Suppose P1 is an EDCS and (3, 0) is the answer to P1. For any integer k,
since 3k ≡ 0 (mod 3), there is a tuple 〈3l, 3s〉 ∈ P1 satisfying 3k ≡ 3s (mod 3l).
Hence 3k = 3lt + 3s for some integer t (t ∈ Z). Therefore k = lt + s. That is
k ≡ s (mod l). Since 〈l, s〉 ∈ P , we can conclude that P is a CS.

358 P. Lu, F. Peng, and H. Chen

From Theorem 1 we conclude that EDCP is coNP-hard.
Next, we show that EDCP is in coNP. This can be proved by reduction to

CP. Suppose P is the set of ordered pairs {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}. Then let
p = gcd(l1, l2, . . . , ln). From the definition of EDCP, we know that p > 0. Sup-
pose 0 < p1 < p2 < . . . < pm are the distinct divisors of p. We look for an integer
k such that k = max{l|∀i∀j(〈li, si〉 ∈ P∧〈lj , sj〉 ∈ P∧si ≡ sj (mod pl))}. If there
is not such k, then from Lemma 4 we know that P is not an EDCS. Hence sup-
pose there is a k satisfying the condition. Denote s = (s1 mod pk). We construct
the following set Q of ordered pairs, {〈 l1

pk
, s1−s

pk
〉, 〈 l2

pk
, s2−s

pk
〉, . . . , 〈 lnpk

, sn−s
pk

〉}. We
have the following relationship between P and Q.

Claim. Q is a CS iff P is an EDCS.

Proof. Suppose Q is a CS. Then let x = s and y = pk. For any integer j, such
that j ≡ si (mod li) for some i (1 ≤ i ≤ n), there is j1 such that j = j1li + si =
j1j

′y + j′′y + s = (j1j
′ + j′′)y + x. Hence x ≡ j (mod y). For any integer j

such that x ≡ j (mod y), there is j1 satisfying j = j1y + x. Since Q is a CS,
there is an integer j2 such that j1 = j2

li
pk

+ si−s
pk

for some i (1 ≤ i ≤ n). Then
j1pk = j2li + si − s, so j = j1y+ x = j2li + si − s+ x = j2li + si. Therefore P is
an EDCS.

On the other hand, suppose P is an EDCS. From Lemma 4, we know that
(pk, s) is the answer to P . For any integer j′, let J = j′pk + s. Since s ≡
J (mod pk), J ≡ si (mod li) for some i (1 ≤ i ≤ n). Hence there is an integer j1
such that J = j1li + si = j1pk

li
pk

+ pk
si−s
pk

+ s = (j1
li
pk

+ si−s
pk

)pk + s = j′pk + s.

Since pk �= 0, j′ = j1
li
pk

+ si−s
pk

. Hence Q is a CS. ��
Then to decide whether P is an EDCS, we only need to check whether Q is a
CS. Since CP is in coNP and the computations of p, pk and s take polynomial
time, EDCP is in coNP.

We conclude that EDCP is coNP-complete. ��

4.2 The Complexity of Determinism of Unary Languages

In this section, we will discuss the complexity of deciding determinism of unary
languages.

For an expression E, suppose S(E) = {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}. Define
L(S(E)) =

⋃

〈l,s〉∈S(E)

{kl + s|k ∈ Z ∧ kl+ s ≥ 0}.
To build the relations between L(E) and L(S(E)), we need the following

lemma.

Lemma 5 ([1]). For every deterministic language L, the following statements
hold: (1) If string w ∈ L, then the language L\{w} is deterministic; (2) If string
w /∈ L, then the language L ∪ {w} is deterministic.

Then we can simplify S(E) in the following ways: (1) Delete all tuples 〈0, s〉;
(2) For 〈l, s〉, where l ≤ s, we replace 〈l, s〉 with 〈l, s mod l〉. This process just
deletes or adds a finite number of words to L(S(E)). From Lemma 5, it does

Deciding Determinism of Unary Languages Is coNP-Complete 359

not change determinism of the language. From now on, when we say S(E),
we mean the simplified one. After the simplification, any tuple 〈l, s〉 ∈ S(E)
satisfies 0 ≤ s < l. Moreover, from the definition of S, it is easy to see that
|S(E)|∑

i=1

(li + si) ≤ 2|E|2, where 〈li, si〉 ∈ S(E).

From the construction of S(E), the relations between L(E) and L(S(E)) can
be characterized as follows.

Theorem 3. Let E be an expression. There exists a number M ∈ N such that
|L(S(E)) \ L(E)|+ |L(E) \ L(S(E))| ≤ M .

Corollary 3. Given an expression E, L(S(E)) is deterministic if and only if
L(E) is deterministic.

Then to decide determinism of L(E), we can check determinism of L(S(E)).
For a unary language, the corresponding minimal DFA consists of a chain of

states or a chain followed by a cycle [9]. Then to check determinism we need the
following characterization of determinism of unary languages.

Lemma 6 ([9]). Let Σ = {a}, and L be a regular language, then L is a deter-
ministic language if and only if L is finite or the cycle of the minimal DFA of
L has at most one final state.

From the definition of L(S(E)) and Lemma 6, we can easily see that to check
determinism of L(S(E)) we only need to check whether S(E) is an EDCS.

Theorem 4. Suppose L(S(E)) is infinite. L(S(E)) is deterministic if and only
S(E) is an EDCS.

Proof. (⇒) Since L(S(E)) is deterministic, the cycle of the minimal DFA of
L(S(E)) has at most one final state. Let the size of the cycle be p and n = |S(E)|.
Denote the start state as q0 and the only final state in the cycle as q1. Suppose
w is the shortest word such that δ(q0, w) = q1. Because li > 0 (1 ≤ i ≤ n), there

is an integer k′ (k′ > 0) such that M = k′
n∏

i=1

li and M > w. Since L(S(E))

is infinite, p �= 0. For any 〈li, si〉 (1 ≤ i ≤ n), since q1 is the only final state
in the cycle, there is an integer k such that kli + si > w, δ(q0, kli + si) = q1
and δ(q0, kli + li + si) = q1. Then p|li, p|M , and there is an integer k1 such that
w+k1p = kli+si. Hence w ≡ si (mod p). Let s = (w mod p). We prove that (p, s)
is the answer to S(E). For any integer k satisfying s ≡ k (mod p), there is an
integer k′1 such that k′1 > 0 and k+k′1M > w and (k+k′1M) ≡ s (mod p). So there
is an integer k′′ satisfying k+k′1M = w+k′′p. That is k+k′1M ∈ L(S(E)). Hence
(k + k′1M) ≡ si (mod li) for some i (1 ≤ i ≤ n). Because li|M , k ≡ si (mod li).
For any integer k satisfying k ≡ si (mod li) for some i (1 ≤ i ≤ n), there is an
integer k1 such that k = k1li + si. So

k ≡ k1li + si (mod p)
≡ si (mod p)

360 P. Lu, F. Peng, and H. Chen

≡ w (mod p)
≡ s (mod p)

Hence (p, s) is the answer to S(E). Therefore S(E) is an EDCS.
(⇐) Since S(E) is an EDCS, suppose (p, s) is the answer to S(E). If L(S(E))

is not deterministic, then there are two final states p1 and p2 in the cycle of the
minimal DFA of L(S(E)). Since p1, p2 are not equivalent, there is a word k
such that δ(q1, k) ∈ L(S(E)) ∧ δ(q2, k) /∈ L(S(E)) or δ(q1, k) /∈ L(S(E)) ∧
δ(q2, k) ∈ L(S(E)). Suppose the case δ(q1, k) ∈ L(S(E)) ∧ δ(q2, k) /∈ L(S(E))
holds. Denote the start state as q0. Then there are words k1 and k2 such that
δ(q0, k1) = q1 and δ(q0, k2) = q2. Since q1 and q2 are final states, k1 ∈ L(S(E))
and k2 ∈ L(S(E)). From S(E) is an EDCS, we have k1 ≡ s (mod p) and
k2 ≡ s (mod p). Because δ(q1, k) ∈ L(S(E)), k + k1 ≡ s (mod p). Hence p|k.
However, from δ(q2, k) /∈ L(S(E)), we have k+k2 �≡ s (mod p). So p � |k, which is
a contradiction. The case δ(q1, k) /∈ L(S(E))∧ δ(q2, k) ∈ L(S(E)) can be proved
in a similar way. Hence L(S(E)) is deterministic. ��

From Theorem 2 and Theorem 4, we can obtain the main result of the paper.

Theorem 5. Given a regular expression E over a unary alphabet, the problem
of deciding whether L(E) is deterministic is coNP-complete.

For any expression E = E∗
1 , we have |S(E∗

1)| = 1 from the definition of S. Then
S(E∗

1) is an EDCS. Hence we can easily obtain the following theorem.

Theorem 6 ([15]). Let L be any language over a unary alphabet. Then L∗ is
deterministic.

5 Conclusion and Future Work

In this paper, we give the complexity of deciding determinism of regular lan-
guages over a unary alphabet. By studying unary languages, we can conclude
that the problem, whether a language can be defined by a deterministic expres-
sion with counting, is coNP-hard.

There are a few problems for future research. It is easy to see that we have
only handled standard regular expressions. What is the complexity when the
input is an expression with counting? To solve this problem in the way we used
in this paper, we have to handle the following problems: (1) For a word w and an
expression E with counting over a unary alphabet, can the membership problem
be tested in time O(logk|w|) for some integer k > 0? (2) For an expression E
with counting over a unary alphabet, how to define S(E)? The hardness of these
problems mainly comes from the fact that we do not have a good tool to handle
expressions with counting.

Acknowledgments. We thank Wim Martens for sending us the full version of
the paper [15].

Deciding Determinism of Unary Languages Is coNP-Complete 361

References

1. Bex, G.J., Gelade, W., Martens, W., Neven, F.: Simplifying XML schema: effortless
handling of nondeterministic regular expressions. In: SIGMOD 2009, pp. 731–743
(2009)

2. Bickel, K., Firrisa, M., Ortiz, J., Pueschel, K.: Constructions of Coverings of the Inte-
gers: Exploring anErdős problem. SummerMath Institute,Cornell University (2008)

3. Brüggemann-Klein, A.: Regular expressions into finite automata. Theoretical Com-
puter Science 120(2), 197–213 (1993)

4. Brüggemann-Klein, A., Wood, D.: One-unambiguous regular languages. Informa-
tion and Computation 142(2), 182–206 (1998)

5. Chen, H., Lu, P.: Assisting the Design of XML Schema: Diagnosing Nondetermin-
istic Content Models. In: Du, X., Fan, W., Wang, J., Peng, Z., Sharaf, M.A. (eds.)
APWeb 2011. LNCS, vol. 6612, pp. 301–312. Springer, Heidelberg (2011)

6. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press, Cambridge (2001)

7. Erdős, P.: On integers of the form 2k+p and some related problems. Summa Brasil.
Math. 2, 113–123 (1950)

8. Garrey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-completeness. Freeman (1979)

9. Gelade, W., Gyssens, M., Martens, W.: Regular expressions with counting: weak
versus strong determinism. SIAM J. Comput. 41(1), 160–190 (2012)

10. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: a foundation
for computer science, 2nd edn. Addison-Wesley (1994)

11. Groz, B., Maneth, S., Staworko, S.: Deterministic regular expressions in linear time.
In: PODS 2012, pp. 49–60 (2012)

12. Guy, R.K.: Unsolved problems in Number Theory, 3rd edn. Problem Books in
Math. Springer, New York (2004)

13. Holzer, M., Kutrib, M.: The complexity of regular(-like) expressions. In: Gao, Y.,
Lu, H., Seki, S., Yu, S. (eds.) DLT 2010. LNCS, vol. 6224, pp. 16–30. Springer,
Heidelberg (2010)

14. Kilpeläinen, P.: Checking determinism of XML Schema content models in optimal
time. Informat. Systems 36(3), 596–617 (2011)

15. Losemann, K., Martens, W., Niewerth, M.: Descriptional complexity of determinis-
tic regular expressions. In: Rovan, B., Sassone, V., Widmayer, P. (eds.) MFCS 2012.
LNCS, vol. 7464, pp. 643–654. Springer, Heidelberg (2012)

16. Sawa, Z.: Efficient construction of semilinear representations of languages accepted
by unary NFA. In: Kučera, A., Potapov, I. (eds.) RP 2010. LNCS, vol. 6227,
pp. 176–182. Springer, Heidelberg (2010)

17. Schnitger, G.: Regular expressions and NFAs without ε-transitions. In: Durand,
B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 432–443. Springer,
Heidelberg (2006)

18. Steen, L.A., Seebach, J.A.: Counterexamples in topology, 2nd edn. Springer,
New York (1978)

19. Stockmeyer, L.J., Meyer, A.R.: Word problems requiring exponential time: prelim-
inary report. In: STOC 1973, pp. 1–9 (1973)

20. van der Vlist, E.: XML Schema. O’Reilly (2002)
21. World Wide Web Consortium,

http://www.w3.org/wiki/UniqueParticleAttribution
22. Yu, S., Zhuang, Q., Salomaa, K.: The state complexities of some basic operations

on regular langauges. Theoretical Computer Science 125(2), 315–328 (1994)

http://www.w3.org/wiki/UniqueParticleAttribution

	Deciding Determinism
of Unary Languages Is coNP-Complete

	1 Introduction
	2 Preliminaries
	3 The Arithmetic Progressions of Unary Languages
	4 Determinism of Unary Languages
	4.1 Decision Problems for
	4.2 The Complexity of Determinism of Unary Languages

	5 Conclusion and Future Work
	References

