
Deterministic Regular Expressions with
Interleaving ?

Feifei Peng1,2, Haiming Chen1 and Xiaoying Mou1,2

1State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences
{pengff,chm}@ios.ac.cn

Abstract. We study the determinism checking problem for regular ex-
pressions extended with interleaving. There are two notions of determin-
ism, i.e., strong and weak determinism. Interleaving allows child elements
intermix in any order. Although interleaving does not increase the ex-
pressive power of regular expressions, its use makes the sizes of regular
expressions be exponentially more succinct. We first show an O(|Σ||E|)
time algorithm to check the weak determinism of such expressions, where
Σ is the set of distinct symbols in the expression. Next, we derive an
O(|E|) method to transform a regular expression with interleaving to
its weakly star normal form which can be used to rewrite an expression
that is weakly but not strongly deterministic into an equivalent strongly
deterministic expression in linear time. Based on this form, we present
an O(|Σ||E|) algorithm to check strong determinism. As far as we know,
they are the first O(|Σ||E|) time algorithms proposed for solving the
weak and strong determinism problems of regular expressions with in-
terleaving.

Key words: Regular Expressions, Interleaving, Strong Determinism,
Weak Determinism, Algorithms

1 Introduction

DTD and XML Schema are two widely used schema languages recommended by
W3C. The Unique Particle Attribution constraint [1] of DTD and XML Schema
requires that all regular expressions used are weakly deterministic. The idea is
inherited from the SGML Standard [2] to ensure more efficient parsing. Another
definition of determinism which is called strong determinism has also been intro-
duced in the context of XML [5]. Roughly speaking, weak determinism means
that a symbol in the input word can be matched uniquely without looking a-
head [11]. Meanwhile, strong determinism requires that the use of operators also
be unique when matching a word. For example, (a∗)∗ is weakly deterministic
but not strongly deterministic.

? Work supported by the National Natural Science Foundation of China under Grant
Nos. 61472405, 61070038.

2 F. Peng, H. Chen and X. Mou

The interleaving operator &, also under the name of unordered concatena-
tion, allows child elements intermix in any order. It existed in SGML but was
excluded from the definition of DTDs. RELAX NG resurrects it but in a differ-
ent way. In SGML, for example, (ab)&(cd) accepts only sequences “abcd” and
“cdab”. For a&b∗, a cannot be present between two b. Usually, the purpose of us-
ing & operator is to allow child elements to occur in any order. Hence the above
restriction is undesirable. In RELAX NG, (ab)&(cd) accepts all the sequences
in which a occurs before b and c occurs before d, that is, has the interleaving
semantics. XML Schema permits a strongly limited interleaving at the top level
of a content model but nowhere else [7].

Lots of work (e.g.[4, 6, 8, 9, 12]) focused on testing determinism of standard
regular expressions and regular expressions with counting. But little progress has
been made in the scope of regular expressions with interleaving (called RE(&)).
The most difficult parts are that the transitions of the corresponding Glushkov
automata can be exponential and RE(&) do not have the property of locality [10]
thus the above algorithms are not capable of dealing with RE(&). Some results
for expressions with the SGML interleaving operator are provided in [10], which
is not the same with the Relax NG interleaving operator considered here. No
study has investigated the weak and strong determinism properties of RE(&) [3].

However, investigating the determinism properties of RE(&) has much signif-
icance [3]. In practice, it can help to relax the restriction about interleaving used
in XML Schema thus will lead to more succinct and flexible schemas. In this
paper, we study both the weak and strong determinism of regular expressions
extended with interleaving operator. Here we consider the operator interpreting
in the same way with RELAX NG in its more general form. The main contri-
bution of this paper are two O(|Σ||E|) time methods to test weak and strong
determinism of RE(&). As far as we know, they are the first O(|Σ||E|) time
algorithms proposed for solving the above problems.

Our work about weak determinism is related and inspired by the work of
unambiguity of extended regular expressions in SGML document grammars by
Brüggemann-Klein [10]. Although having different semantics, the treatment of
the & operator in [10] is similar to our first algorithm. To obtain a more efficient
algorithm, we get inspiration from [9] which combines the follow sets for the last
symbols of each subexpression together into a single followlast set instead of
computing follow set for each symbol of the expression. We define followlast for
expression with interleaving and establish the relation between followlast and
weak determinism for RE(&). As for strong determinism, we extend the notion
of weakly star normal form [12] to RE(&) and show that a weakly deterministic
RE(&) is strongly deterministic if and only if it is in weakly star normal form.
Then we give a O(|E|) time method to transform an expression to its weakly
star normal form. By combining the method and the O(|Σ||E|) time algorithm
to check weak determinism, we can check strong determinism in O(|Σ||E|).

The rest of paper is organized as follows. Section 2 contains basic definitions
that will be used throughout the paper. Section 3 presents an O(|Σ||E|2) algo-
rithm for weak determinism based on the follow− relations and an O(|Σ||E|)

Deterministic Regular Expressions with Interleaving 3

time algorithm based on followlast. In Section 4 an O(|Σ||E|) time algorithm
checking strong determinism is presented. Details of implementation and exper-
imental results are given in Section 5. We conclude in Section 6.

2 Preliminaries

2.1 Regular Expressions with Interleaving

Let u and v be two arbitrary strings. By u&v we denote the set of strings that
is obtained by interleaving of u and v in every possible way. That is, u&ε =
ε&u = u, v&ε = ε&v = v. If both u and v are non-empty, let u = au′, v = bv′,
where a and b are single symbols, then u&v = a(u′&v) ∪ b(u&v′). The operator
& is then extended to regular languages as a binary operator in the canonical
way. It is sufficient enough to say that & obeys the associative law. That is
E&(F&G) = (E&F)&G = E&F&G for any expressions E,F,G in RE(&) .

For the rest of the paper, Σ always denotes a finite alphabet. The regular
expressions with interleaving over Σ are defined as: ∅, ε or a ∈ Σ is a regular
expression, E∗1 , E1E2, E1 + E2, or E1&E2 is a regular expression for regular
expressions E1 and E2. They are denoted as RE(&). The language L(E) de-
scribed by a regular expression with interleaving E is defined in the following
inductive way: L(∅) = ∅; L(a) = {a}; L(E∗1) = L(E1)∗; L(E1E2) = L(E1)L(E2);
L(E1+E2) = L(E1)∪L(E2); L(E1&E2) = L(E1)&L(E2). E? and E+ are used as
abbreviations of E+ε and EE∗, respectively. For example, consider the following
expressions and their languages: L(ab&cd) = {acbd, acdb, cabd, cadb, abcd, cdab},
L(a&(b&c)) = {abc, bac, bca, cba, cab, acb}.

2.2 Deterministic Regular Expressions with Interleaving

Marked RE(&) are those symbols marked with subscripts hence each symbol can
only occur once. The expression that removes the subscripts of marked symbols
of a marked expression E is denoted by E\. We denote (·)\ as unmarking operator
and (·)′ as marking operator. For a language L, let L\ denotes {w\|w ∈ L}, then
obviously (L(E))\ = L(E\). The set of symbols that occur in E is denoted by
sym(E). The size of a RE(&) expression E is denoted by |E|. Now a concise
definition of weak determinism of expression can be given by its marked form.

Definition 1 ([4]). A marked expression E is weakly deterministic if and only
if for all words uxv ∈ L(E), uyw ∈ L(E) where x, y ∈ sym(E) and u, v, w ∈
sym(E)∗, if x\ 6= y\ then x 6= y. An expression E is weakly deterministic if and
only if its marked expression E′ is weakly deterministic.

Intuitively, an expression is weakly deterministic if a symbol in the input word
can be matched without looking ahead when matching against the expression.
For instance, (a1?&b2)a3 is not weakly deterministic since it does not satisfy the
condition if x\ 6= y\ then x 6= y with u = b2, v = a3 and w = ε, and with the
competing symbols x = a1 and y = a3. The corresponding unmarked expression
(a?&b)a is not weakly deterministic.

4 F. Peng, H. Chen and X. Mou

A bracketing of a RE(&) expression E is a labeling of the iteration nodes

of the syntax tree by distinct indices [6]. The bracketing Ẽ of E is obtained by
replacing each subexpression E∗,+1 of E with a unique index i with ([iE1]i)

∗,+.
Therefore, a bracketed RE(&) expression is a RE(&) expression over alphabet
Σ ∪ ΓE , where ΓE = {[i,]i | 1 ≤ i ≤ |E|Σ}, |E|Σ is the number of symbol
occurrences in E. A string w in Σ ∪ ΓE is correctly bracketed if w has no
substring of the form [i]i.

Definition 2 ([6]). An expression E is strongly deterministic if E is weakly
deterministic and there do not exist strings u, v, w over Σ ∪ ΓE, strings α 6= β
over ΓE, and a symbol a ∈ Σ such that uαav and uβaw are both correctly
bracketed and in L(Ẽ).

For instance, the expression (a∗)∗ is weakly deterministic but not strongly
deterministic since [2[1a]1]2[2[1a]1]2, [2[1a]1[1a]1]2 ∈ L(([2([1a]1)∗]2)∗).

For a RE(&) expression E over Σ and for each z ∈ sym(E), the following
definitions are needed to analyze the determinism of expressions.

first(E) = {a|au ∈ L(E), a ∈ sym(E), u ∈ sym(E)∗}
last(E) = {a|ua ∈ L(E), a ∈ sym(E), u ∈ sym(E)∗}
follow(E, z) = {a|uzav ∈ L(E), u, v ∈ sym(E)∗, a ∈ sym(E)}, z ∈ sym(E)
followlast(E) = {a|uav ∈ L(E), u ∈ L(E), u 6= ε, a ∈ sym(E), v ∈ sym(E)∗}
It is not hard to see that an expression E is not weakly deterministic if

and only if there exist two symbols x, y ∈ sym(E′) with x\ = y\ such that
x, y ∈ first(E′) or there is a symbol z ∈ sym(E′) such that x, y ∈ follow(E′, z).

2.3 Computing follow− sets

We will need to calculate the first and follow− sets. The inductive definition
of the first set for standard regular expressions can be trivially extended to
RE(&). The inductive definition of the follow− can be found in [10].

Definition 3 ([10]). For a marked expression E, we define follow−(E, x) for
x in sym(E) by induction on E as follows:

follow−(E, ε) = first(E)
E = x : follow−(E, x) = ∅
E = F +G :

follow−(E, x) =

{
follow−(F, x) if x ∈ sym(F)
follow−(G, x) if x ∈ sym(G)

E = FG :

follow(E, x)− =

follow−(F, x) if x ∈ sym(F), x /∈ last(F)

follow−(F, x) ∪ first(G) if x ∈ last(F)

follow−(G, x) if x ∈ sym(G)
E = F&G :

Deterministic Regular Expressions with Interleaving 5

follow−(E, x) =

follow−(F, x) if x ∈ sym(F), x /∈ last(F)

or if x ∈ last(F), ε /∈ L(G)

follow−(F, x) ∪ first(G) if x ∈ last(F), ε ∈ L(F)

follow−(G, x) if x ∈ sym(G), x /∈ last(G)

or if x ∈ last(G), ε /∈ L(F)

follow−(G, x) ∪ first(F) if x ∈ last(G), ε ∈ L(G)
E = F ∗ :

follow−(E, x) =

{
follow−(F, x) if x ∈ sym(F), x /∈ last(F)

follow−(F, x) ∪ first(F) if x ∈ last(F)

3 Weak Determinism of RE(&)

The weak determinism problem is to decide, given a regular expression with
interleaving, i.e. r ∈ RE(&), whether r is weakly deterministic or not. The
classical way [11] is to compute the first and follow sets to check whether
there exist symbols x, y such that x, y ∈ first(E′) or x, y ∈ follow(E′, z) for
some symbol z. However, when it comes to & operator, there may be symbols
x, y, z such that x, y ∈ follow(E′, z) yet E is weakly deterministic. For exam-
ple, E = (a&b)a, the corresponding marked expression is E′ = (a1&b2)a3, then
follow(E′, b2) = {a1, a3}. Thus E might be judged to be not weakly determinis-
tic. Yet L(E′) = {a1b2a3, b2a1a3}, it is not hard to see E is weakly deterministic
in fact.

The best known algorithm to check the weak determinism of standard regular
expressions is proposed in [11, 4] to check whether the corresponding Glushkov
automata is deterministic. First, they proved that every regular expression can be
transformed into its star normal form. Next, they showed that the determinism
can be tested in O(|Σ||E|) based on Glushkov automaton, via transforming an
expression E into its star normal form in linear time. However, although we
can transform a regular expression with interleaving using similar techniques as
introduced in [11], transitions of the corresponding Glushkov can be exponential.
Moreover, the method B.Groz [8] proposed to test whether a regular expression
is deterministic in linear time by using a new structural decomposition of the
parse tree is also not directly applicable to RE(&).

3.1 The first algorithm

In this section, we consider a subset follow−(E, z) of follow(E, z) and develop
a method based on follow−(E, z) to check the determinism of RE(&).

Consider the weak determinism between interleavings first. Suppose we have
a marked expression E = E1&...&En. If some Ei is not weakly deterministic,
then E is not weakly deterministic. Assuming each Ei is weakly deterministic,
E is also not weakly deterministic if there is some symbol a in both E\i and

E\j . Because no matter how other symbols intermix, there would always exist

6 F. Peng, H. Chen and X. Mou

two string u, v such that uaiajv, uajaiv ∈ L(E). So we need to ensure that

sym(E\i) ∩ sym(E\j) = ∅ for every two subexpressions Ei and Ej . As with the
weak determinism between interleaving and other operators, consider a marked
expression H = EF . Symbols that belong to E but not in last(E) can not
be in the same follow set with symbols in F . A violation can only happen if
x, z ∈ last(E), y ∈ first(F), x\ = y\, which will cause follow(H, z) = {x, y}. If
ε /∈ L(E), x always occurs before y in any string accepted by L(H) thus will not
cause nondeterministic. We, therefore, use follow− to exclude these symbols in
first(F).

First, we have the following property about follow−.
Note that follow− preserves the semantics of follow when not dealing with

& operator. That is, the situation uzyw ∈ L(E), but y /∈ follow−(E, z) occurs
only if z is in subexpression M&N of E with z ∈ sym(M), y ∈ sym(N). The
following lemma is straightforward.

Lemma 1. Let E be a marked expression. There are strings u, v ∈ sym(E)∗

and symbols x, y, z ∈ sym(E) with x\ = y\ such that uzxv, uzyw ∈ L(E). If
x ∈ follow−(E, z), y /∈ follow−(E, z), then there exists some subexpression
M&N or N&M of E, such that x ∈ sym(M), y ∈ sym(N).

Proof. We prove it by contradiction. Suppose that x, y belong to the same side
of subexpression M&N or N&M of E, then z must be in the other side, oth-
erwise we will have x, y ∈ follow−(E, z). Assume x, y ∈ sym(M) and z ∈
sym(N) without loss of generality. Since x ∈ follow−(E, z), by the definition
of follow−, x ∈ first(M) and ε ∈ L(M). Since uzxv, uzyw ∈ L(E), we can
see y ∈ first(M) thus y ∈ follow−(E, z). This contradicts with the assumption
that y /∈ follow−(E, z). ut

In fact, we can see from the above analysis that if uzxv, uzyw ∈ L(E), x\ = y\

but x, y /∈ follow−(E, z), then there exists some subexpression M&N or N&M
of E, such that x, y ∈ sym(M), z ∈ sym(N). Let substring u′ be the longest
prefix of z and substrings v′, w′ be the longest suffix of z in u, v, w amongst
sym(M), then u′xv′, u′yw′ ∈ L(M). That is, there exists a symbol s ∈ sym(M)
such that x, y ∈ follow−(M, s). Since M is a subexpression of E, then x, y ∈
follow−(E, s). This is shown in Lemma 2.

Lemma 2. Let E be a marked expression. If there are strings u, v ∈ sym(E)∗

and symbols x, y, z ∈ sym(E) with x\ = y\ such that uzxv, uzyw ∈ L(E) but
x, y /∈ follow−(E, z), then there exist a symbol s ∈ sym(E) such that x, y ∈
follow−(E, s).

The following theorem is the main result of this section which states the
relation between weak determinism and first, follow− sets.

Theorem 1. Let E be a marked expression, z ∈ sym(E). E is not weakly de-
terministic if and only if there exist x, y ∈ sym(E) with x\ = y\ such that:
(1) x, y ∈ first(E) or
(2) x, y ∈ follow−(E, z), for some symbol z ∈ sym(E) or

Deterministic Regular Expressions with Interleaving 7

(3) F&G or G&F is a subexpression of E such that x ∈ sym(F), and y ∈
sym(G).

Proof. (=>) Assume E is not weakly deterministic, then x, y ∈ first(E), x\ = y\

or there are strings u, v, w ∈ sym(E)∗, x, y, z ∈ sym(E) such that uzxv, uzyw ∈
L(E), x\ = y\. In the first case, x, y ∈ first(E), condition (1) holds. For the
latter case, there are three conditions:
(A) x, y ∈ follow−(E, z) or
(B) only one of x and y is in follow−(E, z) or
(C) x, y /∈ follow−(E, z)
For case (A) we are done. As for case (B), we assume x ∈ follow−(E, z) and
y /∈ follow−(E, z), then by Lemma 1, condition (3) holds. The other case can
be proved similarly. For case (C), by Lemma 2, condition (2) or condition (1)
holds.

(<=) It is obvious for condition (1). For condition (2), the proof is the same
with that of Theorem 1 in [10]. As for condition (3), if F&G or G&F is a
subexpression of E and x ∈ sym(F) and y ∈ sym(G), then uzxv ∈ L(F) for some
u, v ∈ sym(F)∗, wys ∈ L(G) for some w, s ∈ sym(G)∗. Thus, uwzxvys, uwzysxv
∈ L(F&G), E is not weakly deterministic. ut

The following Corollary indicates the restrictions put on interleaving in XML
Schema might be stronger than necessary.

Corollary 1. Let E = E1&E2&...&En be a marked expression. E is weakly
deterministic if and only if E1, E2, ...En are weakly deterministic and sym(E\i)∩
sym(E\j) = ∅ when j 6= i .

The process of this approach is formalized in Algorithm 1. The compete
function checks if there are two elements a, b in the input word such that a\ = b\.
It returns true if such elements exist, or false otherwise. Below we analyze the
time used to test weak determinism.

Theorem 2. Let E be an expression over a finite alphabet Σ. It can be decided
in O(|Σ||E|2) whether E is weakly deterministic or not.

Proof. The first,last and follow− sets can be implemented bottom up by con-
verting E into a syntax tree, whose internal nodes are labeled with one of the
operators +,·,+,?,* or &. If sets are maintained as ordered lists, it can be checked
whether there exist x, y such that x\ = y\ that are included in a first or follow−

set in linear time via merging lists. As soon as this occurs, E is reported to be not
weakly deterministic. Hence the maximum length of each first or follow− set
is |Σ|. Since E has at most O(|E|) subexpressions, and each subexpression has
at most |E| last symbols. At this point, the total time is O(|Σ||E|2). Condition
(3) can be tested by scanning each symbol x in F to see whether there exists a
symbol y in G such that x\ = y\. Emptiness test of sym(F \) ∩ sym(G\) can be
done in O(|Σ|) time with a hash table. So each subexpression can be examined
in O(|Σ|) time. The upper bound of condition (3) is O(|Σ||E|).

Based on the above discussion, it takes O(|Σ||E|2) time to check the weak
determinism of an expression in RE(&). ut

8 F. Peng, H. Chen and X. Mou

Algorithm 1 weakDeterm1

Input: An expression E in RE(&)
Output: true if E is weakly deterministic or false otherwise
1: construct the corresponding binary tree T (root) of E
2: return weakDeterm helper1(root)

3.2 The improved algorithm

Based on the ideas in the previous section, we can have a simpler method that
runs in O(|Σ||E|) time by optimizing the examination of the follow− relation
used in Theorem 1.

Definition 4. For a marked expression E, we define followlast(E) by induction
on E as follows:

E = x : followlast(E) = ∅
E = F ∗ : followlast(E) = followlast(F) ∪ first(F)
E = F +G : followlast(E) = followlast(F) ∪ followlast(G)
E = FG :

followlast(E) =

{
followlast(G) if ε /∈ L(G)

followlast(F) ∪ first(G) ∪ followlast(G) if ε ∈ L(G)

E = F&G :

followlast(E) =

followlast(F) ∪ followlast(G) if ε /∈ L(F), ε /∈ L(G)

followlast(F) ∪ followlast(G) if ε /∈ L(F), ε ∈ L(G)

∪ first(G)

followlast(F) ∪ followlast(G) if ε ∈ L(F), ε /∈ L(G)

∪ first(F)

followlast(F) ∪ followlast(G) if ε ∈ L(F), ε ∈ L(G)

∪ first(F) ∪ first(G)

For example, for E = F&G, last(E) = last(F) ∪ last(G). If ε ∈ L(F) and
ε ∈ L(G), for each z ∈ last(F), we have follow−(E, z) = follow−(F, z) ∪
first(G). For each z ∈ last(G), we have follow−(E, z) = follow−(G, z) ∪
first(F). Together these give that followlast(E) = followlast(F)∪ first(G)∪
followlast(G) ∪ first(F).

We can now move to check the weak determinism constraints by computing
the first and followlast sets.

Theorem 3. Let E be a marked expression. E is not weakly deterministic if
and only if there exist x, y ∈ sym(E) with x\ = y\ and a subexpression F of E
such that:
(A) x, y ∈ first(F) or
(B) F = GH with x ∈ followlast(G) and y ∈ first(H) or
(C) F = G∗ or F = G+ with x ∈ followlast(G) and y ∈ first(G) or
(D) F = G&H with x ∈ sym(G) and y ∈ sym(H).

Deterministic Regular Expressions with Interleaving 9

Algorithm 2 weakDeterm helper1

Input: the root node F of a binary tree T (root)
Output: true if the expression of T (root) is weakly deterministic or false otherwise

if F = ε, a then
return true

if F = F1|F2 then
if weakDeterm helper1(F1) and weakDeterm helper1(F2) then

if first(F1) ∩ first(F2) 6= ∅ then
return false

else return true
else return false

if F = F1F2 then
if weakDeterm helper1(F1) and weakDeterm helper1(F2) then

if first(F1) ∩ first(F2) 6= ∅ then
return false

for each symbol a ∈ last(F1) do
if compete(follow−(F, a)) then

return false
return true

else return false
if F = F1&F2 then

if weakDeterm helper1(F1) and weakDeterm helper1(F2) then
if sym(F1)\ ∩ sym(F2)\ 6= ∅ then

return false
if first(F1) ∩ first(F2) 6= ∅ then

return false
else return true

else return false
if F = F ∗

1 then
if weakDeterm helper1(F1)==false then

return false
for each symbol a ∈ last(F1) do

if compete(follow−(F, a)) then
return false

return true
else return false

Proof. (=>) Assume E is not weakly deterministic, then some of conditions
(1)-(3) of Theorem 1 hold. Condition (1) implies condition (A). Condition (2)
holds if and only in condition (B) or (C) holds. Condition (3) is equivalent to
condition (D).

(<=) Assume some of conditions (A)-(D) hold. If condition (A) holds then
condition (1) or (2) of Theorem 1 hold. Condition (B) and condition (C) imply
condition (2). Condition (D) is equivalent to condition (3), by Theorem 1, E is
not weakly deterministic. ut

The process of this approach is formalized in Algorithm 3.

10 F. Peng, H. Chen and X. Mou

Algorithm 3 weakDeterm2

Input: An expression E in RE(&)
Output: true if E is weakly deterministic or false otherwise

construct the corresponding binary tree T (root) of E
return weakDeterm helper2(root)

Example 1. The expression E = (a∗1&b2)∗a3 is not weakly deterministic, since
first(E) = {a1, a3}. It can also be notified by the fact that followlast((a∗1&b2)∗)
= {a1, b2} and first(a3) = {a3}. The expression E = a1b1&c1a2 is not weakly
deterministic, since a2 ∈ sym(c1a2) and a1 ∈ sym(a1b1).

The calculation of first and followlast sets is done at the same time using
bottom-up on the syntax tree of E. The algorithm will terminate as soon as
at least one of the four conditions is satisfied. Thus the length of first set
can be at most O(|Σ|). Since each followlast set contains at most O(2|Σ|)
symbols, the computation can be performed in O(|Σ|) time. Emptiness test
of sym(F \) ∩ sym(G\) can be done in O(|Σ|) time with a hash table. So each
subexpression can be examined inO(|Σ|) time. An expression E contains at most
O(|E|) subexpressions. Thus the time complexity of the algorithm is O(|Σ||E|).
If the size of the alphabet is fixed, the algorithm has linear running time.

Theorem 4. Let E be an expression over a finite alphabet Σ. It can be decided
in O(|Σ||E|) whether E is weakly deterministic or not.

4 Strong Determinism of RE(&)

In this section, we derive an algorithm checking strong determinism based on a
characterization of strong determinism.

In [12], H. Chen et al. proved that a weakly deterministic regular expression
with counting is strongly deterministic if and only if it is in weakly star normal
form (wSNF). We will show it also holds for RE(&).

Definition 5 ([12]). An expression E is in weakly star normal form if, for each
subexpression H∗ of E′, followlast(H) ∩ first(H) = ∅, where E′ is the marked
expression of E.

We first show that every weakly deterministic expression can be transformed
to an equivalent strongly deterministic expression in linear time. The following
two definitions are proposed in [4] to transform a standard regular expression to
its star normal form. We replace ε◦ = ∅ with ε◦ = ε in [4] and add the rules for
E = F&G to get a transformation method for weakly star normal form.

Definition 6. E = ∅, x, ε : E◦ = E
E = F ∗ : E◦ = F ◦

E = F +G : E◦ = F ◦ +G◦

E = FG :

Deterministic Regular Expressions with Interleaving 11

Algorithm 4 weakDeterm helper2

Input: the root node F of a binary tree T (root)
Output: true if the expression of T (root) is weakly deterministic or false otherwise
1: if F = ε, a then
2: return true
3: if F = F1|F2 then
4: if weakDeterm helper2(F1) and weakDeterm helper2(F2) then
5: if first(F1) ∩ first(F2) 6= ∅ then
6: return false
7: else return true
8: return false
9: if F = F1F2 then

10: if weakDeterm helper2(F1) and weakDeterm helper2(F2) then
11: if followlast(F1) ∩ first(F2) 6= ∅ then
12: return false
13: if ε ∈ L(F1) then
14: if first(F1) ∩ first(F2) 6= ∅ then
15: return false
16: else return true
17: else return false
18: if F = F1&F2 then
19: if weakDeterm helper2(F1) and weakDeterm helper2(F2) then
20: if sym(F1)\ ∩ sym(F2)\ 6= ∅ then
21: return false
22: if first(F1) ∩ first(F2) 6= ∅ then
23: return false
24: else return true
25: else return false
26: if F = F ∗

1 then
27: if weakDeterm helper2(F1)==false then
28: return false
29: if followlast(F1) ∩ first(F1) 6= ∅ then
30: return false
31: else return true

E◦ =

FG if ε /∈ L(F), ε /∈ L(G)

F ◦G if ε /∈ L(F), ε ∈ L(G)

FG◦ if ε ∈ L(F), ε /∈ L(G)

F ◦ +G◦ if ε ∈ L(F), ε ∈ L(G)
E = F&G :

E◦ =

F&G if ε /∈ L(F), ε /∈ L(G)

F ◦&G if ε /∈ L(F), ε ∈ L(G)

F&G◦ if ε ∈ L(F), ε /∈ L(G)

F ◦ +G◦ if ε ∈ L(F), ε ∈ L(G)

Definition 7. E = ∅, x, ε : E• = E

12 F. Peng, H. Chen and X. Mou

E = F +G : E• = F • +G•

E = FG : E• = F •G•

E = F ∗ : E• = F •◦∗

E• = F •&G•

For example, E = (a∗&b∗)∗, then we have E• = (a∗&b∗)∗• = (a∗&b∗)•◦∗ =
(a∗•◦&b∗•◦)∗ = (a+ b)∗.

Lemma 3. E• is the weakly star normal form of E which can be computed from
E in linear time and L(E•) = L(E).

The proof can make a direct use of the proof of Theorem 3.1 in [4] so we
omit it here. The E◦ of E has the following property.

Lemma 4. Let E be an RE(&) expression. If followlast(E′) ∩ first(E′) = ∅,
E = E◦.

Proof. This can be proved by induction on the structure of E. The cases for
E = ∅, a(a ∈ Σ), ε are straightforward, where E = E◦.

E = F + G : From the computations of first and followlast, we have
followlast(E′) = followlast(F ′) ∪ followlast(G′) and first(E′) = first(F ′) ∪
first(G′). Since followlast(E′) ∩ first(E′) = ∅, we have followlast(F ′) ∩
first(F ′) = ∅ and followlast(G′) ∩ first(G′) = ∅. By the inductive hypoth-
esis we have F = F ◦ and G = G◦, therefore, E = E◦.

E = FG : If ε /∈ L(F), ε /∈ L(G), by Definition 6 we have E◦ = FG. Therefore
E = E◦. If ε ∈ L(F), ε /∈ L(G), from the computations of first and followlast,
we have followlast(E′) = followlast(G′) and first(E′) = first(F ′)∪first(G′).
Since followlast(E′) ∩ first(E′) = ∅, we get followlast(G′) ∩ first(G′) = ∅.
By the inductive hypothesis we have G = G◦, then E◦ = FG◦ = FG = E. If
ε /∈ L(F), ε ∈ L(G), from the computations of first and followlast, we have
followlast(E′) = followlast(F ′) ∪ followlast(G′) ∪ first(G′) and first(E′) =
first(F ′). Since followlast(E′) ∩ first(E′) = ∅, we can get followlast(F ′) ∩
first(F ′) = ∅. By the inductive hypothesis we have F = F ◦, then E◦ =
F ◦G = FG = E. The situation when ε ∈ L(F), ε ∈ L(G) can never hap-
pens. Otherwise, followlast(E′) = followlast(F ′) ∪ followlast(G′) ∪ first(G′)
and first(E′) = first(F ′) ∪ first(G′), followlast(E′) ∩ first(E′) cannot be ∅,
which is a contradiction.

E = F&G : If ε /∈ L(F), ε /∈ L(G), by Definition 6 we have E◦ = FG. There-
fore E = E◦. The situation when ε ∈ L(F), ε ∈ L(G) can never happens. Other-
wise, followlast(E′) = followlast(F ′) ∪ followlast(G′) ∪ first(G′) ∪ first(F ′)
and first(E′) = first(F ′) ∪ first(G′), followlast(E′) ∩ first(E′) cannot be ∅,
which is a contradiction. The other cases can be proved similarly.

E = F ∗ : This case can never happen. Since followlast(E′) = followlast(F ′)
∪first(F ′) and first(E′) = first(F ′), E = F ∗ will contradict to followlast(E′)
∩ first(E′) = ∅. ut

It is not hard to see that for any expression E, the weakly star normal of E
is unique. We prove it by the next lemma.

Deterministic Regular Expressions with Interleaving 13

Lemma 5. Let E be an RE(&) expression. E is in weakly star normal form iff
E = E•.

Proof. (=>) We prove it by induction on the structure of E. The cases for
E = ∅, a(a ∈ Σ), ε are straightforward, where E = E•.

E = F + G,E = FG or E = F&G : Suppose E is in wSNF, then for each
subexpression H∗ of E′, followlast(H) ∩ first(H) = ∅. For each subexpres-
sion H∗1 of F ′ and each subexpression H∗2 of G′, since F ′, G′ are subexpressions
of E′, we have H1, H2 ⊆ H. Therefore, followlast(H1) ∩ first(H1) = ∅ and
followlast(H2) ∩ first(H2) = ∅ thus F,G are in wSNF. By the inductive hy-
pothesis we have F = F •, G = G•, then E = F •+G•, E = F •G• or E = F •&G•.
Therefore E = E•.

E = F ∗ : Suppose E is in wSNF, then for each subexpression H∗ of E′,
followlast(H)∩first(H) = ∅. For any subexpression H1 of F ′, we have H1 ⊆ H
and F ′ ⊆ H. Therefore, followlast(H1) ∩ first(H1) = ∅ thus F is in wS-
NF. By the inductive hypothesis we have F = F •. Since F ′ ⊆ H, we have
followlast(F ′) ∩ first(F ′) = ∅. By Lemma 4, F = F ◦, then E• = F •◦∗ =
F ◦∗ = F ∗ = E.

(<=) By Lemma 3, E• is in weakly star normal form. Since E = E•, E is in
weakly star normal form. ut

Then from Lemma 5, we have

Corollary 2. If E is not the same with its weakly star normal form E•, E is
not in weakly star normal form.

The following characterization of strong determinism can be found in [12],
which can be trivially extended to expressions in RE(&).

Lemma 6. Let E be an expression in RE(&).
(1) E = ε, a ∈ Σ: E is strongly deterministic.
(2) E = F+G: E is strongly deterministic iff F and G are strongly deterministic
and first(F) ∩ first(G) = ∅.
(3) E = FG:

(a) If ε ∈ L(F), then E is strongly deterministic iff F and G are strongly
deterministic, first(F) ∩ first(G) = ∅, and followlast(F) ∩ first(G) = ∅.

(b) If ε /∈ L(F), then E is strongly deterministic iff F and G are strongly
deterministic, and followlast(F) ∩ first(G) = ∅.
(4) E = F&G: E is strongly deterministic iff F and G are strongly deterministic,
and sym(F) ∩ sym(G) = ∅.
(5) E = F ∗: E is strongly deterministic iff F is strongly deterministic and
followlast(F) ∩ first(F) = ∅.

Proof. The proof is by induction on the structure of E. We only show the in-
duction step for interleaving. Others can be found in [12].

E = F&G : If E is strongly deterministic, then E is weakly deterministic.
By Corollary 1, sym(F) ∩ sym(G) = ∅.

14 F. Peng, H. Chen and X. Mou

If F,G are strongly deterministic, then F,G are weakly deterministic. Since
sym(F) ∩ sym(G) = ∅, E is weakly deterministic from Corollary 1. If E is
not strongly deterministic, then there are strings u, v, w over ΣE ∪ ΓE , strings
α 6= β over ΓE , and a symbol a ∈ sym(E) such that uαav and uβaw are both

correctly bracketed and in L(Ẽ). Assume a ∈ sym(F) without loss of generality.
Let u′, v′, w′ be the substrings of u, v, w amongst sym(F) and α′, β′ be the
substrings of α, β amongst ΓF , then both of u′α′av′ and u′β′aw′ are bracketed
correctly and in L(F̃), which implies that F is not strongly deterministic. This
is a contradiction. So E is strongly deterministic. ut

Then we can establish the relation between weak determinism and strong
determinism by the following lemma.

Lemma 7. Let E be a weakly deterministic expression. E is in wSNF iff E is
strongly deterministic.

The proof from right to left is based on Lemma 6 and Definition 5 by contra-
diction. The details are omitted here. The proof from left to right is by induction
of E. For instance, we briefly prove the interesting case E = F&G in the induc-
tive step. Suppose E is in wSNF. Thus F,G is clearly in wSNF. Since E is weakly
deterministic, we have F,G are weakly deterministic and sym(F)∩ sym(G) = ∅
by Corollary 1. By the inductive hypothesis we have F,G are strongly determin-
istic. Hence E is strongly deterministic from Lemma 6.

From the above analysis we can get an algorithm to check strong determinis-
m of RE(&). First, check weak determinism of E using weakDeterm2(E). If E
is weakly deterministic, compute the weakly star normal form E• of E. If E• is
the same with E, E is strongly deterministic. Otherwise, E is not strongly de-
terministic. The time complexity of the algorithm is also O(|Σ||E|). The process
is formalized in Algorithm 5. For instance, E = (a∗)∗. E is weakly deterministic
because it contains only one symbol. E• = a•◦∗•◦∗ = a•◦∗◦∗ = a∗◦∗ = a∗. Since
E 6= E•, E is not strongly deterministic. By Lemma 3, the equivalent strongly
deterministic expression of E is E• = a∗.

Algorithm 5 StrongDeterm

Input: An expression in RE(&)
Output: true if E is strongly deterministic or false otherwise
1: if weakDeterm2(E) is true then
2: compute the weakly star normal form E• of E
3: if equal(E,E•) then
4: return true
5: return false

Theorem 5. StrongDeterm(E) returns true iff E is strongly deterministic.

Proof. It follows from Lemma 7 and Lemma 5. ut

Deterministic Regular Expressions with Interleaving 15

Theorem 6. StrongDeterm(E) runs in time O(|Σ||E|).

The proof follows from Theorem 4 and Lemma 3.

5 Implementations and experiments

In this section we first study the performance of the followlast algorithm by
comparing it with the follow− algorithm. Experiments were performed on a
computer with a Intel Core 2 Duo CPU(2.67GHz) and 4G memory. Next, we
discuss implementation of our algorithm for transforming an expression to its
weakly star normal form. We have implemented all our algorithms and made
them available at http://lcs.ios.ac.cn/~pengff/projects.html.

5.1 Weak determinism

In this section, we describe experiments for verifying the correctness of algo-
rithms based on followlast and follow− sets. Complex content models are de-
signed to test the efficiency of the above determinism algorithms.

All algorithms are implemented in Java. First, scan for an input expression
and convert it into a syntax tree. Next, make a post order traversal of the
syntax tree for computing first, followlast and sym sets in subexpressions for
every symbol. These contents are stored in ArrayList objects as attributes of
nodes. At the same time, conditions in Theorem 1 or Theorem 3 can be checked
for each subexpression. Once a subexpression meets the condition, the program
is interrupted and shows information for nondeterministic symbols. A general
overview of the interfaces of the followlast algorithm is presented in Figure 1.

We design three complex content models for testing the efficiency and scala-
bility of the above algorithms. The design for increasingly large content models
is inspired by P. Kilpeläinen [9].

For sequence operator, the content model with interleaving can be defined by
the form: F1&F2&...&Fn, where the repeated subexpression Fi is of the sequence
form aibi?c

∗
i d

+
i . Figure 2 shows how the algorithms scales up as the number of

subexpressions is increased. It can be easily observed that it takes more time for
follow− algorithms in these cases. Nonetheless, the gap is not very large. The
reason is that the main difference between the two algorithms lies in sequence
operator. We can see it from Algorithm 2 and Algorithm 4.

We further study the scalability for choice operator. The content model with
interleaving can be defined by the form: G1&G2&...&Gn, where the repeated
subexpression Gi is of the sequence form ai|bi?|c∗i |d

+
i . The weak determinis-

m checking times are shown in Figure 3. As for choice form, the time usage of
follow− algorithm increases quadratically, and the time usage of followlast algo-
rithm increases nearly linearly. However, both of them are slower than followlast
algorithm for sequence which implies sequence is easier to implement.

16 F. Peng, H. Chen and X. Mou

Figure 1: Checking the weak determinism of (a∗&b)a

Figure 2: Scale-up: Number of subexpressions for sequence

5.2 Weakly star normal form and strong determinism

E• is built up from H•◦ for subexpressions H∗ of E during a post order traversal
through the syntax tree of E. Some tricks must be mentioned. The expression
is processed to a postfix expression for keeping the order of operations and
removing parentheses, and during this preprocessing, a special symbol 0 is added
before a unary operator. When constructing binary trees, the leaf nodes are

Deterministic Regular Expressions with Interleaving 17

Figure 3: Scale-up: Number of subexpressions for choice

labeled with 0 or a symbol, and the internal nodes are labeled with operators,
i.e. interleaving, choice, sequence or a unary operator. For every subexpression
H∗ of E, if H = M∗, parent node ∗ of node M is deleted. If M is the left
node of its parent, we add parent(node(∗)).left = node(∗).left, otherwise we
add parent(node(∗)).right = node(∗).left. If H = FG, ε ∈ L(F) and ε ∈ L(G),
then parent node , of nodes F,G is replaced with +. In the end, we can get the
postfix expression of E• by another post order traversal of the syntax tree.

The strong determinism algorithm can be easily implemented by simply
combing the above two algorithms. Note that the process of converting a postfix
expression into an infix expression may add parentheses to the original expres-
sion. For example, from the above algorithm, the postfix expression for wSNF
of E = a, b, c is (ab, c,). Thus E• = ((a, b), c), but actually nothing has been
changed in E. Therefore, function equal(E,E•) is implemented by comparing
whether the postfix expressions of E and E• are equal or not.

6 Conclusion

In this paper, we have investigated the determinism problem for regular expres-
sions extended with interleaving. Weak determinism is a property required by
W3C XML Schema Recommendation. An O(|Σ||E|) time algorithm is proposed
based on examination of first and followlast sets. We then explored the trans-
formation from weakly deterministic RE(&) to strongly deterministic RE(&).
Based on this form, we modify the weakly determinism algorithm to strong de-
terminism. As for future work, we want to investigate whether there is a natural
extension of the Glushkov construction for RE(&) and the relation between such
automata and determinism.

18 F. Peng, H. Chen and X. Mou

References

1. World Wide Web Consortium. http://www.w3.org/wiki/
UniqueParticleAttribution

2. ISO 8879. Information processingtext and office systems-standard generalized
markup language (SGML) (1986)

3. Gelade W, Martens W, Neven F. Optimizing schema languages for XML: nu-
merical constraints and interleaving. Database Theory ICDT. Springer Berlin
Heidelberg, 2006: 269-283 (2007)

4. A. Brüggemann-Klein. Regular expressions into finite automata. Theoretical
Computer Science, 120(2):197-213 (1993)

5. Koch C, Scherzinger S. Attribute grammars for scalable query processing on
XML streams. The VLDB journal, 16(3): 317-342 (2007)

6. Gelade W, Gyssens M, Martens W. Regular expressions with counting: weak
versus strong determinism. SIAM Journal on Computing, 41(1): 160-190 (2012)

7. Matthew Fuchs, and Allen Brown. Supporting UPA and restriction on an exten-
sion of XML Schema. Extreme Markup Languages R©(2003)

8. B. Groz, S. Maneth, S. Staworko. Deterministic regular expressions in linear
time. PODS, pp. 49-60 (2012)

9. P. Kilpeläinen. Checking determinism of XML Schema content models in optimal
time. Informat. Systems, 36(3), pp. 596-617 (2011)

10. A. Brüggemann-Klein. Unambiguity of extended regular expressions in SGML
document grammars. ESA, pp. 73-84 (1993)

11. A. Brüggemann-Klein, D. Wood. One-unambiguous regular languages. Informa-
tion and Computation 142(2), 182-206 (1998)

12. H. Chen, P. Lu. Checking Determinism of Regular Expressions with Counting.
Information and Computation 241, 302-320 (2015)

