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Abstract

In this paper, we investigate the complexity of decidinged®iinism of unary languages. First, we give a method to deaiget

of arithmetic progressions from a regular expres&taver a unary alphabet, and establish relations between ensmépresented
by these arithmetic progressions and wordZ (). Next, we define a problem relating to arithmetic progmssiand investigate
the complexity of this problem. Then by a reduction from thisblem we show that deciding determinism of unary langsage
is coNP-complete. Finally, we extend our derivation method to espions with counting, and prove that deciding whether an
expression over a unary alphabet with counting defines arditistic language is iﬂﬂg. We also establish a tight upper bound for
the size of the minimal DFA for expressions with counting.
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1. Introduction

XML (Extensible Markup Language) has important applicasian data exchangel[1], database [2], etc. XML
schema languages, e.g., DTD and XML Schema, are used tdystieeiconstraints which XML documents should
obey [3]. However, designing a correct schema is not an edis|¢j|5]. One dificulty is the Unique Particle Attribu-
tion (UPA) constraint [6], which requires that content misdshould be deterministici[z, 8]. Intuitively, determimis
means that a symbol in the input word should be matched tocquangosition in the regular expression without look-
ing ahead in the word [[6} 9]. For exampke—~ a*ais a simple example of a DTD. This is not a correct DTD, because
the content moded*a is not deterministic. Consider the woad Without knowing the length of the word, we do not
know that the only symbada in the word should match the firator the second one ia‘a.

Deterministic expression is defined in a semantic way, witladknown simple syntax definition [8]. It is not easy
for users to understand such kind of expressions. Studyiogepties of deterministic expressions can help reduce
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guages Is coNP-Complete”. Work supported by the Nation&litdbScience Foundation of China under Grants 6147240%20d0038.
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this difficulty. Lots of work [8,(9) 10, 11, 12, 13, 14,|15] studied prdjes of deterministic expressions and gave
methods to help users write deterministic expressions. nMbde, studying properties of deterministic languages
is equally important. For example, when the user writes alaterministic expressioB and we know that (E) is
deterministic, we can automatically generate a determérégpression describing(E) for the user. However only
little progress has been made about determinism of language

For standard regular expressions, Briiggemann-Klein andd/{®] showed that the problem, whether a regular
language defined by a standard regular expression can bebaeslby a standard deterministic expression, is decid-
able. Bex et al.[[8], Czerwihski et al. [16], and P. Lu et Al{] proved that this problem BSPACE-complete. The
problem becomes much harder when we consider expressitimsovinting. Czerwihski et al. [16] also proved that
deciding whether a regular language defined by a regulaesgjmn with counting can be described by a standard
deterministic expression EXPSPACE-complete[[16]. Recently Latte et al. [18] had shown that thbea regular
language defined by a standard regular expression can bebaesloy a deterministic expression with counting is in
2-EXPSPACE. And anNL lower bound was given there [18,/17]. In this paper, we tryit@ g@coNP lower bound
for this problem.

In [19], Gelade et al. showed that for unary languages, oetestic expressions with counting are expressively
equivalent to standard deterministic expressions. Heansidering determinism of regular languages described by
standard expressions over a unary alphabet can give a lawedidor the problem, whether a regular language can
be described by a deterministic expression with countingrédver, in the lower bound proofs of [8] and [16], the
alphabet size of constructed expressions is at least 4. iS@dssible that the complexity of the problem, whether
a regular language defined by a standard regular expresg@raainary alphabet can be described by a standard
deterministic expression, is lower th®$PACE This is our starting point. In the following, unless exflicstated
otherwise, all regular expressions are expressions ogexlfthabeta}.

Our contributions are listed as follows:

(1) We show that deciding whether a standard expressionegaaleterministic languagedsNP-complete. Then
we conclude that deciding whether a language can be definaddieyerministic expression with counting is
coNP-hard.

(2) For any expressioR with counting, we show that there is a DFA with less th&h® states accepting(E).
It has been shown that there exists an expressiaith counting such that every DFA accepting this language
has at least exponential number of states|[20, 21]. So owerdppund is tight. For the cagg = 2, there is an
expressiorE such that the minimal DFA accepting(E) hasQ(22") states|[21].

(3) Using the result in (2), we devise a non-deterministgoathm to check determinism of languages defined
by expressions with counting, and show that the problem,tidiean expression with counting denotes a
deterministic language, is Hg.

The rest of the paper is organized as follows. Sediion 2 gieese basic definitions and some facts from the
number theory, which we will use later. We associate a setithfraetic progressions with a given regular expression
in Section[B. Sectiohl4 shows the complexity of deciding mheigism of unary languages. Sectibh 5 deals with
expressions with counting. Sectioh 6 gives the conclusiahthe future work.

2. Preliminaries

Let X = {a} be an alphabet of symbols. A standard regular expressianibigerecursively defined as follows:

0, € anda are regular expressions; for any two regular expresdigrend E;, the unionE; + E,, the concatenation

E1E> and the staE] are regular expressions. For a regular expressione denotef(E) as the language specified
by E and|E| as the size oE, which is the sum of the number of symbol occurrencek iand the number of used
operators.

Expressions with counting, denoted by R(#), extend stahe®pressions by using counting operatBF™" or
Elm=] whereco stands for infinity. Sinc&* = E%*] we do not consider the star operator in regular expressions
in R(#). The size of an expressi@in R(#), denoted byE|, is the sum of the number of symbol occurrences, the
number of used operators, and the lengths of the binary émgedf all counting numbers [19].
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To define deterministic regular expressions, we need thairlg notations. We mark each symizoin E with a
different integer such that each marked symiaploccurs only once in the marked expression. For exanapég,is

a marking ofa*a. The marking ofE is denoted byE. We useE! to denote the result of dropping subscripts from the
marked symbols. These notations are extended for wordsasmdsymbols in an obvious way.
Deterministic regular expressions are defined as follows.

Definition 1 ([9]). An expression E is deterministic, if and only if, for all wenaxv uywe £(E) where|x| = |y| = 1,
if x # y then X # 2. A regular language is deterministic if it is denoted by sataterministic expression.

For examplea*a is not deterministic, sinca,, aja, € L(ajaz). Deterministic regular expressions denote a proper
subclass of regular languages [9].

A nondeterministic finite automaton (NFA)_[22] is a 5-tuplé = (Q, {a},d, o, F), whereQ is a finite set of
states,a is the input symbolgy € Q is the start stateF < Q is the set of final states} : Q x {a} — 29 is
the transition function. The size of an NEX, denoted a$V|, is defined as the number of statesf An NFA
N = (Q.{a}, s, qo, F) is in Chrobak normal form_[23] if the following conditionld: (1) Q = {do,1,---,qm} U
{010, OL1s - - > OLis} Y {020,021, - - O2ip} U ... U {On0, Onts - - - Onin s (@) F € Q; (3) 8(qo, @) = {da}, ..., 6(Om-1, @) =
{Om}, 6(dm, @) = {d10 . - - » Ono} ANAS(Tjk, @) = {Qj(k+1)mod (;+1))} (0 < J < n,0 < k < ij). Chrobakl[2B] had shown that
every NFAN over a unary alphabet can be changed into an equivalent NEkinobak normal form witfO(IA|?)
states.

A deterministic finite automaton (DFA) is an NFA where thengition functions is defined a®) x {a} — Q. The
minimal DFA M is the DFA such thaM| < |D| for any DFAD with £(D) = £(M). For any regular language, the
minimal DFA is unique modulo state renaming|[22].

A context-free grammaB = (V, {a}, P, S) is a 4-tuple such that [22]: (Y is a set of variables; (2 € V is the
start symbol; (3P € V x (V U {a})* is a finite set of rules. And a context-free gramrfais in Chomsky normal
form [24] if all rules have one of the following two forms: (¥ — a; (2) X —» BC, whereB,C € V. It has been
known that regular expressions over a unary alphabet havgstine expressive power as unary context-free grammars
in Chomsky normal form [25].

The following notations are basic mathematical operai@€3:[[x] = max n|n < x,n € Z'}; x mody =
X — yL§J, fory # 0; x =y(modp) © xmodp = ymodp; mn & m > 0 andn = mxfor some integer;
ged(Xy, Xo, . . ., Xn) = maxk|(kixy) A (Kix2) A ... (KIx))} lem(Xg, Xo, . . ., Xn) = Min{klk > 0 A (X1]K) A (X2lK) A ... (XalK)}.
Notice that gcd(00, . . ., 0) is undefined and Icm(, x,, . . ., X,) is also undefined when at least one of the parameters is
0. In this paper, we denote gcd@...,0) = 0 and lcmka, X, . . ., Xn) = 0 when one of the parameters is 0. Moreover,
if S={s1,%,...,S), then we denote gc8j = gcd(s, S, . .., Sn).

The following fact is important to our proofs.

Lemma 1([27,128]). Given n(n > 2)integersa > 0,a, > 0,...,a, > 0, each number of the formax; + az - X2 +
cootan-Xm, Withx >0, % >0,...,and x > 0, is a multiple ofgcd@y, az, . . ., a,). Furthermore, all multiples of
gcd@y, @y, . . ., an) larger than(max(@y, a,, . . ., a,))? can be represented ag ax; + @z - Xo + . .. + ap - X, With X, > 0,
X2 >0,...,and x > 0.

An arithmetic progression, denoted @ss), is an infinite set of integerls, s+1,s+2-1,s+3-1,...} [26]. A
covering syster@Sis a set of arithmetic progressiofi$;, S1), {l2, ), ..., {In, S}, with0 < 5 < I; (1 <i < n), such
that every integek > O satisfiesx = 5 (modl;) for somei (1 < i < n) [29]. The size of a cover system is defined as

n
2. (li+s). For example, the set of arithmetic progressig@s0), (4, 1), (4, 3)} forms a covering system, and its size is

Ilzll Itis easy to verify that every integep O satisfies one of the following conditionis= 0 (mod 2);i = 1 (mod 4);
i =3 (mod 4).

Covering systems were introduced by Paul Erd85s/[30, 29is iBhan interesting topic in mathematics and there
are many unsolved problems about covering systems [31}, ke are only concerned with the problem whether a
set of arithmetic progressions forms a covering systemns prablem has been shown to d@NP-completel[32, 33].

IHereZ denotes the set of all integers. ThafZis= {...,-2,-1,0,1,2,...}. In the following, we also denote by the set of natural numbers.
ThatisN =1{0,1,2,...}.
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In this paper, we primarily discuss unary languages. Fogalae languagel over the alphabefa}, there is a
correspondence between wordsfirand their lengths. For convenience when we say the wpwe mean the word
a".

3. The arithmetic progressions of unary languages

In this section, we handle the following problem: Given ang@rd expressiof?, how to construct a seé® =
{1, s1), 2, &), ..., {In, S1)} Of arithmetic progressions such that there exists a nurvber N satisfying|L(E) \
P|+ P\ L(E)| < M. In next section, we will define the equali@girence covering systerEDCS) over arithmetic
progressions, show th#}(E) is deterministic, if and only ifP forms anEDCS, and obtain the complexity of deciding
determinism of£(E).

% is computed by the following function:

Definition 2. The functionS(E) is defined as

S(e) = {(0,0)}

S(@) ={0,1)}, aeX

S(El + Ez) = S(El) U S(Ez)

S(E1E2) = ((gcd(i. ). s + splili, s) € S(E1) A (lj, s5) € S(E2)}

S(E}) = {LO)IS(EL) = {{l1, S1), - ... {In. s} Al = ged(, . . ., In, St ..., S))-

The intuition behind the construction S{E) is Lemmad_l. The cases a, andE; + E, are obvious. For the case
E1Ey, let(l1, s1) € S(E1) and(lz, ) € S(Ez). Then all numberg; - 11 + 51 + k- 12 +  with kg, ko € N should be in
S(E). By Lemmd.1, these numbers can be writteikagcd(y, I2) + s; + sz, wherek € N. The caség] is similar.

Example 1. Let E = (aaa+ aa)* + (aad)*((aa)*aaa+ (aad)*aa). The process of computi®(E) is shown in Tablgl1.
E; in the table stands for subexpressions of E. At l86E) = {(1, 0), (1, 3), (3, 2)}. Itis easy to see th&(E) contains
all natural numbers. However, & £(E) and a is the only word, which is not if(E).

E; S(E1) E: S(E1)
a 0,1 (aa+ aad)* (1,0)
aa (0,2) (aa)*aaa (2,3)
aaa (0,3) (aad*aa 3,2
aa+ aaa (0, 2)0, 3) (a@)*aaa+ (aad*aa (2,3X3,2)
(aa)* (2,0) (aad)*((ad)*aaa+ (aad)*aa) (1,3%3,2)
(aad)* (3,0) (aaa+ aa)* + (aad)*((ad)*aaa+ (aad)*aa) (1,01, 3)(3,2)

Table 1: The process of computitfE)

In Exampld_l, we can see that wordsfXE) are all contained i5(E), and there are only finite many numbers in
S(E), not contained inL(E). In the following, we will show that this is generally held.

Observation 1. Let E be an expression. For akly s) € S(E), we have € L(E).

2In this section and next section, we mainly consider stahosgular expressions, and when we say a regular expreSsiva mean a standard
regular expressiok. We will handle the corresponding problem for expressiorR(#) in Sectiorib.
4
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Proposition 1. Let E be an expression. For anyen/(E), there exist an arithmetic progressidhs) € S(E) and an
integer ke N such thafw] = k- I + s.

Proof. We prove it by induction on the structure Bf The case& = ¢ or a (wherea € X) are obvious.

E = E;1 + E: For anyw € L(E), we know thatw € L(E;) orw € L(E). If w e L(E;), then by the inductive
hypothesis there exigk, s) € S(E;1) and an integek; € N such thatw| = k; - | + s. From the definition ofS, we know
thatS(E) = S(E1) U S(E2). Then there exisl, s) € S(E) andk; such thatw| = k; - | + s. The casev € L(E;) can be
proved in a similar way.

E = E;E,: For anyw € L(E), there arew; € L(E;) andw, € L£(E;) such thatw = wyw,. By the inductive
hypothesis there exist;, s1) € S(E1), (I2, ) € S(E2), and two integer&;, ko € N such thaiw;| = k; - 1; + 5 and
Wo| = ko - 12 + 5. From the definition ofS, we know thakgcd(y, I2), st + ) € S(E). Moreover,

W = [wywa|

=k1-|1+31+k2-|2+52

= k1 - K -ged(s, l2) + s1 + ko - K - ged(s, 12) + s

= (ki - ki + k2 - K5) - ged(ls, I2) + 51 + 2.

Letk = ki -k} + ko - k. Thenk € Nandjw| = k- gcd(y, |2) + s1 + .

E = E}: Supposél, 0y € S(E). If w = &, since(l, 0) € S(E), we havew| = 0- | + 0. Otherwisew # &. Then there
arew; € L(Ej),...,w, € L(E;) such thatv = w; ... w,. By the inductive hypothesis there exist, 5) € S(Ey), .. .,
{n, Sh) € S(E1), Ky, ..., ks e Nsuchthatwy| = ki - 11+ s, ..., [Wq| = ky - Iy + $5. From the definition oS, w € L(E),
andw # ¢, it is easy to prove thdt+ 0. Then for anxl’, s') € S(Ej), there areky 1, Ky 2, . .., Kn1, kn2 € N such that
I = k1’1-|,S[|_ = k1’2-|,|2 = k2’1-|,SQ = k2’2~|,...,|n = kn’1-|, ands, = kn,2'|. Hence

Wi = [WiWa . . . Wh|
=ki-hh+sg+k-lh+s+...+k - lh+ 5
=|(1~|(1’1~|+|(1,2~|+|(2~|(2’1~|+|(2’2~|+...+kn~kn’1-|+kn’2~|
=(k1~k1’1+k1’2+k2~k2’1+k2’2+...+kn'kn’1+kn,2)'|.

Letk = kj - kl,l + k]_)z + ko - kz)]_ + k2,2 +...+ k- kn,l + kn,2- Thenk > 0 andlvvl =k-1I Since(I,O) € S(E) and
k € N, the statement holds. O

Proposition 2. Let E be an expression. For akly s) € S(E) there exists le N such that L+t - | + se £(E) for any
teN.

Proof. We prove it by induction on the structure Bf The case& = ¢ or a (wherea € X) are obvious, since = 0
satisfies the conditions.

E = E;1 + E2: Supposal, sy € S(E). From the definition ofS, we have(l,s) € S(Ej) or{l,s) € S(Ep). If
(I, sy € S(E31), then by the inductive hypothesis there exists N such thal’ +t- | + se £L(E;) for anyt € N. Let
L = L’. Becauseé = E; + E, we know that. + t - | + se £(E). Then the conclusion holds. The cakes) € S(E)
can be proved in a similar way.

E = E1E,: Suppos€l, sy € S(E). From the definition ofS, there ar€ly, s1) € S(E;) and(l,, s) € S(Ez) such
thatl = gcd(4, 2) ands = 5 + 5. By the inductive hypothesis there exist L, € N suchthal; +t3-11 + 5 € L(E1)
andlL, +to - 1o + S € £(E) for anyty, to € N. LetL = Ly + Lo + 2- (max(1, 12))2. Then for any integet € N, there
areky, ko € N such that

L+t-1+s
= L1+L2+2-(maXdl,|2))2+t-ngql,|2)+S]_+SQ
=L1+L2+k1~|1+k2~|2+$1+82
=L1+|(1-|1+S[|_+L2+|(2-|2+SQ

From the inductive hypothesis ald= E;E,, we havel +t - | + se £(E). Then the conclusion holds.
E = E}: Suppos€l,0) € S(E) andS(E1) = {(l1,S1),...,{ln, S)}. Thenl = gcd(y,l2,....ln, 81, %, ..., ). Be-
causeS(E;) = {{l1, s1), ..., {In, Sh)}, by the inductive hypothesis there drg .. ., L, € N such that for any, ..., t, €

n n
N, Ly +ti-li+s € L(E1),...,Ln+th-ln+ sy € L(E) hold. LetL = 3 Lj + 2- (max{y,...,ln, S, ..., S)% + O S.
= i=1

From LemmdlL, we know that for any integer N, there arex, ..., xn:yl, ...,¥n € N such that
5
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Ln+t-l .
=(_21Li+2~(maxdl,...,ln,sl,...,sq))z+_le)+t-I
1= =

=i§1(Li +s)+i§1(xa~li +V¥i-S)

Ms

= (Li+Xi'|i+3)+zn:(Yi'3)~
=1 i=1

By the inductive hypothesis, we halie+ x; -y + 5 € £L(E;) (1 < i < n). Moreover, from Observatidg 1, we know
n
that 3 (vi - ) € L(E]). HenceL +t -1 € L(E}). Therefore the conclusion holds. O
i=1

From the above properties, we can conclude that there exstmbeM € N satisfying|.L(E)\P|+|P\ L(E)| < M.
Moreover, we had built the relation between word€ (i) and arithmetic progressions&{E), and then we can check
determinism of£(E) by investigating properties &(E).

Now we analyze the time used to comp®{E). Given an expressioR, we computeS(E) in the following way:
We first construct the syntax tree 6f after that we use a bottom-up traversal to comgiter each node. Itis known
that for twom-bit numbers, the greatest common divisor can be comput®¢in) time [34]. In our computation, the
maximum number irS(E) is not larger thanE|. Then representing each numbetS(E) only needO(log|E|) bits.
Moreover, for each node the algorithm for computing the grtacommon divisor has to (| E|?) times, especially
for the caseE; - Eo. Then computingS for each node take®(|E|? - log? |E|) time. Therefore the total time to compute
S(E) is O(IEP® - log? |E)).

Given an NFAN, Sawa [[35] also gave an algorithm to construct a set of agtlmprogressions such that the
union of these arithmetic progressions is the languagepéedédyN. The algorithm runs ifO(n? - (n + m)) time,
wheren is the number of states iIN andm is the number of transitions iV. The advantage of our method is that
it works merely on original expressions and reaches some ddirthe lower bound for the algorithm in_[35], since
there is an expressida, such thalE,| = n and every NFA describing(E,) hasQ(n - (log n)?) transitions|[36, 37].
But the price is that we add words in languages. However, vieseg later that adding such words does nteet
determinism of languages.

4. Determinism of unary languages

In the previous section, we had derived a set of arithmetigassions from a given expressiénWe will show
how to use these arithmetic progressions to check detesmiof £(E) in this section.

4.1. Decision problems for Covering Systems

Thecovering problenfCP) is the following problem: Whether a given set of arithmgtiogression§&ls, s1), {12, S),
ol sy, with0< 5 < | (1 <i < n), forms a covering system? The complexity@P is shown in the following
theorem.

Theorem 1([32],[33]). CPis coNP-completé.

Similarly, an equal dference covering syste&DCYS) is a setP of arithmetic progression&li, s1), (12, &), . . ., {In,
swh, with0 < s < |j (1 < i < n), such that there exist two integess X) (0 < x < y) satisfying the following con-
dition: For any integek (k > 0), x = k (mody) if and only if k = 5 (modl;) for somei (1 < i < n). Its size is

n
defined as),(li + 5). We definey, x) as the answer t®. Sincel; > 0 (0 <i < n), itis easy to see that> 0. Let
i=1

1=

P = {(4,1),(4,3)}. Itis straightforward thaP is anEDCS, but is not aCS. The answer teP is (2, 1). Intuitively,
the union of the numbers represented byE&ICS forms an arithmetic progression, while the union of the narsb
represented by @S contains all non-negative integers. The arithmetic pregjom represented by union of arithmetic
progressions is studied in the evenly spaced integer tggd88].

3This theorem also holds for more general cases [33], whettedfd ands are represented by binary numbers. However, we concemnate
unary languages of standard expressions here. For thictedtcase, the theorem also holds [32].

6
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The equal dierence covering problenEDCP) is defined as follows: Whether a given set of arithmetic peeg
sions{{l1, s1), 2, ), ..., {n, S}, with0< s < |; (1 < i < n), forms anEDCS?

The complexity ofEDCP can be easily proved by a reduction fr@®. We show the proofs here for the sake of
completeness.

At first, we show how to compute the answer toEEIDCS.

Lemma 2. SupposeP is anEDCS. The answer t@ is unique.

For a given sefP of arithmetic progressiongly, s1), (2, &), ..., {In, Sh)}, we denotel = gcd(y, lo,...,1n) and
suppose & p; < p2 < Ps3... < Pm are the distinct divisors df.

Lemma 3. SupposeP is an EDCS and the answer t& is (y,X). Then there is an integer k such that=y py,
k=maxl|ViVj(li,s) e PA(lj, s) € P As = s; (modp))} and Xx= (s, mod py).

Proof. For any arithmetic progressidh, s), we havex = 5 (mody) andx = (s + |;) (mody). Theny|l;. Soy|L and
there is an integee such thay = py. Foranys, sj (1 <i, j < n), by the definition oEDCS, we haves = x (mod py),
sj = x (modpy), andpl(s — sj). Letk’ = max{I|Vivj((li,s) €e P A}, ;) € P A's = s; (mod p))}. BecauseP is an
EDCSand (py, X) is the answer t@, we can show thab, = px. Moreover, since is anEDCS, we havex < px and
there is an integdrsuch thatx + i - px = s;. Hencex = (s, mod py). O

Given a sefP of arithmetic progressions, if we knof¥ is anEDCS, then we can find the answer #from the
arithmetic progressions . Since we define the size of a cover systenfﬁ(s + 5), the answer t@ is polynomial-

time computable. It is easy to see that the converse of thmhan!nes not hold. Consider the following set of
arithmetic progressiondy3,0),(4,0)}. y = 1 andx = 0 satisfy all the conditions, but obviously this set is not an
EDCS.

Bickel et al. [29] gave a method to construct a covering sydtem a setP of arithmetic progressions, where the
union of numbers represented by these arithmetic progressiontains an arithmetic progression. Inspired by this
idea, we can construct a covering system fronE&CS, and vice versa.

Theorem 2. EDCPis coNP-complete.

Proof. At first, we prove that the problem &soNP-hard. This can be proved by a reduction fr@R. Given a sef
of arithmetic progressionsly, s1), {l2, ), - . ., {In, S}, we construct the sé?; = {(3-11,3-5),(3-12,3- ),...,(3-
In, 3 sh)}. Using the definition o€SandEDCS, we can show thatP is aCS, if and only if, ;1 is anEDCS and the
answer tgP, is (3,0). From Theoremll we conclude tHEDCP is coNP-hard.

Next, we show thaEDCP is in coNP. This can be proved by a reduction@®. Suppose? is the set of arithmetic
progressiongli, s1), {l2, &), ..., {In, Sy} Then letp = gecd(y, I, ..., I5). From the definition oEDCP, we know
thatp > 0 must hold. Suppose® p1 < p2 < ... < pmy are the distinct divisors gb. We look for an integek such
thatk = max||Vivj((li, s) € P A(lj, sp) € P A s = s; (modpy))}. If there is not suclk, then from Lemma&l3 we know
that® is not anEDCS. Hence suppose there |skaat|sfy|ng the condition Denote— (s1 modpy). We construct the
following set@ of arithmetic progressiong{ pl ) ('2 S’Zp S .,('"k e %}, We can show that® is aCS, if and
only if, # is anEDCS. Then to decide whethé? i |s anEDCS We only need to check wheth@ris aCS. SinceCP is
in coNPand the computations ¢, px andstake polynomial timeEDCP is in coNP. O

4.2. The complexity of determinism of unary languages

In this section, we will discuss the complexity of decidirgterminism of unary languages. For an expresE&pn

supposeS(E) = {{l1, s1), {2, 2, . . ., {In, S}, and define(S(E)) = ) >L{Q(E){k- | + gk e N}.

From Propositio]l and Propositibh 2, we know tH4E) ¢ £L(S(E)), and there are only finite many words
such thatv € £(S(E)) andw ¢ L(E). The relation between determinism 6{S(E)) and £(E) can be established by
the following lemma.

Lemma 4 ([8]). For any deterministic language L, the following statemdmtd: (1) If string w € L, then the
language L\ {w} is deterministicy(2) If string w ¢ L, then the language U {w} is deterministic.
7
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Corollary 1. Given an expression E;(S(E)) is deterministic if and only if’(E) is deterministic.

Then to check determinism df(E), we only need to check determinism6(S(E)). Now we study how to check
determinism of£(S(E)). For a unary language, the corresponding minimal DFA stei®f a chain of states or a
chain followed by a cycle [19]. And deterministic regulandgmages have the following characterization.

Lemma 5([19]). Let £ be a regular language, thefi is a deterministic language if and onlyffis finite or the cycle
of the minimal DFA off has at most one final state.

From the definition of£(S(E)) and this characterization, we can easily see that to ctietkeminism of£(S(E))
we only need to check wheth&(E) is anEDCS.

But the tuples(l, sy € S(E) may not satisfy the basic condition € s < |I. Then we simplifyS(E) in the
following ways: (1) Delete all arithmetic progressionstie form(0, s); (2) For(l, s) with | < s, we replacel, s) with
(I, smodl). After the simplification, every arithmetic progressiys) € S(E) satisfies 0< s < |. This process just
deletes or adds a finite number of wordsfi@S(E)). From Lemma4, we know that it does not change determinism
of the language. From now on, when we %), we mean the simplified one.

Theorem 3. Suppose(S(E)) is infinite. £(S(E)) is deterministic if and onl\S(E) is anEDCS.

Proof. (=) SinceL(S(E)) is deterministic, the cycle of the minimal DEA of £(S(E)) has at most one final state.
Let the size of the cycle bp. Since£(S(E)) is infinite, p # 0. Denote the start state ggand the only final state
in the cycle agy;. Supposev is the shortest word such théfgo, w) = g;. Lets = (w mod p). We can prove that
(p, 9) is the answer t&S(E). Actually, this can be easily deduced from the followinaten between|f, s) and any
(li,s) € S(E): plli andw = s (mod p). It remains to verify this relation.

For anyli, s) (1 < i < n), sinceq; is the only final state in the cycle, there is an intefesuch thak” - |; + 5 > w,
(0o, K’ -1i +5) = g1 ands(qo, K7 - i + 1; + §) = 1. Thenpll; and there is an integég such thatv+ky - p=kK’ - lj + s.
Hencew = 5 (modp).

(<) Suppos&S(E) is anEDCS, and (o, s) is the answer t&(E). If L(S(E)) is not deterministic, then there are two
final stategp; and p; in the cycle of the minimal DFA of’(S(E)). Denote the start state gs. Then there are words
ki andk, such that(gp, k1) = 01, 6(0o, k2) = 02, k1 € L(S(E)) andk, € L(S(E)). LetF be the set of final states of the
minimal DFA of £(S(E)). Because; andp, are not equivalent, there is a wdtduch thati(g;, k) € F A5(qz, K) ¢ F
or (g1, k) ¢ F A 6(0p, k) € F holds. Suppose the cagy, k) € F A 6(gp, K) ¢ F holds. FromS(E) is anEDCS and
6(01, k) € F, we can show thaplk. On the other hand, fro(gz, k) ¢ F, we havek + ko # s(mod p). Thenp/k,
which is a contradiction. Hencé(S(E)) is deterministic. The cas#di, k) ¢ F A 6(0z2,k) € F can be proved in a
similar way. O

From Theorerhl2 and Theorérh 3, we can obtain the complexityextking determinism af(E) for an expression
E as follows.

Theorem 4. Given a regular expression E, the problem of deciding whefl{€) is deterministic icoNP-complete.

For any expressiok = E;, we havegS(E])| = 1 from the definition ofS. ThenS(E]) is anEDCS. Hence we can
easily obtain the following theorem.

Theorem 5([14]). Let.£ be any unary language. Theff is deterministict

5. The complexity of determinism of unary languages in R(#)

In this section, we consider the case for expressions witimtig.

4This theorem also follows from Lemma 4.1 in[39] and Lenitha 4.
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5.1. The mainidea

SupposeE is an expression in R(#) and the minimal DFA f6¢E) is M. To check determinism af(E), we first
give an upper bound for the size M, and then develop an algorithm to check non-determinis(&).

At first, we give an upper bound for the size®f. Pighizzini et al.|[[28] had proved that for any unary contege
grammarG in Chomsky normal form with at least two variables, therd wé a DFAD with less than ¥ states
acceptingZ(G), whereh is the number of variables iB. To use this result, we need to derive fréa context-free
grammar satisfying the required conditions.

Based on the structure &, we can inductively construct a unary context-free gram@ar (Vg, {a}, Pg, S) with
at most 2 |E| variables accepting(E). The key point of the construction is how to handle subesgions IikeE[lm“]
andEl™]. A straightforward way to changg™" andEL™! into a grammar in Chomsky normal form will introduce
exponentially many variables [22,124]. To avoid this, we tngeideas of bisection. The construction is quite standard.
Take the cas& = E** as an example. Suppog#Ae,) = L(E1), (2)10 = (10)in ®, and (3- 2)10 = (L)oin. Then we
can use the following grammar to represgiE):

Ag — DiFg D; — B1Dg Do — ¢ Fo— B(/)
B1 — BoBo Bo — Ag, By — Ae By—e

From the above construction, we can show that there are at 2ndg| variables inG. However,G is not in
Chomsky normal form. We can use the algorithmlin [24] to cleaBgnto a new gramma@’ such thatG’ is in
Chomsky normal form and’(G’) = £(G) \ {¢}. Moreover, variables i’ are the same as the onesGn Then
from [28], we know that there is a DF® with no more than YEF states accepting(E). Therefore, the size oi
cannot be larger tharf-#”

Using this bound, we can obtain an algorithm to check noerdahism of L(E). At first, we give another
characterization of determinism of regular languagesp8se the initial state oM is qp.

Lemma 6. Suppose (M) is infinite. Then (M) is not deterministic if and only if there are three wordg w», and
ws such thatwi| > M, [wa| > IM], wg| > [M], wy € LIM), Wz € LIM), Wy - ws € L(M), and v - ws ¢ L(M).

Proof. From Lemmab and the definition of equivalent states, we kiaw£(M) is not deterministic, if and only if,
there are two non-equivalent final states, denotediby 5(do, W) anddz = §(do, W,), in the cycle ofM, if and only
if, there is a wordv such that one af(q;, w) ands(gq, w) is a final state, while the other is not. We assumép.g
thatd(q:, W) is a final state. Suppose the length of the cycléofs C. Letw; = W) + IM|-C, w2 = W, + M| - C,
andw; = w + |M|- C. From the structure oM, it can be verified thaty;, w,, andws satisfy the required conditions.
Then the conclusion holds. O

Following this lemma, to check non-determinism£(fE), we first guess three fliciently long wordswy, w,, and
ws such that the sizes @f;, w,, andws are larger than the size @fl. Letq; = 6(go, W1) andgz = §(qo, W2). Theng;
andq, are states in the cycle dfl. If w; € L(E), we € L(E), ws - Wz € L(E), andw, - w3 ¢ L(E), thenq; andq, are
two distinct final states in the cycle, and we can concludefi{g) is not deterministic.

By extending the functiot®, we can improve the upper bound fav(| to 2°(5). Since Kilpelainen and Tuhka-
nen [20, 211] had shown that the lower bound®§%, our upper bound is tight.

5.2. The arithmetic progressions of regular expressiori(#)

At first, we define theS function for expressions in R(#). We can define it as befoue uising such definition
cannot improve the upper boun&'2*. We need more details about the structure of word€(E) as done in the
proof of Lemma 4 in[[28]. So we define the following intermedifunctionS;. Note that in this definition, the pairs
in S1(E) are not in the form(, s) as before, but pairs of the forfly, I, ..., 11}, S) representing the sets of numbers,
which can be written alg; - 1 + ko - o + ... + kg - I + S.

5(m)10 = (bibi_1 . . . bo)bin Stands for that the binary encoding of the decimal numbirb;bi_1 .. . bo.
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Definition 3. The functionS;(E) is defined as

Sa(e) = ({0}, 0)}

S1(a) = {({0}. 1)), aex

S1(E1 + E2) = S1(E1) US1(E)

S1(E1E2) = (L1 U Lp, 1 + $2)KL1, $1) € S1(En) ALz, &) € Su(E2))
SIEM) = U 10U L % )KL 8) € SE)

m<i<n  1<j<i

SUEM™ =1 U (U +sd)Ulsd). 3 KL s) € SiE)).
(Lk,S)ES1(E1) I"ely =1

The first four cases are easy to understand, we give a simplap® to show the computations of the last two
cases. Suppos® (E1) = {({2,3}, 1), ({4, 5}, 2)}. Then

S(Ey)
={{2,3},1+1),{{2,3,4,5},1+ 2),{{4,5},2 + 2),
{2,311+ 1+1),({2,3,4,5),1+1+2),({2,3,4,5,1+2+ 1),
{2,3,4,5},1+ 2+ 2),
{2,3,4,5,,2+1+1),({2,3,4,5,,2+ 1+ 2),{({2,3,4,5},2+ 2 + 1),
{4,5},2+ 2+ 2)}
= {({2,3},2), ({2, 3}, 3), ({4, 5}, 4), (14,5}, 6),
{2,3,4,5},3),({2,3,4,5},4),({2, 3,4, 5}, 5)}

(
(
(

and,

Sy(EZ)
={{2+1,3+1,1,4+2,5+2,2

d2+1,3+1,1,4+2,5+2,2

{2+1,3+1,1,4+2,5+2,2},2+ 1),

{2+ 1,3+1,1,4+2,5+2,2},2+ 2)}
={({1,2,3,4,6,7},2),({1,2,3,4,6,7},3),({1,2,3,4,6,7},4)}.

—

14+ 1),
1+ 2),

—_— —— -

The following example shows how to compwig(E) in a bottom-up manner.

Example 2. Let E = ((aaa+ aa)»2)0~] + (aag?>>~l((aa)>>laaa+ (aagd®>laa). The process of computiry (E)
is shown in Tablg]2.

The reason, why we defir® (EL™!) in such a way, will be clear after the proof of Proposifion 3.
We will give some bounds for the numbers occurring in tupleSdE). Supposé&L, sy € S1(E). The bound for
sis given by the following function.

Definition 4. The functiorR(E) is defined as

R(E) =0

R@ =1

R(E1 + E2) = max(R(E1), R(E2))
R(E1E2) = R(E1) + R(E)
R(EI™) = n- R(Eq)

R(EE"“’"I) =m- R(Ey).

According to the definition, we can obtain the following bdsnThe proofs are quite straightforward.
10
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Ex S(E1) Ex S(E1)

a ({0}, 1) (aa+ aagl*4 (10},2), {0}, 3), ({0}, 4),((0}, 5), ({0}, 6)

aa ({0}, 2) ((aa+ aag)2)0=] ({2,3,4,5,6),0)

aaa ({0}, 3) (@d)®~laaa ({0,2},3)
aa+aaa | ({0},2)({0},3) (aag)®~laa 10,3}, 2)
(aa)0! (2,0 (aa)®~laaa+ (aagd**laa ({0,2},3)({0, 3}, 2)
(aag)o~] {31,0) (aaa)2*]((ag)l>~l aaa+ (aad)®~l aa) ({0,2,3},9){0,3},8)
(aag)2>! {3}.6) ((aa+ aag22)0=! 1 (aagd)2=!((ag)>~aaa+ (aadl®laa) | ({2 3,4,5,6},0),({0,2, 3},9%(0,3},8)

Table 2: The process of computity(E)

Observation 2. Let E be an expression in#. We haveR(E) < 2.

Lemma 7. Let E be an expression in(R. For any(L, s) € S1(E), we have s R(E).

Lemma 8. Let E be an expression in(f). There exists a tuplé_, s) € S1(E) such that s= R(E).

Lemma 9. Let E be an expression in(R. For any(L, s) € S1(E), we have € L(E).

Lemma 10. Let E be an expression in(. For any{L, s) = ({l1,lo,...,l;},s) € S1(E), we havejl< 28 (1 <i <r).

The following proposition is central to the proof of the uppeund 2(&). To simplify the proof, we define the
following indicator function.

1 if xeS,
1S(X)={ 0 if x ¢ S;

Proposition 3. Let E be an expression in(® and(L, s) = {l1,...,l;},s) € S1(E). Forany x,..., X € N, we have
r

f(L,g) =X % -li+se L(E).
i=1

Proof. We prove it by induction on the structure &f The case& = ¢ or a (wherea € X) are obvious.

E = E1 + E2: From the definition ofS;, we have(L, s) € S1(E1) or(L,s) € Si(E2). If (L,s) € S1(E1), then
by the inductive hypothesis, for any, ..., % € N, we havef(L,s) € £(E;). Then sinceE = E; + E,, we have
f(L,s) € L(E). The casé€L, sy € S1(E2) can be proved in a similar way.

E = E;E;: From the definition ofSy, there arg(Ls, s1) = ({l11,...,11r,}, S1) € S1(E1) and(La, ) = ({l21,

2 lar,) s2) € S1(E) such thaﬂ_ =L UL, ands= s + . DenoteT = L; N L,. By the inductive hypothesis, for
anyxi,...,xt €N, andx2 X eN, We know thatf (L1, ;) € £(E1) andf(Ly, s) € L(Ey). In fact, f(L1, 5;) and
f(L2, ) correspond tdZ xl1 I1.+31 andZ x 12+, respectively. The full expansions will mess the followprgof,

=1

SO we use these S|mple notations. ItW|II be clear from thet@drwhatf(L' s) means. Then for any, ..., % € N,
there arey;, y2, ..., y5 ¥ € Nsuch that, = y1 +y3, ..., % = Y+ + y2, and

f(L,9)
=Y (x-l)+s

i:rl
= igll[(lLl\T(h) + L)+, 70) - X -lil+s1+ 5

- iil(lLl\T(h) Xl + _il(lT(n) % 1) + _il(le\T(n) A
- . . 11
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r r r
= _Zl(lLl\T(h) <X i) + _Zl(lT(h) Sy +YE) ) + _Zl(le\T(h) Xl +s+ s
I= 1= I=

= igl(lLl\T(li) X 1)+ é:l(lT(li) V) + s
+ é]l(lr(li) y|2 1)+ '_il(le\T(h) X 1) + S

By the inductive hypothesis, we know thEt(lLl\T(l )% li) + Z(lT(I Y-y b)) + s € L(Eq) andZ(lT(I ) Y2

li) + i;1(1L2\T(li) X -li) + 52 € L(Ez). Hencef(L, s) € L(E).

E = EI™: 3uppose<L s) € Si(E), there existLy, s1) € S1(E1), ..., {Li,S) € S1(E1) such tham < i < n,
L= U Ljands = Z sj. By the inductive hypothesis, for am1,..., X1, ..., Xi1,..., %, € N, we have
f(Ly, 31 L(Ey), . andf(L. S) € L(E1). Then for anyxg, ..., X €N,

f(L,9)
= kél(xk ) +s

= NI (2,00 - X)) I+ X s
kfl =1 =1
= E;l[kgl(le(lk) X 1) + si].
By the inductive hypothesis, we know thazr}[(le (Iy) - X1J< -l) + ;] € L(Ey). Becausen < i < n, we know that
k=1

f(L,s) € L(E).

E = EI™): LetSi(Eyr) = (L1, S, .. ., {Ln, S)}. Then from the definition o1, we knowthat = (U (U {I'+
(Lk.s)eS1(E1) 1"l

Sd) U {sd). And there existLy, sy)..... (L, S € S1(Ey) such thats = Z s. By the inductive hypothesis for any
X115 s Xirgs o5 Xnis--s Xnr, € N, we havef(Ly, 1), .. ., f(Ln, s) € L(El) LetT, = U (U{l'+s))and
(Lk,S)€S1(E1) I"€Lk
To= U {sd. Thenforanyx,...,x €N,
{Lk,S)€S1(E)
f(L,9s)

= él(xk I +s
= 3 1(n00 + I () - X W + % §
k=1 j=1

= 50005 W+ 5 (nm (0 %W+ 55

If 11,(lx) # O for some integek (1 < k <r), by the |nduct|ve hypothesigz, (Iy) - Ik = lk = 1" + sk € L(Ej). Hence
r
PACADRNNE L(ELD), From Lemm&D, we knowthaE(sz\Tl(lk) Xc-I) € LEEL=Y), andZ s, € LEM™).

Thereforef(L s) € L(E).
O

From the proof in the last case, we can see the reason for Ugifig+ s} to defmeSl(E[m‘”]) instead of | {l
I’elg I"eLy

The inductive hypothesis cannot enslire £(E;). Having this property, we can define tSdunction as follows.
Definition 5. The functionS(E) is defined as

S(E) = {(ged(L). KL, s) € S1(E)).
12
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If S(E) = {({l1, S1),- - -, {In, S1)}, we also define gc(E)) = gedds, I, ..., 1, S1,- - ., S)- Now we can prove that
the functionS can be computed as before.

Lemma 11. Let E be a regular expression in#.
(1) E =¢:8(e) = {{0,0)}
(2)aex:S(@)={0,1)}, aex

(3) E=E+E: S(El + Ez) = S(El) U S(Ez)

(4)E = E1E, :
S(E1E2) = {{gcd(, 12), 51 + 20K, S1) € S(E1) A (l2, S2) € S(E2)}
(5)E = EI™ . |
SEM) = | gedta fa...... ). Zl K1} 5) € S(Ea)}
(6) E = EI™1 . 7 J_

SEM™) = ((ged(S(EL), D s, 5) € S(Ew)).
j=1

Moreover, theS function has properties similar to the ones in Proposfiiamd PropositioQ]2.

Proposition 4. Let E be an expression in(f). For any we L(E), there exist an arithmetic progressidins) € S(E)
and an integer ke N such thafw| = k- | + s.

Proof. Since the proof of this proposition is almost the same asrledar Propositiofi]1, we omit the details heré.]

Proposition 5. Let E be an expression in(f. For any(l, s) € S(E) there exists le Nsuch that L+ t-| + se L(E)
forany te N, and L< 22E+1,

Proof. For any(l,s) € S(E), there exists a tuplé{ly, l»,...,1;},s € Si(E) such that = gcd(y,l2,...,I;). From
r

Propositioi B, we havg, (x; - |;) + s€ L(E) foranyxs,...,% € N. And for anyt € N, 2- (max({y, l2,...,1;))? +t-1
i=1

can be expressed aé(yi 1)) with y; € N by Lemmall. Hence 2(max(y,lz,....1;))> +t-1 +s e L(E). Let
i=1

L=2- (maqu,lz,...jlr))z. ThenL +t -1+ se £(E). And from LemmaID, we have = 2- (max(y, s, ...,1;))? <
2. (25)% < 22EH, O

As before, we define the languagéS(E)) = U {k-I+ sk € N}. From the definition ofS, we know that
(1,9eS(E

S(E) consists of finite many arithmetic progressions(.)From weswill construct an NFA in Chrobak normal form
and then a DFAB such thatB| < 2°08) and £(8) = £L(S(E)) in next section. From above properties, we know that
L(E) c £L(S(E)) and there exist8! € N such thal£L(S(E)) \ £L(E)| < M. Then we can construct a DFA faf(E)
from 8 by changing finite many final states, which are not in the gynte non-final states. Moreover, we obtain the
desired upper bound for the minimal DFA féXE).

Before showing the construction &, we firstly establish a numbél € N such that£(S(E)) \ £L(E)| < M. To
this end, we need to know bounds for numbersS{it). Suppos€l, sy € S(E). The bound fors is also given by
Lemmd¥. The bound fdris computed by the following function.

Definition 6. The functionZ (E) is defined as:

I(e) = {0}
I(a) = {0}
I(BE1+ Ep) = I(E1) U I(Ep)
I(E1Ep) = I(Ey) U I(Ep)
I(EM) = 1(Ey)
me]y _ | {R(E1)} if 7(Ez) = {0},
1(E; )_{ I(Ey) otherwise;

13
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The following properties are straightforward.
Observation 3. Let E be a regular expression if#®. We haves (E)| < |E|.

Observation 4. Let E be a regular expression in#. For any le 7(E), we have k 2¥.
n

Lemma 12. Let E be a regular expression ir@®. If 7(E) = {I1,12,..., I}, then]] I; < 2F.

i=1
We establish the relations between arithmetic progressiof and the numbers ifi as follows.
Lemma 13. Let E be a regular expression in#. If for any(l, s) € S(E), we have k 0, thens(E) = {0}.

Lemma 14. Let E be a regular expression in#. For any(l, s) € S(E) (I # 0), thereis an{ € 7(E) such that{ # 0
and |l;.

Since we have the bounds foands, the bound fofS(E)| is straightforward.
Lemma 15. Let E be a regular expression in#®. We haveS(E)| < 22€.
Then from Propositio]5, we have the following property.

Corollary 2. Let E be a regular expression in#. If w ¢ £(E) and we £(S(E)), thenjw| < 22E+2,

5.3. The upper bound for the minimal DFA

According to the construction in [23], Propositigh 5, and @lary[2, we can obtain the upper bound for the size
of the minimal DFA for an expression in R(#) as follows.

Theorem 6. Let E be a regular expression in(#. The number of states of the minimal DFA {6¢E) is at most
22El+4.

Proof. From the construction in_[23], we can construct a DAAvith the desired size as follows:
(1) Compute the se®(E).

(2) Constructan NFAY in Chrobak normal form such thai(N) = £(S(E)), and then use the method in Theorem
4.4 in [23] to construct an equivalent DEA such thatZ(D) = L(N).

(3) Copy the cycle to extent such that the chain of the resulting DBhas 25+2 + 1 states, and(8) = L(D).
One additional state is required for the initial state. Sigapthe initial state a is do.

(4) Delete every worav such thatw| < 22E+2 w ¢ £(E) andw € £(S(E)). Thatis ifq = 6(go, W), q is a final state
of B8, andw ¢ L(E), then we sef] as a non-final state.

Using the bounds fdr; s, and|S|, we estimate the sizes &f andD in step (2) as follows. Sinc4’ is in Chrobak
normal form, from the construction in [23], we haé| < R(E) + |S|- max(Z (E)) + 1 < 2/Fl + 22E1. 28l 1 < 23E+2,

From [23], Corollary 2, Lemma12, and Lemind 14, the siz®afan be estimated as followi®| < R(E)+ [] i+
lieZ(E)

1< 2B+ 41
Since the chain a8 has 25+2 4 1 states, we havé| < 22E+2 1+ 1 +|D| < 22E+4, Because step (4) does ndiisat
the number of states &, we conclude thatA| = |B] < 22E+4,
From Propositiofl4L(E) € £(8B) holds. And from Corollarjl2, we know that step (4) removéswaird w such
thatw € (£(B) \ L(E)). ThenL(A) = L(E).
O

We give an example to show the construction in Thedrem 6. B_et a(al*4)[0=1 . aa(al®8)0=l 1 (ag)l=] .
aaaaaaar (aaad*>! - aaaa

(1) S(E) = {2,3),(2,7),(3, 4}, and|E| = 67.
14



P. Lu et al/Information and Computation 00 (2015)[13-18 15

(2) We get an NFAV in Chrobak normal form in Figuifd 1, and a DBA.in Figure[2.

(3) We extendD such that the size of the chain of the resulting DFA3§ + 1 = 2136 1 1. Notice that 2%¢ =
4 (mod 6). The resulting DFA is shown in Figtirde 3.

(4) We can check that = aaaaa(lw| = 5) is the only word such that € £(S(E)) \ .L(E). Then we get the final
DFA acceptingZ(E) in Figurel4.

Since there exists an expressBin R(#) such that every DFA acceptinf(E) has at leasR2(2¥) states|[20, 21],
the upper bound®® s tight.

5.4. Checking determinism of languages of expressionsih R(

For an expressioR in R(#), since the minimal DFA af(E) is of single-exponential size, we can non-determinidifica
check whether the cycle of the minimal DFA has at least twd tates as follows.
Before showing the algorithm, we first consider the compjead the following problem.

PROBLEM: Memberg,w)
INPUT: A regular expressioR in R(#), and a binary numbey.
Thatisw = bgb; ... by and @W)pin = bp2" + b12™ + ... + by,
QUESTION: W)pin € L(E)?

Following the proof of Lemma 5.1 in_[32], we can obtain the gbexity of MemberE,w) as follows.
Theorem 7([32]). Memberg,w) is NP-complete.

Using Lemmab, Lemmd 6, Theoréin 6, and Thedrém 7, we give tleviag straightforward algorithm to check
whether£(E) is not deterministic.

(1) Guess three binary numbews, w,, andws such that
2E|+4<|w|<2E+5(1<i<3).

(2) Check Membelt,w;), Memberg,w,), Memberg,w; + wsz), and Member,w, + ws).

(3) If (Wp)pin € L(E), Wo)pin € L(E), (W1 + Wa)pin € L(E), and (v + Wa)pin ¢ L(E), then the cycle of the minimal
DFA will have at least two distinct final states, afifE) is not deterministic.

Since Membeli,w) is NP-complete, we get the desired result as follows.
Theorem 8. Given a regular expression E in(), the problem of deciding whethél(E) is deterministic is irﬂg.

Is it possible to prove this problemltg—hard by a reduction from the corresponding versio&kDfCP, where all
numbers are binary numbers? We give a negative answer tquégion.

n
The correspondingDCS' is defined almost the same BBCS, excepted that its size is defined gglog(l;) +
i=1
log(s))®. TheEDCP" is defined as follows: Does a given $&satisfying the above conditions form &DCS'" ?

Theorem 9. EDCP' is coNP-complete.

Proof. Since the lower bound follows from Theoréin 2, we mainly deigihhe upper bound At first, we need the
following property.

8|f this condition holds, for an arithmetic progressidns), | ands can be represented by binary numbers such that the inpanes® has
polynomial size. For example, the arithmetic progress)B) can be represented K40, 101), and its size is less than 5.
"This algorithm is provided by the reviewers of DLT 2013.

15
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O

Figure 1: An NFA acceptind’(S(E)) in Chrobak normal form.
) ) a) ') M ) a) O
-/ S S A 4 W/ S -/ A 4

Figure 2: A DFA acceptind’(S(E)).

6 states Acopy of the cycle

21+ 1 states

Figure 3: The extended DFA acceptidgS(E)).

6 states A copy of the cycle

2%+ 1 states

Figure 4: A DFA acceptind’(E).
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Claim 1. Supposé is anEDCS' and the answer t@ is (y, X). Theny= gcddy,l2,...,ln, S1— .S~ Ss, ..., S1— Sn)
and x= (s; mody).

Then checking whethe? is not anEDCS' can be done as follows: (1) Complyte gedly, lz, ..., I, S1— 92, S1—
S3,...,51 — S andx = (s mody); (2) Guess an integer € N such thatz < ﬂ li; (3) Check whether one of the

following two conditions holds: (Ig = x(mody) andz # s(mod]l;) for anyi (1 <i<n); () z# x(mody) and
z= s(modl;) for somei (1 <i < n).
From LemmdZR and Claif 1, we know thatffis anEDCS", then ¢, x) is the answer. We only need to check
whether g, ) is the answer. From the definition BDCS", we know thaty, X) is not the answeff there is an integer
z € N such that condition (1) or condition (1) holds. From the @ase Remainder Theorem [34], we know that there
n

is such an integer satisfyingz < [] |;.
i=1

n n
It is easy to see that computationsyodind x take polynomial time. Since lo[ Ii) = 3 log(l}) < p(n), we have
i=1 i=1

z < 2P, Moreover, we can check whether the equatipasx(mody), z = s;(modly), ..., andz = s,(modl,) hold
in polynomial time. Then the whole checking algorithm tages/nomial time.

Hence whetheP is not anEDCS' can be checked in non-deterministic polynomial time, aretking whether
P is anEDCS' is in coNP. ThereforeEDCP" is coNP-complete. O

6. Conclusion and future work

In this paper, we show a derivation method to derive a setitifraetic progressions from a regular expression.
There is a close relation between these arithmetic proigresand the language of the expression. Using this relation
we investigate the complexity of deciding determinism gfular languages over a unary alphabet. And we conclude
that the problem, whether a regular language defined by a@atdmegular expression of any alphabet size can be
defined by a deterministic expression with counting;adlP-hard. Moreover, by extending the derivation method,
we show an upper bound for the size of the minimal DFA of thglege of an expression over a unary alphabet with
counting. Then we show that checking determinism of theuaggs of regular expressions over a unary alphabet
with counting is inI[g. For the general case, this problem has been shown EXBPSPACE-complete|[16].

There is one problem remained: the lower bound for the protd&checking determinism of the languages of
regular expressions over a unary alphabet in R(#). TheQreimows that this problem oNP-hard. But it is unlikely
that this problem is itoNP, since the membership problem for standard expressioas fadynomial time, while the
problem for expressions in R(#) MP-complete. As noted in_[40], the lower bound for checkingedeiinism of the
languages of regular expressions can be obtained by a redércm the universality problem for regular expressions.
However, the exact complexity of the universality problemfegular expressions over a unary alphabet in R(#) is
unknown.
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