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Abstract

In this paper, we investigate the complexity of deciding determinism of unary languages. First, we give a method to derive a set
of arithmetic progressions from a regular expressionE over a unary alphabet, and establish relations between numbers represented
by these arithmetic progressions and words inL(E). Next, we define a problem relating to arithmetic progressions and investigate
the complexity of this problem. Then by a reduction from thisproblem we show that deciding determinism of unary languages
is coNP-complete. Finally, we extend our derivation method to expressions with counting, and prove that deciding whether an
expression over a unary alphabet with counting defines a deterministic language is inΠp

2. We also establish a tight upper bound for
the size of the minimal DFA for expressions with counting.
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1. Introduction

XML (Extensible Markup Language) has important applications in data exchange [1], database [2], etc. XML
schema languages, e.g., DTD and XML Schema, are used to specify the constraints which XML documents should
obey [3]. However, designing a correct schema is not an easy job [4, 5]. One difficulty is the Unique Particle Attribu-
tion (UPA) constraint [6], which requires that content models should be deterministic [7, 8]. Intuitively, determinism
means that a symbol in the input word should be matched to a unique position in the regular expression without look-
ing ahead in the word [6, 9]. For example,A→ a∗a is a simple example of a DTD. This is not a correct DTD, because
the content modela∗a is not deterministic. Consider the worda. Without knowing the length of the word, we do not
know that the only symbola in the word should match the firsta or the second one ina∗a.

Deterministic expression is defined in a semantic way, without a known simple syntax definition [8]. It is not easy
for users to understand such kind of expressions. Studying properties of deterministic expressions can help reduce
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guages Is coNP-Complete”. Work supported by the National Natural Science Foundation of China under Grants 61472405 and61070038.
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this difficulty. Lots of work [8, 9, 10, 11, 12, 13, 14, 15] studied properties of deterministic expressions and gave
methods to help users write deterministic expressions. Meanwhile, studying properties of deterministic languages
is equally important. For example, when the user writes a nondeterministic expressionE and we know thatL(E) is
deterministic, we can automatically generate a deterministic expression describingL(E) for the user. However only
little progress has been made about determinism of languages.

For standard regular expressions, Brüggemann-Klein and Wood [9] showed that the problem, whether a regular
language defined by a standard regular expression can be described by a standard deterministic expression, is decid-
able. Bex et al. [8], Czerwiński et al. [16], and P. Lu et al. [17] proved that this problem isPSPACE-complete. The
problem becomes much harder when we consider expressions with counting. Czerwiński et al. [16] also proved that
deciding whether a regular language defined by a regular expression with counting can be described by a standard
deterministic expression isEXPSPACE-complete [16]. Recently Latte et al. [18] had shown that whether a regular
language defined by a standard regular expression can be described by a deterministic expression with counting is in
2-EXPSPACE. And anNL lower bound was given there [18, 17]. In this paper, we try to give acoNP lower bound
for this problem.

In [19], Gelade et al. showed that for unary languages, deterministic expressions with counting are expressively
equivalent to standard deterministic expressions. Hence considering determinism of regular languages described by
standard expressions over a unary alphabet can give a lower bound for the problem, whether a regular language can
be described by a deterministic expression with counting. Moreover, in the lower bound proofs of [8] and [16], the
alphabet size of constructed expressions is at least 4. So itis possible that the complexity of the problem, whether
a regular language defined by a standard regular expression over a unary alphabet can be described by a standard
deterministic expression, is lower thanPSPACE. This is our starting point. In the following, unless explicitly stated
otherwise, all regular expressions are expressions over the alphabet{a}.

Our contributions are listed as follows:

(1) We show that deciding whether a standard expression denotes a deterministic language iscoNP-complete. Then
we conclude that deciding whether a language can be defined bya deterministic expression with counting is
coNP-hard.

(2) For any expressionE with counting, we show that there is a DFA with less than 2O(|E|) states acceptingL(E).
It has been shown that there exists an expressionE with counting such that every DFA accepting this language
has at least exponential number of states [20, 21]. So our upper bound is tight. For the case|Σ| = 2, there is an
expressionE such that the minimal DFA acceptingL(E) hasΩ(22|E| ) states [21].

(3) Using the result in (2), we devise a non-deterministic algorithm to check determinism of languages defined
by expressions with counting, and show that the problem, whether an expression with counting denotes a
deterministic language, is inΠp

2.

The rest of the paper is organized as follows. Section 2 givessome basic definitions and some facts from the
number theory, which we will use later. We associate a set of arithmetic progressions with a given regular expression
in Section 3. Section 4 shows the complexity of deciding determinism of unary languages. Section 5 deals with
expressions with counting. Section 6 gives the conclusion and the future work.

2. Preliminaries

Let Σ = {a} be an alphabet of symbols. A standard regular expression over Σ is recursively defined as follows:
∅, ε anda are regular expressions; for any two regular expressionsE1 andE2, the unionE1 + E2, the concatenation
E1E2 and the starE∗1 are regular expressions. For a regular expressionE, we denoteL(E) as the language specified
by E and |E| as the size ofE, which is the sum of the number of symbol occurrences inE and the number of used
operators.

Expressions with counting, denoted by R(#), extend standard expressions by using counting operator:E[m,n] or
E[m,∞], where∞ stands for infinity. SinceE∗ = E[0,∞], we do not consider the star operator in regular expressions
in R(#). The size of an expressionE in R(#), denoted by|E|, is the sum of the number of symbol occurrences, the
number of used operators, and the lengths of the binary encodings of all counting numbers [19].
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To define deterministic regular expressions, we need the following notations. We mark each symbola in E with a
different integeri such that each marked symbolai occurs only once in the marked expression. For example,a∗1a2 is
a marking ofa∗a. The marking ofE is denoted byE. We useE♮ to denote the result of dropping subscripts from the
marked symbols. These notations are extended for words and sets of symbols in an obvious way.

Deterministic regular expressions are defined as follows.

Definition 1 ([9]). An expression E is deterministic, if and only if, for all words uxv, uyw∈ L(E) where|x| = |y| = 1,
if x , y then x♮ , y♮. A regular language is deterministic if it is denoted by somedeterministic expression.

For example,a∗a is not deterministic, sincea2, a1a2 ∈ L(a∗1a2). Deterministic regular expressions denote a proper
subclass of regular languages [9].

A nondeterministic finite automaton (NFA) [22] is a 5-tupleN = (Q, {a}, δ, q0, F), whereQ is a finite set of
states,a is the input symbol,q0 ∈ Q is the start state,F ⊆ Q is the set of final states,δ : Q × {a} → 2Q is
the transition function. The size of an NFAN, denoted as|N|, is defined as the number of states ofN. An NFA
N = (Q, {a}, δ, q0, F) is in Chrobak normal form [23] if the following conditions hold: (1) Q = {q0, q1, . . . , qm} ∪

{q1,0, q1,1, . . . , q1,i1} ∪ {q2,0, q2,1, . . . , q2,i2} ∪ . . . ∪ {qn,0, qn,1, . . . , qn,in}; (2) F ⊆ Q; (3) δ(q0, a) = {q1}, . . . , δ(qm−1, a) =
{qm}, δ(qm, a) = {q1,0, . . . , qn,0} andδ(q j,k, a) = {q j,((k+1) mod (i j+1))} (0 ≤ j ≤ n, 0 ≤ k ≤ i j). Chrobak [23] had shown that
every NFAN over a unary alphabet can be changed into an equivalent NFA inChrobak normal form withO(|N|2)
states.

A deterministic finite automaton (DFA) is an NFA where the transition functionδ is defined asQ× {a} → Q. The
minimal DFA M is the DFA such that|M| ≤ |D| for any DFA D with L(D) = L(M). For any regular language, the
minimal DFA is unique modulo state renaming [22].

A context-free grammarG = (V, {a},P,S) is a 4-tuple such that [22]: (1)V is a set of variables; (2)S ∈ V is the
start symbol; (3)P ⊆ V × (V ∪ {a})∗ is a finite set of rules. And a context-free grammarG is in Chomsky normal
form [24] if all rules have one of the following two forms: (1)X → a; (2) X → BC, whereB,C ∈ V. It has been
known that regular expressions over a unary alphabet have the same expressive power as unary context-free grammars
in Chomsky normal form [25].

The following notations are basic mathematical operators [26]: ⌊x⌋ = max{ n |n ≤ x, n ∈ Z
1}; x mod y =

x − y⌊ x
y⌋, for y , 0; x ≡ y (mod p) ⇔ x mod p = y mod p; m|n ⇔ m > 0 andn = mx for some integerx;

gcd(x1, x2, . . . , xn) = max{k|(k|x1)∧ (k|x2)∧ . . . (k|xn)}; lcm(x1, x2, . . . , xn) = min{k|k > 0∧ (x1|k)∧ (x2|k)∧ . . . (xn|k)}.
Notice that gcd(0, 0, . . . , 0) is undefined and lcm(x1, x2, . . . , xn) is also undefined when at least one of the parameters is
0. In this paper, we denote gcd(0, 0, . . . , 0) = 0 and lcm(x1, x2, . . . , xn) = 0 when one of the parameters is 0. Moreover,
if S = {s1, s2, . . . , sn}, then we denote gcd(S) = gcd(s1, s2, . . . , sn).

The following fact is important to our proofs.

Lemma 1 ([27, 28]). Given n(n ≥ 2) integers a1 > 0, a2 > 0, . . . , an > 0, each number of the form a1 · x1 + a2 · x2 +

. . . + an · xn, with x1 ≥ 0, x2 ≥ 0, . . . , and xn ≥ 0, is a multiple ofgcd(a1, a2, . . . , an). Furthermore, all multiples of
gcd(a1, a2, . . . , an) larger than(max(a1, a2, . . . , an))2 can be represented as a1 · x1 + a2 · x2 + . . .+ an · xn, with x1 ≥ 0,
x2 ≥ 0, . . . , and xn ≥ 0.

An arithmetic progression, denoted as〈l, s〉, is an infinite set of integers{s, s+ l, s+ 2 · l, s+ 3 · l, . . .} [26]. A
covering systemCS is a set of arithmetic progressions{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with 0 ≤ si < l i (1 ≤ i ≤ n), such
that every integerx ≥ 0 satisfiesx ≡ si (mod l i) for somei (1 ≤ i ≤ n) [29]. The size of a cover system is defined as
n
∑

i=1
(l i + si). For example, the set of arithmetic progressions{〈2, 0〉, 〈4, 1〉, 〈4, 3〉} forms a covering system, and its size is

14. It is easy to verify that every integeri ≥ 0 satisfies one of the following conditions:i ≡ 0 (mod 2);i ≡ 1 (mod 4);
i ≡ 3 (mod 4).

Covering systems were introduced by Paul Erdős [30, 29]. This is an interesting topic in mathematics and there
are many unsolved problems about covering systems [31]. Here, we are only concerned with the problem whether a
set of arithmetic progressions forms a covering system. This problem has been shown to becoNP-complete [32, 33].

1HereZ denotes the set of all integers. That isZ = {. . . ,−2,−1, 0, 1,2, . . .}. In the following, we also denote byN the set of natural numbers.
That isN = {0, 1, 2, . . .}.
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In this paper, we primarily discuss unary languages. For a regular languageL over the alphabet{a}, there is a
correspondence between words inL and their lengths. For convenience when we say the wordn, we mean the word
an.

3. The arithmetic progressions of unary languages

In this section, we handle the following problem: Given a standard expressionE2, how to construct a setP =
{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉} of arithmetic progressions such that there exists a numberM ∈ N satisfying |L(E) \
P| + |P \ L(E)| ≤ M. In next section, we will define the equal difference covering system (EDCS) over arithmetic
progressions, show thatL(E) is deterministic, if and only if,P forms anEDCS, and obtain the complexity of deciding
determinism ofL(E).
P is computed by the following function:

Definition 2. The functionS(E) is defined as

S(ε) = {〈0, 0〉}
S(a) = {〈0, 1〉}, a ∈ Σ
S(E1 + E2) = S(E1) ∪ S(E2)
S(E1E2) = {〈gcd(l i , l j), si + sj〉|〈l i , si〉 ∈ S(E1) ∧ 〈l j , sj〉 ∈ S(E2)}
S(E∗1) = {〈l, 0〉|S(E1) = {〈l1, s1〉, . . . , 〈ln, sn〉} ∧ l = gcd(l1, . . . , ln, s1, . . . , sn)}.

The intuition behind the construction ofS(E) is Lemma 1. The casesε, a, andE1 + E2 are obvious. For the case
E1E2, let 〈l1, s1〉 ∈ S(E1) and〈l2, s2〉 ∈ S(E2). Then all numbersk1 · l1 + s1 + k2 · l2 + s2 with k1, k2 ∈ N should be in
S(E). By Lemma 1, these numbers can be written ask · gcd(l1, l2) + s1 + s2, wherek ∈ N. The caseE∗1 is similar.

Example 1. Let E= (aaa+ aa)∗ + (aaa)∗((aa)∗aaa+ (aaa)∗aa). The process of computingS(E) is shown in Table 1.
E1 in the table stands for subexpressions of E. At last,S(E) = {〈1, 0〉, 〈1, 3〉, 〈3, 2〉}. It is easy to see thatS(E) contains
all natural numbers. However, a< L(E) and a is the only word, which is not inL(E).

E1 S(E1) E1 S(E1)

a 〈0,1〉 (aa+ aaa)∗ 〈1, 0〉

aa 〈0,2〉 (aa)∗aaa 〈2, 3〉

aaa 〈0,3〉 (aaa)∗aa 〈3, 2〉

aa+ aaa 〈0,2〉〈0, 3〉 (aa)∗aaa+ (aaa)∗aa 〈2, 3〉〈3, 2〉

(aa)∗ 〈2,0〉 (aaa)∗((aa)∗aaa+ (aaa)∗aa) 〈1, 3〉〈3, 2〉

(aaa)∗ 〈3,0〉 (aaa+ aa)∗ + (aaa)∗((aa)∗aaa+ (aaa)∗aa) 〈1, 0〉〈1, 3〉〈3, 2〉

Table 1: The process of computingS(E)

In Example 1, we can see that words inL(E) are all contained inS(E), and there are only finite many numbers in
S(E), not contained inL(E). In the following, we will show that this is generally held.

Observation 1. Let E be an expression. For any〈l, s〉 ∈ S(E), we have s∈ L(E).

2In this section and next section, we mainly consider standard regular expressions, and when we say a regular expressionE, we mean a standard
regular expressionE. We will handle the corresponding problem for expressions in R(#) in Section 5.
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Proposition 1. Let E be an expression. For any w∈ L(E), there exist an arithmetic progression〈l, s〉 ∈ S(E) and an
integer k∈ N such that|w| = k · l + s.

Proof. We prove it by induction on the structure ofE. The casesE = ε or a (wherea ∈ Σ) are obvious.
E = E1 + E2: For anyw ∈ L(E), we know thatw ∈ L(E1) or w ∈ L(E2). If w ∈ L(E1), then by the inductive

hypothesis there exist〈l, s〉 ∈ S(E1) and an integerk1 ∈ N such that|w| = k1 · l + s. From the definition ofS, we know
thatS(E) = S(E1) ∪ S(E2). Then there exist〈l, s〉 ∈ S(E) andk1 such that|w| = k1 · l + s. The casew ∈ L(E2) can be
proved in a similar way.

E = E1E2: For anyw ∈ L(E), there arew1 ∈ L(E1) andw2 ∈ L(E2) such thatw = w1w2. By the inductive
hypothesis there exist〈l1, s1〉 ∈ S(E1), 〈l2, s2〉 ∈ S(E2), and two integersk1, k2 ∈ N such that|w1| = k1 · l1 + s1 and
|w2| = k2 · l2 + s2. From the definition ofS, we know that〈gcd(l1, l2), s1 + s2〉 ∈ S(E). Moreover,

|w| = |w1w2|

= k1 · l1 + s1 + k2 · l2 + s2

= k1 · k′1 · gcd(l1, l2) + s1 + k2 · k′2 · gcd(l1, l2) + s2

= (k1 · k′1 + k2 · k′2) · gcd(l1, l2) + s1 + s2.

Let k = k1 · k′1 + k2 · k′2. Thenk ∈ N and|w| = k · gcd(l1, l2) + s1 + s2.
E = E∗1: Suppose〈l, 0〉 ∈ S(E). If w = ε, since〈l, 0〉 ∈ S(E), we have|w| = 0 · l + 0. Otherwisew , ε. Then there

arew1 ∈ L(E1), . . . ,wn ∈ L(E1) such thatw = w1 . . .wn. By the inductive hypothesis there exist〈l1, s1〉 ∈ S(E1), . . . ,
〈ln, sn〉 ∈ S(E1), k1, . . . , kn ∈ N such that|w1| = k1 · l1 + s1, . . . , |wn| = kn · ln + sn. From the definition ofS, w ∈ L(E),
andw , ε, it is easy to prove thatl , 0. Then for any〈l′, s′〉 ∈ S(E1), there arek1,1, k1,2, . . . , kn,1, kn,2 ∈ N such that
l1 = k1,1 · l, s1 = k1,2 · l, l2 = k2,1 · l, s2 = k2,2 · l, . . . , ln = kn,1 · l, andsn = kn,2 · l. Hence

|w| = |w1w2 . . .wn|

= k1 · l1 + s1 + k2 · l2 + s2 + . . . + kn · ln + sn

= k1 · k1,1 · l + k1,2 · l + k2 · k2,1 · l + k2,2 · l + . . . + kn · kn,1 · l + kn,2 · l
= (k1 · k1,1 + k1,2 + k2 · k2,1 + k2,2 + . . . + kn · kn,1 + kn,2) · l.

Let k = k1 · k1,1 + k1,2 + k2 · k2,1 + k2,2 + . . . + kn · kn,1 + kn,2. Thenk ≥ 0 and|w| = k · l. Since〈l, 0〉 ∈ S(E) and
k ∈ N, the statement holds.

Proposition 2. Let E be an expression. For any〈l, s〉 ∈ S(E) there exists L∈ N such that L+ t · l + s ∈ L(E) for any
t ∈ N.

Proof. We prove it by induction on the structure ofE. The casesE = ε or a (wherea ∈ Σ) are obvious, sinceL = 0
satisfies the conditions.

E = E1 + E2: Suppose〈l, s〉 ∈ S(E). From the definition ofS, we have〈l, s〉 ∈ S(E1) or 〈l, s〉 ∈ S(E2). If
〈l, s〉 ∈ S(E1), then by the inductive hypothesis there existsL′ ∈ N such thatL′ + t · l + s ∈ L(E1) for any t ∈ N. Let
L = L′. BecauseE = E1 + E2, we know thatL + t · l + s ∈ L(E). Then the conclusion holds. The case〈l, s〉 ∈ S(E2)
can be proved in a similar way.

E = E1E2: Suppose〈l, s〉 ∈ S(E). From the definition ofS, there are〈l1, s1〉 ∈ S(E1) and〈l2, s2〉 ∈ S(E2) such
thatl = gcd(l1, l2) ands= s1+ s2. By the inductive hypothesis there existL1, L2 ∈ N such thatL1+ t1 · l1+ s1 ∈ L(E1)
andL2 + t2 · l2 + s2 ∈ L(E2) for anyt1, t2 ∈ N. Let L = L1 + L2 + 2 · (max(l1, l2))2. Then for any integert ∈ N, there
arek1, k2 ∈ N such that

L + t · l + s
= L1 + L2 + 2 · (max(l1, l2))2 + t · gcd(l1, l2) + s1 + s2

= L1 + L2 + k1 · l1 + k2 · l2 + s1 + s2

= L1 + k1 · l1 + s1 + L2 + k2 · l2 + s2

From the inductive hypothesis andE = E1E2, we haveL + t · l + s ∈ L(E). Then the conclusion holds.
E = E∗1: Suppose〈l, 0〉 ∈ S(E) andS(E1) = {〈l1, s1〉, . . . , 〈ln, sn〉}. Thenl = gcd(l1, l2, . . . , ln, s1, s2, . . . , sn). Be-

causeS(E1) = {〈l1, s1〉, . . . , 〈ln, sn〉}, by the inductive hypothesis there areL1, . . . , Ln ∈ N such that for anyt1, . . . , tn ∈

N, L1 + t1 · l1 + s1 ∈ L(E1), . . . , Ln + tn · ln + sn ∈ L(E1) hold. LetL =
n
∑

i=1
Li + 2 · (max(l1, . . . , ln, s1, . . . , sn))2 +

n
∑

i=1
si .

From Lemma 1, we know that for any integert ∈ N, there arex1, . . . , xn, y1, . . . , yn ∈ N such that
5



P. Lu et al./ Information and Computation 00 (2015) 1–18 6

L + t · l

= (
n
∑

i=1
Li + 2 · (max(l1, . . . , ln, s1, . . . , sn))2 +

n
∑

i=1
si) + t · l

=
n
∑

i=1
(Li + si) +

n
∑

i=1
(xi · l i + yi · si)

=
n
∑

i=1
(Li + xi · l i + si) +

n
∑

i=1
(yi · si).

By the inductive hypothesis, we haveLi + xi · l i + si ∈ L(E1) (1 ≤ i ≤ n). Moreover, from Observation 1, we know

that
n
∑

i=1
(yi · si) ∈ L(E∗1). HenceL + t · l ∈ L(E∗1). Therefore the conclusion holds.

From the above properties, we can conclude that there existsa numberM ∈ N satisfying|L(E)\P|+|P\L(E)| ≤ M.
Moreover, we had built the relation between words inL(E) and arithmetic progressions inS(E), and then we can check
determinism ofL(E) by investigating properties ofS(E).

Now we analyze the time used to computeS(E). Given an expressionE, we computeS(E) in the following way:
We first construct the syntax tree ofE, after that we use a bottom-up traversal to computeS for each node. It is known
that for twom-bit numbers, the greatest common divisor can be computed inO(m2) time [34]. In our computation, the
maximum number inS(E) is not larger than|E|. Then representing each number inS(E) only needsO(log |E|) bits.
Moreover, for each node the algorithm for computing the greatest common divisor has to runO(|E|2) times, especially
for the caseE1 ·E2. Then computingS for each node takesO(|E|2 · log2 |E|) time. Therefore the total time to compute
S(E) is O(|E|3 · log2 |E|).

Given an NFAN, Sawa [35] also gave an algorithm to construct a set of arithmetic progressions such that the
union of these arithmetic progressions is the language accepted byN. The algorithm runs inO(n2 · (n + m)) time,
wheren is the number of states inN andm is the number of transitions inN. The advantage of our method is that
it works merely on original expressions and reaches some kind of the lower bound for the algorithm in [35], since
there is an expressionEn such that|En| = n and every NFA describingL(En) hasΩ(n · (log n)2) transitions [36, 37].
But the price is that we add words in languages. However, we will see later that adding such words does not affect
determinism of languages.

4. Determinism of unary languages

In the previous section, we had derived a set of arithmetic progressions from a given expressionE. We will show
how to use these arithmetic progressions to check determinism ofL(E) in this section.

4.1. Decision problems for Covering Systems

Thecovering problem(CP) is the following problem: Whether a given set of arithmeticprogressions{〈l1, s1〉, 〈l2, s2〉,

. . . , 〈ln, sn〉}, with 0 ≤ si < l i (1 ≤ i ≤ n), forms a covering system? The complexity ofCP is shown in the following
theorem.

Theorem 1([32],[33]). CP is coNP-complete3.

Similarly, an equal difference covering system (EDCS) is a setP of arithmetic progressions,{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln,
sn〉}, with 0 ≤ si < l i (1 ≤ i ≤ n), such that there exist two integers (y, x) (0 ≤ x < y) satisfying the following con-
dition: For any integerk (k ≥ 0), x ≡ k (mod y) if and only if k ≡ si (mod l i) for somei (1 ≤ i ≤ n). Its size is

defined as
n
∑

i=1
(l i + si). We define (y, x) as the answer toP. Sincel i > 0 (0 ≤ i ≤ n), it is easy to see thaty > 0. Let

P = {〈4, 1〉, 〈4, 3〉}. It is straightforward thatP is anEDCS, but is not aCS. The answer toP is (2, 1). Intuitively,
the union of the numbers represented by anEDCS forms an arithmetic progression, while the union of the numbers
represented by aCScontains all non-negative integers. The arithmetic progression represented by union of arithmetic
progressions is studied in the evenly spaced integer topology [38].

3This theorem also holds for more general cases [33], where both of l ands are represented by binary numbers. However, we concentrateon
unary languages of standard expressions here. For this restricted case, the theorem also holds [32].

6
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The equal difference covering problem (EDCP) is defined as follows: Whether a given set of arithmetic progres-
sions{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, with 0 ≤ si < l i (1 ≤ i ≤ n), forms anEDCS?

The complexity ofEDCP can be easily proved by a reduction fromCP. We show the proofs here for the sake of
completeness.

At first, we show how to compute the answer to anEDCS.

Lemma 2. SupposeP is anEDCS. The answer toP is unique.

For a given setP of arithmetic progressions{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, we denoteL = gcd(l1, l2, . . . , ln) and
suppose 0< p1 < p2 < p3 . . . < pm are the distinct divisors ofL.

Lemma 3. SupposeP is an EDCS and the answer toP is (y, x). Then there is an integer k such that y= pk,
k = max{l|∀i∀ j(〈l i , si〉 ∈ P ∧ 〈l j , sj〉 ∈ P ∧ si ≡ sj (mod pl))} and x= (s1 mod pk).

Proof. For any arithmetic progression〈l i , si〉, we havex ≡ si (mody) andx ≡ (si + l i) (mody). Theny|l i . Soy|L and
there is an integerk such thaty = pk. For anysi , sj (1 ≤ i, j ≤ n), by the definition ofEDCS, we havesi ≡ x (modpk),
sj ≡ x (mod pk), andpk|(si − sj). Let k′ = max{l|∀i∀ j(〈l i , si〉 ∈ P ∧ 〈l j , sj〉 ∈ P ∧ si ≡ sj (mod pl))}. BecauseP is an
EDCSand (pk, x) is the answer toP, we can show thatpk′ = pk. Moreover, sinceP is anEDCS, we havex < pk and
there is an integeri such thatx+ i · pk = s1. Hencex = (s1 mod pk).

Given a setP of arithmetic progressions, if we knowP is anEDCS, then we can find the answer toP from the

arithmetic progressions inP. Since we define the size of a cover system as
n
∑

i=1
(l i + si), the answer toP is polynomial-

time computable. It is easy to see that the converse of the lemma does not hold. Consider the following set of
arithmetic progressions:{〈3, 0〉, 〈4, 0〉}. y = 1 andx = 0 satisfy all the conditions, but obviously this set is not an
EDCS.

Bickel et al. [29] gave a method to construct a covering system from a setP of arithmetic progressions, where the
union of numbers represented by these arithmetic progressions contains an arithmetic progression. Inspired by this
idea, we can construct a covering system from anEDCS, and vice versa.

Theorem 2. EDCPis coNP-complete.

Proof. At first, we prove that the problem iscoNP-hard. This can be proved by a reduction fromCP. Given a setP
of arithmetic progressions{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, we construct the setP1 = {〈3 · l1, 3 · s1〉, 〈3 · l2, 3 · s2〉, . . . , 〈3 ·
ln, 3 · sn〉}. Using the definition ofCS andEDCS, we can show that:P is aCS, if and only if,P1 is anEDCS and the
answer toP1 is (3, 0). From Theorem 1 we conclude thatEDCP is coNP-hard.

Next, we show thatEDCP is in coNP. This can be proved by a reduction toCP. SupposeP is the set of arithmetic
progressions{〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}. Then letp = gcd(l1, l2, . . . , ln). From the definition ofEDCP, we know
that p > 0 must hold. Suppose 0< p1 < p2 < . . . < pm are the distinct divisors ofp. We look for an integerk such
thatk = max{l|∀i∀ j(〈l i , si〉 ∈ P ∧ 〈l j , sj〉 ∈ P ∧ si ≡ sj (mod pl))}. If there is not suchk, then from Lemma 3 we know
thatP is not anEDCS. Hence suppose there is ak satisfying the condition. Denotes= (s1 modpk). We construct the
following setQ of arithmetic progressions:{〈 l1

pk
, s1−s

pk
〉, 〈 l2

pk
, s2−s

pk
〉, . . . , 〈 ln

pk
, sn−s

pk
〉}. We can show that:Q is aCS, if and

only if, P is anEDCS. Then to decide whetherP is anEDCS, we only need to check whetherQ is aCS. SinceCP is
in coNPand the computations ofp, pk ands take polynomial time,EDCP is in coNP.

4.2. The complexity of determinism of unary languages

In this section, we will discuss the complexity of deciding determinism of unary languages. For an expressionE,
supposeS(E) = {〈l1, s1〉, 〈l2, s2〉, . . . , 〈ln, sn〉}, and defineL(S(E)) =

⋃

〈l,s〉∈S(E)
{k · l + s|k ∈ N}.

From Proposition 1 and Proposition 2, we know thatL(E) ⊆ L(S(E)), and there are only finite many wordsw
such thatw ∈ L(S(E)) andw < L(E). The relation between determinism ofL(S(E)) andL(E) can be established by
the following lemma.

Lemma 4 ([8]). For any deterministic language L, the following statementshold: (1) If string w ∈ L, then the
language L\ {w} is deterministic;(2) If string w < L, then the language L∪ {w} is deterministic.

7
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Corollary 1. Given an expression E,L(S(E)) is deterministic if and only ifL(E) is deterministic.

Then to check determinism ofL(E), we only need to check determinism ofL(S(E)). Now we study how to check
determinism ofL(S(E)). For a unary language, the corresponding minimal DFA consists of a chain of states or a
chain followed by a cycle [19]. And deterministic regular languages have the following characterization.

Lemma 5 ([19]). LetL be a regular language, thenL is a deterministic language if and only ifL is finite or the cycle
of the minimal DFA ofL has at most one final state.

From the definition ofL(S(E)) and this characterization, we can easily see that to checkdeterminism ofL(S(E))
we only need to check whetherS(E) is anEDCS.

But the tuples〈l, s〉 ∈ S(E) may not satisfy the basic condition 0≤ s < l. Then we simplifyS(E) in the
following ways: (1) Delete all arithmetic progressions in the form〈0, s〉; (2) For〈l, s〉 with l ≤ s, we replace〈l, s〉 with
〈l, s mod l〉. After the simplification, every arithmetic progression〈l, s〉 ∈ S(E) satisfies 0≤ s < l. This process just
deletes or adds a finite number of words inL(S(E)). From Lemma 4, we know that it does not change determinism
of the language. From now on, when we sayS(E), we mean the simplified one.

Theorem 3. SupposeL(S(E)) is infinite.L(S(E)) is deterministic if and onlyS(E) is anEDCS.

Proof. (⇒) SinceL(S(E)) is deterministic, the cycle of the minimal DFAM of L(S(E)) has at most one final state.
Let the size of the cycle bep. SinceL(S(E)) is infinite, p , 0. Denote the start state asq0 and the only final state
in the cycle asq1. Supposew is the shortest word such thatδ(q0,w) = q1. Let s = (w mod p). We can prove that
(p, s) is the answer toS(E). Actually, this can be easily deduced from the following relation between (p, s) and any
〈l i , si〉 ∈ S(E): p|l i andw ≡ si (mod p). It remains to verify this relation.

For any〈l i , si〉 (1 ≤ i ≤ n), sinceq1 is the only final state in the cycle, there is an integerk′′ such thatk′′ · l i + si > w,
δ(q0, k′′ · l i + si) = q1 andδ(q0, k′′ · l i + l i + si) = q1. Thenp|l i and there is an integerk1 such thatw+ k1 · p = k′′ · l i + si .
Hencew ≡ si (mod p).

(⇐) SupposeS(E) is anEDCS, and (p, s) is the answer toS(E). If L(S(E)) is not deterministic, then there are two
final statesp1 andp2 in the cycle of the minimal DFA ofL(S(E)). Denote the start state asq0. Then there are words
k1 andk2 such thatδ(q0, k1) = q1, δ(q0, k2) = q2, k1 ∈ L(S(E)) andk2 ∈ L(S(E)). Let F be the set of final states of the
minimal DFA ofL(S(E)). Becausep1 andp2 are not equivalent, there is a wordk such thatδ(q1, k) ∈ F∧δ(q2, k) < F
or δ(q1, k) < F ∧ δ(q2, k) ∈ F holds. Suppose the caseδ(q1, k) ∈ F ∧ δ(q2, k) < F holds. FromS(E) is anEDCS and
δ(q1, k) ∈ F, we can show thatp|k. On the other hand, fromδ(q2, k) < F, we havek + k2 . s (mod p). Thenp6 |k,
which is a contradiction. HenceL(S(E)) is deterministic. The caseδ(q1, k) < F ∧ δ(q2, k) ∈ F can be proved in a
similar way.

From Theorem 2 and Theorem 3, we can obtain the complexity of checking determinism ofL(E) for an expression
E as follows.

Theorem 4. Given a regular expression E, the problem of deciding whether L(E) is deterministic iscoNP-complete.

For any expressionE = E∗1, we have|S(E∗1)| = 1 from the definition ofS. ThenS(E∗1) is anEDCS. Hence we can
easily obtain the following theorem.

Theorem 5([14]). LetL be any unary language. ThenL∗ is deterministic.4

5. The complexity of determinism of unary languages in R(#)

In this section, we consider the case for expressions with counting.

4This theorem also follows from Lemma 4.1 in [39] and Lemma 4.

8
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5.1. The main idea

SupposeE is an expression in R(#) and the minimal DFA forL(E) isM. To check determinism ofL(E), we first
give an upper bound for the size ofM, and then develop an algorithm to check non-determinism ofL(E).

At first, we give an upper bound for the size ofM. Pighizzini et al. [28] had proved that for any unary context-free
grammarG in Chomsky normal form with at least two variables, there will be a DFAD with less than 2h

2
states

acceptingL(G), whereh is the number of variables inG. To use this result, we need to derive fromE a context-free
grammar satisfying the required conditions.

Based on the structure ofE, we can inductively construct a unary context-free grammarG = (VE, {a},PE,S) with
at most 2· |E| variables acceptingL(E). The key point of the construction is how to handle subexpressions likeE[m,n]

1

andE[m,∞]
1 . A straightforward way to changeE[m,n]

1 andE[m,∞]
1 into a grammar in Chomsky normal form will introduce

exponentially many variables [22, 24]. To avoid this, we usethe ideas of bisection. The construction is quite standard.
Take the caseE = E[2,3]

1 as an example. SupposeL(AE1) = L(E1), (2)10 = (10)bin
5, and (3− 2)10 = (1)bin. Then we

can use the following grammar to representL(E):

AE → D1F0 D1→ B1D0 D0→ ε F0→ B′0
B1→ B0B0 B0→ AE1 B′0→ AE1 B′0→ ε

From the above construction, we can show that there are at most 2 · |E| variables inG. However,G is not in
Chomsky normal form. We can use the algorithm in [24] to change G into a new grammarG′ such thatG′ is in
Chomsky normal form andL(G′) = L(G) \ {ε}. Moreover, variables inG′ are the same as the ones inG. Then
from [28], we know that there is a DFAD with no more than 24·|E|

2
states acceptingL(E). Therefore, the size ofM

cannot be larger than 24·|E|2.
Using this bound, we can obtain an algorithm to check non-determinism ofL(E). At first, we give another

characterization of determinism of regular languages. Suppose the initial state ofM is q0.

Lemma 6. SupposeL(M) is infinite. ThenL(M) is not deterministic if and only if there are three words w1, w2, and
w3 such that|w1| > |M|, |w2| > |M|, |w3| > |M|, w1 ∈ L(M), w2 ∈ L(M), w1 · w3 ∈ L(M), and w2 · w3 < L(M).

Proof. From Lemma 5 and the definition of equivalent states, we know thatL(M) is not deterministic, if and only if,
there are two non-equivalent final states, denoted byq1 = δ(q0,w′1) andq2 = δ(q0,w′2), in the cycle ofM, if and only
if, there is a wordw′ such that one ofδ(q1,w′) andδ(q2,w′) is a final state, while the other is not. We assume,w.l.o.g,
thatδ(q1,w′) is a final state. Suppose the length of the cycle ofM is C. Let w1 = w′1 + |M| · C, w2 = w′2 + |M| · C,
andw1 = w′ + |M| ·C. From the structure ofM, it can be verified thatw1, w2, andw3 satisfy the required conditions.
Then the conclusion holds.

Following this lemma, to check non-determinism ofL(E), we first guess three sufficiently long wordsw1, w2, and
w3 such that the sizes ofw1,w2, andw3 are larger than the size ofM. Let q1 = δ(q0,w1) andq2 = δ(q0,w2). Thenq1

andq2 are states in the cycle ofM. If w1 ∈ L(E), w2 ∈ L(E), w1 · w3 ∈ L(E), andw2 · w3 < L(E), thenq1 andq2 are
two distinct final states in the cycle, and we can conclude that L(E) is not deterministic.

By extending the functionS, we can improve the upper bound for|M| to 2O(|E|). Since Kilpeläinen and Tuhka-
nen [20, 21] had shown that the lower bound is 2Ω(|E|), our upper bound is tight.

5.2. The arithmetic progressions of regular expressions inR(#)

At first, we define theS function for expressions in R(#). We can define it as before, but using such definition
cannot improve the upper bound 24·|E|2. We need more details about the structure of words inL(E) as done in the
proof of Lemma 4 in [28]. So we define the following intermediate functionS1. Note that in this definition, the pairs
in S1(E) are not in the form〈l, s〉 as before, but pairs of the form〈{l1, l2, ..., ln}, s〉 representing the sets of numbers,
which can be written ask1 · l1 + k2 · l2 + ... + kn · ln + s.

5(m)10 = (bibi−1 . . . b0)bin stands for that the binary encoding of the decimal numberm is bibi−1 . . .b0.

9
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Definition 3. The functionS1(E) is defined as

S1(ε) = {〈{0}, 0〉}
S1(a) = {〈{0}, 1〉}, a ∈ Σ
S1(E1 + E2) = S1(E1) ∪ S1(E2)
S1(E1E2) = {〈L1 ∪ L2, s1 + s2〉|〈L1, s1〉 ∈ S1(E1) ∧ 〈L2, s2〉 ∈ S1(E2)}

S1(E[m,n]
1 ) =

⋃

m≤i≤n
{〈
⋃

1≤ j≤i
L j ,

i
∑

j=1
sj〉|〈L j , sj〉 ∈ S1(E1)}

S1(E[m,∞]
1 ) = {〈

⋃

〈Lk,sk〉∈S1(E1)
((
⋃

l′∈Lk

{l′ + sk}) ∪ {sk}),
m
∑

j=1
sj〉|〈L j , sj〉 ∈ S1(E1)}.

The first four cases are easy to understand, we give a simple example to show the computations of the last two
cases. SupposeS1(E1) = {〈{2, 3}, 1〉, 〈{4, 5}, 2〉}. Then

S1(E[2,3]
1 )

= {〈{2, 3}, 1+ 1〉, 〈{2, 3, 4, 5}, 1+ 2〉, 〈{4, 5}, 2+ 2〉,
〈{2, 3}, 1+ 1+ 1〉, 〈{2, 3, 4, 5}, 1+ 1+ 2〉, 〈{2, 3, 4, 5}, 1+ 2+ 1〉,
〈{2, 3, 4, 5}, 1+ 2+ 2〉,
〈{2, 3, 4, 5}, 2+ 1+ 1〉, 〈{2, 3, 4, 5}, 2+ 1+ 2〉, 〈{2, 3, 4, 5}, 2+ 2+ 1〉,
〈{4, 5}, 2+ 2+ 2〉}

= {〈{2, 3}, 2〉, 〈{2, 3}, 3〉, 〈{4, 5}, 4〉, 〈{4, 5}, 6〉,
〈{2, 3, 4, 5}, 3〉, 〈{2, 3, 4, 5}, 4〉, 〈{2, 3, 4, 5}, 5〉}

and,

S1(E[2,∞]
1 )

= {〈{2+ 1, 3+ 1, 1, 4+ 2, 5+ 2, 2}, 1+ 1〉,
〈{2+ 1, 3+ 1, 1, 4+ 2, 5+ 2, 2}, 1+ 2〉,
〈{2+ 1, 3+ 1, 1, 4+ 2, 5+ 2, 2}, 2+ 1〉,
〈{2+ 1, 3+ 1, 1, 4+ 2, 5+ 2, 2}, 2+ 2〉}

= {〈{1, 2, 3, 4, 6, 7}, 2〉, 〈{1, 2,3,4, 6, 7}, 3〉, 〈{1, 2, 3, 4, 6, 7},4〉}.

The following example shows how to computeS1(E) in a bottom-up manner.

Example 2. Let E = ((aaa+ aa)[1,2])[0,∞] + (aaa)[2,∞]((aa)[0,∞]aaa+ (aaa)[0,∞]aa). The process of computingS1(E)
is shown in Table 2.

The reason, why we defineS1(E[m,∞]
1 ) in such a way, will be clear after the proof of Proposition 3.

We will give some bounds for the numbers occurring in tuples of S1(E). Suppose〈L, s〉 ∈ S1(E). The bound for
s is given by the following function.

Definition 4. The functionR(E) is defined as

R(ε) = 0
R(a) = 1
R(E1 + E2) = max(R(E1),R(E2))
R(E1E2) = R(E1) + R(E2)
R(E[m,n]

1 ) = n · R(E1)
R(E[m,∞]

1 ) = m · R(E1).

According to the definition, we can obtain the following bounds. The proofs are quite straightforward.
10
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E1 S(E1) E1 S(E1)

a 〈{0}, 1〉 (aa+ aaa)[1,2] 〈{0}, 2〉, 〈{0},3〉, 〈{0}, 4〉, 〈{0}, 5〉, 〈{0},6〉

aa 〈{0}, 2〉 ((aa+ aaa)[1,2])[0,∞] 〈{2,3, 4, 5, 6}, 0〉

aaa 〈{0}, 3〉 (aa)[0,∞] aaa 〈{0, 2},3〉

aa+ aaa 〈{0}, 2〉〈{0}, 3〉 (aaa)[0,∞] aa 〈{0, 3},2〉

(aa)[0,∞] 〈{2}, 0〉 (aa)[0,∞] aaa+ (aaa)[0,∞] aa 〈{0,2}, 3〉〈{0, 3}, 2〉

(aaa)[0,∞] 〈{3}, 0〉 (aaa)[2,∞] ((aa)[0,∞] aaa+ (aaa)[0,∞] aa) 〈{0, 2, 3}, 9〉〈{0, 3},8〉

(aaa)[2,∞] 〈{3}, 6〉 ((aa+ aaa)[1,2])[0,∞] + (aaa)[2,∞] ((aa)[0,∞] aaa+ (aaa)[0,∞] aa) 〈{2,3, 4, 5, 6}, 0〉, 〈{0, 2,3}, 9〉〈{0, 3}, 8〉

Table 2: The process of computingS1(E)

Observation 2. Let E be an expression in R(#). We haveR(E) ≤ 2|E|.

Lemma 7. Let E be an expression in R(#). For any〈L, s〉 ∈ S1(E), we have s≤ R(E).

Lemma 8. Let E be an expression in R(#). There exists a tuple〈L, s〉 ∈ S1(E) such that s= R(E).

Lemma 9. Let E be an expression in R(#). For any〈L, s〉 ∈ S1(E), we have s∈ L(E).

Lemma 10. Let E be an expression in R(#). For any〈L, s〉 = 〈{l1, l2, . . . , lr }, s〉 ∈ S1(E), we have li ≤ 2|E| (1 ≤ i ≤ r).

The following proposition is central to the proof of the upper bound 2O(|E|). To simplify the proof, we define the
following indicator function.

1S(x) =

{

1 if x ∈ S,
0 if x < S;

Proposition 3. Let E be an expression in R(#) and〈L, s〉 = 〈{l1, . . . , lr }, s〉 ∈ S1(E). For any x1, . . . , xr ∈ N, we have

f (L, s) =
r
∑

i=1
xi · l i + s ∈ L(E).

Proof. We prove it by induction on the structure ofE. The casesE = ε or a (wherea ∈ Σ) are obvious.
E = E1 + E2: From the definition ofS1, we have〈L, s〉 ∈ S1(E1) or 〈L, s〉 ∈ S1(E2). If 〈L, s〉 ∈ S1(E1), then

by the inductive hypothesis, for anyx1, . . . , xr ∈ N, we havef (L, s) ∈ L(E1). Then sinceE = E1 + E2, we have
f (L, s) ∈ L(E). The case〈L, s〉 ∈ S1(E2) can be proved in a similar way.

E = E1E2: From the definition ofS1, there are〈L1, s1〉 = 〈{l1,1, . . . , l1,r1}, s1〉 ∈ S1(E1) and 〈L2, s2〉 = 〈{l2,1,
. . . , l2,r2}, s2〉 ∈ S1(E2) such thatL = L1 ∪ L2 ands = s1 + s2. DenoteT = L1 ∩ L2. By the inductive hypothesis, for
anyx1

1, . . . , x
1
r1
∈ N, andx2

1, . . . , x
2
r2
∈ N, we know thatf (L1, s1) ∈ L(E1) and f (L2, s2) ∈ L(E2). In fact, f (L1, s1) and

f (L2, s2) correspond to
r1
∑

i=1
x1

i ·l1,i+s1 and
r2
∑

i=1
x2

i ·l2,i+s2, respectively. The full expansions will mess the followingproof,

so we use these simple notations. It will be clear from the context what f (L′, s′) means. Then for anyx1, . . . , xr ∈ N,
there arey1

1, y
2
1, . . . , y

1
r , y

2
r ∈ N such thatx1 = y1

1 + y2
1, . . . , xr = y1

r + y2
r , and

f (L, s)

=
r
∑

i=1
(xi · l i) + s

=
r
∑

i=1
[(1L1\T(l i) + 1T(l i) + 1L2\T(l i)) · xi · l i ] + s1 + s2

=
r
∑

i=1
(1L1\T(l i) · xi · l i) +

r
∑

i=1
(1T(l i) · xi · l i) +

r
∑

i=1
(1L2\T(l i) · xi · l i) + s1 + s2

11
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=
r
∑

i=1
(1L1\T(l i) · xi · l i) +

r
∑

i=1
(1T(l i) · (y1

i + y2
i ) · l i) +

r
∑

i=1
(1L2\T(l i) · xi · l i) + s1 + s2

=
r
∑

i=1
(1L1\T(l i) · xi · l i) +

r
∑

i=1
(1T(l i) · y1

i · l i) + s1

+
r
∑

i=1
(1T(l i) · y2

i · l i) +
r
∑

i=1
(1L2\T(l i) · xi · l i) + s2.

By the inductive hypothesis, we know that
r
∑

i=1
(1L1\T(l i) · xi · l i) +

r
∑

i=1
(1T(l i) · y1

i · l i) + s1 ∈ L(E1) and
r
∑

i=1
(1T(l i) · y2

i ·

l i) +
r
∑

i=1
(1L2\T(l i) · xi · l i) + s2 ∈ L(E2). Hencef (L, s) ∈ L(E).

E = E[m,n]
1 : Suppose〈L, s〉 ∈ S1(E), there exist〈L1, s1〉 ∈ S1(E1), . . . , 〈Li , si〉 ∈ S1(E1) such thatm ≤ i ≤ n,

L =
⋃

1≤ j≤i
L j , and s =

i
∑

j=1
sj . By the inductive hypothesis, for anyx1,1, . . . , x1,r1, . . . , xi,1, . . . , xi,r i ∈ N, we have

f (L1, s1) ∈ L(E1), . . . , andf (Li , si) ∈ L(E1). Then for anyx1, . . . , xr ∈ N,

f (L, s)

=
r
∑

k=1
(xk · lk) + s

=
r
∑

k=1
[(

i
∑

j=1
(1L j (lk) · x

j
k)) · lk] +

i
∑

j=1
sj

=
i
∑

j=1
[

r
∑

k=1
(1L j (lk) · x

j
k · lk) + sj ].

By the inductive hypothesis, we know that [
r
∑

k=1
(1L j (lk) · x

j
k · lk) + sj ] ∈ L(E1). Becausem ≤ i ≤ n, we know that

f (L, s) ∈ L(E).

E = E[m,∞]
1 : LetS1(E1) = {〈L1, s1〉, . . . , 〈Ln, sn〉}. Then from the definition ofS1, we know thatL =

⋃

〈Lk,sk〉∈S1(E1)
((
⋃

l′∈Lk

{l′+

sk}) ∪ {sk}). And there exist〈L′1, s
′
1〉, . . . , 〈L

′
m, s

′
m〉 ∈ S1(E1) such thats =

m
∑

j=1
s′j . By the inductive hypothesis for any

x1,1, . . . , x1,r1, . . . , xn,1, . . . , xn,rn ∈ N, we havef (L1, s1), . . . , f (Ln, sn) ∈ L(E1). Let T1 =
⋃

〈Lk,sk〉∈S1(E1)
(
⋃

l′∈Lk

{l′ + sk}) and

T2 =
⋃

〈Lk,sk〉∈S1(E)
{sk}. Then for anyx1, . . . , xr ∈ N,

f (L, s)

=
r
∑

k=1
(xk · lk) + s

=
r
∑

k=1
[(1T1(lk) + 1T2\T1(lk)) · xk · lk] +

m
∑

j=1
s′j

=
r
∑

k=1
(1T1(lk) · xk · lk) +

r
∑

k=1
(1T2\T1(lk) · xk · lk) +

m
∑

j=1
s′j .

If 1T1(lk) , 0 for some integerk (1 ≤ k ≤ r), by the inductive hypothesis,1T1(lk) · lk = lk = l′ + sk ∈ L(E1). Hence
r
∑

k=1
(1T1(lk) · xk · lk) ∈ L(E[0,∞]

1 ). From Lemma 9, we know that
r
∑

k=1
(1T2\T1(lk) · xk · lk) ∈ L(E[0,∞]

1 ), and
m
∑

j=1
s′j ∈ L(E[m,∞]

1 ).

Thereforef (L, s) ∈ L(E).

From the proof in the last case, we can see the reason for using
⋃

l′∈Lk

{l′ + sk} to defineS1(E[m,∞]
1 ), instead of

⋃

l′∈Lk

{l′}.

The inductive hypothesis cannot ensurel′ ∈ L(E1). Having this property, we can define theS function as follows.

Definition 5. The functionS(E) is defined as

S(E) = {〈gcd(L), s〉|〈L, s〉 ∈ S1(E)}.

12
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If S(E) = {〈l1, s1〉, . . . , 〈ln, sn〉}, we also define gcd(S(E)) = gcd(l1, l2, . . . , ln, s1, . . . , sn). Now we can prove that
the functionS can be computed as before.

Lemma 11. Let E be a regular expression in R(#).
(1) E = ε : S(ε) = {〈0, 0〉}
(2) a ∈ Σ : S(a) = {〈0, 1〉}, a ∈ Σ
(3) E = E1 + E2 : S(E1 + E2) = S(E1) ∪ S(E2)
(4) E = E1E2 :

S(E1E2) = {〈gcd(l1, l2), s1 + s2〉|〈l1, s1〉 ∈ S(E1) ∧ 〈l2, s2〉 ∈ S(E2)}

(5) E = E[m,n]
1 :

S(E[m,n]
1 ) =

⋃

m≤i≤n

{〈gcd(l1, l2, . . . , l i),
i
∑

j=1

sj〉|〈l j , sj〉 ∈ S(E1)}

(6) E = E[m,∞]
1 :

S(E[m,∞]
1 ) = {〈gcd(S(E1)),

m
∑

j=1

sj〉|〈l j , sj〉 ∈ S(E1)}.

Moreover, theS function has properties similar to the ones in Proposition 1and Proposition 2.

Proposition 4. Let E be an expression in R(#). For any w∈ L(E), there exist an arithmetic progression〈l, s〉 ∈ S(E)
and an integer k∈ N such that|w| = k · l + s.

Proof. Since the proof of this proposition is almost the same as the one for Proposition 1, we omit the details here.

Proposition 5. Let E be an expression in R(#). For any〈l, s〉 ∈ S(E) there exists L∈ N such that L+ t · l + s ∈ L(E)
for any t∈ N, and L≤ 22|E|+1.

Proof. For any〈l, s〉 ∈ S(E), there exists a tuple〈{l1, l2, . . . , lr}, s〉 ∈ S1(E) such thatl = gcd(l1, l2, . . . , lr ). From

Proposition 3, we have
r
∑

i=1
(xi · l i) + s ∈ L(E) for anyx1, . . . , xr ∈ N. And for anyt ∈ N, 2 · (max(l1, l2, . . . , lr))2 + t · l

can be expressed as
r
∑

i=1
(yi · l i) with yi ∈ N by Lemma 1. Hence 2· (max(l1, l2, . . . , lr))2 + t · l + s ∈ L(E). Let

L = 2 · (max(l1, l2, . . . , lr ))2. ThenL + t · l + s ∈ L(E). And from Lemma 10, we haveL = 2 · (max(l1, l2, . . . , lr ))2 ≤

2 · (2|E|)2 ≤ 22|E|+1.

As before, we define the languageL(S(E)) =
⋃

〈l,s〉∈S(E)
{k · l + s|k ∈ N}. From the definition ofS, we know that

S(E) consists of finite many arithmetic progressions. From thiswe will construct an NFA in Chrobak normal form
and then a DFAB such that|B| ≤ 2O(|E|) andL(B) = L(S(E)) in next section. From above properties, we know that
L(E) ⊆ L(S(E)) and there existsM ∈ N such that|L(S(E)) \ L(E)| ≤ M. Then we can construct a DFA forL(E)
fromB by changing finite many final states, which are not in the cycle, into non-final states. Moreover, we obtain the
desired upper bound for the minimal DFA forL(E).

Before showing the construction ofB, we firstly establish a numberM ∈ N such that|L(S(E)) \ L(E)| ≤ M. To
this end, we need to know bounds for numbers inS(E). Suppose〈l, s〉 ∈ S(E). The bound fors is also given by
Lemma 7. The bound forl is computed by the following function.

Definition 6. The functionI(E) is defined as:

I(ε) = {0}
I(a) = {0}
I(E1 + E2) = I(E1) ∪ I(E2)
I(E1E2) = I(E1) ∪ I(E2)
I(E[m,n]

1 ) = I(E1)

I(E[m,∞]
1 ) =

{

{R(E1)} if I(E1) = {0},
I(E1) otherwise;

13
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The following properties are straightforward.

Observation 3. Let E be a regular expression in R(#). We have|I(E)| ≤ |E|.

Observation 4. Let E be a regular expression in R(#). For any l∈ I(E), we have l≤ 2|E|.

Lemma 12. Let E be a regular expression in R(#). If I(E) = {l1, l2, . . . , ln}, then
n
∏

i=1
l i ≤ 2|E|.

We establish the relations between arithmetic progressions inS and the numbers inI as follows.

Lemma 13. Let E be a regular expression in R(#). If for any〈l, s〉 ∈ S(E), we have l= 0, thenI(E) = {0}.

Lemma 14. Let E be a regular expression in R(#). For any〈l, s〉 ∈ S(E) (l , 0), there is an l1 ∈ I(E) such that l1 , 0
and l|l1.

Since we have the bounds forl ands, the bound for|S(E)| is straightforward.

Lemma 15. Let E be a regular expression in R(#). We have|S(E)| ≤ 22|E|.

Then from Proposition 5, we have the following property.

Corollary 2. Let E be a regular expression in R(#). If w < L(E) and w∈ L(S(E)), then|w| ≤ 22|E|+2.

5.3. The upper bound for the minimal DFA

According to the construction in [23], Proposition 5, and Corollary 2, we can obtain the upper bound for the size
of the minimal DFA for an expression in R(#) as follows.

Theorem 6. Let E be a regular expression in R(#). The number of states of the minimal DFA forL(E) is at most
22|E|+4.

Proof. From the construction in [23], we can construct a DFAA with the desired size as follows:

(1) Compute the setS(E).

(2) Construct an NFAN in Chrobak normal form such thatL(N) = L(S(E)), and then use the method in Theorem
4.4 in [23] to construct an equivalent DFAD such thatL(D) = L(N).

(3) Copy the cycle to extendD such that the chain of the resulting DFAB has 22|E|+2 + 1 states, andL(B) = L(D).
One additional state is required for the initial state. Suppose the initial state ofB is q0.

(4) Delete every wordw such that|w| ≤ 22|E|+2, w < L(E) andw ∈ L(S(E)). That is ifq = δ(q0,w), q is a final state
of B, andw < L(E), then we setq as a non-final state.

Using the bounds forl, s, and|S|, we estimate the sizes ofN andD in step (2) as follows. SinceN is in Chrobak
normal form, from the construction in [23], we have|N| ≤ R(E) + |S| ·max(I(E))+ 1 ≤ 2|E| + 22|E| · 2|E| + 1 ≤ 23|E|+2.
From [23], Corollary 2, Lemma 12, and Lemma 14, the size ofD can be estimated as follows:|D| ≤ R(E)+

∏

l i∈I(E)
l i +

1 ≤ 2|E|+1 + 1.
Since the chain ofB has 22|E|+2+1 states, we have|B| ≤ 22|E|+2+1+ |D| ≤ 22|E|+4. Because step (4) does not affect

the number of states ofB, we conclude that|A| = |B| ≤ 22|E|+4.
From Proposition 4,L(E) ⊆ L(B) holds. And from Corollary 2, we know that step (4) removes all word w such

thatw ∈ (L(B) \ L(E)). ThenL(A) = L(E).

We give an example to show the construction in Theorem 6. LetE = a(a[4,4])[0,∞] · aa(a[6,6])[0,∞] + (aa)[0,∞] ·

aaaaaaa+ (aaa)[0,∞] · aaaa.

(1) S(E) = {〈2, 3〉, 〈2, 7〉, 〈3, 4〉}, and|E| = 67.
14
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(2) We get an NFAN in Chrobak normal form in Figure 1, and a DFAD in Figure 2.

(3) We extendD such that the size of the chain of the resulting DFA is 22|E|+2 + 1 = 2136+ 1. Notice that 2136 ≡

4 (mod 6). The resulting DFA is shown in Figure 3.

(4) We can check thatw = aaaaa(|w| = 5) is the only word such thatw ∈ L(S(E)) \ L(E). Then we get the final
DFA acceptingL(E) in Figure 4.

Since there exists an expressionE in R(#) such that every DFA acceptingL(E) has at leastΩ(2|E|) states [20, 21],
the upper bound 2O(|E|) is tight.

5.4. Checking determinism of languages of expressions in R(#)

For an expressionE in R(#), since the minimal DFA ofL(E) is of single-exponential size, we can non-deterministically
check whether the cycle of the minimal DFA has at least two final states as follows.

Before showing the algorithm, we first consider the complexity of the following problem.

PROBLEM: Member(E,w)

INPUT: A regular expressionE in R(#), and a binary numberw.

That isw = b0b1 . . .bn and (w)bin = b02n + b12n−1 + . . . + bn.
QUESTION: (w)bin ∈ L(E)?

Following the proof of Lemma 5.1 in [32], we can obtain the complexity of Member(E,w) as follows.

Theorem 7([32]). Member(E,w) is NP-complete.

Using Lemma 5, Lemma 6, Theorem 6, and Theorem 7, we give the following straightforward algorithm to check
whetherL(E) is not deterministic.

(1) Guess three binary numbersw1, w2, andw3 such that
2|E| + 4 ≤ |wi | ≤ 2|E| + 5 (1≤ i ≤ 3).

(2) Check Member(E,w1), Member(E,w2), Member(E,w1 + w3), and Member(E,w2 + w3).

(3) If (w1)bin ∈ L(E), (w2)bin ∈ L(E), (w1 + w3)bin ∈ L(E), and (w2 + w3)bin < L(E), then the cycle of the minimal
DFA will have at least two distinct final states, andL(E) is not deterministic.

Since Member(E,w) is NP-complete, we get the desired result as follows.

Theorem 8. Given a regular expression E in R(#), the problem of deciding whetherL(E) is deterministic is inΠp
2.

Is it possible to prove this problem isΠp
2-hard by a reduction from the corresponding version ofEDCP, where all

numbers are binary numbers? We give a negative answer to thisquestion.

The correspondingEDCSII is defined almost the same asEDCS, excepted that its size is defined as
n
∑

i=1
(log(l i) +

log(si))6. TheEDCPII is defined as follows: Does a given setP satisfying the above conditions form anEDCSII ?

Theorem 9. EDCPII is coNP-complete.

Proof. Since the lower bound follows from Theorem 2, we mainly deal with the upper bound7. At first, we need the
following property.

6If this condition holds, for an arithmetic progression〈l, s〉, l and s can be represented by binary numbers such that the input instanceP has
polynomial size. For example, the arithmetic progression〈2, 5〉 can be represented by〈10, 101〉, and its size is less than 5.

7This algorithm is provided by the reviewers of DLT 2013.

15
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Figure 1: An NFA acceptingL(S(E)) in Chrobak normal form.

Figure 2: A DFA acceptingL(S(E)).

2136+ 1 states

6 states A copy of the cycle

Figure 3: The extended DFA acceptingL(S(E)).

2136+ 1 states

6 states A copy of the cycle

Figure 4: A DFA acceptingL(E).

16
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Claim 1. SupposeP is anEDCSII and the answer toP is (y, x). Then y= gcd(l1, l2, . . . , ln, s1− s2, s1− s3, . . . , s1− sn)
and x= (s1 mody).

Then checking whetherP is not anEDCSII can be done as follows: (1) Computey = gcd(l1, l2, . . . , ln, s1− s2, s1−

s3, . . . , s1 − sn) andx = (s1 mod y); (2) Guess an integerz ∈ N such thatz ≤
n
∏

i=1
l i ; (3) Check whether one of the

following two conditions holds: (I)z ≡ x(mod y) andz . si(mod l i) for any i (1 ≤ i ≤ n); (II) z . x(mod y) and
z≡ si(mod l i) for somei (1 ≤ i ≤ n).

From Lemma 2 and Claim 1, we know that ifP is anEDCSII , then (y, x) is the answer. We only need to check
whether (y, x) is the answer. From the definition ofEDCSII , we know that (y, x) is not the answer iff there is an integer
z ∈ N such that condition (I) or condition (II) holds. From the Chinese Remainder Theorem [34], we know that there

is such an integerzsatisfyingz≤
n
∏

i=1
l i .

It is easy to see that computations ofy andx take polynomial time. Since log(
n
∏

i=1
l i) =

n
∑

i=1
log(l i) ≤ p(n), we have

z ≤ 2p(n). Moreover, we can check whether the equationsz ≡ x(mody), z ≡ s1(mod l1), . . . , andz ≡ sn(mod ln) hold
in polynomial time. Then the whole checking algorithm takespolynomial time.

Hence whetherP is not anEDCSII can be checked in non-deterministic polynomial time, and checking whether
P is anEDCSII is in coNP. ThereforeEDCPII is coNP-complete.

6. Conclusion and future work

In this paper, we show a derivation method to derive a set of arithmetic progressions from a regular expression.
There is a close relation between these arithmetic progressions and the language of the expression. Using this relation,
we investigate the complexity of deciding determinism of regular languages over a unary alphabet. And we conclude
that the problem, whether a regular language defined by a standard regular expression of any alphabet size can be
defined by a deterministic expression with counting, iscoNP-hard. Moreover, by extending the derivation method,
we show an upper bound for the size of the minimal DFA of the language of an expression over a unary alphabet with
counting. Then we show that checking determinism of the languages of regular expressions over a unary alphabet
with counting is inΠp

2. For the general case, this problem has been shown to beEXPSPACE-complete [16].
There is one problem remained: the lower bound for the problem of checking determinism of the languages of

regular expressions over a unary alphabet in R(#). Theorem 4shows that this problem iscoNP-hard. But it is unlikely
that this problem is incoNP, since the membership problem for standard expressions takes polynomial time, while the
problem for expressions in R(#) isNP-complete. As noted in [40], the lower bound for checking determinism of the
languages of regular expressions can be obtained by a reduction from the universality problem for regular expressions.
However, the exact complexity of the universality problem for regular expressions over a unary alphabet in R(#) is
unknown.
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