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(a) Task accuracy (b) Task completion time

Fig. 14: User experiment results.

ground-truth answers. “Can not answer” choice is classified
into false. We conducted binary logistic regressions to
capture the boolean value of the accuracy. The choice of
visualization, data set and task were used as independent
variables, and the binary accuracy variable was used as the
dependent variable. Results show that the contribution of
the visualization method to the task accuracy variation is
statistically significant (p < .005). Compared to the 1.5D
Vis, the Movie approach decreases the likelihood (odds)
of correctly answering each task to 17.1 percents of the
1.5D Vis (95% CI = [5.6, 52], p < .005), controlling
for differences in data set and task. Similarly, the SMD
approach decreases this likelihood (odds) to 15.3 percents
of the 1.5D Vis (95% CI = [5, 46.7], p < .005). The
goodness of fit of this logistic regression model is 0.361
(Nagelkerke R Square). The raw task accuracy distribution
in Figure 14(a) indicates the same result: the 1.5D Vis
approach receives the lowest overall error rate (7/48) than
both the Movie approach (20/48) and the SMD approach
(21/48). In the split view, the 1.5D Vis again receives the
lowest error rate on non-temporal tasks (4/24), close to the
Static approach (5/24) and much better than Movie (13/24)
and SMD approaches (10/24). On temporal tasks, the result
is similar: the 1.5D Vis has a much lower error rate (3/24)
than Movie (7/24) and SMD approaches (11/24).

Task completion time: We applied the analysis of vari-
ance (ANOVA) test to study the impact of visualization,
data set and task choice on the task completion time.
Because of our Latin square study design, we can not
use the repeated-measure ANOVA test to partition out the
variability of individual participants. Instead, we applied
a three-way ANOVA model, in which the numerical task
completion time was used as the dependent variable, the
visualization, data set, and task choice were used as three
independent variables. Only main effect on each factor was
modeled, high-order interactions among three factors were
not captured. We validated both the normality (p > .1 in
Shapiro-Wilk test) and homogeneity of variance (p > .05
in Levene’s test) assumptions on the dependent variable
before conducting the ANOVA test. Results show that, with
three-way ANOVA, there are significant main effects of
the visualization method (F(2,131) = 16.3, p < .001) and
the task choice (F(6,131) = 5.45, p < .001) on the task
completion time. There is no significant main effect of the
data set choice on the task completion time. A Tukey’s

post-hoc comparison among different visualization groups
indicates that the 1.5D Vis group (M=55.0, 95% CI =
[38.4, 71.7]) leads to significantly shorter task completion
times than the Movie group (M=123.3, 95% CI = [106.5,
140.2]), p < .001, and the SMD group (M=85.6, 95% CI
= [69.0, 102.3]), p < .05. The SMD group also has signifi-
cantly shorter task completion times than the Movie group,
p < .01, which is coherent with previous study results on
general dynamic networks [33]. The raw task completion
time shown in Figure 14(b) indicates the same comparative
result on both non-temporal and temporal tasks. On the
non-temporal tasks only, the difference between the 1.5D
Vis group (M=56.4, 95% CI = [38.1, 74.7]) and the Static
group (M=62.4, 95% CI = [43.8, 81.0]) is not significant.

Here we should note that, during the experiment we did
not distinguish the time to read the question and write-
down the answer from the task completion time. Therefore,
the task completion time measure may not be exactly
representative to account for the technique differences,
though in general participant’s difference in reading and
writing speed does not vary much when they are told to
work in best-effort on short, simple tasks.

Subjective feedback: We analyzed participant’s subjective
ratings by the Kruskal-Wallis test, which does not require a
normality assumption of the observed data. The dependent
variable was set to the 7-scale Likert rating from Q1/Q2,
the independent variable was set to the visualization method
and the data set separately (Kruskal-Wallis test allows only
one independent variable in each time). Results show that
there are statistically significant differences among visual-
ization groups (H(2) = 11.0, p < 0.005) on the subjective
rating of Q1. The mean rank value is 26.5 for 1.5D Vis, 14.1
for Movie, and 14.9 for SMD (the rank value has a range of
1 to 36 from 36 feedbacks on three visualization groups).
On the rating of Q2, there are also significant differences
among visualization groups (H(2) = 8.48, p < 0.05). The
mean rank is 25.5 for 1.5D Vis, 14.6 for Movie, and 15.3
for SMD. Follow-up Mann-Whitney tests were conducted
to evaluate the pairwise difference among visualization
groups. Results show that the subjective rating of the
1.5D Vis is significantly higher than the rating of the
Movie approach, on both Q1 (U = 23.0, p < .005) and
Q2 (U = 27.5, p < .01). Similarly, the subjective rating of
the 1.5D Vis is significantly higher than the rating of the
SMD approach, on both Q1 (U = 24.5, p < .01) and Q2
(U = 32.0, p < .05).

Discussion. From the above analysis, we can summarize
that on both non-temporal and temporal tasks, the 1.5D
approach gains an advantage over two baseline dynamic
network visualization methods (the self-controlled dynamic
network movie and the small multiple display) by higher
task accuracies, shorter task completion times, and better
subjective ratings from participants. On non-temporal tasks
only, the performance of the 1.5D approach is close to that
of the static visualization aggregating the dynamic network
over time. We caution that our result should be taken on the
egocentric dynamic network analysis scenario only, and we
haven’t compared it with various special-purpose network
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visualization tools.

7 CONCLUSION
In this paper, we propose a general framework, namely the
1.5D visualization, for displaying and analyzing egocentric
dynamic networks. Through formal case and user studies,
we show that the 1.5D approach can effectively guide a user
in the analysis process of egocentric dynamic networks,
notably by optimizing low-level tasks such as analyzing
egocentric dynamic adjacencies and egocentric network
structures. The success of our approach can be attributed
to three key innovations: the egocentric dynamic network
abstraction that reduces the network complexity for a better
human perception; the 1.5D visual metaphor with a variety
of trend glyphs that reveal both interesting temporal pat-
terns and topological egocentric network features; and var-
ious interaction methods that allow temporal and network
navigation beyond the basic single view representation.
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