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Abstract

We consider bisimulation and weak bisimulation rela-
tions in the context of the Labeled Markov Chains of Hans-
son and Jonsson, the Concurrent Labeled Markov Chains
of Philippou, Lee, and Sokolsky, and the Probabilistic Au-
tomata of Segala. We identify a taxonomy of bisimulation
relations that captures the existing definitions for each one
of the three models, and we compare the relations within
each model and across models. The comparison across
models is given according to a notion of embedding, where
we order the three models by generality and we view objects
in less general models as objects of more general models.

1 Introduction

The literature on concurrency theory shows an increas-
ing number of results aimed at extending known formalisms
with stochastic behavior, e.g., labeled transition systems,
automata, process algebras, Petri nets, event structures, do-
mains. In this paper we are interested in extensions of la-
beled transition systems with discrete stochastic behavior,
the reason being that there are several proposals for exten-
sions and yet not a fully clear understanding of the relation-
ships between the models.

The models that we consider are the Labeled Markov
Chains of Hansson and Jonsson [6], the Concurrent La-
beled Markov Chains of Philippou, Lee, and Sokolsky [8],
and the simple Probabilistic Automata of Segala [10]. The
Labeled Markov Chains of Hansson and Jonsson and the
Concurrent Labeled Markov Chains of Philippou, Lee, and
Sokolsky derive from a proposal of Vardi [13], where non-
determinism is added to discrete Markov chains by intro-
ducing a new class of nondeterministic states, where non-
deterministic choices occur. In other words, the states of an
automaton are partitioned into probabilistic and nondeter-
ministic states: a probabilistic state describes a probability
measure over nondeterministic states, while a nondetermin-
istic state describes nondeterminism by enabling several or-
dinary transitions. The difference between Labeled Markov

Chains and Concurrent Labeled Markov Chains is that in
the first model there is a strict alternation between non-
deterministic and probabilistic states (i.e., transitions leav-
ing from nondeterministic states lead to probabilistic states
only), while in the second model, as well as in the origi-
nal model of Vardi, the alternation is not enforced between
nondeterministic states. For this reason the first model is of-
ten referred to as the model of strictly alternating automata
and the second model is often referred to as the model of
alternating automata. The simple Probabilistic Automata
of Segala do not distinguish states, but introduce a notion
of probabilistic transition whose target is a discrete mea-
sure over states rather than a single state. A deterministic
version of probabilistic automata was introduced by Rabin
[9] in the context of language theory. Given the absence
of a distinction between nondeterministic and probabilistic
states, and in contraposition to the alternating models, the
model of simple Probabilistic Automata is often referred to
as the model of non-alternating automata.

Several equivalence and preorder relations are studied
within the models above. In this paper we are interested
in bisimulation relations in their strong and weak version.
Indeed, there are several definitions of such relations, given
in different styles, and it is not clear how such definitions
are related within and across models. The relations across
models are important to understand the expressive power of
alternating and non-alternating automata.

The only relation that was proposed for strictly alternat-
ing automata is strong bisimulation [6], which is an equiv-
alence relation on nondeterministic states, that induces an
equivalence relation on probabilistic states, such that, when-
ever two states are related, each transition from one state
can be matched by a transition from the other state. Two
matching transitions are labeled by the same action and
reach the same equivalence classes with the same proba-
bility. This idea was first proposed by Larsen and Skou [7].

The relations proposed for alternating automata are
strong and weak bisimulation [8]. Again strong bisimula-
tion is an equivalence relation on nondeterministic states;
however, a special treatment of probabilistic states ensures
that an ordinary transition between nondeterministic states
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can be matched by a transition to a probabilistic state that
describes a Dirac measure. Somehow, probabilistic states
are considered as a technicality to represent the probabilis-
tic transitions of Segala. Weak bisimulations, instead, are
defined on all states; however, the measure described by
a probabilistic state is studied conditional on leaving the
equivalence class of the probabilistic state. The question
then is whether such a discrepancy between strong and
weak bisimulation is fundamental.

Historically, weak bisimulation was introduced on Prob-
abilistic Automata by Segala and Lynch [11] and then stud-
ied by Baier and Hermanns on fully probabilistic models
[1]. The definition of [11] does not use conditional mea-
sures, while the definition of [1] uses them. Evidently the
definition of [8] was influenced by [11] and [1], but what is
the reason for using conditional measures in [1] and [8]?

The relations proposed for non-alternating automata are
again strong and weak bisimulation, where the matching be-
tween transitions and weak transitions is the classical one
according to [7]; however in [11] it is proposed that a tran-
sition from a state may be matched by a convex combina-
tion of transitions from another state, thus leading to weaker
notions of probabilistic bisimulation and weak probabilistic
bisimulation. In this paper we show that the weak bisimula-
tion of [8] coincides with the probabilistic weak bisimula-
tion of [11], thus understanding why conditional measures
are not needed in the non-alternating model.

Our comparative study is carried out according to two
scenarios that we call embedding and transformation. Ac-
cording to the embedding scenario, we view strictly alter-
nating automata as special cases of alternating automata and
alternating automata as special cases of non-alternating au-
tomata. Indeed, transitions from nondeterministic states are
just ordinary transitions, which are a special case of prob-
abilistic transitions, while the probability measures associ-
ated with probabilistic states can be represented by prob-
abilistic transitions labeled by an ad-hoc internal action,
which in this paper we call v. Thus, we define appropri-
ate functions to embed restricted models to more general
models, obtaining a way to propagate relations from gen-
eral models to restricted models.

The transformation scenarios formalizes the idea that is
behind some folklore constructions to represent elements of
a formalism within other formalisms. In particular, proba-
bilistic states can be seen as a technicality to represent prob-
abilistic transitions. Thus, a strictly alternating automaton
can be represented by (transformed into) a non-alternating
automaton by removing all probabilistic states and collaps-
ing into a unique probabilistic transition all pairs of consec-
utive transitions that pass through a probabilistic state. Vice
versa, the converse transformation introduces new proba-
bilistic states and splits probabilistic transitions. The trans-
formations that involve alternating automata ensure that no

splitting occurs on transitions that lead to Dirac measures.
Again, via transformations it is possible to propagate defi-
nitions from one model to the other.

For our study we take the non-alternating model as our
reference model, and we start by understanding the main
ideas behind the definitions proposed in the literature. We
classify relations on the alternating models according to
how nondeterministic and probabilistic states are treated.
In the definition of strong bisimulation for strictly alter-
nating automata, nondeterministic states and probabilistic
states are treated separately, and the step condition, i.e., the
condition on matching transitions, is standard. This sug-
gests a typology of bisimulation, which we call divided,
where we impose a total separation between probabilistic
and nondeterministic states and we check the step condition
via embedding on non-alternating automata. In the defi-
nition of strong bisimulation for alternating automata, the
equivalence relation is studied on nondeterministic states
only, while probabilistic states play only a technical role
in representing a probabilistic transition. This suggests a
typology of bisimulation, which we call nondeterministic,
where we consider an equivalence relation on nondetermin-
istic states and we check the step condition via transfor-
mation on non-alternating automata. Finally, in the defi-
nition of weak bisimulation for alternating automata there
is no distinction between probabilistic and nondeterministic
states, and the step condition, except for self loops, is stan-
dard. This suggests a third typology of bisimulation, which
we call mixed, where we consider an equivalence relation
on states and we check the step condition via embedding on
non-alternating automata.

Our study works as follows. On each of the alternat-
ing models we define the nondeterministic, divided, and
mixed typologies of strong bisimulation, weak bisimula-
tion, strong probabilistic bisimulation, and weak probabilis-
tic bisimulation, and we show how the original definitions
fit into this classification. Then we compare the different ty-
pologies within each model and across models via embed-
ding. In the strong case many relations collapse; however,
it is clear that probabilistic relations are useless in the al-
ternating models due to the presence of probabilistic states.
In the weak case the divided typology turns out to be too
strong and practically useless. The other two typologies are
incomparable, mainly for technical reasons that we clarify
later.

There are other relevant comparative studies in the lit-
erature. In [S] probabilistic models are classified into re-
active, generative, stratified, and are ordered according to
how a bisimulation in the style of [7] in one model can be
abstracted into a bisimulation in another model. There is no
real nondeterminism in the models considered by [5]; in-
deed, the models considered in this paper can be seen as a
nondeterministic extension of reactive systems. In [3] the
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mixed relations are compared across models via transfor-
mation by studying axiomatizations for a process algebra
of finite trees. In [2] there is a comparative study based
on bisimulations on discrete and continuous Markov chains
with no nondeterminism. Finally, in [12] there is an ex-
tensive comparison of several models, including the three
models considered in this paper. The comparison is based
on strong bisimulation only, and formalisms are ordered via
a criterion that considers a model more general than another
model if the embedding from the least general model to
the most general model preserves and reflects bisimulation.
The embeddings considered in [12] are more conservative
than ours since they do not change the transition relation;
thus, alternating and non-alternating models are not com-
parable. In our case we use a similar ordering criterion;
however the study is carried out with several bisimulation
relations, including weak and probabilistic bisimulations,
and we study embeddings as well as transformations. On
the counter part, we consider only three models.

The rest of the paper is organized as follows. Section
2 outlines some background on measure theory; Section 3
gives formal definitions of the models under study; Section
4 formalizes the embedding and transformation functions;
Section 5 gives the formal definitions of the bisimulation
relations under study; Section 6 introduces the typologies
of bisimulations; Section 7 compares relations within and
across models; Section 8 gives some concluding remarks.

2 Preliminaries on Measure Theory

A o-field over a set X is a set F C 2% that includes
X and is closed under complement and countable union. A
measurable space is a pair (X, F) where X is a set, also
called sample space, and F is a o-field over X. A measur-
able space (X, F) is called discrete if F = 2X. A measure
over a measurable space (X, F) is a function p: F — R0
such that, for each countable collection { X}, ; of pairwise
disjoint elements of F, pu[UrX;] = >, u[X;]. A proba-
bility measure over a measurable space (X, F) is a mea-
sure u over (X, F) such that u[X]| = 1. A sub-probability
measure over (X,F) is a measure over (X, F) such that
#[X] < 1. A measure over a discrete measurable space
(X,2%) is called a discrete measure over X.

Given a set X, denote by Disc(X) the set of discrete
probability measures over X, and by SubDisc(X) the set of
discrete sub-probability measures over X. We call a dis-
crete (sub-)probability measure a Dirac measure if it as-
signs measure 1 to exactly one object = (denote this measure
by d,). We also call Dirac a sub-probability measure that
assigns measure 0 to all objects. In the sequel discrete sub-
probability measures are used to describe progress. If the
measure of a sample space is not 1, then it means that with
some non-zero probability the system does not progress.

3 Probabilistic Automata

In this section we give the formal definitions of the three
kinds of models under study and we introduce some nota-
tional conventions. We assume a set 3 of actions partitioned
into external and internal. For the purpose of this paper we
have only two internal actions: an action 7 and a special
action v that we use in our embeddings.

3.1 Strictly Alternating Automata

A strictly alternating automaton [6] is a tuple
(5,5,%,D) where S is a set of states, 5 € S is the start
state, Y. 1s a set of actions and D is the transition relation.
The set of states S is partitioned into two sets N and P of
nondeterministic and probabilistic states, respectively. We
require that 5 € N. The set of transitions D is partitioned
into two sets Y C N x ¥ x Pand P € P — Disc(N) of
nondeterministic and probabilistic transitions, respectively.

In strictly alternating automata there is a strict alternation
between nondeterministic and probabilistic states. The start
state is always nondeterministic. The fact that the transition
relation from probabilistic states is a function ensures that
for each probabilistic state there is exactly one associated
probability measure. In the sequel we denote by SA the
class of strictly alternating automata.

3.2 Alternating Automata

An alternating automaton [8] is a tuple (S,5,%,D)
where S is a set of states, s € S is the start state, 33 is a
set of actions and D is the transition relation. The set of
states .S is partitioned into two sets N and P of nondeter-
ministic and probabilistic states, respectively. We require
that s € N. The set of transitions D is partitioned into two
sets NV C N x X x Sand P € P — Disc(N) of nondeter-
ministic and probabilistic transitions, respectively.

The formal definition of alternating automata differs
from the definition of strictly alternating automata only in
the third component of N: in addition to strictly alternat-
ing automata an alternating automaton may contain transi-
tions from nondeterministic states that reach nondeterminis-
tic states directly, thus skipping the intermediate probabilis-
tic state. Indeed, there is no need to include a probabilistic
state if the target measure is Dirac. In the sequel we denote
by A the class of alternating automata.

3.3 Non-Alternating Automata

A non-alternating automatron [10] is a tuple (S, 5,3, D)
where S is a set of states, 5 € S is the start state, X is a set
of actions and D C S x ¥ x Disc(S) is transition relation.
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In non-alternating automata there is no distinction be-
tween nondeterministic and probabilistic states and there is
a unique transition relation whose elements, called prob-
abilistic transitions, describe directly the target measure
without any need to move through special states. In the se-
quel we denote by NA the class of non-alternating automata.

3.4 Notational Conventions

Throughout the paper we let A range over automata,
r,q, s range over states, a,b, c range over actions, and
range over discrete measures. We also denote the generic
elements of an automaton A by S, 3, 3, D, etc., and we
propagate primes and indices when necessary. Thus, the el-
ements of a non-alternating automaton 4] are S;, §;, ¥/ and
D.. Also, the set of nondeterministic states of an alternating
automaton A/ is V.

An element of a transition relation D is called a transi-
tion. A transition ¢r = (s, a, u) is said to leave from state
s, to be labeled by a, and to lead to . We denote it alter-
natively by s —— p. We also say that s enables action a,
that action « is enabled from s, and that (s, a, ) is enabled
from s. We denote by source(tr) the state s, by action(tr)
the label a, and by rarget(t¢r) the measure . We apply a
similar convention to transitions of the kind (s,a,s’) and
(s, ) of (strictly) alternating automata. Finally, we de-
note by D(s) the set of transitions with source state s, i.e.,
D(s) = {tr € D | source(tr) = s}.

4 Embeddings and Transformations

In this section we define the embedding and transforma-
tion functions on automata. The embedding functions map
objects of restricted models to objects in more general mod-
els; the transformation functions represent objects of one
model in any other model.

4.1 Embeddings

We start from the point of view that the non-alternating
model is the most general, in the sense that the structure im-
plicit in the other models is a sub-structure of that of prob-
abilistic automata. The embedding functions represent how
the sub-structure of a model can be mapped into the struc-
ture of a more general model.

The embedding of the strictly alternating model onto the
alternating model, denoted by g4 .4, is simply the identity
function since the strictly alternating model has just a few
more restrictions on its transition relation.

The embedding of the alternating model onto the non-
alternating model, denoted by £4 .4, adds a special action
v to the transitions leaving probabilistic states. Formally,
if A’ is the embedding of .4, all components of A" are the

same as .4 except for ¥’ and D’, which are defined as fol-
lows: ¥ = Y U{v}, and D' = {(s,a,0s) | (s,a,5) €
NYU{(s,v,p) | (s,p) € P}

Finally, the embedding of the strictly alternating model
onto the non alternating model, denoted by Ega—.n4, is the
composition of the previous two embeddings, which is es-
sentially the same as E4 _na.

5 5 s
a T a T a T
1 1
S1 S2 — S1 S2 — S1 52
14 1%
1 0.2 \0.8 1 0.2 \0.8 1 0.2 \0.8
53 Sq S5 53 Sq S5 53 Sq S5

Asa Ay Ana

Figure 1. Embeddings of automata.

Figure 1 gives an example of application of the embed-
ding functions. The alternating automaton A4 is the em-
bedding of the strictly alternating automaton Ag,, and the
non-alternating automaton Ay, is the embedding of both
Ay and Agy. Observe that in Ay action v is used to label
transitions from probabilistic states.

4.2 Transformations

The transformation functions, already used in [3], de-
scribe the folklore idea that a transition in the non-
alternating model corresponds to two transitions in the
strictly alternating model and vice versa. When moving to
the alternating model a transition is split only if its target
is not a Dirac measure. We omit the formal definitions of
the six transformation functions, which we denote by 7.
Figure 2 gives examples of transformation functions. The

S

1 0.2 \0.8
S3 S4 S5
Ana

Figure 2. Transformations of automata.

three automata Agy, A4 and Any are transformations of
each other. Observe, indeed, how from Agy to Ays all
probabilistic states have disappeared. Similarly, observe
how from Agy to Ay all probabilistic states with associated
Dirac measures have disappeared. If we follow the reverse
transformation, then the probabilistic states appear again.
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5 Bisimulations

In this section we give the formal definitions of the
bisimulation relations in the alternating and non-alternating
models as they are formulated in the original papers, where
we refer the reader for intuitions and justifications. Later we
show that the definitions of this section can be expressed in
our taxonomy, thus providing the reader with alternative,
and sometimes easier to understand, characterizations.

We give a preliminary definition of lifting of an equiv-
alence relation to discrete probability measures, since this
concept is common to all the definitions given in this sec-
tion. Given an equivalence relation R on a set of states (),
we say that two probability measures £1 and ps of Disc(Q)
are equivalent according to R, denoted by 11 =g o, if for
each equivalence class C of R, 1[C] = u2[C].

5.1 Strong bisimulation in SA

The definition of strong bisimulation given in [6] relates
nondeterministic states and derives an induced equivalence
relation on probabilistic states.

Given two strictly alternating automata .4; and 4> and
an equivalence relation R on N7 U N,, we say that two
probabilistic states p; and py are R-equivalent, denoted by
p1 =R P2, if P1(p1) =r P2(p2).

Relation R is a strong bisimulation if, for each pair of
states ¢, € N; U Ny such that ¢ R 7, if ¢ — ¢ for
some ¢’ € P; U P; then there exists ' € P; U P such that
r—r'and ¢ =g r'.

The strictly alternating automata .4; and A, are said to
be strongly bisimilar if there exists a strong bisimulation
R on N1 U Ny such that 57 R 5. We denote this strong
bisimulation relation by ~gy4.

5.2 Strong bisimulation in A

The definition of strong bisimulation given in [8] re-
quires two auxiliary functions. Given an alternating au-
tomaton A, s,s’ € S, and M C S, define two functions
pr and 7 as follows.

uls'] i P(s) = p
l. pr(s,s") =< 1 ifs=s,seN
0 otherwise

2. m(s, M) =3 gep Pr(s, s”).

Function pr computes the probability of moving from a
state s to a state s’. The function, however, states that the
probability to move from a nondeterministic state to itself is
1, which, combined with the definition below, implies that
a nondeterministic state n can be related to a probabilistic

state p provided that the measure associated with p is con-
centrated on the equivalence class of n. In practice, splitting
a transition between two nondeterministic states produces a
bisimilar automaton.

Let A1, A5 be two alternating automata. An equivalence
relation R on S7 U Sy is a strong bisimulation if, for each
pair of states ¢, 7 € S1 U So such that g R r,

1. foralla € ¥, if ¢,» € N; UN; and ¢ = ¢ then
r— 7 and ¢ R 1';

2. forallC € (S1U S2)/ R, 7(q,C) = (r,C).

The alternating automata .4; and .4, are said to be strongly
bisimilar if there exists a strong bisimulation R on S; U
So such that 51 R 52. We denote this strong bisimulation
relation by ~y4.

5.3 Weak bisimulation in A

The definition of weak bisimulation of [8] requires some
extra machinery to identify weak transitions. We use the
same notation as in [8]; however, it is possible to reformu-
late definitions in terms of the weak transitions that we de-
fine for the non-alternating model.

A computation of an alternating automaton A is either
a finite or infinite sequence of states, possibly divided by
actions, sgagS1a1S25384 ... such that, for each i > 0, if
s; € N, then it is followed by an action a; and a state s,
such that (s;,a;,s;41) € N, and if s; € P, then it is fol-
lowed by a state s;,1 such that P(s;)[s;1+1] > 0.

The length of ¢, denoted by |c|, is the number of occur-
rences of actions in ¢. If ¢ is infinite, then |¢| = co. We
denote by comps(.A) the set of all computations of A and
by comps " (A) the set of all finite computations of A. Given
¢ € comps’ (A), we define trace(c) to be the sub-sequence
of external actions of ¢, and last(c) to be the last state that
occurs in c.

A scheduler for an alternating automaton A is a func-
tion o: comps (A) — N U {L} such that, for each
¢ € comps (A), if o(c) # L, then o(c) = (last(c), a, s)
for some action a and state s. The meaning of o(c) = L
is that o does not schedule anything after c. We denote by
Sched(.A) the set of all schedulers for an alternating au-
tomaton A.

Given an alternating automaton A and a scheduler
o € Sched(A), define the set of scheduled computations
Scomps(A, o) C comps(A), to be the set of computations
¢ = $pap$ ... such that o(c¢) = L if ¢ is finite, and for
each i < |c|, if s; € N then o(soao - .. ;) = (i, @i, Sit1)-

Given an alternating automaton A, a set of traces ¢ C
Y*, a set of states M C S, and a scheduler ¢ €
Sched(A), define Paths(A, ®, M, o) to be the set of fi-
nite scheduled computations that have trace in ¢ and end
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in a state of M, that is, Paths(A4,®,M,0) = {c €
Scomps(A, o) | last(c) € M,trace(c) € ®}. The prob-
ability of Paths(A, &, M, o) assuming start state s, de-
noted by Pr(3, ®, M, o), is given by the smallest solution to
X (5,®,M,0,35) defined by the following set of equations:

1 ifee®,seM,o(c)=1
0 ife¢®,s¢ M,o(c)=1
0 if®=10
X(s,®,M,0,¢) =1 > ., p[sX(s,® Macs)
1fs€P,77()
X(s’,tb—a,M,a,cas’)
ifse N,o(c) = (s,a,s)

where ¢ is the empty string and ® — a = {¢ | a¢ € D}.

Before defining weak bisimulation, we need an extra
function that extends the 7 function used for strong bisim-
ulation. Formally, given an alternating automaton A and
an equivalence relation R on S, we denote by 7 (s,C) the
probability of reaching C C S from state s conditional on
leaving the equivalence class [s]z:

_ (s,C) if w(s,[s]r) =1;
r(5,C) = { 7(s,C)/(1 — (s, [s]r)) otherwise.

Technically speaking 7w (s, [s]x ) should be defined to be 0.
However, this value is never used, so the original definition
in [8] has the form stated above.

Let A;, A5 be two alternating automata. An equivalence
relation R on S7 U Sy is a weak bisimulation if, for each
pair of states s,t € S; U S5 such that s R ¢,

1. foralla € ¥,if s € N UN5 and s -2, &, then there
exists a scheduler o such that Pr(¢, 7*a7*, [¢']|g,0) =
1;

2. there exists a scheduler o such that for all C € (S; U
S2)/ R —[s]r, mr(s,C) = Pr(t,7*,C,0).

The alternating automata A; and A are said to be weakly
bisimilar if there exists a weak bisimulation R on S; U Sy
such that 5; R 55. We denote this weak bisimulation rela-
tion by ~z4.

5.4 Strong Bisimulations in NA

There are two notions of strong bisimulation for the
non-alternating model, depending on whether a transition
is matched by a transition or by a convex combination of
transitions, called a combined transition. For this reason we
define first the notion of combined transition.

Given a non-alternating automaton .4, a state s, and
a measure v € SubDisc(D(s)), define the combined
transition according to -y to be the pair (s, ), where
W~ € SubDisc(¥ x S) is defined for each pair (a,q) as

1 1(0:0)] = X o0 (50 1)) pilg). We denote a com-
bined transition (s, 1) alternatively by s— cu. Whenever
there exists an action a such that p[(a,S)] = 1 we de-
note the corresponding combined transition alternatively by
s—squ’ where i’ € Disc(S) is defined for each state q as
#'la] = pl(a, q)).

Let A, A5 be two non-alternating automata. An equiva-
lence relation R on S;USjy is a strong (probabilistic) bisim-
ulation if, for each pair of states ¢, € S; U S5 such that
q R, if ¢ == 1 for some measure i, then there exists a
measure £/ such that u = p/ and r = 1/ (r——cu’).

The non-alternating automata 4; and As are said to
be strongly (probabilistic) bisimilar if there exists a strong
(probabilistic) bisimulation R on S US> such that 51 R 5s.
We denote this strong (probabilistic) bisimulation relation
by ~na (~yy)-

5.5 Weak Bisimulations in NA

Again, the definition of weak bisimulations is based on
some auxiliary machinery to describe weak transitions.

An execution fragment of a non-alternating automaton
A is a finite or infinite sequence of alternating states and
actions £ = spa151a252 . . . starting from a state and, if the
sequence is finite, ending with a state, such that, for each %
there exists a transition (s;_1, a;, yt;) of D where p;[s;] >
0. If the sequence £ is finite, then denote by last(¢) the last
state of . The length of £, denoted by |£], is the number of
occurrences of actions in £. If £ is infinite, then |£| = co.
Denote by frags(.A) the set of execution fragments of .A and
by frags™ (A) the set of finite execution fragments of A. An
execution fragment £ is a prefix of an execution fragment
&', denoted by £ = &', if the sequence £ is a prefix of the
sequence &’. The frace of an execution fragment &, denoted
by trace(&), is the sub-sequence of external actions of &.

A scheduler for a non-alternating automaton A is a func-
tion o: frags*(A) — SubDisc(D) such that for each fi-
nite execution fragment &, o(§) € SubDisc(D(last(§))).
A scheduler is Dirac if it assigns a Dirac measure to each
execution fragment.

Given a scheduler ¢ and a finite execution fragment &,
the measure o (&) describes how transitions are chosen to
move from last (). The resulting combined transition is the
combined transition according to o (). We denote by 11, (¢)
the corresponding target measure.

A scheduler o and a start state s induce a measure
on execution fragments as follows. The sample space is
the set of execution fragments that start with s; the o-
field is the o-field generated by the set of cones, sets of
the form Ce = {¢ € frags(A) | £ =< &'}; the mea-
sure is the unique extension fi, ¢ of the measure defined
on cones by the following equation: fiy s[Csaysy...ans,] =

Hie{l,..i,n} ua(salsl-uai—lsi—])[(ai7 54)].
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We say that there is a weak transition from a state s to
a measure over states u labeled by an action a, denoted by
5 == u, if there is a Dirac scheduler o such that the fol-
lowing holds for the induced measure (i, 4:

1. ioslfrags”(A) = 1
2. Veefrags(A) if to,s[§] > 0 then trace(§) = trace(a);

3. VYyes Hos[{E € frags™(A) | last(§) = q}] = ulq].

If we remove the Dirac condition on the scheduler o, then
we say that there is a combined weak transition from s to u
labeled by a, denoted by s==>¢ .

Let A1, As be two non-alternating automata. An equiva-
lence relation R on Sy U Sy is a weak (probabilistic) bisim-
ulation if, for each pair of states ¢, € S; U Ss such that
qRrifqg SN v for some measure u, then there exists a
measure 1/ such that y =x p and r == 1/ (r==-cu).

The non-alternating automata A; and A, are weakly
(probabilistic) bisimilar if there exists a weak (probabilistic)
bisimulation R on S7 U S3 such that 51 R s5. Denote this
weak (probabilistic) bisimulation relation by ~n4 (=4,,).

6 Taxonomy

The existing definitions of bisimulation relations suggest
three typologies of relations on the alternating models, all
with respect to the non-alternating model. We will see that
the three typologies capture the existing definitions.

6.1 Nondeterministic Typology

The definition of strong bisimulation for the alternating
model is based essentially on nondeterministic states; how-
ever, in order not to distinguish automata with ordinary tran-
sitions from automata that reach Dirac measures via prob-
abilistic states, the definition of [8] considers probabilistic
states as well, and treats them in a special way to capture the
idea that they are describing a probabilistic transition. This
suggests a typology of bisimulation relation where only
nondeterministic states are related and where equivalence
is verified on the non-alternating model via transformation.

Let A;, Ao be two (strictly) alternating automata. An
equivalence relation R on N1UN, is a (weak)(probabilistic)
nondeterministic bisimulation if R is a (weak) (probabilis-
tic) bisimulation between 7 (A;) and 7 (Az).

Denote by ~%, Ng(N, ~%, and R:&N the four bisimula-
tions on model X, where X is either SA or A.

6.2 Divided Typology

The definition of strong bisimulation for the strictly
alternating model relates nondeterministic states to non-

deterministic states and probabilistic states to probabilis-
tic states; then the step condition is the one of the non-
alternating model. This suggests a typology of bisimu-
lation where nondeterministic and probabilistic states are
separated and equivalence is verified on the non-alternating
model via embedding.

Let Ay, A be two (strictly) alternating automata and let
N be N1 U Ny, P be P, UP,. An equivalence relation
RC (N x N)U(P x P) is a divided (weak) (probabilistic)
bisimulation if R is a (weak) (probabilistic) bisimulation
between £(A;) and £(Az).

Denote by ~%, ~§(D, ~%, and %];(D the four bisimula-
tions on model X, where X is either SA or A.

6.3 Mixed Typology

The definition of weak bisimulation for the alternating
model does not distinguish between nondeterministic and
probabilistic states except for the use of conditional mea-
sures from probabilistic states. It turns out that these condi-
tional measures are the key aspect of the formal definition
of [8] that leads to the probabilistic variant of weak bisimu-
lation. Besides this, equivalence is verified via embedding.

Let Ay, As be two (strictly) alternating automata. An
equivalence relation R on S7US5 is a (weak) (probabilistic)
mixed bisimulation if R is a (weak) (probabilistic) bisimu-

lation between £(A;) and £(As).

M __pM __M ~pM f o
Denote by ~y , ~y", =%, and = the four bisimula-

tions on model X, where X is either SA or A.

7 Comparative Analysis

In this section we compare the relations defined so far.
We analyze separately, within and across models, strong
bisimulations, strong probabilistic bisimulations, and weak
probabilistic bisimulations. We do not analyze weak bisim-
ulations because they are not all transitive (cf. [4]).

7.1 Strong Bisimulations

N D M

NfA <> gy ~sA ~sA

[ W GHED= Niv < NAD Niu
~NA

Figure 3. Taxonomy for ~.
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Figure 3 compares strong bisimulations within models
and across models via embedding. The dotted boxes iden-
tify relations that are equivalent within the same model,
while dotted arrows are directed from stronger to weaker
relations within the same model. The double dotted double
arrows show the correspondence between the relations of
our taxonomy and the relations already defined in the liter-
ature. The other arrows identify preservation and reflection
of relations across models via embedding. Thus, the ar-
row from ~g4 to ~4 means that if two strictly alternating
automata A; and A, are bisimilar according to ~g4, then
their embeddings into the alternating model are bisimilar
according to ~4, and the arrow from ~4 to ~g4 means that
if the embeddings into the alternating model of two strictly
alternating automata A; and A, are bisimilar according to
~4, then the two automata are bisimilar according to ~gq4.
Other arrows follow by transitivity provided that no upward
arrow is combined with a downward arrow.

Observe first that the strong bisimulation relation of [6]
coincides with the three typologies in the strictly alternating
model and that the strong bisimulation of [8] coincides with
the nondeterministic typology in the alternating model, thus
confirming our previous intuitions about the typologies.

In the strictly alternating model all typologies identify
the same relation. Indeed, strong bisimulations distinguish
all kinds of actions, which forces us to relate probabilistic
states to probabilistic states only, and an equivalence rela-
tion on nondeterministic states induces uniquely an equiva-
lence relation on probabilistic states, which equates equiva-
lences via embedding and via transformations. In the alter-
nating model mixed and divided typologies are equivalent
and are stronger than the nondeterministic typology. This
is due to the fact that via transformation it is possible to
relate ordinary automata with their strictly alternating ver-
sion, while via embedding such relationships are not possi-
ble. This is confirmed also by the relationships across mod-
els: the mixed (and divided) relations are equivalent to the
non-alternating relation via embedding, while the nondeter-
ministic relations are weaker.

s 5
a a
~N
S1 A
761\4
A
0.3 0.7
S2 S3 Sé
v b
’
Sa Sy

Figure 4. Nondeterministic vs. mixed in A.

Figure 4 gives an example of two alternating automata
that are equivalent according to the nondeterministic typol-
ogy but not according to the mixed typology. Since state s;

does not appear in the transformations of the two automata,
it is enough to put sg, s3, s5 in the same equivalence class.
On the other hand, in the embeddings of the two automata
there is no state to which s; can be related. Observe that the
automata of Figure 4 are not the embedding of any strictly
alternating automaton. The same figure is a counterexample
for the missing arrow from ~4" to ~x4 in Figure 3.

7.2 Strong Probabilistic Bisimulations

pN pD pM
~sA ~sA ~sA
NgN < NAPD NgM
p
~NA

Figure 5. Taxonomy for ~7,

Figure 5 compares strong probabilistic bisimulations
within models and across models via embeddings. The
main difference compared to strong bisimulations is that in
the strictly alternating model the nondeterministic typology
is weaker than the divided and mixed typologies. This is
due to the fact that, as observed already in [3], only the
removal of probabilistic states permits to use the power of
combining transitions. The two strictly alternating automata

pM
/f%\(w /(%\07 Aos /ﬁpa /OA\os

Figure 6. Probabilistic nondeterministic vs.
probabilistic mixed.

of Figure 6 give a counterexample for the missing implica-
tion from ~£™ to ~2™ provided that states s, s} and states
35, st are in different equivalence classes, e.g., by enabling
different actions. Indeed, the non-alternating transforma-
tions of the two automata are equivalent since the middle
a-labeled transition of the left automaton can be matched
by a uniform combination of the a-labeled transitions of the
right automaton; however, the two automata are not equiva-
lent since there is no state to which s, can be related.
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The relations across models via embedding do not
change compared to strong bisimulations.

7.3 Weak Probabilistic Bisimulations

~PN _ . ~PD ~pM
Nga = Rgy T Ry

PN < PP >z§M< > R

Figure 7. Taxonomy for ~”.

Figure 7 compares weak probabilistic bisimulations
within models and across models via embeddings. In this
case all typologies are different within models and in par-
ticular the nondeterministic and mixed typologies are in-
comparable. The divided typology implies both; however,
the forced separation between nondeterministic and proba-
bilistic states of the divided typology leads to a very strict
relation that is very close to strong probabilistic bisimula-
tion. Considering that in the strong case the divided typol-
ogy coincides with the mixed typology and that in the weak
case the divided typology is too fine, we conclude that this
typology is not particularly interesting and we concentrate
on the other two, which are not comparable.

Y]
|

a ~pM a
~A
’
s s
T 1 oN 1
A
0.6 0.2 0.2 0.5 0.5
S s3 S4 54 sh
b lc lb lc

Figure 8. Weak mixed vs. nondeterministic.

Figure 8 shows an example of two automata that are
equivalent according to the mixed typology but not accord-
ing to the nondeterministic typology. The example is valid
both for the strictly alternating and alternating models. The
example can also be used to develop intuition why the weak
bisimulation of [8], which uses conditional measures, is
equivalent to the mixed probabilistic typology. The mixed
bisimulation for the two automata relates all states with their
primed version and adds s, to the equivalence class of s.
The crucial part is to show that s; and s} match each other’s
transitions. According to the mixed typology, the transition

from s; can be matched from s} by scheduling the only
available transition with probability 0.4 and the transition
from s} can be matched from s; by scheduling transitions
until s3 or s4 are reached; according to the definition of [8],
the measure reachable from s; and s} conditional on leav-
ing the equivalence class of s; should be equivalent. In this
case both measures are uniform over the classes of s3 and
s4. The two automata of Figure 8, though, are not bisimilar
according to the nondeterministic typology because there
is no nondeterministic state to which state sy can be re-
lated. Therefore, the transition labeled by a from 5 cannot
be matched from 5.

T sz
A
a, So a
pM
a, a A
’
S1 S5 Se Sg Sg

Figure 9. Weak nondeterministic vs. mixed.

Figure 9 shows an example of two automata that are
equivalent according to the nondeterministic typology but
not according to the mixed typology. The example is
valid for the alternating model, but can be adapted to the
strictly alternating model by splitting the transition from 5
to so. The nondeterministic bisimulation between the two
automata relates all nondeterministic states to their primed
version and adds ss to the equivalence class of 5. The
only critical part in showing bisimilarity is matching the left
transition from s in the transformed left automaton. Since
the transformation of the automata removes all probabilis-
tic states, it is enough to combine the two transitions from §’
with probability 1/2 each. The two automata, on the other
hand, are not bisimilar according to the mixed typology be-
cause there is no state to which s; can be related.

If we compare relations across models, then the only
observation is that the bisimulation relation in the non-
alternating model coincides with the mixed typology via
embedding, as shown in Figure 7.

7.4 All Bisimulations Together

Figure 10 summarizes all results presented so far, ex-
cluding the divided typology, and in addition compares all
relations of the same typology within each model. As ex-
pected, within each model and each typology, strong bisim-
ulation implies strong probabilistic bisimulation which im-
plies weak probabilistic bisimulation. However, in the
mixed typology, strong and strong probabilistic bisimula-
tions coincide since probabilistic states do not allow us to
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Figure 10. Complete taxonomy.

combine transitions. We have also included an arrow in the
alternating model from strong nondeterministic bisimula-
tion to weak probabilistic mixed bisimulation to show that,
although the strong and weak bisimulation of [8] are de-
fined in an inconsistent way according to our classification,
strong bisimulation implies weak bisimulation as well.

8 Concluding Remarks

We have considered three models for nondeterminis-
tic probabilistic systems, the strictly alternating model of
Hansson, the alternating model of Philippou, Lee, and
Sokolsky, and the non-alternating model of Segala, and we
have considered the notions of bisimulations defined on
such models. We have introduced three typologies of bisim-
ulation, the nondeterministic, divided and mixed typologies,

nical artifact to represent a non-alternating automaton.

We believe that the results of this paper confirm the idea
that, although there are several proposals of models and
of bisimulation relations, all relations are essentially the
same and everything can be understood in a uniform way
by working in the general model of probabilistic automata.
Our objective is to investigate whether the same idea applies
to branching bisimulation.
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