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Abstract. Horn clauses can be used in many areas such as logic pro-
gramming, artificial intelligence and formal methods. Horn clause solving
is closely related to program verification. On the one hand, program ver-
ification tasks can be translated to Horn clause solving problems. On the
other hand, Horn clause solving tasks can be accomplished using some
of the program verification techniques. As a result, Horn clauses can be
used as an intermediate language in program verification, decoupling the
verification algorithms from the details of the specific programming lan-
guages. In this paper, we propose a novel method for solving Horn claus-
es, which is inspired by a program verification method called trace ab-
straction refinement. In our method, solvability of Horn clauses is verified
by alternatively analyzing its unfoldings and constructing and manipu-
lating tree automata. Since Horn clauses can serve as an intermediate
language for program verification, our method generalizes the original
trace abstraction refinement algorithm, making it easier to be used for
various program verification tasks. We illustrate some of the existing
works on how to reduce safety verification tasks of multi-threaded pro-
grams and programs with procedures to Horn clause solving problems.
Preliminary experimental results are reported.

1 Introduction

Nowadays the counterexample guided abstraction refinement (CEGAR) [1] idea
has been popular for program verification. A CEGAR algorithm performs ab-
stract model construction and model checking alternatively, trying to avoid
checking the original, detailed model, which is generally large in size. Lazy ab-
straction [2] improves CEGAR by performing these two steps simultaneously,
i.e., constructing and refining the abstract models on-the-fly during the model
checking phase. Interpolation techniques [3] can be used to generate predicates
for the refinement.

While many of the works focus on state-based abstractions, Heizmann et
al.[4] proposed a trace-based abstraction refinement scheme. For the trace ab-
straction refinement method, the behavior of a program is represented by the
set of traces it can execute. Regular languages, represented by finite automata,
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are used to abstract (over-approximate) the behavior of programs. The abstrac-
tions are incrementally refined by constructing new regular languages. which
only contain infeasible traces, and subtracting them from the previous abstract
models.

Horn clauses are a subclass of logic formulas, which are extensively used
in various areas of computer science such as logic programming, artificial in-
telligence, formal methods, etc. Horn clause solving (or equivalently Constraint
Logic Program (CLP) [5]-proving) is closely related to program verification. On
one hand, program verification tasks can be encoded into Horn clause-solving
problems [6]. On the other hand, the problem of Horn clause solving could be
tackled using various CEGAR-based program verification techniques [6–9]. As
a result, Horn clauses can serve as an intermediate representation of software
verification problems.

The idea of using Horn clauses as intermediate representation of software
verification problems has been proposed by Grebenshchikov et al. [6]. As a re-
sult, developing a program verifier consists of two steps: i) engineering a backend
Horn clause solver, and ii) constructing a frontend which automatically encodes
software verification problems into Horn clause solving problems. The benefit is
three-fold. Firstly, if one wants to build a verifier for a new programming lan-
guage, he/she does not have to build it from the ground up. He/she just needs
to construct a frontend for the application domain, while existing backend Horn
clause solvers can be reused. Secondly, if one wants to try a new verification algo-
rithm, he/she does not have to know the specific application domain. He/she just
has to build the backend Horn clause solver, while existing frontends for various
application domains can be reused. Thirdly, as stated in [10], by using different
frontend encoding schemes, the verification procedure could be guided or con-
strained as needed, which provides flexibility. This last point can also be shown
in [6, 11], where compositional reasoning rules such as Owicki-Gries rules [12]
and rely-guarantee rules [13] are conveniently embedded in the Horn clause en-
coding, facilitating compositional verification of multi-threaded programs, and
modular reasoning rules are used for encoding programs, facilitating modular
verification of programs with procedure calls.

In this paper, we follow the idea of adapting CEGAR-based methods for
Horn clause solving. We propose a trace abstraction refinement based method
for Horn clause solving. We prove that a set of Horn clauses is solvable iff all of
its ground unfoldings are solvable. The latter can be automatically checked in an
incremental approach. We use tree automata to collect the ground unfoldings of
the set of Horn clauses. Initially a tree automaton is constructed, which captures
all ground unfoldings of the set of Horn clauses. In each iteration, a ground
unfolding is picked and checked whether it is solvable. If it is not solvable then
the procedure terminates with the conclusion that the set of Horn clauses is not
solvable, otherwise a tree automaton is constructed, which collects this ground
unfolding and possibly other solvable ground unfoldings. This tree automaton is
used in the next steps to prevent the set of ground unfoldings represented by it
from being picked again. The above iteration continues until there is no ground
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unfolding to pick, which means that all the ground unfoldings are proved to be
solvable. In this case we will get the conclusion that the set of Horn clauses is
solvable.

Tree interpolation techniques are used during the construction of tree au-
tomata. Tree automata have the nice property of closure under union, intersec-
tion and complement, which makes it possible to solve Horn clauses by manip-
ulating tree automata.

Our work results in a generalized version of the trace abstraction refinement
algorithm, which can be easily used for performing various program verification
tasks when combined with corresponding frontend encoders.

We have implemented a prototype and evaluated the performance on some
Horn clause benchmarks. The result shows that the trace abstraction refinement
method needs more iterations to terminate than predicate abstraction based
CEGAR, while each iteration takes less time. Although the overall performance
is not so good as predicate abstraction based CEGAR algorithm, we point out
possible improvements.

Related works. Horn clause has been studied for a long time. A detailed survey
of Horn clauses and Constraint Logic Programming could be found in [5].

Trace abstraction refinement was initially proposed by Heizmann et al. [4,
14]. The authors used finite automata as abstractions (over-approximations)
of program behavior, which is limited to simple programs. Several works have
been devoted on extending this method for verifying more expressive classes of
programs. Heizmann et al. [15] extended this scheme by using nested word au-
tomata instead of finite automata to verify programs with recursive procedures.
Cassez et al. [16] proposed a summary-based modular trace refinement method
for verifying programs with procedures. Farzan et al. [17] used counter automa-
ta instead to extend this scheme for the verification of parameterized systems.
We replace finite automata with tree automata in trace abstraction refinement
for Horn clause solving. Verification of multi-threaded programs and programs
with procedures can be reduced to Horn clause solving problems [6]. Since the
resulting Horn clause encodings are typically non-linear, while the original trace
abstraction refinement method can only be applied on linear Horn clauses, a
consequence of our work is a generalization of the trace abstraction refinement
scheme to handle the verification tasks of richer classes of programs. Moreover,
we can see that certain efforts have been devoted to adapt trace abstraction re-
finement for verifying programs with procedures [15, 16], while as a result of our
work, the task of modular verification of programs with procedures and compo-
sitional verification of multi-threaded programs are just a matter of combining
with corresponding frontend encoding schemes.

As is mentioned in [18], current SAT (satisfiability) based verification tech-
nique is based on two major approaches: interpolation based verification and
Property Directed Reachability(PDR)(a.k.a. IC3) [19]. These two techniques
have been adapted for Horn clause solving. Hoder et al. [8] extended PDR for
solving Horn clauses. The contribution is two-fold: they proposed a new method
for Horn clause solving, and generalized PDR for more expressive systems such
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as timed pushdown systems. Grebenshchikov et al. [6] suggested to solve Horn
clauses using predicate abstraction, where tree interpolation techniques are used
to generate predicates for the refinement. Rümmer et al. [7] proposed to use
disjunctive interpolation instead of tree interpolation for Horn clause solving,
which can handle multiple traces simultaneously and reduce the number of iter-
ations. McMillan et al.[9] proposed to solve Horn clauses using interpolation only
– without predicate abstraction. We extend one of the interpolation-based pro-
gram verification techniques called trace abstraction refinement for Horn clause
solving. Similar to [8], our work can be seen as both a generalization of an ex-
isting program verification technique and a new method of Horn clause solving.

Kafle et al. [20] have also proposed the idea to relate a set of Horn clauses
to a tree automaton. Both of our works use tree automata operations to exclude
infeasible traces. In their work, the tree automaton constructed in each iteration
accepts only one infeasible trace (although the possibility of constructing a tree
automaton which accepts more than one infeasible traces is mentioned in their
paper). The purpose of the tree automata difference operation is mainly to obtain
a “reshaped” set of Horn clauses (a new set of Horn clauses is generated according
to the tree automaton obtained by the tree automata difference operation in each
iteration). The “reshape” steps interact with the abstract interpretation steps,
resulting in improved performance over the pure abstract interpretation method.
In our work, the tree automaton constructed in each iteration accepts more
than one (possibly infinitely many) traces. The tree automaton is constructed
according to the tree interpolant generated by interpolating SMT solver. In fact,
the automaton constructed in each iteration is just used to collect the traces that
have been proved infeasible by the SMT solver. The difference automaton in each
iteration represents all traces that still need to be checked. Our algorithm is more
close to the original idea in [4]. Moreover, the complexity issue of tree automata
determinisation and completion operations is addressed in [20] by refering to
optimized algorithms in [21].

Organization of the paper. The rest of this paper is organized as follows. We
give a motivating example in Section 2 to show our idea. In Section 3 basic
concepts of Horn clauses and tree automata are described. Solvability of Horn
clauses is discussed in Section 4, which provides the basis for our Horn clause
solving algorithm. In Section 5 we present a detailed description on how to use
trace abstraction refinement for Horn clause solving, and prove the correctness
of our method. In Section 6, we explain how verification tasks of multi-threaded
programs and programs with procedures can be encoded to Horn clause solving
problems, showing that our method can be seen as an extension of the origi-
nal trace abstraction refinement scheme. We present the experiment results in
Section 7. Finally, a conclusion is given in Section 8.

2 A motivating example

As a motivating example, let us consider a set of linear Horn clauses obtained
from program verification tasks. By “linear” we mean that there is at most one
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uninterpreted predicate in the body of each Horn clause. Given an arbitrary
program with the set of variables x, the initial condition φinit and the transi-
tion relation φtrans, we want to prove that the unsafe condition φunsafe is never
reached. We could encode the program as a set of Horn clauses:

(h1) Inv(x)← φinit(x)
(h2) Inv(x′)← Inv(x) ∧ φtrans(x,x′)
(h3) false← Inv(x) ∧ φunsafe(x)

where Inv is an uninterpreted predicate, and x′ is a tuple of primed variables
corresponding to those in x and representing variables in the next state. We
can see that the program is safe iff the above set of Horn clauses is consistent,
i.e., there is an interpretation φInv of Inv such that all the above Horn clauses
are satisfied. Here we could regard “false” as a special uninterpreted predicate
which is expected to be interpreted as false.

Intuitively, this set of Horn clauses corresponds to a finite automaton whose
alphabet is {h1, h2, h3}, and whose set of states is {init, Inv, false}. The corre-
sponding finite automaton is shown in Figure 1. The set of final states is {false}.
Each accepted trace of this finite automaton corresponds to a derivation se-
quence of the set of Horn clauses. For example, the trace h1h2h2h3 corresponds
to the derivation sequence:

φinit(x0)→ Inv(x0)
Inv(x0) ∧ φtrans(x0,x1)→ Inv(x1)
Inv(x1) ∧ φtrans(x1,x2)→ Inv(x2)
Inv(x2) ∧ φunsafe(x2)→ false

init Inv false
h1 h3

h2

Fig. 1: The finite automaton for the set of Horn clauses {h1, h2, h3}.

For linear Horn clauses, we could use finite automata to represent its deriva-
tions. In [4], the authors proposed a trace abstraction refinement scheme, which
represents traces of programs as regular patterns, and verifies a program by con-
structing and manipulating regular patterns of traces. Given the correspondence
between programs and linear Horn clauses described above, the trace abstraction
refinement method could be naturally adapted to verify the solvability of linear
Horn clauses.
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Note that in the correspondence between a set of Horn clauses and a finite
automaton, each uninterpreted predicate (including “false”) corresponds to a s-
tate and each Horn clause corresponds to a transition. Since there is at most one
predecessor state in each transition, it is important that each Horn clause con-
tains at most one appearance of an uninterpreted predicate. For non-linear Horn
clauses, there might be more than one appearance of uninterpreted predicates
in the body, which makes it impossible to correspond to a finite automaton.

Now consider the following set of Horn clauses

(h1) p(x, y)← x = y
(h2) p(x, z)← p(x, y) ∧ z = y + 1
(h3) q(x, z)← p(x, y) ∧ p(y, z)
(h4) false← q(x, y) ∧ x > y

Following the intuition in the linear case, the alphabet is {h1, h2, h3, h4}. How-
ever, the clause h3 does not correspond to any transition in a finite automaton,
because the uninterpreted predicate p appears twice in the body, which corre-
sponds to two states as the predecessors. Moreover, each derivation corresponds
to a tree rather than a sequence (see Figure 2). In order to cope with this situ-
ation, we use tree automata (specifically, automata on ranked trees), which are
an extension of finite automata, to represent non-linear Horn clauses. In a tree
automaton, each transition can have more than one predecessor states, which is
sufficient to represent a non-linear Horn clause.

false

q(x1, x2) x1 > x2

p(x1, x3) p(x3, x2)

x1 = x3 p(x3, x4) x2 = x4 + 1

x3 = x4

(a)

h4

h3

h1 h2

h1

(b)

Fig. 2: (2a) a derivation to false, and (2b) the corresponding trace, which is a
tree rather than a sequence.

In order to verify the solvability of non-linear Horn clauses, we should extend
the trace abstraction refinement method by using tree automata rather than
finite automata to represent sets of traces. In the following sections we will give
a detailed description of the extension.
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3 Preliminaries

3.1 Constraint language

We use first order logic with a set F of interpreted functions and a set P of
interpreted predicates as the underlying constraint language. The symbols in F
and P are interpreted by a structure (U, I), where U is a non-empty universe,
and I assigns to each function in F a function over U , and to each predicate in
P a relation over U . Moreover, the existence of the equation symbol “=” with
conventional interpretation is assumed.

Given a formula φ with free variables x1, x2, . . . , xn, we define the universal
closure Cl∀(φ) of φ as ∀x1, . . . , xn.φ. We denote the set of free variables for a
formula φ as fv(φ).

For two contradicting formulas φA and φB (i.e., φA ∧ φB is not satisfiable),
an interpolant is a formula φI such that φA implies φI , and that φI contradicts
φB , and fv(φI) ⊆ fv(φA) ∩ fv(φB).

Our results are independent of specific theories (e.g., linear integer arithmetic,
linear real arithmetic) of the constraint language, as long as there is an algorithm
to compute interpolants.

3.2 Horn clauses

Following [6], we make the definition of Horn clauses slightly different from the
standard notion. In our definition, constraints appearing in a Horn clause can
have both disjunctions and conjunctions.

Definition 1 (Horn clause). Let R be a set of uninterpreted predicates disjoint
from F and P, and X a set of variables, a Horn clause is a logic formula of the
form C ∧B1 ∧ · · · ∧Bn → H, where

– C is a formula in the constraint language over F , P and X , and
– each Bi is an application pi(x1, . . . , xk) of an uninterpreted predicate pi ∈ R

over the variables x1, . . . , xk ∈ X , and
– H is either an application of ph ∈ R to the variables in X , or the formula

false.

It is worth noting that, this definition of Horn clauses is equivalent to Con-
straint Logic Programs (CLP) [5]. Moreover, all of the concepts and results in
Section 4 have their correspondences in CLP.

In the sequel, we might write a Horn clause in a reverse order, i.e., H ←
C ∧ B1 ∧ · · · ∧ Bn for convenience. We abbreviate a tuple of free variables
(x1, x2, . . . , xk) as x for an uninterpreted predicate with k parameters. Then
Bi could be rewritten as pi(xi), and H as ph(xh), or false(xh). Here, for con-
venience, we regard false as a special uninterpreted predicate, whose tuple of
parameters xh contains 0 variables. The constraint C contains free variables in
x1, . . . ,xn and xh and other variables in X . We denote the tuple of free variables
that only occur in C as x0. Consequently, the constraint C can also be written
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as C[x0, . . . ,xn,xh] to address the fact that the free variables in x0, . . . ,xn,xh
appear in C.

The definition of Horn clauses described above is restrictive. However, since
we assume that the constraint language contains the equation symbol “=”, it
can be easily seen that other Horn clauses in the constraint language can be
converted to equivalent restricted Horn clauses.

3.3 Tree automata

We give a brief introduction to tree automata, which are a generalization of finite
automata. There are several different ways to define tree automata, among which
we choose the nondeterministic bottom-up tree automata. A detailed description
of tree automata and tree languages can be found in [22].

We denote by Σ a finite set of function symbols, where each function symbol
f ∈ Σ has an arity n ∈ N. Let V be a set of variables. The set T (Σ,V ) of terms
(a.k.a. trees) is defined inductively by:

– v ∈ T (Σ,V ) for each v ∈ V , and
– f(t1, . . . , tn) ∈ T (Σ,V ) for an n-ary function f ∈ Σ, and the terms t1, . . . , tn ∈
T (Σ,V ).

T (Σ, ∅) is the set of ground terms over Σ.

Definition 2 (Tree automata). A tree automaton A is a tuple (Q,Σ, F,∆),
where Q is the set of states, Σ is the set of function symbols, F ⊆ Q is the set
of final states, and ∆ is a finite set of transitions of the form f(q1, . . . , qn)→ q,
where f ∈ Σ is an n-ary function symbol, and q, q1, . . . , qn ∈ Q.

A tree t = f(t1, . . . , tn) ∈ T (Σ, ∅) is recognized at q ∈ Q in A iff there is
a transition f(q1, . . . , qn) → q ∈ ∆ such that ti is recognized at qi in A. t is
accepted by A iff it is recognized at some final state qf ∈ F in A.

Similar to finite automata, tree automata are also closed under language-
theoretic union, intersection and complement.

4 Solvability

Let HC be a set of Horn clauses, and Π a map which assigns to each uninterpret-
ed predicate a formula in the constraint language having the same number of
variables as parameters. Π could be extended to map a Horn clause to a formula
in the constraint language as follows:
Π(C ∧ p1(x1) ∧ · · · ∧ pn(xn) → ph(xh)) = C ∧Π(p1)(x1) ∧ · · · ∧Π(pn)(xn) →
Π(ph)(xh)
Π(C ∧ p1(x1)∧ · · · ∧ pn(xn)→ false) = C ∧Π(p1)(x1)∧ · · · ∧Π(pn)(xn)→ false

Definition 3 (Solvability [7]). Given a structure (U, I), A set HC of Horn
clauses is said to be
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– syntactically solvable, if there is a map Π such that (U, I) |= Cl∀(Π(h)) for
each h ∈ HC; and

– semantically solvable, if there is an interpretation Iu that assigns to each
uninterpreted predicate a relation on U , such that for each Horn clause h ∈
HC, (U, I ⊕ Iu) |= Cl∀(h).

Here I ⊕ Iu is the disjoint union of I and Iu. In the sequel, we will always
assume a fixed structure (U, I).

For convenience, Π could be extended to assign to the special uninterpreted
predicate false the formula false.

Semantic solvability is related to the consistency of the set of Horn claus-
es (i.e., whether there is a contradiction), while syntactic solvability concerns
whether there is a solution for the set of Horn clauses that is representable in
the underlying constraint language.

We can easily see that, if a set of Horn clauses is syntactically solvable, then
it is semantically solvable. However, the reverse is not necessarily true [7]. Next
we investigate the sufficient and necessary conditions for the solvability of a set
of Horn clauses.

For a set HC of Horn clauses, we define a dependence relation →HC on (R∪
{false}): p1 →HC p2 iff there is a Horn clause in HC containing p1 in its head
and p2 in its body. We say that HC is recursion-free if →HC is acyclic, and
tree-structured if →HC forms a tree and p appears at most once in h for each
uninterpreted predicate p ∈ R and each Horn clause h ∈ HC.

A tree-structured set of Horn clauses HC′ is an unfolding of a set of Horn
clauses HC if there is a mapping Γ : RHC′ → RHC from the set of uninterpreted
predicates of HC′ to the set of uninterpreted predicates of HC such that

– for each Horn clause C ∧ p′1(x1) ∧ · · · ∧ p′n(xn) → p′h(xh) ∈ HC′, there is a
Horn clause C ∧ p1(x1) ∧ · · · ∧ pn(xn)→ ph(xh) ∈ HC such that Γ (p′i) = pi
for i ∈ {1, . . . , n} ∪ {h}; and

– there is a unique Horn clause C ∧ p′1(x1) ∧ · · · ∧ p′n(xn)→ false in HC′ such
that C ∧ Γ (p′1)(x1) ∧ · · · ∧ Γ (p′n)(xn)→ false ∈ HC.

By the definition above we can see that Γ can be easily extended to map
each Horn clause in HC′ to a Horn clause in HC.

Moreover, HC′ is a ground unfolding if for each uninterpreted predicate p′ ∈
PHC′ , there is a Horn clause C∧B1∧· · ·∧Bn → H ∈ HC′, where H is p′(xh) and
n ≥ 0. Intuitively, an unfolding HC′ is a ground unfolding if each uninterpreted
predicate appears in the head of some Horn clause inHC′. Each ground unfolding
corresponds to a derivation of false.

Example 1. For the set of Horn clauses HC1

(h1) p(x, y)← x = y
(h2) p(x, z)← p(x, y) ∧ z = y + 1
(h3) q(x, z)← p(x, y) ∧ p(y, z)
(h4) false← q(x, y) ∧ x > y
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one of its unfoldings HC′1 is

(h′1) p3(x, y)← x = y
(h′2) p2(x, z)← p3(x, y) ∧ z = y + 1
(h′3) p1(x, y)← x = y
(h′4) q1(x, z)← p1(x, y) ∧ p2(y, z)
(h′5) false← q1(x, y) ∧ x > y

where for the mapping Γ , we have Γ (p1) = Γ (p2) = Γ (p3) = p, and Γ (q1) = q.
We can see that this unfolding is in fact a ground unfolding.

Moreover, this unfolding corresponds to a derivation of false, where

– false is derived from q(x1, x2) ∧ x1 > x2 (corresponding to h′5);
– q(x1, x2) is derived from p(x1, x3) ∧ p(x3, x2) (corresponding to h′4);
– p(x1, x3) is derived from x1 = x3 (corresponding to h′3);
– p(x3, x2) is derived from p(x3, x4) ∧ x2 = x4 + 1 (corresponding to h′2);
– p(x3, x4) is derived from x3 = x4 (corresponding to h′1).

This derivation is illustrated in Figure 2a, where each node is derived by con-
junctions of its children according to one of the Horn clauses.

In the following theorem, we establish the relation between the semantic
solvability of a set of Horn clauses and that of its ground unfoldings.

Theorem 1. A set of Horn clauses is semantically solvable, iff all of its ground
unfoldings are semantically solvable.

Theorem 1 is closely related to the soundness and completeness of top-down
derivations in CLP [5]. However, here we develop it in a notation different from [5]
for our special purpose.

In order to prove this theorem, we define a concept reachable set for uninter-
preted predicates. For a set of Horn clauses HC, the reachable set IS assigns to
each n-ary uninterpreted predicate (including false) an n-ary relation over the
universe U . We define a special 0-ary tuple ε to handle the 0-ary uninterpret-
ed predicates (including false). Basically, the relation IS(pi) for each pi is the
smallest relation satisfying

– Rule (i). For each tuple th, each element of which is in U , if there is a Horn
clause C∧p1(x1)∧· · ·∧pn(xn)→ ph(xh) ∈ HC, and a set of tuples ti ∈ IS(pi)
for i = 1, 2, . . . , n, such that (t0, t1, . . . , tn, th) ∈ I(C), and (ti) ∈ IS(pi),
then th ∈ IS(ph).

Here I(C) denotes the k-ary relation of C when interpreted on the structure
(U, I), where k is the sum of numbers of variables in the tuples x0,x1, . . . ,xn.
IS corresponds to the least fixedpoint semantics of Constraint Logic Pro-

grams [5], while Rule (i) corresponds to the one-step consequence operator. We
call IS the reachable set because it resembles to some extent the reachable state
sets of programs, which can also be seen as a kind of least fixedpoint.
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It is easy to prove that, if there is a semantic solution I for HC, then it must
be the case that IS(p) ⊆ I(p) for each uninterpreted predicate p. Moreover,
for an unfolding HC′ and its corresponding reachable set I ′S , it is obvious that
I ′S(p′) ⊆ IS(Γ (p′)) for each uninterpreted predicate p′ in HC′.

As stated previously, false can be seen as a special uninterpreted predicate.
For an arbitrary semantic solution Iu of HC, Iu can be naturally extended to
assign to false a set of 0-tuples according to Rule (i) described above. By the
definition of solvability, we know that it must be the case that Iu(false) = ∅, i.e.,
Iu(false) 6= {ε}.

Lemma 1. A set of Horn clauses is semantically solvable iff IS(false) = ∅.

Proof. ⇒. If there is a semantic solution Iu, then we could get IS(false) ⊆
Iu(false) = ∅.
⇐: if IS(false) = ∅, then according to Definition 3 IS is a solution.

Intuitively, a set of Horn clauses is solvable iff false can not be “reached”.
Lemma 1 states the relation between the semantic solvability of a set of Horn
clauses and the property of the corresponding reachable set. In the following
lemma we establish the relation between the properties of the reachable set of a
set of Horn clauses and the semantic solvability of its ground unfoldings.

Lemma 2. There is a semantically unsolvable ground unfolding iff IS(false) 6= ∅
(IS(false) = {ε}).

Proof. ⇒.For the unsolvable unfolding HC′, we can construct a reachable set
I ′S . For each uninterpreted predicate p′ appearing in HC′, we have I ′S(p′) ⊆
IS(Γ (p)). Since HC′ is unsolvable, by Lemma 1 we have ∅ 6= I ′S(false) ⊆
IS(Γ (false)) = IS(false).
⇐.If IS(false) 6= ∅, then by the definition of reachable set there must be a

Horn clause C ∧ B1 ∧ · · · ∧ Bn → false such that there exist tuples t1, . . . , tn
satisfying ti ∈ IS(pi) for each i ∈ {1, . . . , n} and (t1, . . . , tn, ε) ∈ I(C). We
replace each uninterpreted predicate pi by a fresh symbol p′i, obtaining a Horn
clause C ∧ p′1(x1) ∧ · · · ∧ p′n(xn)→ false.

By the definition of reachable set, for each ti there must be a Horn clause
Ci ∧ Bi1 ∧ · · · ∧ Bini → Hi in HC, such that Hi = pi(xih) and there ex-
ist tuples ti1, . . . , tini satisfying tij ∈ IS(pij) for each j = {1, . . . , ni} and
(ti1, . . . , tini

, ti) ∈ I(Ci). We replace each uninterpreted predicate pij by a fresh
symbol p′ij for j ∈ {1, . . . , ni}, and replace pi in Hi by p′i, obtaining a Horn
clause Ci ∧ p′i1(xi1) ∧ · · · ∧ p′ini

(xini
)→ p′i(xih).

By repeating this reasoning we can collect a set of Horn clauses HC2, which
is in fact an unfolding of HC. We denote the reachable set of HC2 as I2S . By the
definition of reachable set and the way in which HC2 is obtained, we know that
ε ∈ I2S(false), so HC2 is unsolvable.

Theorem 1 follows from Lemma 1 and Lemma 2. Intuitively, we can prove the
semantic solvability of a set of Horn clauses by proving that all of its unfoldings
are semantically solvable. In the following section, we will describe an algorithm
for Horn clause solving, which follows this idea.
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5 Trace Abstraction Refinement for Horn Clause Solving

5.1 Trace abstraction refinement

We define the tree language corresponding to a set HC of Horn clauses on the
alphabet HC, i.e., the set of Horn clauses itself. For each Horn clause h: C∧B1∧
· · · ∧Bn → H, we define the arity of h to be n.

The tree automatonAHC for a setHC of Horn clauses is the tuple (Q,Σ,Qf , ∆)
such that

– Q = R∪ {false},
– Σ = HC,
– Qf = {false},
– ∆ = {h(q1, . . . , qn) = qh|h : C ∧ q1(x1) ∧ · · · ∧ qn(xn)→ qh(xh) ∈ HC}.

Example 2. For the set HC1 of Horn clauses given in Example 1, the set of states
of the corresponding tree automaton AHC1 is QHC1 = {false, p, q}, the alphabet
of the tree language is ΣHC1 = {h1, h2, h3, h4}, the set of final states is QHC1f =
{false} and the transition relation is: {h1() = p, h2(p) = p, h3(p) = q, h4(q) =
false}. Moreover, the ground unfolding HC′1 given in Example 1 corresponds to
the tree h4(h3(h1, h2(h1))) (Figure 2b), which is accepted by AHC1 .

Each tree accepted by AHC corresponds to a ground unfolding HC′ of HC:
each node of the tree corresponds to a Horn clause h′ ∈ HC′, and vice versa.
Moreover, if the node is labeled with a Horn clause h ∈ HC, then it must be
the case that Γ (h′) = h. Since there is a one-to-one correspondence between
trees and unfoldings, in the sequel, we will abuse the term of an (accepted) tree
and a (ground) unfolding. Combining Theorem 1, in order to prove that HC is
semantically solvable, one just needs to prove that all the trees accepted by AHC
are semantically solvable.

Sets of solvable ground unfoldings could be represented by tree automata, and
the semantic solvability verification task could be accomplished by constructing
and manipulating tree automata, which is in spirit similar to the method in [4].

For finite automata, a trace is a sequence, while for tree automata, a trace is
a tree. Similar to [4], we define trace abstractions for sets of Horn clauses.

Definition 4 (Trace abstraction). A trace abstraction of a set of Horn claus-
es HC is a tuple of tree automata (A1,A2, . . . ,An) such that each Ai (i ∈
{1, . . . , n}) accepts a set of semantically solvable ground unfoldings of HC.

Let us denote by L(A) the language accepted by A. For each unfolding HC′,
we denote by tHC′ the tree corresponding to HC′.

Combining Theorem 1 and Definition 4, the following theorem can be easily
obtained.

Theorem 2. Given a set of Horn clauses HC, if there is a trace abstraction
(A1, . . . ,An) such that for each ground unfolding HC′ of HC, there is an i ∈
{1, . . . , n} such that tHC′ ∈ L(Ai), then HC is semantically solvable.
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Based on the above discussions, we present a semi-algorithm for the verifica-
tion of Horn clause semantic solvability, which is shown in Algorithm 1. It incre-
mentally builds a trace abstraction (A1, . . . ,An) such that L(AHC) ⊆ L(A1) ∪
· · · ∪ L(An). In the k’th iteration of the algorithm a tree t ∈ L(AHC)\(L(A1) ∪
· · · ∪ L(Ak−1)) is extracted and checked whether it is solvable. If t is not solv-
able, then HC is not solvable and the algorithm terminates and returns false,
otherwise a set of trees, including t, is proved to be semantically solvable, and
a tree automaton Ak accepting this set of trees is constructed and added to the
trace abstraction. The algorithm could either terminate or loop forever. When
it terminates, a result is given indicating whether HC is semantically solvable.
A solvable ground unfolding corresponds to a spurious counterexample in CE-
GAR procedure for program verification, while an unsolvable ground unfolding
corresponds to a concrete counterexample.

As mentioned previously, tree automata are closed under intersection, union,
and complement. The task of checking whether there is a tree t in L(AHC)\(L(A1)∪
· · · ∪ L(Ak−1)) for the series of tree automata AHC ,A1, . . . ,Ak−1 can be done
using existing algorithms on tree automata.

The task of checking whether a ground unfolding is solvable (line 5 of Algo-
rithm 1) and constructing tree automata which exclude solvable ground unfold-
ings (line 8 of Algorithm 1) will be explained in the next subsection.

Algorithm 1 The trace abstraction refinement procedure

Input HC: the set of Horn clauses
Output true if HC is semantically solvable, and false otherwise
1: Construct the tree automaton AHC
2: k ← 1
3: while ∃t ∈ L(AHC)\(L(A1) ∪ · · · ∪ L(Ak−1)) do
4: Let HC′ be the unfolding of HC induced by t
5: if φconstr(HC′) is satisfiable then
6: return false
7: else
8: Ak ← ConstructTreeAutomaton(t, HC)
9: end if

10: k ← k + 1
11: end while
12: return true

5.2 Interpolant tree automata

Given a ground unfoldingHC′, we can obtain a tree of formulas by extracting the
constraint formulas in each Horn clause and renaming the variables. We define
enc which encodes a ground unfolding to a tree of formulas as follows:

– suppose the Horn clause in HC′ with false in its head is C ∧ p1(x1) ∧ · · · ∧
pn(xn)→ false, enc(HC′) is a tree that has C[x0/x

′
0, . . . ,xn/x

′
n] in its root



14 Weifeng Wang, Li Jiao

node and enc(hc1,x
′
1), . . . , enc(hcn,x

′
n) as its subtrees, where hci ∈ HC′ is

the Horn clause with the uninterpreted predicate pi in its head;
– for each Horn clause hc : C∧p1(x1)∧· · ·∧pn(xn)→ ph(xh) ∈ HC′ and a tuple

of variables x1
h, enc(hc,x1

h) is a tree that has C[x0/x
′
0, . . . ,xn/x

′
n,xh/x

1
h]

in its root node and enc(hc1,x
′
1), . . . , enc(hcn,x

′
n) as its subtrees, where

hci ∈ HC′ is the Horn clause with the uninterpreted predicate pi in its head;

where x′i stands for a tuple of fresh variables corresponding to xi, and C[x0/x
′
0,

. . . ,xk/x
′
k] is the formula obtained by replacing in C the tuples of free variables

x0, . . . ,xk with x′0, . . . ,x
′
k.

We denote φconstr(HC′) of an unfolding HC′ as the conjunction of all the
formulas in the tree enc(HC′):

φconstr(HC′) =
∧

{φ|φ is a formula in enc(HC′)}
φ,

then we can prove that HC′ is semantically solvable iff φconstr(HC′) is unsatis-
fiable, and the latter can be checked by SMT solvers. Thus we have line 5 in
Algorithm 1.

According to existing works such as [11], [9] and [7], interpolation techniques
can be used to obtain a syntactic solution for a solvable ground unfolding. If
φconstr(HC′) is unsatisfiable, we can get a tree interpolant for enc(HC′). A tree
interpolant for a tree of formulas is a mapping TI from each tree node to a
formula such that for each node n in the tree:

–
∧

i∈children(n)
TI(i) ∧ φ(n) implies TI(n), and

– the set of variables appearing in TI(n) is the intersection of the set of vari-
ables appearing in the formulas of the subtree rooted at n and the remaining
formulas in the tree other than the subtree, and

– for the root node r, TI(r) = false,

where children(n) is the set of child nodes of n, and φ(n) is the formula in
the node n. Obviously, each node of enc(HC′) corresponds to an uninterpreted
predicate in HC′, where the root of the subtree enc(hc,x1

h) corresponds to the
uninterpreted predicate appearing in the head of hc, and the root of enc(HC′)
corresponds to the special uninterpreted predicate false. Based on this corre-
spondence, a syntactic solution of HC′ can be obtained from a tree interpolant
of enc(HC′) up to variable renaming.

Example 3. From the ground unfolding HC′1 in Example 1 we can obtain a tree
enc(HC′1) of formulas shown in Figure 3a. Moreover, we have:

φconstr(HC′1) = x1 > x2 ∧ true ∧ x1 = x3 ∧ x2 = x4 + 1 ∧ x3 = x4,

which is unsatisfiable. A possible tree interpolant TI of this tree of formulas
is shown in Figure 3b, where the formulas are positioned corresponding to the
nodes of the tree in Figure 3a. The uninterpreted predicates (along with the
parameter variables) corresponding to each node of enc(HC′1) is shown in Fig-
ure 3c. According to this correspondence, a syntactic solution ΠTI of HC′1 can
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be obtained from TI:
ΠTI(false) = false
ΠTI(q1)(x1, x2) = x1 ≤ x2
ΠTI(p1)(x1, x3) = x1 ≤ x3
ΠTI(p2)(x3, x2) = x3 ≤ x2
ΠTI(p3)(x3, x4) = x3 ≤ x4

x1 > x2

true

x1 = x3 x2 = x4 + 1

x3 = x4

(a)

false

x1 ≤ x2

x1 ≤ x3 x3 ≤ x2

x3 ≤ x4
(b)

false

q1(x1, x2)

p1(x1, x3) p2(x3, x2)

p3(x3, x4)

(c)

Fig. 3: (3a) the tree of formulas enc(HC′1) for the ground unfolding HC′1 in Ex-
ample 1, (3b) a tree interpolant TI for enc(HC′1) in Figure 3a, and (3c) the
uninterpreted predicates (along with parameter variables) corresponding to each
node of enc(HC′1).

Tree interpolation is an extension of Craig interpolation, and can be obtained
from a tree of formulas using some of the existing interpolating SMT solvers such
as Z3 [23] and SMTInterpol [24]. Based on the Craig interpolation theorem [25],
φconstr(HC′) is unsatisfiable iff there is a tree interpolant TI for enc(HC′). In
the sequel, we denote as ΠTI the syntactic solution of the unfolding obtained
from the tree interpolant TI.

Given a solvable ground unfolding HC′ and a corresponding tree interpolant,
a tree automaton can be constructed, which accepts HC′ and possibly other
solvable ground unfoldings.

Definition 5 (Interpolant tree automata). Given a solvable unfolding HC′
of HC and a tree interpolant TI of enc(HC′), an interpolant tree automaton is
a tree automaton (Q′, Σ′, Q′f , ∆

′) such that

– Q′ = RHC′ ∪ {false},
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– Σ′ = HC,
– Q′f = {false},
– h(p′1, . . . , p

′
n) = p′h ∈ ∆′ implies

• h is a Horn clause C ∧ p1(x1) ∧ · · · ∧ pn(xn)→ ph(xh) in HC, and
• Γ (p′i) = pi for i ∈ {1, . . . , n} ∪ {h}, and
• (U, I) |= Cl∀(C ∧ ΠTI(p

′
1)(x1) ∧ ΠTI(p

′
2)(x2) ∧ · · · ∧ ΠTI(p

′
n)(xn) →

ΠTI(p
′
h))(xh),

– h(p′1, . . . , p
′
n) = p′h ∈ ∆′, if there is a Horn clause h′ : C ∧ p′1(x1) ∧ · · · ∧

p′n(xn)→ p′h(xh) in HC′, such that Γ (h′) = h,

where p′h and ph might be the special uninterpreted predicate false.

The alphabet of the interpolant tree automaton is the original set of Horn
clauses, while the set of states is the set of uninterpreted predicates in the un-
folding. In fact, the alphabet of all the tree automata constructed during the
trace abstraction refinement procedure are the original set of Horn clauses. We
can check that for each solvable ground unfolding HC′, the corresponding inter-
polant tree automaton accepts HC′. According to Definition 5, there are many
interpolant tree automata for a ground unfolding and a corresponding tree inter-
polant. One can vary by deciding which transition rules should be added to the
automata and which rules should be ignored. Here we give a canonical scheme,
which adds all the possible transition rules to the interpolant tree automata.

Definition 6 (Canonical interpolant tree automata). Given a solvable un-
folding HC′ of HC and a tree interpolant TI of enc(HC′), the canonical inter-
polant tree automaton is an interpolant tree automaton (Q′, Σ′, Q′f , ∆

′) such that

– h(p′1, . . . , p
′
n) = p′h ∈ ∆′ iff

• h is a Horn clause C ∧ p1(x1) ∧ · · · ∧ pn(xn)→ ph(xh) in HC, and
• Γ (p′i) = pi for i ∈ {1, . . . , n} ∪ {h}, and
• (U, I) |= Cl∀(C ∧ ΠTI(p

′
1)(x1) ∧ ΠTI(p

′
2)(x2) ∧ · · · ∧ ΠTI(p

′
n)(xn) →

ΠTI(p
′
h))(xh),

where ph and p′h might be the special uninterpreted predicate false.

A canonical interpolant tree automaton of a ground unfolding HC′ typically
accepts more ground unfoldings than just HC′. We can prove that, each ground
unfolding accepted by an interpolant tree automaton is syntactically solvable,
which is stated in the following theorem.

Theorem 3. For each tree t accepted by an interpolant tree automaton A, the
ground unfolding HCt corresponding to t is syntactically solvable.

Proof. By Definition 5, there is a tree interpolant TI, according to which A
is constructed. Consequently there is a ΠTI which maps each state of A to a
formula in TI. For an arbitrary uninterpreted predicate pt that appeared in HCt,
there is exactly one Horn clause ht ∈ HCt containing pt in its head, suppose the
sub-tree with Γ (ht) as the root is recognized at qht in A. We define a map Πt

as: Πt(pt) = ΠTI(qht). It can be checked that Πt is a syntactic solution of HCt
up to variable renaming.
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Now we can describe an implementation of the function ConstructTreeAu-
tomaton. Given a tree t and a set of Horn clausesHC, it first obtains the ground
unfolding HC′ of HC induced by t, and then uses an interpolating SMT solver
to compute a tree interpolant, based on which a canonical interpolant tree au-
tomaton is constructed. This implementation is given in Algorithm 2.

Algorithm 2 ConstructTreeAutomaton

Input HC: the set of Horn clauses, t: a solvable tree accepted by AHC
Output At: a tree automaton accepting t and possibly other solvable trees
1: Let HC′ be the unfolding of HC induced by t
2: Use SMT Interpolater to get the tree interpolant TI for HC′
3: Construct the canonical interpolant tree automaton At according to Definition 6
4: return At

Example 4. For the ground unfolding in Example 1, which corresponds to the
tree h4(h3(h1, h2(h1))), a tree interpolant TI is given in Example 3 along with
the corresponding syntactic solution ΠTI . According to ΠTI , we can construct
a canonical interpolant tree automaton A′ = (Q′, Σ′, Q′f , ∆

′), where

– Q′ = {false, q1, p1, p2, p3},
– Σ′ = {h1, h2, h3, h4},
– Q′f = {false},
– ∆′ = {h4(q1) = false} ∪ {h3(pi, pj) = q1|i, j ∈ {1, 2, 3}} ∪ {h2(pi) = pj |i, j ∈
{1, 2, 3}} ∪ {h1() = pi|i ∈ {1, 2, 3}}.

We can check that h4(h3(h1, h2(h1))) is accepted by A′. Moreover, L(AHC1) =
L(A′), so the set of Horn clauses HC1 has already been proven syntactically
solvable, and (A′) serves as the final trace abstraction.

If there is a series of interpolant tree automata covering all ground unfoldings
of HC, then HC is syntactically solvable. Moreover, we can obtain a syntactic
solution from the series of interpolant tree automata.

Theorem 4. For a set HC of Horn clauses, there is a series of interpolant
tree automata A1, . . . ,An such that AHC ⊆ A1 ∪ · · · ∪ An iff the set of HC is
syntactically solvable.

Proof. ⇐. If HC is syntactically solvable, then there is a syntactic solution Πs.
Similar to Definition 6, we could construct an interpolant automaton As using
this solution, with RHC∪{false} as the set of states. We can check that L(As) =
L(AHC), in fact As is exactly the same as AHC , since Πs satisfies every Horn
clause in HC. Thus (As) is a qualifying trace abstraction.
⇒. Suppose there is a series of interpolant tree automata A1, . . . ,An as

described above, where Ai = (Qi, Σi, Qif , ∆
i). we should construct a solution

for HC.
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By Definition 5 each state s in Qi for some i ∈ {1, . . . , n} corresponds to a
formula, which we denote by ΠI(s). We define the formula φρ for a tree ρ as
φρ =

∧
ρ→sΠI(s), where ρ → s means that ρ is accepted at s in Ai for some

i ∈ {1, . . . , n}.
Each state of AHC can be reached by (possibly infinitely) many trees in AHC .

We define ΠS(p) =
∨
ρ→AHCp

φρ, where ρ →AHC p means that ρ is accepted at

p in AHC . For two trees ρ1 and ρ2, we can see that φρ1 = φρ2 if {s|ρ1 → s} =
{s|ρ2 → s}. Since the number of states in Q1∪· · ·∪Qn is finite, there are finitely
many distinct φρ for all trees ρ satisfying ρ→AHC p. So ΠS(p) is a well-formed
formula. It can be checked that ΠS is a syntactic solution for HC.

Example 5. Using the construction method given in the above proof, we can
construct a syntactic solution ΠHC1 for HC1 according to the interpolants in
Example 4:

ΠHC1(q)(x, y) = x ≤ y
ΠHC1(p)(x, y) = x ≤ y
We can easily check that ΠHC1 is indeed a syntactic solution for ΠHC1 .

By Theorem 4, we can immediately get the following corollary:

Corollary 1. If Algorithm 1 terminates and returns true, then HC is syntacti-
cally solvable.

5.3 Discussion

Algorithm 1 might not necessarily terminate. However, this is quite reasonable,
since program verification (which can be reduced to Horn clause solving prob-
lems) is generally undecidable. Existing works on program verification usually
put a (time, space, etc.) limit on the algorithm, and output “UNKNOWN” if
the algorithm can not return a result under the limit. Our algorithm can also be
modified like that.

Our method is one among the several Horn clause solving methods originating
from program verification techniques. Similar to the other methods, our method
also inherit the advantages and disadvantages of the corresponding program
verification technique.

There are two potential overheads in our method. One is the SMT solving
procedure, which is well known to be time consuming. The other is tree automata
operations.

When a ground unfolding is found in each iteration, the SMT solver is called
to judge whether the unfolding is solvable, and if the answer is yes, a tree inter-
polant is generated. A ground unfolding is a group of Horn clauses, the size of
the formula to be solved is linear to the size of the ground unfolding.

In the tree automata construction step, each transition is added to the tree
automata according to the result of solving a relatively small SMT formula, the
size of which is linear to the size of a Horn clause. It is possible that by just adding
a few transitions, a large amount of ground unfoldings are excluded from future



Trace Abstraction Refinement for Solving Horn Clauses 19

iterations. So the tree interpolant generated from the ground unfolding is largely
reused to exclude many more ground unfoldings. Since the computation time of
SMT solving is exponential to the size of the formula in the worst case, solving
small SMT formulas spends much less time than solving large SMT formulas.

The process of finding new ground unfoldings that have not been excluded
from the current trace abstraction involves tree automata operations. The po-
tential overhead of our method lies partly in the tree automata operations. In the
k’th iteration, we want to find a tree from the language of AHC ∩A1 ∩ · · ·Ak−1.
The complement operation might lead to exponential blow up, and the task of
checking emptiness of the intersection of a set of tree automata is EXPTIME-
complete [22]. However, by using techniques such as binary decision diagrams
(BDD), we might be able to handle tree automata of very large sizes.

For many other CEGAR-based verification methods, the construction of ab-
stract models in each iteration involves a large number of SMT calls. In trace
abstraction refinement, however, the number of states in each tree interpolant
automaton is linear to the size of the ground unfolding, which is relatively small
compared to the whole system. Consequently less time is spent on SMT solv-
ing in each iteration. However, the number of iterations might be large in some
cases, and the tree automata operations become a possible bottleneck.

6 Program verification by solving Horn clauses

In Section 2, we have already shown that safety verification of simple programs
can be easily encoded into Horn clause solving problems. In this section we de-
scribe existing works on how the safety verification of multi-threaded programs
can be encoded into Horn clauses in a compositional way, and how the safety ver-
ification of programs with procedures can be encoded into Horn clauses. (These
encoding schemes are described in [6].) By showing the above encoding schemes,
we demonstrate that our work can be seen as an extension of the original trace
abstraction refinement scheme for the verification of various programs.

6.1 Compositional verification of multi-threaded programs

Safety verification task of multi-threaded programs can be encoded into Horn
clause solving problem using Owicki-Gries method [12]. For an N -thread pro-
gram with the set V of variables, we useN uninterpreted predicates Inv1, . . . , InvN
over V to represent assertions for each thread. The Owicki-Gries proof rule is
shown in Figure 4.

Each Invi represents certain invariant property of thread i. The CO1 rule
says that every Invi holds initially. CO2 says that Invi is invariant with respect
to transitions of thread i. CO3 says that each Invi is invariant with respect to
transitions of any other thread j 6= i. CO4 says that the system is safe as long
as Invi holds for each thread i.

According to Owicki-Gries rules, if we can find a formula for each Invi,
i ∈ {1 . . . N}, then the multi-threaded program can be proved to be safe. The
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CO1: init(V ) → Invi(V )
CO2: Invi(V ) ∧ ρi(V, V ′) → Invi(V

′)
CO3: Invi(V ) ∧ (

∨
j∈1...N\{i} Invj(V ) ∧ ρj(V, V ′)) → Invi(V

′)

CO4: Inv1(V ) ∧ · · · ∧ InvN (V ) ∧ unsafe(V ) → false

the multi-threaded program is safe

Fig. 4: Owicki-Gries rules.

premise part of the Owicki-Gries rules is in fact a set of Horn clauses with
uninterpreted predicates Inv1, . . . , InvN , and finding a formula for each Invi can
be accomplished by obtaining a syntactic solution for this set of Horn clauses.

Example 6. For the simple multi-threaded program LockBit [11] in Figure 5,
where two threads access critical regions exclusively, the safety property to be
verified is that the two threads will never be in the critical section at the same
time. The Horn clause encoding is shown in Figure 6, where Inv1 and Inv2 are
two uninterpreted predicates, and init,ρ1, ρ2 and unsafe are formulas in the
constraint language described as follows:

– init(pc1, pc2, lock) = (pc1 = a ∧ pc2 = p ∧ lock = 0),
– ρ1(pc1, pc2, lock, pc

′
1, pc

′
2, lock

′) = (lock = 0 ∧ lock′ = 1 ∧ pc1 = a ∧ pc′a =
b ∧ pc2 = pc′2),

– ρ2(pc1, pc2, lock, pc
′
1, pc

′
2, lock

′) = (lock = 0 ∧ lock′ = 1 ∧ pc2 = p ∧ pc′2 =
q ∧ pc1 = pc′2),

– unsafe(pc1, pc2, lock) = (pc1 = b ∧ pc2 = q).

The Horn clauses hl1 and hl2 are obtained according to CO1; hl3, h
l
4 are ob-

tained according to CO2; hl5, h
l
6 are obtained according to CO3; hl7 is obtained

according to CO4.
When the verification task of a multi-threaded program is encoded into a

Horn clause solving problem, the remaining work is left to the Horn clause solver.
Thus, compositional verification is easily performed by a compositional encoding
scheme.

// Thread 1 // Thread 2

a: take lock(lock, 1); p: take lock(lock, 1);

b: //critical q: //critical

Fig. 5: Multi-threaded program LockBit

6.2 Verification of programs with procedures

McCarthy91 function: an example The safety verification tasks of recursive
programs can also be encoded into Horn clause solving problems. Here we take
the example of McCarthy91 function.
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(hl
1) I1(pc1, pc2, lock)← init(pc1, pc2, lock)

(hl
2) I2(pc1, pc2, lock)← init(pc2, pc2, lock)

(hl
3) I1(pc′1, pc

′
2, lock

′)← I1(pc1, pc2, lock) ∧ ρ1(pc1, pc2, lock, pc
′
1, pc

′
2, lock

′)
(hl

4) I2(pc′1, pc
′
2, lock

′)← I2(pc1, pc2, lock) ∧ ρ2(pc1, pc2, lock, pc
′
1, pc

′
2, lock

′)
(hl

5) I1(pc′1, pc
′
2, lock

′)← I2(pc1, pc2, lock) ∧ ρ2(pc1, pc2, lock, pc
′
1, pc

′
2, lock

′)
(hl

6) I2(pc′1, pc
′
2, lock

′)← I1(pc1, pc2, lock) ∧ ρ1(pc1, pc2, lock, pc
′
1, pc

′
2, lock

′)
(hl

7) false← I1(pc1, pc2, lock) ∧ I2(pc1, pc2, lock) ∧ unsafe(pc1, pc2, lock)

Fig. 6: Horn clause encoding for LockBit.

McCarthy 91 function

function McCarthy91 (x){

if(x>100)return x-10;

else return McCarthy91(McCarthy91(x+11));

}

assert(McCarthy91(x)>=91);

As shown in the assertion given above, we want to prove that for an arbitrary
input x, the McCarthy91 function always returns a value that is no less than 91.

We can encode this verification task into a set of Horn clauses as follows:

(hm1 ) M(x, y)← x > 100 ∧ y = x− 10
(hm2 ) M(x, y)← x ≤ 100 ∧ u = x+ 11 ∧M(u, z) ∧M(z, y)
(hm3 ) false←M(x, y) ∧ y < 91

The corresponding tree automaton is Am = (Qm, Qmf , Σ
m, ∆m), where

– Qm = {false,M},
– Qmf = {false},
– Σm = {hm1 , hm2 , hm3 },
– ∆m = {hm1 () = M,hm2 (M,M) = M,hm3 (M) = false}.

We can find a tree hm3 (hm1 ) accepted by Am. The ground unfolding HCm1

corresponding to this tree is obtained as follows:

(hm1
1 ) false←M1(x, y) ∧ y < 91

(hm1
2 ) M1(x, y)← x > 100 ∧ y = x− 10

One possible syntactic solution Πm1 obtained from a tree interpolant of
enc(HCm1) is Πm1(M1)(x, y) : y ≥ 91. According to this tree interpolant, a
tree automaton Am1 = (Qm1, Qm1

f , Σm1, ∆m1) can be constructed, where

– Qm1 = {false,M1},
– Qm1

f = {false},
– Σm1 = {hm1 , hm2 , hm3 },
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– ∆m1 = {hm1 () = M1, h
m
2 (M1,M1) = M1,

hm3 (M1) = false}.

One can check that L(Am1) = L(Am), so we arrive to the conclusion that
each tree accepted by Am corresponds to a solvable unfolding, i.e., the property
of the McCarthy91 function mentioned previously is proved to be correct.

This might seem surprising at first sight: we only analyzed one tree hm3 (hm1 ),
which only concerns the “if” branch (where x > 100) of the McCarthy91 function,
yet the function is proved to be correct by the single interpolant tree automaton
constructed from hm3 (hm1 ). How could the function be proved to be correct, if the
“then” branch (where x ≤ 100) is not even considered? Moreover, if this proof
is valid, then we can claim that the same property holds if we change “x+ 11”
in the program to “x− 11”, which seems absurd, but is in fact not at all.

By a careful check one can find that this function returns a value only when
the condition x > 100 for the input x is met, otherwise it calls itself again and
again, and does not return. Therefore the solution of the Horn clause proves the
partial correctness of this function: if the McCarthy91 function ends and returns,
the returned value must be no less than 91. Consequently, we can change the
expression “x + 11” in the program to anything, and the property still holds.
This surprisingly simple solution helps us to gain insight into the McCarthy91

function.
From this example, we can see that the trace abstraction refinement success-

fully exploits the structure of the program to help the verification. This might
be a potential advantage when dealing with some programs.

Encoding programs with procedures Generally, verification tasks of pro-
grams with procedures can be encoded into Horn clause solving problems ac-
cording to the rules shown in Figure 7.

The entry point of the program is the procedure main. For each procedure
f , Vf represents the set of global and local variables accessible in its scope. An
uninterpreted predicate Tf (Vf , V

′
f ) is allocated for each procedure f . Tf (Vf , V

′
f )

is in fact a summary of f , which represents the reachability relation between
the entry state Vf and the successor state V ′f at the same level of recursion. The
rule CP1 says that the initial state is satisfied by the summary of main. CP2
says that the summary Tf is a closure of the internal transitions of f . CP3 says
that if the caller procedure f satisfies the summary Tf at the calling point, then
the callee procedure g satisfies Tg at the entry point. CP4 says that, if the callee
procedure g satisfies the summary Tg between its entry point and return point,
then Tf can be extended one step to include the call of g. Finally, CP5 says that
the summary of f entails the safety of f .

7 Experiments

We have implemented our algorithm using SMTInterpol [24] as the interpolat-
ing SMT solver. We implemented a tree automata library, which represents tree
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CP1: init(Vmain) ∧ Vmain = V ′main → Tmain(Vmain, V
′
main)

CP2: Tf (Vf , V
′
f ) ∧ ρf (V ′f , V

′′
f ) → Tf (Vf , V

′′
f )

CP3: Tf (Vf , V
′
f ) ∧ callf,g(V ′f , V

′′
g ) ∧ V ′′g = V ′′′g → Tg(V ′′g , V

′′′
g )

CP4: Tf (Vf , V
′
f ) ∧ callf,g(V ′f , V

′′
g )∧

Tg(V ′′g , V
′′′
g ) ∧ retf,g(V ′′′g , V ′′′′f ) ∧ locf (V ′f , V

′′′′
f ) → Tf (V ′f , V

′′′′
f )

CP5: Tf (Vf , V
′
f ) ∧ unsafe(V ′f ) → false

the program is safe

Fig. 7: Proof rules for programs with procedures [6].

automata explicitly, and performs tree automata difference operation using an
on-the-fly algorithm which combines complement and intersection together. For
comparison, we have implemented a predicate abstraction based CEGAR algo-
rithm, which also uses SMTInterpol as the underlying interpolating SMT solver.
We have also performed experiments using an existing tool Eldarica3, which
performs a variant of predicate abstraction based CEGAR algorithm for Horn
clause verification. Eldarica uses Princess 4 as the underlying interpolating SMT
solver to generate new predicates for CEGAR.

The experiments are performed on a set of Horn clause benchmarks5 from the
SV-COMP6 repository. All of these benchmarks are in integer linear arithmetic.
According to [7], these benchmarks are collected from various sources, such as
recursive algorithms, benchmarks extracted from programs with singly-linked
lists, VHDL models of circuits, verification conditions for programs with arrays,
benchmarks from the NECLA static analysis suite, and C programs with asyn-
chronous procedure calls. Some of the models only contain linear Horn clauses,
while others contain non-linear Horn clauses. The results are shown in Figure ??.

The performance of our implementation of predicate abstraction based CE-
GAR is roughly similar to Eldarica. This is because they use similar algorithms.
However, our implementation scales not so well as Eldarica for the models on
which more iterations are required. This is quite reasonable since our implemen-
tation is relatively naive, while Eldarica is a sophisticated tool. There are also
a few models on which our implementation behaves much better than Eldarica,
e.g., brprt and asfifoStatus. One possible reason is that the two implementa-
tions use different interpolating SMT solvers, which might result in different
interpolants, and consequently lead to different performances. Moreover, the d-
ifference in the implementation details, such as how the models are pre-processed
and stored, could also lead to different performance.

We can see that on almost all of the models the trace abstraction refinement
algorithm needs more iterations to reach a conclusion. Intuitively, this is because
that the interpolant tree automaton constructed in each iteration is “small”,
i.e., it recognizes a relatively small set of infeasible traces (i.e., solvable ground

3 http://lara.epfl.ch/w/eldarica
4 http://www.philipp.ruemmer.org/princess.shtml
5 https://svn.sosy-lab.org/software/sv-benchmarks/trunk/clauses/LIA/Eldarica
6 http://sv-comp.sosy-lab.org
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Model #p #c TAR PA Eld
tm/s #it tm/s #it tm/s

AsynPrg

f rec(E,N) 136 188 to 1123 324.25 78 15.52
h1(E,N) 52 60 18.26 82 1.39 4 1.87
h1h2(E,N) 53 63 to 417 4.32 8 2.50
nch(C,N) 102 122 to 265 157.63 41 16.90
plb simple(C,N) 104 124 to 506 0.81 2 1.71
plb simple(E,N) 104 126 to 461 9.92 10 4.30
server.manual(C,L) 11 14 0.27 4 0.11 2 0.83
simple(E,N) 52 60 16.24 76 1.47 4 1.92
test0(C,N) 52 60 to 428 5.91 11 2.64
test0(E,N) 50 58 21.87 96 1.36 4 1.79
test1(C,N) 77 87 to 633 22.82 21 4.03
test1(E,N) 75 85 to 461 16.78 18 3.77
test2 1(E,N) 67 79 to 377 7.57 12 2.60
test2 2(E,N) 67 79 to 322 7.92 12 3.05
test2(C,N) 69 81 to 396 17.38 19 4.48
test4(C,N) 97 117 to 762 20.89 19 3.22
test4(E,N) 97 117 to 729 5.71 7 3.06
test recursion(E,N)210 288 to 243 to 38 42.87
wrpc.manual(C,L) 9 14 2.21 35 3.35 16 1.00
wrpc(E,N) 88 109 42.27 82 4.78 5 2.93

NECLA

blast(C,L) 33 43 8.93 65 4.16 14 1.90
inf1(E,L) 19 26 0.51 6 0.47 4 1.35
inf4(E,L) 33 48 0.93 10 1.24 6 2.49
inf6(C,L) 23 28 1.96 33 2.75 14 1.67
inf8(C,L) 29 39 6.99 73 7.39 18 2.18

L2CA

bubblesort(E,L) 674 792 0.33 1 0.49 1 5.46
insdel(E,L) 28 32 0.17 1 0.11 1 0.82
insertsort(E,L) 130 170 0.30 1 0.48 1 2.13
listcounter(C,L) 31 36 to 171 to 87 to
listcounter(E,L) 31 35 0.21 1 0.23 1 1.47
listreversal(C,L) 97 108 35.79 149 14.01 25 9.65
listreversal(E,L) 99 108 0.30 1 0.39 1 2.24
mergesort(E,L) 544 607 0.32 1 0.48 1 6.74
selectionsort(E,L) 401 460 0.27 1 0.29 1 6.12

SIL

rotation vc1(C,L) 13 59 4.38 91 2.15 9 1.62
rotation vc2(C,L) 20 96 22.51 507 5.73 17 1.98
rotation vc3(C,L) 20 96 0.04 1 0.50 1 1.49
rotation vc1(E,L) 13 61 0.64 3 0.66 3 1.40
split vc1(C,L) 32 191 74.62 1473 29.16 30 2.78
split vc2(C,L) 29 149 53.41 1113 4.22 11 to
split vc3(C,L) 29 149 0.01 1 0.70 1 2.01
split vc1(E,L) 38 191 0.50 4 9.84 8 3.53

Model #p #c TAR PA Eld
tm/s #it tm/s #it tm/s

RECUR

addition(C,N) 9 11 0.26 3 0.24 3 0.75
bfprt(C,N) 14 17 0.43 6 0.20 3 to
binarysearch(C,N) 13 17 0.36 5 0.15 2 0.78
buildheap(C,N) 11 14 mo 27 to 35 sto
countZero(C,N) 13 18 to 1401 1.52 10 1.32
floodfill(C,N) 14 18 mo 42 3.13 11 sto
half(C,N) 10 12 0.56 5 0.34 4 sto
identity(C,N) 12 16 7.67 34 0.32 4 1.07
mccarthy91(C,N) 9 12 0.57 7 0.27 4 0.91
mccarthy92(C,N) 9 12 0.89 10 0.41 4 4.43
merge-leq(C,N) 14 19 0.78 10 0.67 6 1.35
merge(C,N) 14 19 0.86 10 0.57 5 1.36
palindrome(C,N) 10 12 0.61 6 0.39 4 1.31
parity(C,N) 13 16 0.62 7 0.51 6 1.07
remainder(C,N) 9 11 1.50 17 2.23 9 1.38
running(C,N) 10 12 0.40 5 0.26 4 1.05
running-old(C,N) 9 11 0.01 1 0.05 1 0.33
triple(C,N) 11 14 0.86 6 0.68 5 2.10

VHDL

asfifoFE(C,L) 67 5291 to 1325 to 42 to
asfifoStatus(C,L) 67 3218 0.05 1 0.00 1 68.72
counter(C,L) 6 14 1.05 41 0.45 8 0.73
register(C,L) 10 46 4.22 255 0.16 5 0.60
synlifo(C,L) 67 987 to 3056 61.95 103 9.67

McMill06

anubhav(C,L) 37 35 1.72 9 0.82 3 1.33
copy1(E,L) 37 37 12.79 19 31.28 13 3.98
cousout(C,N) 37 37 to 118 to 40 sto
loop(E,L) 37 37 10.87 19 20.35 12 3.42
loop1(E,L) 37 37 10.42 19 24.44 13 3.77
scan2(E,N) 45 46 0.47 2 0.25 1 1.30
scan(E,N) 37 39 to 69 to 37 65.92
string concat1(E,L) 51 64 to 265 to 49 to
string concat(E,N) 49 53 to 125 to 38 to
string copy(E,N) 40 44 to 60 to 31 sto
substring1(E,N) 57 72 2.84 5 0.48 1 1.95
substring(E,N) 47 49 0.55 1 0.42 1 1.61

MONNIAUX

boustrophedon(C,L)28 35 53.65 193 37.97 19 sto
boustrophedon.ex-

pansed(C,L) 30 39 69.06 340 18.80 18 sto
gopan(C,L) 32 38 to 143 to 42 sto
halbwachs(C,L) 38 44 to 110 to 42 sto
rate limiter(C,N) 29 37 49.96 130 9.13 10 2.31

Fig. 8: Experimental results of trace abstraction refinement (TAR) in comparison with our imple-
mentation of predicate abstraction based CEGAR (PA) and Eldarica (Eld). The first letter after
each model name indicates whether the model is correct (C) or erroneous (E), and the second letter
indicates whether the model contains only linear Horn clauses (L) or contains some non-linear Horn
clauses (N). “#p” is the number of uninterpreted predicates appearing in the model, and “#c” is
the number of clauses contained in the model. “tm/s” is the total running time (in seconds), and
“#it” is the number of iterations. “to” means timeout (500s), “mo” means memory out, and “sto”
means stack overflow. The experiments are performed on a Intel Core i7 Duo CPU with 3.06GHz.
The memory limit is set to 1000 MB.
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unfoldings). As a result, the refinement steps are less progressive, and more
iterations are needed for the algorithm to terminate. In Algorithm 2, each state
of the interpolant tree automata is associated with only one formula from the
tree interpolant, while in predicate abstraction based CEGAR algorithms, each
abstract state is typically associated with a conjunction of one or more formulas
from the tree interpolants. Since the interpolant tree automata are constructed
according to the formulas from the tree interpolants, this lack of “combination”
of formulas in the trace abstraction refinement algorithm could result in “small”
interpolant tree automata.

On the other hand, according to Algorithm 2, the number of states of each
interpolant tree automaton is bounded by the number of formulas in the corre-
sponding tree interpolant, which is relatively small compared to the state space
of the model. From the experimental results we can see that this almost always
leads to faster iterations than that in predicate abstraction based CEGAR al-
gorithms. In a sense, the trace abstraction refinement algorithm achieves faster
iterations at the cost of less progressive refinement steps (and consequently larger
numbers of iterations).

On many of the models, the performance of trace abstraction refinement
is comparable to predicate abstraction based CEGAR, while on others it is
significantly worse. Overally, the trace abstraction refinement performs not so
well as predicate abstraction based CEGAR in our experiments. This is especially
apparent for the AsynPrg benchmarks, where the trace abstraction refinement
algorithm always performs large numbers of iterations while still not reaching a
conclusion before timeout. According to the previous analysis, there is a trade-off
between spending less time in each iteration and taking fewer iterations to reach
a conclusion, and trace abstraction refinement and predicate abstraction based
CEGAR can be seen as two extremes of the trade off. A possible way to improve
the trace abstraction refinement algorithm is to compromise between these two
extremes and combine the tree interpolants of multiple ground unfoldings for
the refinement in each iteration. Techniques such as disjunctive interpolation [7]
could be considered for this purpose. The resulting algorithm will take fewer
iterations to reach a conclusion at the cost of more time spent in each iteration,
possibly having better overall performance.

For buildheap and floodfill, the tree automata operations lead to state explo-
sion, which result in exhausted memory. This gives us a hint to explore more
efficient methods to store and manipulate tree automata.

8 Conclusion

In this paper we described a trace abstraction refinement scheme for Horn clause
verification. The original trace abstraction refinement scheme used finite au-
tomata as the abstraction formalism and can only be used for verifying simple
programs. We adapt it for verifying Horn clause solvability. Considering the flex-
ibility of Horn clauses as intermediate languages in verification, our work makes
it convenient to use the trace abstraction refinement scheme for various verifica-
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tion tasks (e.g., the verification of multithreaded programs and programs with
procedure calls). From another point of view, we provide a new method for solv-
ing sets of Horn clauses. This method exploits the structure information of Horn
clauses by constructing and manipulating tree automata.

The experiments show that our method needs more iterations to terminate
than predicate abstraction based CEGAR, while each iteration costs less time.
We analyzed the difference between predicate abstraction based CEGAR and
trace abstraction refinement and suggested a possible compromise between the
two algorithms, which we will try in the future.

Our implementation is quite prototypical. We are considering improving the
tree automata library by investigating and trying algorithms such as [26] and
[21]. Moreover, preprocessing of Horn clauses using large block encoding [27]
seems a promising improvement, since it might largely reduce the number of
Horn clauses and uninterpreted predicates, resulting in smaller tree automata in
the trace abstraction refinement procedure.
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