Validation, Implementation and Conformance Testing of

Bluetooth SDP

Peng Wu (Computer Applied Technology)
Directed by Qiang Gao

As a new short-range wireless communication technology, Bluetooth has been accepted widely for its powerful technical background and good market expectancy. Service Discovery Protocol (SDP) is one of Bluetooth core protocols and provides a means of service discovery. In this thesis, I addressed the following aspects of protocol engineering:

1) Validation
I described the SDP protocol formally in SDL, then built a Random Simulation Structure for SDP protocol validation in ObjectGEODE simulation environment. The validation result shows that SDP matches the requirements defined in its service description; however some SDP PDU may be lost at the interface between SDP and its transport protocol. I further proposed a solution to overcome that problem.

2) Implementation in C language
After I performed the protocol validation, which contributes to reliability, conformity and interoperability of protocol implementation, I implemented the SDP protocol in ANSI C. I addressed the portability and efficiency issues from such aspects as architectural design, programming style, compilation environment.

3) Conformance Testing
By comparing protocol specification and test specification, I found that SDP conformance testing was incomplete, which may lead to the incompleteness of testing, and therefore lead to difficulties in the interoperability of different Bluetooth products. I designed a set of new test cases for improvement.

4) Application Development
Application development is the last stage of utilization of the research result. I designed application architecture for SDP on Windows platform, in which core protocols are encapsulated in a COM server. Furthermore, I illuminated implementations of Bluetooth Neighborhood and Bluetooth Control Panel.

Keywords: Bluetooth, Service Discovery Protocol, Protocol Engineering, Protocol Validation, Conformance Testing