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Abstract

Model checking has been widely applied for verification of network
protocols, particularly on the sequences of interactions between proto-
col entities. Alternatively, optimisation has been used to reason about
the large scale dynamics of networks, particularly with regard to con-
gestion and rate control protocols such as TCP. This paper intends to
provide a bridge and explore synergies between these two approaches.
An optimisation-based congestion control algorithm was usually being as-
sumed as synchronous in the sense that all agents act on the same time
schedule, while some literature like [1] suggested the existence of asyn-
chronous algorithms that have been proved stable. We carry over the
duality structure of the underlying optimisation models and explore sys-
tematically these options of composition frameworks with formal seman-
tics. The nondeterminism of interleaving between active agents represents
discrete approximations of those optimisation-based congestion control al-
gorithms with a hierarchy of expressiveness. We then use branching-time
temporal logic to specify formally the convergence criteria for the system
dynamics. Through model checking, convergence of those algorithms can
be witnessed in the form of the sequences of interactions between primal
and dual agents. Moreover, the number of steps for a system to converge
at a stable equilibrium point can also be quantified. However, these dis-
crete transition models cannot always converge due to discretisation and
relaxation of synchrony, but the counterexamples returned from the model
checker NuSMV [2] reveal certain realistic issue where the continuous state
space is a less fit. We report on our experiences in using the abstractions
of model checking to capture features of the continuous dynamics typical
of optimisation-based approaches.

1 Introduction

Model checking has been widely applied to reason about network protocols in
terms of the sequences of interactions between protocol entities. This typi-
cally allows the discovery of functional problems in a network protocol, such
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as whether the protocol can deadlock or otherwise fail to achieve the desired
outcome.

Congestion control protocols generally exhibit fairly simple behaviour when
considered from this perspective. But their design also faces other concerns
which are typically analysed in a rather different framework. For example, TCP
(Transmission Control Protocol) allows a very large number of communication
sources to interact with network resources in such a way that all the sources get
a fair and efficient share of the resources, especially when the resource usage of
each source is averaged over multiple packet round trip times. Thus, each source
sends packets at such a rate that most packets can be successfully transmitted,
even though it has to compete with many other sources for the capacity of the
resources along the routes it is using.

To analyse and design such a congestion control protocol, optimisation-based
approaches describe the protocol in the term of a convex optimisation problem
over a communication network. This is typically to maximise the value of the
network allocation to its users but constrained by the available capacity of the
network.

The detailed behaviour of TCP is concerned with the state of a source as
packets (particularly acknowledgement packets) arrive and data packets are
sent. But optimisation-based approaches abstract this to the continuous time
scale over which we can measure the rate of the source sending packets along a
route through the network, as a continuous positive real number variable. The
protocol is then specified as an algorithm which defines how the rate should
change as feedback (actually in the form of acknowledgements providing con-
gestion information) reaches the source.

This algorithm then gives rise to a set of trajectories in the continuous state
space. Analysis is typically concerned with the stability of these trajectories,
that is, for any topology and as many demands as possible, whether the protocol
can drive the network into close to its optimum.

Our work seeks, through two case studies, to explore how the composition
and nondeterminism features of model checking can be used to represent and
check features of this sort of protocols and how the alternative models can give
different perspectives on the behaviours of the protocols. The main contribu-
tions are:

• To show how the structures of the optimisation models can be naturally
carried over into the transition models for model checking.

The sources and resources, instead of concrete protocol entities, are mod-
elled symbolically in accordance with the duality structure of the under-
lying optimisation models.

• To demonstrate a range of ways to use the composition and nondeter-
minism of the transition models to represent features of real systems, no
matter whether the features have already been captured in the optimisation
models or not.

A modelling spectrum is presented for composing those source and re-
source agents as a system, ranging from fully synchronous models to fully
asynchronous models and various combinations of them. Unlike the under-
lying optimisation models, these transition models support uncertain gain
and propagation delay, and nondeterministic congestion control schemes.
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• To illustrate ways in which the optimisation and transition models can
be seen as complementary and to suggest further research to explore this
complementarity.

We investigate the similarities, differences and synergies between the opti-
misation and model checking approaches by first applying model checking
approaches directly on a particular congestion control protocol [3], which
has already been well analysed using optimisation-based approaches. We
then consider a variant of the same problem where optimisation-based
approaches are weaker precisely because of the existence of significant dis-
crete behaviour in the modelled protocol.

The model checking results reveal the diversity on the stability of the
transition models experimented, due to discretisation and relaxation of
the fully synchronous structure. The counterexamples returned from the
model checker NuSMV [2] illustrate a realistic reason of instability when
the continuous state space is a less fit.

We started the work with NuSMV due to its full support for CTL and LTL,
as well as explicit fairness constraints. We have also tried, but not reported
here, other model checkers, such as SPIN [4] and UPPAAL [5], with no better
performance in other slightly different settings.

The rest of the paper is organised as follows. Section 2 briefly introduces the
two congestion control models. Section 3 presents the modelling spectrum with
expressiveness analysis for each composition framework. The stability property
is formulated in Section 4, followed by the experimental model checking results.
The paper is concluded in Section 5.

Related Work Optimisation-based approaches are now standard for analysing
congestion control, starting with [6]. [3] proposed a stable fluid-flow framework
for joint routing and rate control on which our first example is based. [7, 8] are
similar works both using a Lagrangian optimisation-based model, which decom-
poses into distributed synchronous and asynchronous algorithms for congestion
control.

On the other hand, formal verification techniques were introduced into net-
work research. [9] applied PROMELA/SPIN to verify the equilibrium property
of a priority pricing-based congestion control model. [10] presented an extended
compositional network simulation environment with the capability of bounded
model checking.

Our work inherits the global viewpoint of optimisation-based approaches
and characterises the stability property in a logical manner. This makes it
different from literature on model checking network protocols, where concrete
protocol entities such as border gateways and interior routers were modelled and
their local functionalities were the main concern. Our work also differs from [9]
in that we discretise and analyse a continuous optimisation-based congestion
control model and explore the issue of nondeterminism in this setting, while the
model checking result in [9] is just applicable for the particular model considered.

The work closest to our own is the asynchronous algorithm presented in [1],
which was based on optimisation but schedules the sources and resources in a
nondeterministic order. The stability of this algorithm has been proved under
certain assumptions.
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(a) Network Topology
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(b) Resource Topology

Figure 1: A Communication Network

2 Optimisation-Based Congestion Control

This section will briefly present an optimisation formulation of congestion con-
trol, specially in a multi-path setting. We consider a network where each com-
munication source can choose from a number of pre-configured routes to satisfy
its transmission demand. This offers potential for obtaining maximal through-
put and improving network resilience. In such systems, sources adjust flow rates
of data on their own routes to maximise the utility derived from transmission,
while avoiding or decreasing congestion at resources that have data flow rate
limits.

Assume a network with a set S of sources and a set J of resources. Let
R be a set of routes, each identifying the non-empty subset of resources used
by the route. Let r ∈ s denote that source s can transmit along route r and
s(r) be the unique source s such that r ∈ s. Let xr be the flow rate on route
r ∈ R and Cj be the capacity of resource j ∈ J . Set Ajr = 1 if j ∈ r and
set Ajr = 0 otherwise. For instance, in a network shown in Figure 1(a), each
source i(= 1, 2, 3) transmits data to its destination di along two routes. So
S = {si ≡ (i, di) | i = 1, 2, 3} and R = {r1, · · · , r6}. Figure 1(b) presents the
resource topology of the network, in which each source owns two routes (i.e.,
r2i−1 ∈ si and r2i ∈ si for i = 1, 2, 3), and each resource is shared by two routes
(i.e., j1 ∈ r1, j1 ∈ r6 and ji ∈ r2(i−1), ji ∈ r2i−1 for i = 2, 3).

Let x, C and A be the corresponding vectors and incidence matrix, that is,
x = (xr , r ∈ R), C = (Cj , j ∈ J) and A = (Ajr , j ∈ J, r ∈ R). Let xj denote the
aggregate flow rate at resource j. A resource j is congested if xj > Cj (recall
that Cj is the capacity of resource j). A route r is congested if j is congested
for some j ∈ r.

Then, the multi-path congestion control problem is typically specified as the
following optimisation problem:

max
∑

s∈S

Us(
∑

r∈s

xr) such that Ax ≤ C, x ≥ 0 (1)

where Us is a utility function of source s. Assume that for each s ∈ S, Us is
increasing and strictly concave in its argument. The problem can then be solved
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by finding a saddle point of the following Lagrangian function:

L(x, y) =
∑

s∈S

Us(
∑

r∈s

xr) − y(Ax− C) (2)

where y = (yj , j ∈ J), y ≥ 0 and x ≥ 0. This is because if (x∗, y∗) is a saddle
point of L, then x

∗ is an optimal solution to (1) [1].
The x and y in the Lagrangian are referred to as primal and dual decision

variables, respectively. Each primal (dual) variable selects its value on behalf of
a source (resource) such as to maximise (minimise) the value of L(x, y), given
the values of all other variables. Thus, a solution to problem (1-2) is where the
interactions between the sources and resources reach an equilibrium [7, 8].

An optimisation-based approach would then specify an algorithm modelled
as a set of trajectories in the primal and dual decision variables. The analysis
would typically demonstrate provable convergence of these trajectories to the
optimum under certain modelling and applicability assumptions [6, 1, 3, 7, 8, 11].

The rest of this section will present two congestion control models based on
the above multi-path setting. Both models are meant to balance resource allo-
cation amongst the competing sources to achieve an efficient network utilisation,
while not starving any particular sources.

For the first model (Multi-path congestion/rate control), we intend to cap-
ture the fluid-flow congestion control algorithm specified in [3] by Kelly et.al.
Under the fluid flow assumption the algorithm was described by the trajectories
of differential equations and supported by proof of stability. We apply a direct
discretisation to this model and choose particular functions to make it tractable
for model checking. This discretisation exhibits variant behaviour that is ap-
parently unrealistic for the system that Kelly et.al. models. But the process
of discretisation leads us to consider the meaning of nondeterminism present in
discrete (transition) models, which does not exist in those differential equations.

Our second model (Session-based rerouting and termination), is inspired
by this experience and considers a scenario where the assumptions behind the
Kelly et.al.’s model start to fail and where the assumptions of model checking
become more realistic. We choose a system where flow rates are discrete-valued,
corresponding to the discrete nature of model checking, and the behaviour of a
source is itself naturally nondeterministic.

2.1 Multi-path congestion/rate control

In [3] a protocol was presented that gives rise to trajectories in the primal flow
rates xr as a continuous function of time t, i.e., xr(t), subject to the following
differential equation:

d

dt
xr(t) = κrxr(t)

(

1 −
yr(t)

U ′
s(r)(xs(r)(t))

)+

xr(t)

(3)

where κr is a constant and

• yr(t) =
∑

j∈r

yj(t) is the total cost on route r; yj(t) is the cost at resource

j;
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• xs(t) =
∑

r∈s

xr(t) is the aggregate flow rate on all routes serving source s;

• Us is a utility function of source s and U ′
s is its first-order derivative.

• (z)+x = min(0, z) if x ≤ 0, (z)+x = z otherwise.

These dynamic equations actually solve not the exact optimisation problem
(1) but an approximation in which there is an explicit cost yj for each resource
j as its load approaches its capacity. As long as this cost function is chosen
appropriately it has only a small effect on the equilibrium values of the system
but significantly improves its controllability. It also can be interpreted as a
real cost (for example from packet delay) that arises from operating network
resources too close to their capacities.

In [3] propagation delay in a network was taken into account by defining yr

and xs as functions of the past route flow rates. Herein, we omit this consider-
ation and assume propagation delay to be negligible. We will come back to this
point in Section 5.

Now we simply discretise the Kelly et.al.’s model by making the time dis-
crete and making state variables integer-valued under integer arithmetic, and
by choosing particularly tractable instances of the generic functions in Equation
(3).

When the continuous time parameter t is abstracted into a discrete one,
the flow rate function xr(t) has to be converted into a series of instantaneous
snapshots of xr. This also applies to yr(t) and xs(t). The relation between
the current value of xr and its next value x′

r can be defined uniformly as x′
r =

xr + ∆xr, where ∆xr is the increment of xr in one unit time.
We choose yj to be a linear function of the flow rates at resource j, that is,

yj = βjxj with xj =
∑

j∈r

xr (4)

where βj is a price coefficient. Following a rather common choice, we assume
Us to be a logarithmic function of the aggregate flow rate on all routes serving
source s, that is,

Us = αs ln(xs) with xs =
∑

r∈s

xr (5)

where αs is a utility coefficient.
Then, by following the skeleton of Equation (3) with (4) and (5), ∆xr is

defined as

∆xr = κrxr



1 −
1

αs

∑

j∈r

βjxj

∑

r′∈s(r)

xr′





+

xr

(6)

Here, κr can be regarded as a gain coefficient that defines the pace at which

route r seeks its equilibrium; while {
βj

αs

}j∈r defines the saddle point where route

r will settle. Especially, the lower bound of xr for each route r is set to 1 unless
it is initialised to be zero. A more accurate constraint was applied in [3]. This
is to avoid a spurious convergence trace, where the aggregate flow rates at all
resources reach zero.
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Equations (6) and (4) define how the sources and resources act, respectively.
In order to define the complete behaviour of an algorithm, we also have to define
how these actions are composed (or scheduled). The agents in the Kelly et.al.’s
algorithm can be thought of as acting synchronously though in infinitesimal
steps. In a discrete model composition structures that do not constrain those
actions to synchrony could also be applicable, as suggested by [1]. We will
explore these options in Section 3.

Once we allow this relaxation, then the sources no longer proceed with the
deterministic gain implied by κr. Although κr is constant, those asynchronous
models allow the sources to update their flow rates in a nondeterministic or-
der. This then may lead the routes to equilibrate at a variable pace, which is
significantly different to the deterministic behaviour specified by Equation (3).

2.2 Session-based rerouting and termination

In the second model, we consider essentially the same underlying optimisation
problem but with the context moved to a regime where a continuous real-valued
model is a less reliable fit. We consider a system where the sources are managing
a non-empty set of constant flow rate sessions. Two control actions are provided
for a source to resolve its possible congestion status.

Firstly, the source may reroute sessions to an alternative route. Rather than
considering a deterministic rerouting policy, we will let the model explore how
the source may choose new routes for the excess sessions on congested routes.

Secondly, the sources may, though only in extremis, terminate those excess
sessions. This follows the general ideas specified in the IETF Pre-Congestion
Notification (PCN) Working Group [12], where an architecture for controlling
congestion through admission control and flow termination is being defined. For
each route, its source relies on feedback from its destination to determine the
excess flow rate to be terminated. The destination will inform the source the
proportion of congestion at the bottleneck resource (if any). The source then
uses this feedback to decide how many proportion of its flow to terminate.

For the second model, the primal variable xr of problem (1) can be regarded
as the number of sessions on a route, a more naturally discrete value. We take
a linear utility function Us, that is,

Us = αsxs with xs =
∑

r∈s

xr (7)

where αs is the utility value of a single session of source s. This choice sounds
appropriate for a network operator who typically treats all sessions equally.

Then the congestion control policy of the second model is as follows: for each
congested route r ∈ s, source s will divert a certain number of excess sessions
from route r to a non-congested route r′ ∈ s; or terminate them if such r′ does
not exist.

The proportion of sessions to be rerouted or terminated is based on the
proportions of excess load at resources, that is, for resource j,

yj =
xj − Cj

xj

with xj =
∑

j∈r

xr (8)

Then, for a congested route r ∈ s,

∆xr = −xr max{yj | j ∈ r} (9)
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Herein, max{yj | j ∈ r} is the largest proportion of congestion at certain bot-
tleneck resource j.

For a non-congested route r′ ∈ s, ∆xr′ is the aggregate flow diverted to r′

from those congested routes r ∈ s.
As before these equations define how the primal and dual decision vari-

ables will change. The possible composition structures will be explored later.
However, this model is nondeterministic even in the synchronous case. This is
because whenever there is more than one non-congested route available, source
s will choose one of them nondeterministically for each congested route r ∈ s.

Remark 1. Although we have not tried yet, hybrid model checking seems indeed
applicable in the present setting. We believe it would emulate the standard
optimisation-based approaches to a much closer extent (at a computational
cost). However, it seems likely that it would confirm, among other things, the
relationship between nondeterminism and stability discussed in the paper.

3 Modelling

Based on optimisation-based congestion control models, distributed algorithms
were developed, depending on whether it is the sources (primals), the resources
(duals), or both controlling the evolution of a system actively, as well as the
types of interleaving of their control actions. Most of these algorithms scheduling
the sources and/or resources synchronously along the unique continuous time
scale [1, 3, 8], while an asynchronous algorithm was also presented in [1], which
schedules the sources and resources in a nondeterministic order. In the rest of
this section we will explore the options of these variant composition structures
through the means of formal semantics.

Note that it is the data flows in a network that are concerned by those
optimisation models. So the behaviours of the sources and resources, which
control and monitor the data flows, respectively, are prescribed in corresponding
congestion control algorithms, but not the detailed hop-by-hop behaviours of
particular protocol entities. Thus, we follow the perspective of optimisation-
based approaches, that is, to encode the sources and resources as procedural
agents.

Technically we adopt a special form of symbolic transition graph with as-
signments (STGA) [13], termed as symbolic assignment graph (or SAG as in the
following), to model the systems above. The explicit input/output constructs in
STGA is omitted, due to the fact that shared variables can be relied on for this
purpose. Recall that symbolic transition graphs are a basic symbolic semantics
for value-passing CCS, π-calculus, and others. Herein, the notion of SAG has
the benefit of offering a succinct semantics to describe the systems above, which
is amenable to model checking; clearly other formalisms are also possible. We
recall the basic constructions below but we refer to [13] for more details.

We presuppose the following syntactic categories:

• Val is a set of values, ranged over by v;

• Var is a set of variables, ranged over by x;

• Exp is a set of data expressions over V al ∪ V ar, ranged over by e;
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• BExp is a set of boolean expressions ranged over by b;

An assignment θ has the form x̄ := ē, where x̄ (respectively ē) represents a
list of variables (respectively data expressions), with x̄ and ē having the same
length. Assume AssignV be the set of all assignments to variables in V ⊆ V ar.

A valuation ρ is a total mapping from Var to Val . Applications of ρ onto
data expression e and boolean expression b are denoted by ρ(e) and ρ(b) as
usual. Especially, we write ρ � b if ρ(b) = true. The valuation ρ{x̄ 7→ v̄} is
same as ρ except mapping x̄ to v̄. Let θρ denote the resulting valuation by
applying assignment θ onto ρ, that is, θρ ≡ ρ{x̄ 7→ ρ(ē)}. Assume Eval be the
set of all valuations.

Definition 3.1 (Symbolic Assignment Graph). Given a set of variables V ⊆
V ar, a symbolic assignment graph (SAG) is a tuple MV = (Q, T , q0) where

• Q is a set of symbolic states;

• T ⊆ Q × BExp × AssignV × Q is a set of symbolic transitions, each

(q, b, x̄ := ē, q′) ∈ T denoted by q
b,x̄:=ē
−−−−→ q′ with {x̄} ⊆ V ;

• q0 ∈ Q is the initial symbolic state.

Informally a symbolic transition q
b,x̄:=ē
−−−−→ q′ denotes a possible state change

of the SAG from q to q′, under the assumption that the guard b is evaluated
to true at state q, and in doing so the values of x̄ are changed to the ones of ē
evaluated at state q. The following definition makes this precise.

Definition 3.2 (Labelled Transition Systems). Given a set of observable labels
LV = {µW | W ⊆ V }, and an initial valuation ρ0, the concrete semantics of a
SAG MV is a labelled transition system JMV Kρ0

= (P, T, p0), where

• P = {qρ | q ∈ Q, ρ ∈ Eval} is a set of states;

• T ⊆ P × LV × P is the least set of transitions given by the following
operational rule:

q
b,x̄:=ē
−−−−→, q′

qρ

µ{x̄}
−−−→ q′θρ

ρ � b

Similarly we write p
µW
−−→ p′ for each (p, µW , p′) ∈ T with W ⊆ V ;

• p0 ≡ q0
ρ0

∈ P is the initial state.

To conclude we say that ω = µX1
· · ·µXi

· · · ∈ L∗
V is a trace of MV if there

exists a sequence of transitions q0
ρ0

µX1−−−→ q1
ρ1

· · · qi−1
ρi−1

µXi−−→ qi
ρi
· · · in JMV Kρ0

for
some initial valuation ρ0.

In what follows we explore source and resource agents modelled by symbolic
assignment graphs (or SAGs as in the following). To define the evolution of a
system we use the standard notions of synchronous and asynchronous composi-
tions.
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Definition 3.3 (Synchronous Composition). Given two symbolic assignment
graphs MV1

= (Q1, T1, q
0
1) and MV2

= (Q2, T2, q
0
2) with V1∩V2 = ∅, MV1

|MV2
is

the graph MV1∪V2
= (Q1×Q2, T, (q0

1 , q
0
2)), where T is the least set of transitions

given by the following operational rule:

q1
b1,x̄1:=ē1

−−−−−−→ q′1 q2
b2,x̄2:=ē2

−−−−−−→ q′2

(q1, q2)
b1∧b2,(x̄1,x̄2:=ē1,ē2)
−−−−−−−−−−−−−→ (q′1, q

′
2)

Definition 3.4 (Asynchronous Composition). Given two symbolic assignment
graphs MV1

= (Q1, T1, q
0
1) and MV2

= (Q2, T2, q
0
2) with V1∩V2 = ∅, MV1

‖ MV2
is

the graph MV1∪V2
= (Q1×Q2, T, (q0

1 , q
0
2)), where T is the least set of transitions

given by the following operational rules:

q1
b1,x̄1:=ē1

−−−−−−→ q′1

(q1, q2)
b1,x̄1:=ē1

−−−−−−→ (q′1, q2)

q2
b2,x̄2:=ē2

−−−−−−→ q′2

(q1, q2)
b2,x̄2:=ē2

−−−−−−→ (q1, q′2)

The state defined in our optimisation models is precisely the values of the
primal and dual variables: the flow rates {xr | r ∈ R} and congestion costs
{yj | j ∈ J}. The agents who control this state are sources and resources
respectively. We take this structure over directly to our SAG-based transition
models which contain source agents and resource agents.

In scheduling these agents, three forms of optimisation-based congestion
control algorithms exists. One standard form is termed primal algorithms, in
which the sources actively adjust their primal variables and the resources simply
immediately recalculate the values of their dual variables. Another one is termed
dual algorithms, in which it is the resources that take the active parts. Finally
the other is termed primal/dual algorithms, in which both classes of agents are
active. In the rest of the section we model the cases of primal algorithms and
primal/dual algorithms; the case of dual algorithms can also be modelled but
we do not present it here for lack of space.

3.1 Congestion control as SAGs - primal algorithms

In the case of primal algorithms the sources are active agents modelled as SAGs,
while the resources are modelled by deterministic functions recalculating the
congestion costs passively. Thus we are assuming that the resources respond
with the up-to-date congestion information quickly on the timescale at which
the primal agents are taking their actions. This does not allow a resource
agent to apply more complex algorithms to smooth the congestion information
it sends: it has to be a simple function of the current load at the resource.

For each source s ∈ S, let Xs = {xr | r ∈ s} denote the source agent’s
decision variables. In this framework, we associate a SAG MXs

updating its
own variables Xs at each transition. We assume that a source updates all of its
own variables simultaneously in one transition, which is counted as one source
update. For the multi-path congestion/rate control model described in Section
2.1, this leads us to the following SAG: for a source s owning k ≥ 1 routes
r1, . . . , rk:

MXs
= ({q}, {q

true, xr1
,··· ,xrk

:=xr1
+∆xr1

,··· ,xrk
+∆xrk−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ q}, q)

10



where ∆xri
(1 ≤ i ≤ k) is defined by equation (6).

Having defined source updates we are left with two options to represent the
interleaving of all source agents in this framework: by synchronously composi-
tion generating a system of Synchronous Sources (or SS), or by asynchronous
composition generating a system of Asynchronous Sources (or AS):

SS ,
∣

∣

s∈S

MXs

AS ,
∥

∥

s∈S

MXs

These two compositions model different scenarios. Intuitively, SS inherits
the synchronous structure of dynamic equations like (3). But as a discrete
model, it reflects the case where propagation delay periods are uniform on every
route.

AS constitutes the general case of naturally modelling the concurrent nature
of a distributed network, where the sources are monitored in uncertain paces.

3.2 Congestion control as SAGs - primal/dual algorithms

In this subsection we model both sources and resources agents as SAGs and con-
sider their compositions. Modelling resources agents explicitly fully reflects the
delayed reaction of the resources to source updates. Recall that resources’ deci-
sion variables are the dual variables {yj | j ∈ J} in the Lagrangian optimisation
problem (2).

Similarly to the previous section for each resource j ∈ J , we associate a
resource agent Myj

modelled as a SAG built on yj as its state variables. Resource
agents may be composed synchronously (respectively asynchronously), thereby
generating systems of Synchronous (respectively Asynchronous) resources or SR
(AS respectively).

SR ,
∣

∣

j∈J

Myj

AR ,
∥

∥

j∈J

Myj

Combining this analysis with the one of the previous subsection, we obtain
four general modelling frameworks, in which a particular class of sources agents
are asynchronously composed with a particular class of resources agents.

SSSR , SS ‖ SR

SSAR , SS ‖ AR

ASSR , AS ‖ SR

ASAR , AS ‖ AR

The modelling options above will in general produce different global evo-
lutions of the systems modelled. However, there is certain redundancy in the
modelling above. For instance, consecutive source updates on disjoint subsets
of decision variables could usefully be treated jointly as a synchronous source
update as they are all based on the same (current) states of resource agents and
one source update will not affect others. Alternatively these source updates may
be treated asynchronously in any particular interleaving order and always lead
to the same state as done by executing the (equivalent) synchronous update.

11



This also applies to consecutive resource updates on disjoint subsets of decision
variables. This obviously opens the possibility of employing state reduction
techniques, notably partial order reduction, when checking a whole system.

3.3 Expressiveness

In this subsection, the expressiveness of each modelling framework will be illus-
trated through trace analysis. It will be seen that different interleaving struc-
tures of these modelling frameworks associate optimisation models with distinct
senses of nondeterminism.

With the above observations, we extend the notation µW to represent trace
fragments. Let X =

⋃

s∈S

Xs and Y = {yj | j ∈ J}. For some S′ = {s1, · · · , sl} ⊆

S, l ≥ 1, let W =
⋃

s∈S′

Xs and µW represent the synchronous updates on

{xr | r ∈ s, s ∈ S′}, or any permutation of the sequence of asynchronous updates
µXs1

· · ·µXsl
, whichever applicable. Similarly, for some W ′ = {yj1 , · · · , yjm

} ⊆
Y, m ≥ 1, let µW ′ represent the synchronous updates on {yj | j ∈ W}, or any
permutation of the sequence of asynchronous updates µ{yj1

} · · ·µ{yjk
}. Let CX

and CY be the set of compound source and resource update labels, respectively,
i.e., CX = {µW | W ⊆ X and for each s ∈ S, W ∩ Xs = ∅ or W ∩ Xs = Xs}
and CY = {µ′

W | W ′ ⊆ Y }.
Then, the traces of these modelling frameworks can be expressed as regular

expressions shown in Table 2(a).

Models Traces
SS (µX)∗

AS ({µXs
| s ∈ S})∗

SSSR (µX | µY )∗

SSAR (µX | CY )∗

ASSR (CX | µY )∗

ASAR (CX | CY )∗

AS∗ (CXµY )∗

(a)

ASAR

SSAR
≺

77oooooooo

ASSR

≺

OO

SSSR

≺

OO

≺

77oooooooo

AS∗

≺

OO

SS

≺

OO

≺

77ooooooooo
AS

≺

OO

(b)

Figure 2: Modelling Spectrum

Let traces(M) be the set of traces of agent M . Then, M � N if traces(M) ⊆
traces(N), and M ≺ N if traces(M) ⊂ traces(N). Thus, the hierarchy shown
in Figure 2(b) can be derived immediately from Table 2(a). Note that these
trace inclusion relations may be naturally inferable from the semantics of syn-
chronous and asynchronous composition. But they actually clarify in detail
the difference of these modelling frameworks in representing the interactions
between the sources and resources.

1. SSSR ≺ SSAR ≺ ASAR and SSSR ≺ ASSR ≺ ASAR.

Asynchronous source agents can nondeterministically choose to ignore re-
source updates, while synchronous ones cannot. Thus changing to asyn-
chronous agents makes the rate at which the sources move towards equi-
librium more uncertain.

12



By including the resources explicitly as agents, these models can partially
capture an uncertain propagation delay between the sources and resources,
in the sense that one source (or resource) update will not take effect until
the connected resources (or sources) act and thereby pass on the informa-
tion.

2. SS ≺ SSSR and AS ≺ ASSR.

Since only the sources are active in SS and AS models, only source update
labels appear in their traces. But if we incorporate the state change of
resources’ decision variable explicitly, the full traces for SS and AS models
can be written as (µXµY )∗ and ({µXs

| s ∈ S}µY )∗, respectively, where
µY represents evaluating the resource functions. Thus, SS and AS models
can be regarded as having fast resources, which immediately react to all
source updates. So this is equivalent to a primal/dual model in which
there is a synchronous resource update after every source action. The
difference between SS and AS then is that between the resource updates,
in SS all sources act, while in AS only one source does.

3. AS∗ ≺ ASSR

AS∗ is an asynchronous composition of asynchronous source agents and
synchronous resource agents, restricted with an alternative scheduling pol-
icy between sources and resources. That is, source and resource updates
are arranged in a turn-based mode. In each turn, only sources (or re-
sources) get updated, followed by resources (or sources) getting updated
in the next turn.

For AS∗ (like SS and AS), each source update will take effect on all
resources before the next one. That is, the resources will not miss any
source updates. On the contrary, ASSR allows consecutive parallel source
updates, which can be interpreted as allowing the sources to update faster
than the resources do.

As can be seen from the above trace patterns, these modelling frameworks
can capture the effect of network propagation to certain extent. But since all
agents always share the same view on the global state, these models cannot
capture situations in which propagation delay leads the sources to act together
but on an inconsistent view of the states of resources.

Remark 2. We were interested in whether nondeterminism from asynchrony
would allow us to make statements about the behaviours of the congestion
control protocols that are independent of propagation delay encountered by
signalling mechanisms.

However, it seems that, because the state space of a system is simply the
product of the state spaces of its component agents, we cannot model the on-the-
fly message states between agents. These additional states make the transition
models considerably more complex but are also required if we need to model
the situation when different agents can take inconsistent snapshots of the states
of other agents.

A natural way to represent continuous propagation delay would be to aug-
ment the input/output (I/O) constructs of STGA with extra data facilities,
such as queues. We do not pursue this here. But we observe that in the absence
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of fully specified queueing behaviour, the I/O constructs on their own do not
help to model propagation delay since the synchronous semantics of the I/O
constructs (which implements rendezvous communication) excludes any delay;
while the asynchronous semantics does not preserve the correct propagation
order when a sequence of outputs occurs.

4 Verification

Following the optimisation-based congestion control policies presented in Section
2, the transition model frameworks presented in Section 3 suggest a series of
synchronous or asynchronous (gradient projection) algorithms that might be
applicable to solve the multi-path congestion control problem in a distributed
network. The machinery of an optimisation approach will then establish the
effectiveness of such an algorithm by proving the trajectories in the primal and
dual decision variables converge to the optimum objective value. The transition
models of these algorithms open the possibility of applying model checking to
verify their convergence properties. Indeed, note that it is straightforward to
associate a NuSMV process to any SAG described above, and that synchronous
and asynchronous compositions may equally be implemented through standard
machinery in NuSMV. In this section we report on the lessons learnt from a
series of experiments we have run in this setting.

4.1 Specifications

Recall from Section 2 that the optimisation problem (1) can be solved by
analysing the convergence property of the Lagrangian function L(x, y) of equa-
tion (2). A saddle point of L(x, y) is a solution to the problem. We are interested
in properties expressing whether the sources (and the system as a whole) have
reached optimality, whether the flows have stabilised, and, if so, whether the
capacity constraints are satisfied.

With the presence of nondeterminism in an optimisation-based congestion
control algorithm (such as uncertain gain and propagation delay, random rerout-
ing policy, etc.), model checking is a natural choice for verification. Moreover,
following a perturbation from an equilibrium (perhaps due to a fault), we might
be interested to know not only whether the algorithm will reconfigure the net-
work flow to a new optimum, but also how quickly it does so. Although the
objective function of problem (1) itself does not consider the convergence time,
this can also be investigated through model checking.

Herein, we express these properties as particular specifications in CTL [14].
Note that while in general convergence is naturally expressed as a SAT modulo
theory problem [15], for the case being discussed here we consider convergence
of the objective function to a given value u∗, i.e.,

∑

s∈S

Us(
∑

r∈s

xr) = u∗. Given

the fact that the domain of each xr is bounded, we can then infer the range
of the objective function. So, to check whether there exists one or more values
u∗ to which the objective function may converge, we can repeatedly run model
checking experiments exploring the range of u∗ with the binary search strategy.
If the objective function converges then the CTL formula AG

∑

s∈S

Us(
∑

r∈s

xr) =

14



u∗ holds at some future state for some value u∗ in the range. Note that this is
a stability rather than an optimality condition.

In our experiments we checked the following specifications:

AF AG
∑

s∈S

Us(
∑

r∈s

xr) = u∗ (10)

EF AG
∑

s∈S

Us(
∑

r∈s

xr) = u∗ (11)

Specification (10) states that the objective function of problem (1) always
converges to some value u∗, while Specification (11) states that it does so along
at least one trace.

The Lagrangian function (2) also concerns convergence of each route flow
rate, which would lead to a saddle point of the function. So we are also interested
in considering the following specifications:

AF AG ((
∑

s∈S

Us(
∑

r∈s

xr) = u∗) ∧
∧

r∈R

(x′
r = xr)) (12)

EF AG ((
∑

s∈S

Us(
∑

r∈s

xr) = u∗) ∧
∧

r∈R

(x′
r = xr)) (13)

Recall that x′
r is the next value of xr .

4.2 Experimental results

The combination of the individual agent transitions described in Section 2 with
the composition rules in Section 3 gives a collection of models that can be
straightforwardly coded into NuSMV, the model checker we used in our exper-
iments, and which we ran on a Xeon Dual-Core 64-bit 2.8GHz machine with
1GB memory.

To do this we need to fix the topology of the network considered. We chose
to investigate symmetric resource topologies where each source controls multiple
routes, every route comprises only one shared resource, and every resource is
shared by multiple sources. The results we present in this paper, summarised
in Table 1, are for the network shown in Figure 1, which has three sources and
three resources. The capacity of each resource was set to 6.

The column #Reachable states shows the numbers of the reachable states
of these transition models. Due to the data-oriented nature of the underly-
ing optimisation models, it can be seen that the reachable state space grows
dramatically, though as expected, from synchronous models to asynchronous
models.

For the twelve models defined in Table 1, Specifications (10) and (12) were
found not satisfiable, that is, each of the models was found to be unstable.
However, most models show the network does converge in some traces, that is,
there exist values for the constant u∗ resulting in satisfiable Specifications (11)
and/or (13).

The penultimate column u∗(Stable) reports the validity of Specification (13),
and hence Specification (11) for each model; while for this case the column
#Min steps shows the minimal number of control actions that each model takes
to reach an equilibrium.

The column u∗(Vibrating) shows the values of the constant u∗ for which
Specification (11) but not Specification (13) is satisfied.
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(a) Multi-path Congestion/Rate Control

No. Composition Congestion #Reachable states u∗(Stable) #Min steps u∗(Vibrating)
1 SS Route Overload 23 NONE NONE
2 SS Resource Failure 17 NONE NONE
3 AS∗ Route Overload 82723 ? ?
4 AS∗ Resource Failure 6187 ln(100) ? NONE
5 ASSR Route Overload 2.06719e+06 ? ?
6 ASSR Resource Failure 35445 ln(100) 8 NONE

(b) Session-based Rerouting and Termination

No. Composition Congestion #Reachable states u∗(Stable) #Min steps u∗(Vibrating)
7 SS Route Overload 3 NONE NONE
8 SS Resource Failure 7 NONE 14
9 AS∗ Route Overload 16 16 2 18

10 AS∗ Resource Failure 1418 11-12 3 13,15,16
11 ASSR Route Overload 8513 12-18 2 13-18
12 ASSR Resource Failure 32200 4-12 5 13-18

Table 1: Model Checking Results

1
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The convergence results of these transition models are analysed in detail
below.

4.2.1 Multi-path congestion/rate control

Our first batch of experiments were based on the congestion control example
with primal transition rule (6) and dual update rule (4), with αs = 36βj, kr = 2
for each s, j, r. Two different initial conditions were used: Route Overload and
Resource Failure. The first, with x = (5 3 3 3 1 3), was chosen to emulate a situ-
ation in which the network must redistribute load because one route has excess
load which can be carried elsewhere. In the second we chose x = (0 3 3 3 3 0)
with the additional constraint that resource j1 cannot carry traffic to emulate
a resource failure. The model checking results are in Table 1(a).

Figure 3(a) and 3(b) illustrate the traces that witness convergence of Model
4 (AS∗) and 6 (ASSR), respectively, with respect to Specification (13). In
what follows, the utility coefficient in the objective function (5) are not rel-
evant. So we check convergence of

∑

s∈S

lnxs to some constant value, that is,

EF AG
∑

s∈S

lnxs = u∗. Through the experiments we find that Specification (10)

is not satisfiable for any u∗.
Because the individual transition rules are deterministic, their synchronous

composition (SS) leads to a deterministic trace, and relatively few states. How-
ever, the discretisation of the continuous state space leads to a limit cycle rather
than a final stable state, and model checking has picked this up in the failure to
satisfy Specification (10) and Specification (11). Figure 4 shows the instability
cases that happen in Model 1 and 2, respectively. This also applies to the AS∗

and ASSR models.
The instability of these models is actually caused by too much gain in each

primal update. Given a larger domain of route flow rates, the gain coefficient
κr for each route r in Equation (3) can be decreased. This results in a finer
discretisation. Figure 5 illustrates convergence of Model 1 and 2, respectively,
with smaller gain coefficients. The capacity of each resource was set to 60
and κr = k for each route r. This also applies to the AS∗ and ASSR models.
With finer discretisations, Specification (10) and (12), or their weaker forms, are
satisfiable to these models for a single value or a set of values of the constant
u∗. The stability results of SS and AS∗/ASSR models conform to Theorem 1
and 2 in [1], respectively. Please refer to Appendix A for details.

The above convergence traces show that the local imbalances can be cor-
rected in a few number of steps, either by the local sources (the ones affected by
the faults) themselves, or by spreading them to affect further away sources. Fig-
ure 5 suggests that with a finer discretisation, this could happen more smoothly
with reducing amplitudes, as happened in [3], rather than in such a jagged way
that all sources converge suddenly, as shown in Figure 3.

Convergence in this setting mirrors the results of the original optimisation
models in terms of differential equations. However, by means of model checking
we can here quantify quite precisely the amount of control actions, hence the
time, required for the network to recover from a perturbation.

As the interleaving constraints are relaxed the number of accessible states
increases, suggesting a severe instability in the system. This is not unexpected
since it is now possible for one source agent to act many times before the others
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Figure 3: Multi-path Congestion/Rate Control - AS∗ & ASSR Convergence

do: repeated actions on route r, when projected back into the optimisation
framework, corresponds roughly to an increase in the gain coefficient kr, and
increasing gain within a feedback loop typically leads to instability.

A composition of the agents which faithfully captures the optimisation dy-
namics of Equation (3) but which also allows certain nondeterminism in the
interleaving of the agents is therefore not well represented in the options we
have investigated in Table 1. It appears that some notion of fairness is required
that is intermediate between (i) complete synchrony and (ii) forcing each agent
always to act eventually. Developing a well motivated correspondence between
optimisation inspired dynamics and model checking requires both a notion of
interleaving fairness and the quantisation of the state space to be taken into
account together, as they can both be seen as related to the gain parameter
in the optimisation models. We did not pursue this question further in our
experiments.
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Figure 4: Multi-path Congestion/Rate Control - Instability

4.2.2 Session-based rerouting and termination

In the light of the above observations we chose our second batch of experiments
to be based on a scenario that is closer to the natural idiom of model checking.
Here transition rules are not designed to correspond to smooth optimisation
dynamics in any way. Instead they are designed to terminate flows in ways
comparable to real systems like [12]. We use the dual update rule (8) and
the primal update rule (9), where each resource j has a maximum capacity Cj

equal to 6. The primal rule features nondeterminism in which route it chooses
to reallocate flow to. Again, we consider two types of initial conditions: Route
Overload and Resource Failure. The first corresponds to starting in a state
with one route overloaded by 2 units, such that x = (5 3 3 3 1 3), with duals
calculated from (8). The second initial condition is designed to emulate the
situation immediately after a resource failure, so we set x = (3 3 3 3 3 3), but
set Cj1 = 0. The model checking results are in Table 1(b).
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Figure 5: Multi-path Congestion/Rate Control - SS Convergence

The traces illustrated in Figure 6 and Figure 7 identify the reported conver-
gence of the utility function and all the route flow rate variables {xr | r ∈ s}.
Because the transition rules are designed only to shed load rather than to in-
crease it we do not see any state explosion corresponding to instability in any of
the composition scenarios. Similarly we consider herein convergence of

∑

s∈S

xs,

that is, EF AG
∑

s∈S

xs = u∗.

The last column (“u∗(Vibrating)”) reports traces that satisfy Specifica-
tion (11) but not Specification (13), as shown in Figure 8(b). In these traces the
utility function converges to the value shown but at least some of the xr, r ∈ s do
not meet the capacity constraint and continue to change (“vibrate”). In these
circumstances, the system is entering a limit cycle in which the total load offered
into the network is greater than the capacity that it can carry, but no individual
source knows it must terminate some flow. Instead they pass the excess flow

20



 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

State No.

Us
xr1
xr2
xr3
xr4
xr5
xr6

(a) Model 9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 15

 16

 17

 18

 19

 20

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38

State No.

Us
xr1
xr2
xr3
xr4
xr5
xr6

(b) model 10

Figure 6: Session-based Rerouting and Termination - AS∗ Convergence

around in a cycle. A trace showing this is presented in Fig 8. This behaviour
seems possible in real systems and therefore model checking has detected a real
possible issue with this simple design. A possible approach to resolve this is to
ensure that a real system has enough asynchrony so that the flow termination
algorithm will behave properly1.

The AS∗ and ASSR models of the Session-based Rerouting and Termination
system abstractly implement the single-marking proposal of [16], but run under
a multi-path setting. Thus, they both reflect the impacts of multi-path routing
(where traffic may be diverted due to resource failures) and flash crowds (where
a large burst of admission request may be accepted at once and then overload
the resources).

Remark 3. In these two case studies, the ASSR models may terminate more

1A technical solution might be for the sources to look for rerouting loops and initiate some
random terminations once they are detected.
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Figure 7: Session-based Rerouting and Termination - ASSR Convergence

flows than the AS∗ models do to converge. This suggests a performance degra-
dation when the sources update faster than resource and therefore miss a few
resource updates.

Remark 4. Compared to the models of the Multi-path Congestion/Rate Control,
the models of the Session-based Rerouting and Termination system can lead to
convergence by terminating more flows. The results also show that there exists
a non-trivial lower bound on the number of excess flows to be terminated.

5 Discussion

In translating from optimisation based continuous dynamics to model checking
we identified two possibilities for the interpretation of nondeterminism. In the
first it represents the choice that each agent has within each action it takes.
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Figure 8: Session-based Rerouting and Termination - Instability

From an optimisation point of view this type of choice arises when the solution
to a local problem is not unique: if two routes have equal least cost then the
total flow can be split or moved arbitrarily between them. In the second inter-
pretation nondeterminism represents choice of sequencing of the actions of the
agents which can be derived from the implementation of the agents, and our
first scenario suggested that allowing too much nondeterminism in the agent
implementation would lead to system instabilities.

Another way of thinking about nondeterminism is that it accounts for loss
of knowledge in moving from real systems to abstract models. We had hoped
that this abstraction would allow us to make statements about the behaviour
of congestion control schemes that are independent of the propagation delay
encountered by signalling mechanisms (indeed the resource matrix used in our
model is already forgetful of details of the underlying resource connectivity).
However, this was not straightforward. The difficulties arise from modelling the
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additional state actually present in the propagating messages. We did build
some models, not reported on here, in which we explicitly represented state
‘on-the-fly’ within the signalling system (or within input queues and buffers).
Our hope was that the increase in the system state space could be offset by
reducing the explosion of possible evolutions due to interleaving semantics. In
other words we produced larger but more deterministic models. However, our
initial experiments still ran into size limitations of the model checkers that we
used (NuSMV and UPPAAL).

In the standard modelling idiom, the state space is the product of the state
space of all the individual agents (sources and resources in our case). Crucially
this idiom abstracts away from the real state information on-the-fly. This same
abstraction is also implicit in the optimisation based smooth dynamics of (3).
In that case the agents are assumed to act sufficiently slowly for the abstraction
to be valid. In model checking, by contrast, the agents are assumed to act
instantaneously, but sufficiently infrequently for it to be valid. In both cases
this assumption could be interpreted either as a limitation on the accuracy
of the model (if analysing a system), or as constraints on implementation, or
as conditions that must be policed by some other mechanism in the network
(if synthesising a system). In both cases the assumption is quite brittle. In
optimisation dynamics it has been shown that an arbitrarily small delay can
render an otherwise stable system unstable [17]. In the model checking idiom
an arbitrarily small delay could allow a sequence of transitions not captured by
the delay free semantics. While the optimisation and discrete models appear at
first sight to be quite different, in their modelling of delay it turns out that they
share very similar types of limitations.

6 Conclusions

The paper presents a way to integrate optimisation-based approaches with
model checking techniques. On one hand, it associates optimisation models with
nondeterminism; on the other hand, it associates the structure of optimisation-
based approaches into model checking. A spectrum of modelling frameworks are
presented importing different granularities of nondeterminism: uncertain gain
and propagation delay, and nondeterministic rerouting.

We believe that logic methods and model checking should offer machinery
that complements optimisation theory in the design and analysis of network
control processes We have investigated this proposition in the context of dy-
namic allocation of traffic amongst multiple routes across a network, a topic
that is attracting some attention within the networking research community.
Our experiments showed some promise in this direction, but have highlighted
some limitations. Not surprisingly we were limited to small concrete topologies
by the state explosion problem. We see one way of addressing this could be to
combine theorem proving and model checking techniques. However, they also
highlighted more subtle points concerning the interpretation and specification
of the interleaving semantics.

1. the transition models lack accuracy of error, due to the limit of data types
supported by the model checker.
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2. the notion of continuous propagation delay relies on a history of global
states, which is not represented in our modelling paradigms.

3. the state space explosion problem still exists, though partial order reduc-
tion technique can help eliminate irrelevant interleaving in the transition
models.

4. Unlike the optimisation models, the transition models are topology-dependant.

As part of future work, we would like further investigate techniques to im-
prove the above weaknesses, including hybrid model checking (that can han-
dle real-valued variables and continuous functions), modelling paradigms with
queues (that can represent continuous propagation delay) and other model
checking techniques (assume/guarantee based compositional model checking,
bounded model checking, directed model checking, etc.)

Also it would be interesting to evaluate the performance aspects of these op-
timisation models in the nondeterministic context introduced by our modelling
paradigms, such as the probability or the time for a faulty network to converge.
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A Finer Discretisation

[1] presented two optimisation-based flow control algorithms, one is synchronous
and the other is asynchronous. The synchronous algorithm is close to our SS
models except that it regards the resource updates as state transitions, not
functions. The asynchronous algorithm is close to our ASSR models except
that it allows the sources and resources to update at the same time.

Both algorithms in [1] were proved to be stable and to converge to the
optimum under the following assumptions:

1. On given intervals, the utility functions Us are increasing, strictly concave,
twice continuously differentiable; the curvatures of Us are bounded away
from zero;
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2. The step size is small enough;

3. For all sources and resources, the time between consecutive updates is
bounded.

Actually the third assumption was only applied in the proof of the optimality
of the asynchronous algorithm. Bases on these results, we experiment the SS,
AS∗ and ASSR models of the Multi-path Congestion/Rate Control system with
a finer discretisation setting, that is, the capacity Cj of each resource j is 24,
which makes the route flow rates xr ranged in [0, 25], while the gain coefficient
κr is set to 0.2 for each route r. This experiments are performed on a cluster
with two Xeon 4-Core 64-bit 2.5GHz CPUs and 16GB memory. The model
checking results are in Table 2, where Model k′ is the revision of Model k
under the finer discretisation setting. As before, the two initial scenarios are
concerned: Route Overload with x = (20 12 12 12 4 12) and Resource Failure
with x = (0 12 12 12 12 0).

The column {u∗}(Stable) shows the set U∗ of constant values such that each
model satisfies the following specification:

AF (
∨

u∗∈U∗

AG (
∑

s∈S

Us(
∑

r∈s

xr) = u∗)) (14)

The above specification is a weaker form of Specification (10). It means that
the objective function of problem (1) always converges to some value u∗, but
such u∗ may not be unique.

It can be seen that for the SS and AS∗ models, Specification (14) reduces
to Specification (10). As shown in Figures 9 and 10, the AS∗ models converge
to the same equilibrium point as the corresponding SS models do.

However, this does happen to the ASSR models. Note that the ASSR
models are constrained with a fairness condition that every source and resource
agent is activated infinitely often. This fairness condition implies the above
third assumption because no specific boundary was defined. But this does not
guarantee the uniqueness of the equilibrium point, as shown in Figure 11.
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No. Composition Congestion #Reachable states {u∗}(Stable) #Min steps u∗(Vibrating)
1’ SS Route Overload 4 ln(10368) 3 NONE
2’ SS Resource Failure 4 ln(5400) 3 NONE
3’ AS∗ Route Overload 11 ln(10368) 3 NONE
4’ AS∗ Resource Failure 114 ln(5400) 3 NONE
5’ ASSR Route Overload 18 ln(9216) 5 NONE

ln(9600) 4
ln(9984) 3
ln(10368) 2

6’ ASSR Resource Failure 225 ln(5400) 6 NONE
ln(5760) 7
ln(6120) 8
ln(6144) 8
ln(6528) 9
ln(6936) 10

Table 2: Multi-path Congestion/Rate Control - Finer Discretisation (kr = 0.2)
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Figure 9: SS Convergence

29



0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50
14.00
14.50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00

 1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20  21  22

State No.

Us
xr1
xr2
xr3
xr4
xr5
xr6

(a) Model 2’

0.00
0.50
1.00
1.50
2.00
2.50
3.00
3.50
4.00
4.50
5.00
5.50
6.00
6.50
7.00
7.50
8.00
8.50
9.00
9.50

10.00
10.50
11.00
11.50
12.00
12.50
13.00
13.50
14.00
14.50
15.00
15.50
16.00
16.50
17.00
17.50
18.00
18.50
19.00
19.50
20.00

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

State No.

Us
xr1
xr2
xr3
xr4
xr5
xr6

(b) Model 3’

Figure 10: AS∗ Convergence
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Figure 11: ASSR Convergence
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