
Feasibility of Motion Planning
on Acyclic and Strongly Connected Directed Graphs

Zhilin Wu a,∗ Stéphane Grumbach b

aCASIA-LIAMA, Zhongguancun East Road #95, 100190, Beijing, China
bINRIA-LIAMA, Zhongguancun East Road #95, 100190, Beijing, China

Abstract

Motion planning is a fundamental problem of robotics with applications in many areas of computer science and
beyond. Its restriction to graphs has been investigated in the literature for it allows to concentrate on the combina-
torial problem abstracting from geometric considerations. In this paper, we consider motion planning over directed
graphs, which are of interest for asymmetric communication networks. Directed graphs generalize undirected graphs,
while introducing a new source of complexity to the motion planning problem: moves are not reversible. We first
consider the class of acyclic directed graphs and show that the feasibility can be solved in time linear in the product
of the number of vertices and the number of arcs. We then turn to strongly connected directed graphs. We first
prove a structural theorem for decomposing strongly connected directed graphs into strongly biconnected compo-
nents. Based on the structural decomposition, we show that the feasibility of motion planning on strongly connected
directed graphs can be decided in linear time.

Key words: motion planning, feasibility, acyclic directed graphs, strongly connected directed graphs

1. Introduction

Motion planning is a fundamental problem of robotics. It has been extensively studied [LaV06], and has
numerous practical applications beyond robotics, such as in manufacturing, animation, games [MPG] as
well as in computational biology [SA01,FK99]. The complexity of motion planning, which is intrinsically
PSPACE-hard [Lat95,LaV06], has received a lot of attention. The study of motion planning on graphs was
proposed by Papadimitriou et al. [PRST94] to strip away the geometric considerations of the general motion
planning problem and concentrate on the combinatorial problem.

In this paper, we consider the feasibility of motion planning over directed graphs. Our results generalize
results on undirected graphs, which can be shown as a subclass of directed graphs. Directed graphs are of
great importance in several fields such as communication networks which are frequently asymmetric [JJ06].
But technically, directed graphs differ from undirected graphs, for movements in the graph are not reversible.

Papadimitriou et al. [PRST94] first introduced the problem of motion planning on graphs. They defined
the Graph Motion Planning with 1 Robot problem (GMP1R) as follows: Suppose we are given a graph
G = (V,E) with n vertices, there is one robot in a vertex s and some of the other vertices contain a movable

∗ Corresponding author.
Email addresses: zlwu@liama.ia.ac.cn (Zhilin Wu), stephane.grumbach@inria.fr (Stéphane Grumbach).

Preprint submitted to Discrete Applied Mathematics March 15, 2010

obstacle. The objective of GMP1R is to move the robot from the source vertex s to a destination vertex t
with the smallest number of moves, where a move consists in moving a robot or an obstacle from one vertex
to an adjacent vertex that does not contain an object (robot or obstacle). It may be impossible to move
the robot from s to t, for instance, if all the vertices other than s are occupied by obstacles. The feasibility
problem of GMP1R is to decide whether it is possible or not to move the robot from the source vertex to
the destination vertex.

In [PRST94], it was shown that the feasibility of GMP1R can be decided in polynomial time, and the
optimization of GMP1R is NP-complete (even on planar graphs). They also gave a O(n6) exact algorithm as
well as a fast 7-approximation algorithm for GMP1R on trees, a O(

√
n)-approximation algorithm for GMP1R

on general graphs. Auletta et al. proposed more efficient algorithms for the feasibility and optimization of
GMP1R on trees in [AMPP96,AP01].

Motion planning on graphs has wide practical applications. Track transportation system [Per88] consti-
tutes a typical example: Vehicles move on a system of tracks such that each track connects two distinct
stations. There is a distinguished vehicle which moves from a source station to a destination station. There
are other vehicles (obstacles) on the non-source stations. The vehicles are only able to stop at the stations
and not able to stop in the middle of tracks. They coordinate with each other to let the distinguished vehicle
move from the source station to the destination station. Variant of the previous example is packet transfer
in communication buffers. Graphs are regarded as (bidirectional) communication networks and objects as
indivisible packets of data. If there is a distinguished packet which moves from a source node to a destina-
tion node, and there are already some other packets stored in the communication buffers of nodes in the
network, the objective is to move the distinguished packet from the source node to the destination node
without exceeding the capacities of the communication buffers of each node.

In practice, in the two previous examples, the tracks (links) between the stations (nodes) might be asym-
metric. This motivates the study of motion planning on directed versus undirected graphs.

Let us consider first the track transportation system. Some of the tracks may be unidirectional. For
instance, if the two stations are not in the same altitude, the track connecting them might be too steep,
and the vehicles not strong enough to climb up the track. There may also be unidirectional tracks as a
result of security considerations. The vehicle movement from a source station to a destination station, on a
track-transportation system containing unidirectional tracks, leads to motion planning on directed graphs.

Now consider the packet transfer in communication networks. There might be unidirectional links in
communication networks. For instance, in wireless ad hoc networks, unidirectional links can result from
factors such as heterogeneity of receiver and transmitter hardware, power control algorithms, or topology
control algorithms. Unidirectional links may also result from interferences around a node that prevents it
from receiving packets even though the other nodes are able to receive packets from it [MD02,JJ06]. Networks
with unidirectional links can be modeled as directed graphs. The problem of transferring a distinguished
packet in networks with unidirectional links without exceeding the capacities of the communication buffers
amounts to solving motion planning on directed graphs.

Directed graphs generalize undirected graphs, while introducing a new source of complexity to the motion
planning problem: moves are not reversible, and motion planning might become infeasible after inappropriate
moves.

In this paper, we first give a motivating example to illustrate that motion planning on directed graphs is
much more intricate than motion planning on graphs. Then, we consider the class of acyclic directed graphs.
We show that the feasibility of motion planning on acyclic directed graphs can be decided in time linear in the
product of the number of vertices and the number of arcs (Theorem 3). We then turn to strongly connected
directed graphs. We first consider their structure. We start with a subclass of them, strongly biconnected
directed graphs. We obtain an interesting characterization of strongly biconnected directed graphs by show-
ing that a directed graph is strongly biconnected iff it has an open ear decomposition (Theorem 8). This
characterization can be seen as a generalization of the classical open-ear-decomposition characterization of
biconnected graphs. We then prove a structural theorem for decomposing strongly connected directed graphs
into strongly biconnected components (Theorem 9). Based on the open-ear-decomposition characterization,
we show that motion planning on strongly biconnected directed graphs is feasible iff there is at least one
vertex occupied neither by robot nor by obstacle (Theorem 14). With the structural decomposition, we show

2

that the feasibility of motion planning on strongly connected directed graphs can be decided in linear time
(Theorem 21).

The paper is organized as follows. A motivating example is presented in the next section. In Section 3,
we recall classical definitions from graph theory. We consider acyclic directed graphs in Section 4, and give
an algorithm to decide the feasibility of motion planning on such class of directed graphs. In Section 5, we
consider strongly biconnected directed graphs, and prove a structural theorem on their decomposition into
strongly biconnected components. The feasibility for strongly connected directed graphs is considered in
Section 6.

2. A motivating example

In the sequel, for brevity, we use “digraph” to denote “directed graph”.
Let us consider a simple example to illustrate the motion planning on digraphs. Vertices can contain either

an object (obstacle or the robot) or nothing. If there is no object on a vertex, we say that there is a hole in
that vertex. For an arc (v, w) from v to w, with an object on v, and a hole on w, the object can be moved
from v to w, and we say equivalently that the hole can be moved (backwards) from w to v.

Figure 1. Motion planning on digraphs

Consider the strongly connected component C in the graph of Figure 1 which contains vertices v1, ..., v5,
s and t. The initial positions of the robot and obstacles are shown in Figure 1(a).

We can move the robot from s to t as follows: Move the hole in v1 to v2, move the robot from s to v2, then
move the two holes in v7, v8 into C through s, without moving the robot in v2 (Figure 1(b)). Now move the
obstacle in v4 to v5, and move the robot to v4 (see Figure 1(c)). Move the two obstacles in v5 and t to v3
and s (Figure 1(d)), then move the robot from v4 to v5, and finally to t. The main idea of these moves is to
move the robot to v4 in order to free the way for the moves of the holes from s and v3 to v5 and t.

If the robot is in s and we move the hole in v7 to v2 (Figure 2(a)), then the problem becomes infeasible.
We can move the robot from s to v2 and the hole in v8 to s (Figure 2(b)), but it is then impossible to move
the robot from v2 to v4.

As illustrated in the above example, the intricacy of motion planning on digraphs follows from the non-
reversibility of moves in the digraphs.

3

Figure 2. Object moves that do not preserve feasibility

In the sequel, we propose algorithms which take as input, a digraph D = (V,E) encoded by its adjacency
lists, a source and destination vertex s, t ∈ V , a function f mapping each vertex to an element of the set
{“robot”,“obstacle”, “hole”}, and produces a Boolean value (true or false) indicating whether it is feasible
to move the robot from s to t in D.

3. Preliminaries

A digraph D is a binary tuple (V,E) such that E ⊆ V 2. Elements of V and E are called respectively
vertices and arcs of D. We assume that (v, v) 6∈ E for all v ∈ V (there are no self-loops).

For a vertex v of a digraph D = (V,E), the indegree of v, denoted in(v), is defined as |{w ∈ V |(w, v) ∈ E}|,
and the outdegree of v, denoted out(v), is defined as |{w ∈ V |(v, w) ∈ E}|.

A graph G is a binary tuple (V,E) such that E ⊆ V [2], where V [2] contains exactly all two-element subsets
of V , namely V [2] = {{v, w}|v, w ∈ V, v 6= w}. Elements of E are called edges of G.

For a vertex v of a graph G = (V,E), the degree of v, denoted deg(v), is defined as |{w ∈ V |{v, w} ∈ E}|.
If D = (V,E) (resp. G = (V,E)), and e = (v, w) ∈ E (resp. e = {v, w} ∈ E), then e is said to be incident

to v and w in D (resp. G).
A digraph (resp. graph) containing exactly one vertex is said to be trivial, otherwise it is said to be

nontrivial.
Given a digraph D = (V,E) (resp. graph G = (V,E)), the digraph (resp. graph) H = (VH , EH) such that

VH ⊆ V and EH ⊆ E is called a sub-digraph of D (resp. subgraph of G). Let X ⊆ V , the sub-digraph (resp.
subgraph) induced by X, denoted D[X] (resp. G[X]), is the sub-digraph (resp. subgraph) (X,E ∩X ×X)
(resp. (X,E ∩X [2])).

Suppose D = (V,E) (resp. G = (V,E)) is a digraph (resp. graph) and X ⊆ V , let D −X (resp. G−X)
denote the digraph (resp. graph) obtained from D (resp. G) by deleting all the vertices in X and all the
arcs (resp. edges) incident to at least one element of X. If X = {v}, then D−{v} (resp. G−{v}) is written
as D − v (resp. G− v) for simplicity.

Given a digraph D = (V,E), the underlying graph of D, denoted by G(D), is the graph obtained from D
by omitting the directions of arcs, namely G(D) = (V, {{v, w}|(v, w) ∈ E}).

A path of a digraph D = (V,E) (resp. graph G = (V,E)) is an alternating sequence of vertices and
arcs (resp. edges) v0e1v1...vk−1ekvk (k ≥ 1) such that for all 1 ≤ i ≤ k, ei = (vi−1, vi) ∈ E (resp. ei =
{vi−1, vi} ∈ E), and for all 0 ≤ i < j ≤ k, vi 6= vj . v0 and vk are called the tail and head endpoint of the
path respectively, and the other vertices are called the internal vertices of the path. In particular, an arc or
an edge is a path without internal vertices.

A cycle of a digraph D = (V,E) is a sequence of vertices v0v1...vk such that for all 0 ≤ i ≤ k, (vi, vi+1) ∈ E
(vk+1 interpreted as v0), and for all 0 ≤ i < j ≤ k, vi 6= vj . Cycles of graphs can be defined similarly, but
we have the additional restriction that k ≥ 2. So cycles of graphs contain at least three vertices.

A digraph D is acyclic if there are no cycles in D.
Suppose H = (VH , EH) is a sub-digraph of D = (V,E) (resp. subgraph of G = (V,E)). A path P of

D (resp. G) is an H-path if the two endpoints of P are in H, no internal vertices of P are in H, and no
arcs (resp. edges) of P are in H. In particular, an arc (v, w) ∈ E\EH (resp. an edge {v, w} ∈ E\EH) with

4

v, w ∈ VH is an H-path. A cycle C is an H-cycle if there is exactly one vertex of C in H.
Let H1 = (V1, E1) and H2 = (V2, E2) be two sub-digraphs of a digraph D = (V,E), then the union of H1

and H2, H1 ∪H2, is defined as (V1 ∪ V2, E1 ∪ E2). The union of subgraphs can be defined similarly.
A digraph D = (V,E) is strongly connected if for any two distinct vertices v and w, there are both a path

from v to w and a path from w to v in D. The digraph containing exactly one vertex and no arcs is the
minimal strongly connected digraph.

Let D = (V,E) be a digraph. The strongly connected components of D are the maximal strongly connected
sub-digraphs of D.

A graph G = (V,E) is connected if for any two distinct vertices v and w of G, there is a path of G with
endpoint v and w. The connected components of a graph G are the maximal connected subgraphs of G.

If G = (V,E) is a graph, v ∈ V , and the number of connected components of G− v is more than that of
G, then v is said to be a cut vertex of G.

A graph G is biconnected if G is connected and there are no cut vertices in G. In particular, the graph
containing exactly one vertex is the minimal biconnected graph. The biconnected components of a graph G
are the maximal biconnected subgraphs of G.

Without loss of generality, we assume that for each digraph D, (i) the underlying graph of D, G(D), is
connected, (ii) the source vertex s and the destination vertex t are distinct (thus all the digraphs considered
from now on are nontrivial), (iii) there is at least one path from s to t in D.

4. Motion planning on acyclic digraphs

In this section we assume that D = (V,E) is an acyclic digraph.
We first recall a result about topological orderings of acyclic digraphs.
A topological ordering of an acyclic digraph D = (V,E) is an ordering of all vertices of D, say v1, . . . , vk,

such that (vi, vj) ∈ E implies i < j. From [BJG00], we know that a topological ordering of a given acyclic
digraph can be computed in linear time by a depth-first-search 1 .
Theorem 1 ([BJG00]) Given an acyclic digraph D = (V,E), a topological ordering of D can be computed
in time O(n + m), where n is the number of vertices and m is the number of arcs of D.

We introduce some notations in the following.
Let V ′ denote the set of vertices from which there is a path to t, and to which there is a path from s. In

particular, s, t ∈ V ′.
For each v ∈ V ′, let h(v) denote the number of holes that can be moved to v.
For each v ∈ V ′, define ht(v) as follows: Suppose that the robot is in v.

– If the robot can be moved from v to t in D, then there may be different paths (from v to t) along which
the robot can be moved from v to t, let ht(v) be the minimal length (number of arcs) of such paths.

– If it is impossible to move the robot from v to t, let ht(v) =∞.
The h(v)’s can be computed by solving the reachability problems. The ht(v)’s can be computed as follows:
(i) Compute a topological ordering of D[V ′], say v1, . . . , vk, such that v1 = s, vk = t;
(ii) Compute ht(v)’s by a backward induction,

– ht(vk) := 0,
– For i < k: If ∃j : i < j ≤ k such that (vi, vj) ∈ E and h(vj) ≥ ht(vj) + 1, then ht(vi) :=

min{ht(vj) + 1|i < j ≤ k, (vi, vj) ∈ E, h(vj) ≥ ht(vj) + 1}. Otherwise, ht(vi) :=∞.
The problem is feasible iff ht(s) <∞, which is justified by the argument in the following two paragraphs.
If the problem is feasible, the robot can be moved from s to t. Let P be the trace of the robot during this

movement (namely the sequence of nodes and arcs reached by the robot). As a result of acyclicity of D, P
is a path of D. Let P = v0e1v1 · · · vk−1ekvk such that v0 = s and vk = t. During the movement, when the
robot is moved to vi−1(1 ≤ i ≤ k), in order to move the robot from vi−1 to vi, a hole should be moved to
vi. Since D is acyclic, the hole moved to vi cannot be moved to vj for any j such that i < j ≤ k (holes are
moved along the reverse direction of arcs). So these holes moved to the vi’s are distinct from each other,

1 In [BJG00], topological orderings are called acyclic orderings.

5

and can be moved to occupy all the vertices on P except s. By induction, we can show that for all vertices
v on P , the inductively computed ht(v) satisfies that ht(v) <∞.

On the other hand, if ht(s) < ∞, by induction, we can show that there is a path P from s to t such
that for each vertex v 6= s on P , we have ht(v) < ∞ and h(v) ≥ ht(v) + 1, and for each arc (v, w) on P ,
ht(v) = ht(w) + 1. By induction again, we can show that the holes in D can be moved to occupy all the
vertices on P except s. Then the robot can be moved to t along P , the problem is feasible.

Example 2 The computation of h(v) and ht(v) on an acyclic digraph is illustrated in Figure 3. For instance,
ht(t) = 0, ht(v5) = ht(t)+1 = 1 since (v5, t) ∈ E and h(t) = 1 ≥ ht(t)+1 = 1; on the other hand, ht(v1) =∞
since v5 is the only successor of v1, but h(v5) = 1 < ht(v5) + 1 = 2.

Figure 3. Computation of h(v) and ht(v)

Theorem 3 Feasibility of motion planning on acyclic digraphs can be decided in O(nm) time, where n is
the number of vertices, and m is the number of arcs.

PROOF.
Let D be an acyclic digraph, n and m be the number of vertices and number of arcs of D respectively.
The computation of V ′ takes O(m) time since it can be done by solving the reachability problem twice.
The computation of h(v)’s takes O(nm) time because the computation of each h(v) takes O(m) time and

there are at most O(n) such computations.
The computation of a topological ordering of D[V ′] takes O(n + m) time from Theorem 1.

The computation of ht(v)’s takes O

(∑
v∈V ′

out(v)

)
= O(m) time.

Since n ≤ m, we conclude that the overall time complexity is O(m + nm + n + m + m) = O(nm). 2

5. Structure of strongly connected digraphs

In this section, we consider the structure of strongly connected digraphs. We first recall some definitions
and theorems.

An open ear decomposition of a digraph D = (V,E) (resp. graph G = (V,E)) is a sequence of sub-digraphs
of D (resp. subgraphs of G), say P0, ..., Pr, such that
– P0 is a cycle;
– Pi+1 is a Di-path (resp. Gi-path), where Di (resp. Gi) is

⋃
0≤j≤i

Pj for all 0 ≤ i < r;

– D =
⋃

0≤i≤r
Pi (resp. G =

⋃
0≤i≤r

Pi).

A closed ear decomposition of a digraph D = (V,E) (resp. graph G = (V,E)) is a sequence of sub-digraphs
of D (resp. subgraphs of G), say P0, ..., Pr, such that
– P0 is a cycle;

6

– Pi+1 is a Di-path or a Di-cycle (resp. a Gi-path or a Gi-cycle), where Di (resp. Gi) is
⋃

0≤j≤i
Pj for all

0 ≤ i < r;
– D =

⋃
0≤i≤r

Pi (resp. G =
⋃

0≤i≤r
Pi).

Theorem 4 ([Wes00]) Let G be a graph containing at least three vertices. G is biconnected iff G has an
open ear decomposition. Moreover, any cycle can be the starting point of an open ear decomposition.
Theorem 5 ([BJG00]) Let D be a nontrivial digraph. D is strongly connected iff D has a closed ear
decomposition. Moreover, any cycle can be the starting point of a closed ear decomposition.

Let G = (V,E) be a graph. The biconnected-component graph of G, denoted Gbc(G), is a bipartite graph
(Vbc,Wbc, Ebc) defined by
– Vbc: biconnected components of G;
– Wbc: vertices of G shared by at least two distinct biconnected components of G;
– Ebc: let B ∈ Vbc and w ∈Wbc, then (B,w) ∈ Ebc iff w ∈ V (B).
Theorem 6 ([Wes00]) Let G = (V,E) be a connected graph. Then Gbc(G) is a tree.

Now we introduce a class of digraphs, strongly biconnected digraphs.
Definition 7 Let D be a digraph. D is said to be strongly biconnected if D is strongly connected and G(D)
is biconnected. The strongly biconnected components of D are the maximal strongly biconnected sub-digraphs
of D.

In particular, the digraph containing exactly one vertex and no arcs is strongly biconnected.
The following result demonstrates that strongly biconnected digraphs also admit a similar characterization.
Theorem 8 Let D be a nontrivial digraph. D is strongly biconnected iff D has an open ear decomposition.
Moreover, any cycle can be the starting point of an open ear decomposition.

Theorem 8 can be proved along the same line as Theorem 7.2.2 and Corollary 7.2.7 in [BJG00].
We can prove the following structural theorem for strongly connected digraphs.
Theorem 9 Let D = (V,E) be a strongly connected digraph. Then the strongly biconnected components of
D are those D[V (B)], namely the sub-digraph of D induced by V (B), where B is a biconnected component
of G(D).

PROOF.
Let D = (V,E) be a strongly connected digraph.
If D is trivial, then the result is obvious.
Otherwise, D is nontrivial, let B be a biconnected component of G(D).
It is sufficient to show that D[V (B)] is strongly connected. If this holds, then D[V (B)] is strongly bi-

connected. Because all the vertices of a strongly biconnected sub-digraph of D are in some biconnected
component of G(D) and B is a biconnected component of G(D), D[V (B)] is a maximal strongly biconnected
sub-digraph of D, i.e. a strongly biconnected component of D. Since the union of all biconnected components
of G(D) is G(D) itself, the theorem holds.

Now we show that D[V (B)] is strongly connected.
Let v, w ∈ V (B) such that v 6= w. Since D is strongly connected, there must be a path P from v to w in

D. Now we show that P is in D[V (B)] as a matter of fact.
To the contrary, suppose that there is a vertex on P not in D[V (B)].
Let v′ be the first vertex on P (starting from v) not in D[V (B)]. Then there is w′ ∈ V (B) on P such

that (w′, v′) ∈ E. Because B is a biconnected component of G(D), and two distinct biconnected components
contain at most one vertex in common according to Theorem 6, it follows that v′ is in a biconnected
component B′ 6= B of G(D), and w′ is the unique vertex shared by B′ and B. Since P is a path, we have
that w′ 6= w, otherwise we have reached w before v′ on P , a contradiction. Because w ∈ V (B) and w 6= w′,
we have that w ∈ V (B)\V (B′). Since w′ is the unique vertex shared by B and B′, any path from v′ to
w ∈ V (B)\V (B′) has to visit w′, so P must visit w′ again after visiting v′, contradicting to the fact that P
is a path and there should be no vertices visited twice on a path.

Consequently for any v, w ∈ V (B), v 6= w, there is a path in D[V (B)] from v to w, D[V (B)] is strongly
connected. 2

7

From Theorem 9, we have the following definition for strongly-biconnected-component graph of a strongly
connected digraph.
Definition 10 Let D be a strongly connected digraph, the strongly-biconnected-component graph of D, de-
noted Gsbc(D) = (Vsbc,Wsbc, Esbc), is Gbc (G(D)), namely the biconnected-component graph of the underlying
graph of D.

From the above definition and Theorem 6, we have the following corollary.
Corollary 11 Let D be a strongly connected digraph. Then Gsbc(D) is a tree.
Example 12 (Strongly-biconnected-component graph) A strongly connected digraph D (Figure 4(a))
and its strongly-biconnected-component graph Gsbc(D) (Figure 4(b)).

Figure 4. Example: strongly-biconnected-component graph

6. Motion planning on strongly connected digraphs

At first, we make the following observation about motion planning on strongly connected digraphs.
Proposition 13 Let D = (V,E) be a strongly connected digraph. Then

(i) If the robot and a hole are in the same cycle C of D, then the robot can be moved to any vertex of C.
(ii) The movement of objects (robot or obstacles) in D preserves the feasibility of motion planning on D.

PROOF.
(i): it is obvious since the hole can be moved along the reverse direction of the arcs in C and the objects
can be rotated to any vertex in C.
(ii): Suppose we move an object from v to w along the arc (v, w) ∈ E. We prove that the motion planning
problem is feasible before the movement iff it is feasible after the movement.

Since (v, w) ∈ E and D is strongly connected, there is a path P from w to v in D, let C denote the cycle
P ∪ {(v, w)}.

Suppose the motion planning problem is feasible before the movement. Because after the movement, there
is a hole in v, we can move the hole along the reverse direction of C, rotate the objects along C, and restore
the situation before the movement, namely all the objects return to the positions before the movement. An
example of this restoration is given in Figure 5. So the motion planning problem is also feasible after the
movement.

The other direction is obvious. 2

From [PRST94], we know that if a graph is biconnected, then one hole is sufficient to move the robot
from the source vertex to the destination vertex, which is also the case for strongly biconnected digraphs.
Theorem 14 Let D be a strongly biconnected digraph. Then the motion planning problem on D is feasible
iff there is at least one hole in D.

PROOF.

8

Figure 5. Restoration by rotating the objects in a cycle

“Only if” part: obvious.
“If” part:
Suppose D is strongly biconnected, there is exactly one hole in D (the case that there are more than one

hole is similar), the source vertex is s and the destination vertex is t.
From Theorem 8, we know that there is an open ear decomposition P0, ..., Pr of D.
Let j0 be the minimal j such that s, t and the hole are all in Dj , where Dj =

⋃
0≤j′≤j

Pj′ .

Induction on j0.
Induction base j0 = 0: s, t and the hole are all in the cycle P0. Then move the hole along the reverse

direction of the cycle and move the robot to t.
Induction step j0 > 0.
Let the tail and head endpoint of Pj0 be u′ and v′ respectively.
Because of minimality of j0, we have the following three cases.
Case I s is in Pj0 , s 6= u′, v′:
Select a path P in Dj0−1 from v′ to u′, then Pj0 ∪ P is a cycle in D.
If the hole is not on Pj0 ∪ P , the hole must be in Dj0−1, we can move it to P in Dj0−1 without moving

the robot in s.
If t is on Pj0 ∪ P , then move the hole along the reverse direction of Pj0 ∪ P and move the robot to t.
Otherwise, move the hole along the reverse direction of Pj0 ∪ P and move the robot to v′. Now the hole

is in Pj0 , move the hole along the reverse direction of Pj0 , until it reaches u′.
Then the position of the robot, v′, the destination t and the position of the hole, u′, are all in Dj0−1,

according to the induction hypothesis, we can move the robot to t.
Case II s is in Dj0−1, the hole is in some vertex of Pj0 different from u′ and v′:
Select a path P in Dj0−1 from v′ to u′, then Pj0 ∪ P is a cycle in D.
If t is in Dj0−1 and s 6= u′, we can move the hole to u′ along the reverse direction of Pj0 without moving

the robot in s, then according to the induction hypothesis, we can move the robot to t.
If t is in Dj0−1 and s = u′, then move the hole along the reverse direction of Pj0 ∪ P and move the robot

to v′. Now the hole is in Pj0 , we can move the hole along the reverse direction of Pj0 to u′. Then by the
induction hypothesis, we can move the robot to t.

If t is not in Dj0−1, then t is on Pj0 .
If s = u′, then we can move the hole along the reverse direction of Pj0 ∪ P and move the robot to t.
Now we consider the case s 6= u′.
We can move the hole along the reverse direction of Pj0 to u′ without moving the robot. Then by the

induction hypothesis, we can move the robot from s to v′ in Dj0−1.
By the induction hypothesis again, we can move the robot from v′ to u′ in Dj0−1. Let the trace of the

robot during the movement from v′ to u′ be P ′. Note that P ′ may contain cycles. Suppose the last arc of
P ′ is (w, u′) for some w. Then the hole is in w after the movement. Without loss of generality, we assume
that during the movement, the robot visits u′ only once since u′ is the destination. Consequently, the hole
can be moved from w to v′ along the reverse direction of P ′ without moving the robot in u′ (see Figure 6).

9

Figure 6. The case that the hole and t are in Pj0 different from u′ and v′, s ∈ Dj0−1, and s 6= u′

Since Pj0 ∪ P is a cycle and t is on Pj0 , now we can move the hole along the reverse direction of Pj0 ∪ P
and move the robot to t.

Case III s and the hole are both in Dj0−1, t is in Pj0 , t 6= u′, v′:
We can move the hole in Dj0−1 to v′ with possible movements of the robot in Dj0−1. Suppose the new

position of the robot is s′.
Now move the hole to some vertex in Pj0 different from u′ and v′, which is possible since Pj0 contains at

least three vertices. Then we have reduced Case III to Case II. 2

We introduce the following notation before giving the algorithm.
Definition 15 Let D = (V,E) be a strongly connected digraph, u, v, w ∈ V such that v 6= w, and Gsbc(D) =
(Vsbc,Wsbc, Esbc) be the strongly-biconnected-component graph of D. Then u is said to be on the w-side of
v, if u 6= v and one of the following two conditions holds:

(i) v ∈Wsbc, and u,w are in the same connected component of G(D)− v.
(ii) v 6∈Wsbc, and either u,w are in the same connected component of G(D − V (B)), or u ∈ V (B), where

B is the unique strongly biconnected component of D to which v belongs.
u is said to be on the non-w-side of v if u 6= v, and u is not on the w-side of v.

A hole (resp. obstacle) is said to be on the t-side of the robot if the position (vertex) of the hole (resp.
obstacle) is on the t-side of the position of the robot, and a hole (resp. obstacle) is said to be on the non-t-side
of the robot if the position of the hole is on the non-t-side of the position of the robot.

Note that if u, v, w ∈ V , v 6∈ Wsbc, v 6= w, v, w ∈ V (B), where B is the unique strongly biconnected
component of D to which v belongs, then u is on the w-side of v iff u 6= v and u ∈ V (B) according to
Definition 15.
Example 16 (t-side of the robot) In Figure 7(a), the robot is in s ∈ Wsbc, two holes in v3 and v4 are
on the t-side of the robot, and the hole in v1 is on the non-t-side of the robot. In Figure 7(b), the robot is in
v3 6∈Wsbc, the hole in v2 belongs to the same strongly biconnected component as v3, so v2 is on the t-side of
the robot, and two holes in v1 and s are on the non-t-side of the robot.

Figure 7. Example: t-side of the robot

Since strongly biconnected components of strongly connected digraphs are similar to biconnected compo-
nents of connected graphs, the feasibility of motion planning on strongly connected digraphs can be decided
similar to the motion planning on graphs.

10

Definition 17 (Chains) Let D = (V,E) be a strongly connected digraph, and Gsbc(D) = (Vsbc,Wsbc, Esbc)
be the strongly-biconnected-component graph of D. Let v ∈ V , v is called a branching vertex if v ∈Wsbc and
the degree of v is greater than 2 in Gsbc(D), i.e. v is shared by at least three distinct strongly biconnected
components. A chain of Gsbc(D) is a path B0v1B1 · · ·Bk−1vkBk (k ≥ 1) in Gsbc(D) such that

(i) for all 1 ≤ i ≤ k − 1, |V (Bi)| = 2;
(ii) for all 1 < i < k, vi is not a branching vertex.
The length of a chain is the number of vertices in Wsbc on the chain.

Example 18 In Figure 4, B1v2B2v3B3 is a chain in Gsbc(D) since |V (B2)| = 2. The length of this chain
is 2.

In the following, to decide the feasibility, we first consider the restricted situation that all the holes are
on the t-side of the robot, then we consider the more general case.

Let P := B0v1B1...Bp−1vpBp be the path in Gsbc(D) = (Vsbc,Wsbc, Esbc), such that s ∈ V (B0), t ∈ V (Bp),
s 6= v1 and t 6= vp.

Let l be the maximum length of the chains contained in P .

Case I. All the holes are on the t-side of the robot.
The problem is feasible iff the number of holes is no less than l + 1, because l + 1 holes are necessary and

sufficient to let the robot go through the chains of length l. For instance, suppose Bivi+1Bi+1 · · · vi+lBi+l

is a chain of length l contained in P , |V (Bi)| ≥ 3 and |V (Bi+l)| ≥ 3. In order to move the robot from some
vertex w1 ∈ V (Bi) such that w1 6= vi+1 to the other vertex w2 ∈ V (Bi+l) such that w2 6= vi+l, at first l
holes are needed to occupy vi+1, · · · , vi+l so that the robot can be moved from w1 to vi+l, then another hole
on the t-side of vi+l is needed to move the robot from vi+l to w2.
Example 19 The strongly connected digraph is given in Figure 8(a). All the holes are on the t-side of the
robot. P = B0v2B1v3B2v4B3v5B4v6B5v7B6. The l, i.e. the maximum length of the chains contained in P ,
is 3. There are l + 1 = 4 holes, so the problem is feasible. Now we show how to move the robot from s to t
with the four holes: Move the four holes to v2, v3, v4, v9 respectively (see Figure 8(b)), then move the robot
to v9 (see Figure 8(c)), move the obstacle on v5 to v4 (see Figure 8(d)), move the three holes on s, v2, v3 to
v6, v7, t respectively (see Figure 8(e)), finally move the robot to t (see Figure 8(f)).

Case II. There are holes not on the t-side of the robot.
If the number of holes on the t-side of the robot is already no less than l+ 1, then the problem is feasible.

Otherwise, it is necessary to utilize the holes not on the t-side of the robot in order to move the robot to t.
There are three subcases,

– |V (B0)| ≥ 3;
– |V (B0)| = 2 and s is a branching vertex;
– |V (B0)| = 2 and s is not a branching vertex.

In the following, we only consider the third case to illustrate how to decide the feasibility, the considerations
of the first two cases are similar.

Let i0 be the maximal natural number such that B0v1B1 · · ·Bi0−1vi0Bi0 is chain contained in P .
If the number of holes on the t-side of the robot is no less than i0 + 1, then the problem is feasible iff the

(total) number of holes is no less than l + 1.
Otherwise, let B be the (unique) strongly biconnected component such that s ∈ V (B) and B 6= B0 (Recall

that s is not a branching vertex).
If |V (B)| ≥ 3, then the robot can be moved to some vertex w ∈ V (B) such that (s, w) ∈ E, and all the

holes can be moved to the t-side of w (by moving the robot within B if necessary), the problem is feasible
iff the (total) number of holes is no less than max(i0 + 2, l + 1).

Otherwise (|V (B)| = 2), let Q := B′0v
′
1B
′
1 · · ·B′q−1v′qB′q (q ≥ 1) be a maximal chain in Gsbc(D) such that

B′0 = B and v′1 is the (unique) vertex in B different from s.
There are several situations for Q: Either v′q is a branching vertex, or |V (B′q)| ≥ 3, or (v′q is not a branching

vertex, |V (B′q)| = 2, and B′q is a leaf in Gsbc(D)).
If v′q is a branching vertex or |V (B′q)| ≥ 3, then the problem is feasible only if the robot can be moved from

s to some w ∈ V (B′q) such that (v′q, w) ∈ E (in order to move all the holes to the t-side of the robot), and

11

Figure 8. Example: motion planning on a strongly connected digraph: Case I

the holes are sufficient to move the robot go through the chain B′qv
′
qB
′
q−1 · · ·B′1v′1B′0sB0v1 · · ·Bi0−1vi0Bi0 .

Therefore, the problem is feasible iff the number of holes not on the t-side of the robot is no less than q + 1,
and the (total) number of holes is no less than max(q + i0 + 2, l + 1).

Otherwise (v′q is not a branching vertex, |V (B′q)| = 2, and B′q is a leaf in Gsbc(D)), the problem is infeasible
since it is impossible to move the robot go through the chain B0v1 · · ·Bi0−1vi0Bi0 .
Example 20 The strongly connected digraph is given in Figure 9(a). P = B3v4B4v5B5v6B6v7B7v8B8,
l = 3. There are holes not on the t-side of the robot. |V (B3)| = 2 and s is not a branching vertex, so it is
the third subcase of Case II. The number of holes on the t-side of the robot is 2, less than l + 1 = 4. And
i0 = 2, the number of holes on the t-side of the robot is less than i0 + 1 = 3. B2 is the unique strongly
biconnected component such that s ∈ V (B2) and B2 6= B3. Q = B2v3B1, q = 1. The number of holes not on
the t-side of the robot is 3, greater than q + 1 = 2. Moreover, the total number of holes is 5, no less than
max(q + i0 + 2, l + 1) = max(5, 4) = 5, so the problem is feasible. Now we show how to move the robot from
s to t. Move the hole on v2 to v8 (see Figure 9(b)), move the robot from s to v8 (see Figure 9(c)), move the
hole on v1 to v4 (see Figure 9(d)), move the hole on v7 to v9 (see Figure 9(e)), move the robot to v9 (see
Figure 9(f)), move the four holes on v3, s, v4, v5 to v6, v7, v8, t respectively (see Figure 9(g)), finally move
the robot to t.
Theorem 21 Feasibility of motion planning on strongly connected graphs can be decided in O(m) time.

PROOF.

12

Figure 9. Example: motion planning on a strongly connected digraph: Case II

The construction of Gsbc(D) can be done in time O(m) since the biconnected components of a connected
graph of m edges can be constructed in O(m) time by a depth-first-search technique [CLRS01].

The construction of P,Q takes time O(m).
The total number of holes, the holes on the t-side of the robot and the holes not on the t-side of the robot,

can be computed by solving reachability problems, which takes time O(m) as well.
So the overall time is O(m). 2

7. Conclusion

In this paper, we considered the feasibility of motion planning on digraphs, we showed that the feasibility
of motion planning on acyclic digraphs can be decided in time linear in the product of the number of vertices
and the number of arcs, while the feasibility on strongly connected digraphs can be solved in linear time.

13

The algorithms for the feasibility of motion planning on acyclic digraphs and strongly connected digraphs
can be adapted to the case where the capacity of each vertex is more than one (namely, vertices are able to
hold several objects simultaneously), the only modification is the computation of the number of holes.

The feasibility of motion planning on digraphs is only partially solved in this paper since we did not
give the algorithm for deciding the feasibility on general digraphs, which, as well as the optimization of the
motion of robot and obstacles, is much more intricate than that on graphs because of the irreversibility of
the movements on digraphs.

The motion planning on graphs with one robot, GMP1R, has a natural generalization, GMPkR, where
there are k robots with their respective destinations. It is also interesting to consider motion planning on
digraphs with k robots since in practice it is more reasonable that a robot shares its workspace with other
robots.

GMPkR in general is a very complex problem. A special case of GMPkR, where there are no additional
obstacles (thus all the movable objects have their destinations), has been considered. Wilson studied the
special case of GMPkR for k = n − 1 in [Wil74], which is a generalization of the “15-puzzle” problem to
general graphs. They gave an efficiently checkable characterization of the solvable instances of the problem.
Kornhauser et al. extended this result to k ≤ n−1 [KMS84]. Goldreich proved that determining the shortest
move sequence for the problem studied by Kornhauser et al. is NP-hard [Gol84]. It seems more realistic to
first consider the above special case of GMPkR on digraphs.

Acknowledgement. We thank the anonymous referees for their valuable comments to improve the paper.

References

[AMPP96] V. Auletta, A. Monti, D. Parente, and G. Persiano, A linear time algorithm for the feasibility of pebble motion on

trees, SWAT ’96: Proceedings of the 5th Scandinavian Workshop on Algorithm Theory, LNCS 1097, Springer-Verlag,

1996, pp. 259–270.
[AP01] V. Auletta and P. Persiano, Optimal pebble motion on a tree, Informaiton and Computation 165 (2001), no. 1,

42–68.

[BJG00] J. Bang-Jensen and G. Gutin, Digraphs: Theory, algorithms and applications, springer monographs in mathematics,
Springer-Verlag, 2000.

[CLRS01] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein, Introduction to algorithms, second

edition, The MIT Press, 2001.
[FK99] P. W. Finn and L. E. Kavmkit, Computational approaches to drug design, Algorithmica 25 (1999), 347–371.

[Gol84] O. Goldreich, Finding the shortest move-sequence in the graph-generalized 15-puzzle is NP-hard, manuscript, 1984.
[JJ06] Jorjeta G. Jetcheva and David B. Johnson, Routing characteristics of ad hoc networks with unidirectional links, Ad

Hoc Networks 4 (2006), no. 3, 303–325.

[KMS84] D. Kornhauser, G. Miller, and P. Spirakis, Coordinating pebble motion on graphs, the diameter of permutation
groups, and applications, FOCS’84, 1984, pp. 241–250.

[Lat95] Jean-Claude Latombe, Controllability, recognizability, and complexity issues in robot motion planning, FOCS’95,

1995, pp. 484–500.
[LaV06] Steven M. LaValle, Planning algorithms, Cambridge University Press, 2006.

[MD02] Mahesh K. Marina and Samir R. Das, Routing performance in the presence of unidirectional links in multihop

wireless networks, in Proc. of ACM MobiHoc, 2002, pp. 12–23.
[MPG] Motion planning game, website, http://www.download-game.com/Motion_Planning_Game.htm.

[Per88] Yvonne Perrott, Track transportation systems, European patent, 1988, http://www.freepatentsonline.com/

EP0284316.html.
[PRST94] C. H. Papadimitriou, P. Raghavan, M. Sudan, and H. Tamaki, Motion planning on a graph, FOCS’94, 1994, pp. 511–

520.
[SA01] Guang Song and Nancy M. Amato, Using motion planning to study protein folding pathways, RECOMB’01:

Proceedings of the fifth annual international conference on Computational biology (New York, NY, USA), ACM,

2001, pp. 287–296.
[Wes00] Douglas B. West, Introduction to graph theory, second edition, Prentice Hall, 2000.

[Wil74] R. M. Wilson, Graph puzzles, homotopy, and the alternating group, Journal of Combinatorial Theory (B) 16 (1974),
86–96.

14

