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Abstract. In this paper we formalize the semantics of the Android mul-
titasking mechanism and develop efficient static analysis methods with
automated tool supports. For the formalization, we propose an exten-
sion of the existing Android Stack Machine model to capture all the
core elements of the mechanism, in particular, the intent flags used in
inter-component communication. For the static analysis, we consider the
configuration reachability and stack boundedness problem, designing new
algorithms and developing a prototype tool TaskDroid to fully support
automated model construction and analysis of Android apps. The experi-
mental results show that TaskDroid is effective and efficient in analyzing
Android apps in practice.

1 Introduction

Android, a mobile operating system developed by Google, features over 2 billion
monthly active users and over 80% of the share of the global mobile operating
system market.6 The Google Play store, Google’s official pre-installed app store
on Android devices, has supplied 2 million apps since 2016.7 Multitasking is a
fundamental mechanism of the Android operating system. Its unique design, via
activities, back stacks and task stacks, greatly facilitates organizing user sessions
through tasks, and provides rich features such as handy application switching,
background app state maintenance, and smooth task history navigation (using
the “back” button) [14]. Although the Android multitasking mechanism has
substantially enhanced user experiences of the Android system and promoted
personalized features in app design, it is notoriously complex and difficult to
understand. As a witness, it constantly baffles app developers and has become
a common topic of question-and-answer websites.8 In addition, such a complex
mechanism is plagued by serious security concerns, e.g., GUI phishing and hi-
jacking attacks, denial of service attacks, and privilege leakage [3,14,16].

6 https://expandedramblings.com/index.php/android-statistics/
7 https://www.statista.com/statistics/266210/number-of-available-applica

tions-in-the-google-play-store/
8 For instance, https://stackoverflow.com/questions/3219726/

https://expandedramblings.com/index.php/android-statistics/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://stackoverflow.com/questions/3219726/
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The Android multi-tasking mechanism, despite its importance, had not been
systematically studied until very recently. Lee et al. formalized the operational
semantics of the Android multitasking mechanism [8,9]. Independently, we in-
troduced a formal model, i.e., Android Stack Machine (ASM), to capture the
fundamental aspects of the multitasking mechanism [6], where the first step was
made towards static analysis of Android apps based on the ASM model. It ap-
pears that, despite these initiatives, much more studies are needed to understand
the multitasking mechanism, and to utilize it to design, analyse, test and verify
Android apps. For instance, the operational semantics [9] is lengthy and hard
to grip, while the ASM model [6], being more succinct and accessible, is incom-
plete, as intent flags, an important and pervasive feature of the multitasking
mechanism, were not taken into account. More importantly, static analysis of
the multitasking behavior of apps and its supporting tools, which is the focus of
the current paper, are largely missing (with the exception that a static analysis
tool was developed in [8], but was specialised for detecting activity injection
attacks while did not fit for general-purpose analysis). This is in contrast to the
large body of work on the static analysis of the other aspects of Android apps.

Contributions. The current paper aims to deepen the understanding of the An-
droid multitasking mechanism via formalization of its semantics, and to develop
effective and efficient approaches to the general-purpose static analysis of the
multitasking behavior of Android apps.

For the formal semantics of the multitasking mechanism (Section 3), we sig-
nificantly extend the ASM model [6]. The most pronounced extension lies in
the introduction of intent flags which are pervasive for Android inter-component
communication but which were ignored by the original ASM model. Our improve-
ments over the operational semantics [9] are as follows: (1) We formalize the se-
mantics for Android 7.0/8.0, which is—interestingly and perhaps surprisingly—
different from that of Android 6.0. (The semantics for Android 7.0 and 8.0 also
have slight differences.) In particular, we identify the notion of real activity which
plays an essential role in allocating newly launched activities into respective tasks
(referred to as the task allocation mechanism). In contrast, the semantics given
before [8,9] is for Android 6.0 and uses a different and simpler tasking alloca-
tion mechanism. To the best of our knowledge, this is the first time that the
discrepancies of the multitasking mechanism for different Android versions are
thoroughly studied and formalized. (2) The semantics we give is more succinct
and structured. Instead of an explicit enumeration which takes tens of pages [9],
we organize and group different cases, leading to a much shorter and more ac-
cessible description with underlying principles identified which greatly facilitate
the understanding. (3) We validate the semantics against the actual behavior
of the Android system by designing a diagnosis app and conducting exhaustive
experiments. All the experimental data are made publicly available to encourage
reproductivity (cf. the full version [7]).

For static analysis (Section 4), we consider some of the most fundamental
problems based on the extended ASM model. In particular, we consider configu-
ration reachability analysis, which is arguably the cornerstone of any automated
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analysis of this kind. By this analysis, one can determine whether a particular
configuration of the app can be reached by interacting with the mobile phone
users and/or possible interaction with other (potentially malicious) apps. It is
not very difficult to envisage that most existing security vulnerabilities related to
the multitasking mechanism can be reduced to such an analysis. We also consider
the stack boundedness analysis. In general, app developers may be interested in
checking whether there is a sequence of user actions which can force the height
of some task(s) to grow unboundedly. If this were the case, there would be a
security risk that the app may crash or even lead to rebooting of mobile devices,
if a user or a malicious app interacts with the app by following the sequence.
The stack boundedness analysis is used to detect such a vulnerability.

To carry out such analysis, we build ASM models from Android apps by first
constructing the call graphs and control flow graphs based on the soot tool [15],
then applying control and data flow analysis (Section 4.1). We give new, prac-
tical algorithms to solve the configuration reachability and stack boundedness
problems (Section 4.2). For the configuration reachability problem, we reduce
the problem to the reachability problem of finite state machines, by imposing
a (specified) constant bound on the height of tasks. The latter problem can be
solved by off-the-shelf symbolic model checkers (e.g., nuXmv [4]) efficiently. For
the stack boundedness problem, the algorithm searches witness cycles of tran-
sitions for each task along which its back stack may run unbounded with the
involvement of other tasks.

To evaluate our approaches, we implement a prototype tool TaskDroid and
carry out extensive experiments on over 4, 000 apps, which are either open-
source apps from F-Droid or apps downloaded from app markets, e.g., Google
Play (Section 5). The experimental results show that our approaches are effective
and efficient in analysing the apps in practice. Remarkably, TaskDroid enables us
to detect that 29 apps from F-Droid are stack unbounded, and our experiments
confirm that the stack unboundedness poses a real threat (Section 5.2): The 29
stack-unbounded F-Droid apps, when being fed into the Monkey tool to simulate
the detected witness cycles for hundreds or thousands of times, exhibit black
screen, app crash, or even rebooting of mobile devices.

Related work. We discuss the related work from the following three perspectives.

Android GUI models. Some models addressing GUI activities of Android
apps have been proposed. Activity transition graphs [2] were probably the first
model to represent Android GUI activity transitions, but they are essentially a
syntactic model without addressing the semantics sufficiently. Window transition
graphs [18] can represent the possible GUI activity (window) sequences and
their associated events and callbacks, and thus can capture how the events and
callbacks modify the task stack. However, this model addresses neither the launch
modes other than “standard” nor task affinities. Labeled transition graphs with
stack and widget (LATTE [17]) consider the effects of launch modes on the
task stack, but not those of task affinities. Essentially, it provides a finite-state
abstraction of the behavior of the task stack. The ASM model [6] is the basis of
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the current work, but its was oversimplified for the purpose of formalizing the
semantics of Android multi-tasking mechanism.

Static analysis. Static analysis for Android apps has been thoroughly studied,
and we refer the readers to [10], which provides a systematic literature review
involving 124 research papers published during the period for 2011-2015. More
recently, [13] investigated the problem of composite constant propagation, which
was able to infer Android inter-component communication values, and developed
a tool called IC3. Our model construction may use IC3 but we choose not to
do mainly because: (1) IC3 is unable to discover the indirect activation between
activities in general. (For instance, if the activity A calls a function of the non-
activity class C in which the activity B is started, then IC3 does not conclude
that B can be started by A, since it will ignore the function call from A to
C.) (2) IC3 analyses more information than what the ASM model needs making
it less efficient for the purpose of ASM model generation. Finally, we mention
recent work which exploits neural networks or probabilistic models to improve
the precision and scalability of static analysis [12,20]. On a different matter, [19]
introduced a launch-mode aware context-sensitive activity transition analysis,
but did not consider task affinities or intent flags.

Security related to multi-tasking mechanism. Various work has identified
potential security vulnerabilities related to the android multitasking mechanism,
which has become one of the strong motivations to provide a complete formal-
ization. [14] firstly reported task hijacking attacks, which means “malware reside
side by side with the victim apps in the same task and hijack the user sessions
of the victim apps.” [8] analyzed the activity injection vulnerability referring
to “inject malicious activities into a victim app’s activity stack to hijack user
interaction flows.” As discussed in the introduction, our formalization provides
several improvements over this work. Static analysis was also considered there,
but was restricted to the detection of activity injection vulnerabilities. [16] rec-
ognized that the multitasking mechanism could give additional privilege to apps,
which can be exploited by attackers. The authors analyzed the system/app con-
ditions that can enable privilege leakage and identified new end-to-end attacks
where attackers can actively interfere with victim apps to steal sensitive infor-
mation. [11] introduced TDroid, an approach to detecting app switching attacks,
which combines both static and dynamic analysis.

2 Android multitasking mechanism

This section provides an overview of the Android system mainly from an UI
perspective focusing on the multitasking mechanism. For the purpose of this
paper, an Android app can be considered as a collection of activities.9 An activity
is an instance of the android.content.Activity class, and provides GUI on screen [1].
A task, as a logical notion, is a collection of activities that users interact with

9 In this paper, activities as viewed as atomic objects, and thus sub-components (e.g.,
fragments, https://developer.android.com/guide/components/fragments)
contained in activities are simply ignored.

https://developer.android.com/guide/components/fragments
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when performing a certain job. The running activities of a task are managed
by Android as a stack in the order that each activity is opened. Such a stack is
usually referred to as a back stack. (Unfortunately the terminologies in literature
are not necessarily consistent, for instance, [6] use back stack differently.) In the
sequel, we will usually identify a back stack and the task it belongs to. In a task
there are two distinguished activities, i.e., the “root activity” which is the one
sitting at the bottom, and the “top activity” which is the topmost activity. Note
that in Android, activities from different apps can stay in the same task, and
activities from the same app can enter different tasks.

The Android system may have multiple tasks: one foreground task and pos-
sibly several background tasks. They are organized as a stack as well, which is
referred to as a task stack [8] (aka. activity stack [14]). The foreground task, as
expected, sits on the top of the task stack. When a task comes to the foreground,
its top activity is displayed on the device screen. When an activity finishes, it is
popped from the back stack. If the back stack is not empty, the new top activity
is displayed on the screen. Otherwise, the task itself finishes in which case it is
popped from the task stack. We mention that, the Home screen comes to the
foreground when a user presses the Home button (in this case the task stack
will be emptied) or when the task stack becomes empty. The task stack is the
central data structure for Android multi-tasking mechanism, and we are mostly
interested in its evolution in response to activity activation. When an activity is
started, there are three basic attributes which determine the resulting task stack:
launch mode, task affinity, and intent flags. All the activities of an app, as well as
their launch modes and task affinities, are defined in the manifest file (Android-
Manifest.xml). Differently, intent flags are set by caller activities to declare how
to activate target activities by calling startActivity() or startActivityForResult()
with the intent flags as its arguments. The launch mode attribute specifies one
of four modes to launch an activity: standard, singleTop, singleTask, and single-
Instance, with standard being the default. The task affinity attribute specifies to
which task the activity prefers to belong. By default, all the activities from the
same app have the same affinity (i.e., all activities in the same app prefer to be
in the same task). However, one can modify the default affinity of the activity.
Android allows a great degree of flexibility: activities defined in different apps
can share a task affinity whilst activities defined in the same app can be assigned
with different task affinities.

Android supports inter-component communication via intents. An intent is
an asynchronous message that activates activities. Android provides 21 intent
flags related to activities, but only part of them may govern activity activation.
Intent flags are set by caller activities to declare how to activate target activities
and are passed to startActivity() or startActivityForResult() as their arguments.

3 Formalization
In this section, we provide a formalization of the semantics of the Android multi-
tasking mechanism. We focus on the evolution of the task stack when an activity
is launched. For this purpose we adapt and extend the ASM model [6]. For k ∈ N,
let [k] = {1, · · · , k}.
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Following the overview of Section 2, we shall concentrate on the launch mode,
the task affinity, and the intent flags when an activity is launched. There are four
launch modes in Android: “standard” (STD), “singleTop” (STP), “singleTask”
(STK) and “singleInstance” (SIT). For the task affinity, we note that its default
value is the package name of the app (i.e., when it is not specified explicitly).
However, we find that Android system exhibits unexpected behavior when it is an
empty string. Our formal semantics takes special care of this which has not been
addressed before, to the best of our knowledge. Furthermore, Android provides
21 intent flags related to activities10, namely, the flags whose names start with
FLAG ACTIVITY. Among these 21 intent flags, we consider the following seven
that are commonly used in Android apps,

– FLAG ACTIVITY NEW TASK (NTK),
– FLAG ACTIVITY CLEAR TOP (CTP),
– FLAG ACTIVITY SINGLE TOP (STP),
– FLAG ACTIVITY CLEAR TASK (CTK),
– FLAG ACTIVITY MULTIPLE TASK (MTK),
– FLAG ACTIVITY REORDER TO FRONT (RTF),
– FL AG ACTIVITY TASK ON HOME (TOH).

The rest will not be addressed in this paper. We remark that some flags, i.e.,
NTK, CTP, STP, can be modeled by launch modes, as mentioned in [6]. However,
CTK, MTK, RTF, and TOH cannot be captured.

3.1 The extended ASM model

Let F = {NTK,CTP,STP,CTK,MTK,RTF,TOH} denote the set of intent flags,
B(F) denote the set of formulae φ =

∧
F∈F

θF , where θF = F or ¬F .

Definition 1 (Android stack machine). An Android stack machine (ASM)
is a tuple A = (Sig, ∆), where

– Sig = (Act, Lmd,Aft, A0) is the activity signature, where
• Act is a finite set of activities,
• Lmd : Act→ {STD,STP,STK,SIT} is the launch-mode function,
• Aft : Act→ [m] ∪ {0} is the task-affinity function, where m = |Act|,
• A0 ∈ Act is the main activity,

– ∆ ⊆ (Act ∪ {.}) × Inst is the transition relation, where Inst = {back} ∪
{α(A, φ) | α ∈ {start, finishStart}, A ∈ Act, φ ∈ B(F)} such that (A, back) ∈
∆ for each A ∈ Act. (Intuitively, the back button can be pressed in any time)
and for each transition (., inst) ∈ ∆, it holds that inst = start(A0,

∧
F∈F
¬F ).

Intuitively, . denotes an empty task stack, Aft(A) = 0 denotes the task affinity of
A being the empty string, back denotes the pop action, (A, start(B,φ)) denotes
the action that the activity B is started with some intent flags satisfying φ, and

10 https://developer.android.com/reference/android/content/Intent#flags
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(A, finishStart(B,φ)) is the same as (A, start(B,φ)), except that the activity A
is popped after starting B. For convenience, we usually write (A,α(B,φ)) ∈ ∆
as A

α(φ)−−−→ B, where A is the caller activity, and B is the callee activity.

Remark 1. The main differences wrt [6] are: introducing intent flags, removing
control states, and assuming that back actions are always enabled.

3.2 Semantics of ASM

We first discuss briefly how the core concepts such as tasks, task stack, and
configurations are formalized. In general, a task is encoded as a word S =
[A1, · · · , An] ∈ Act+ which denotes the content of its back stack, where n
is called the height of S. A task stack is encoded as a non-empty sequence
ρ = ((S1, A1), · · · , (Sn, An)), where for each i ∈ [n], Si is a task and Ai is the
real activity of Si. The real activity11 of a task is the activity which was pushed
into the task—as the bottom activity—when the task is created. For any activity
A, we refer to an A-task as a task whose real activity is A. The tasks S1 and
Sn are called the top and the bottom task respectively. (Intuitively, S1 is the
foreground task.) The symbol ε is used to denote the empty task stack. The
affinity of a task is defined as the affinity of its real activity.

A task is called the main task of the task stack if it is the first task that
was created when launching the app. Note that the current task stack may
not contain the main task, since it may have been popped out from the task
stack. This notion is introduced since the semantics of ASM is also dependent
on whether the task stack contains the main task or not.

A configuration of A is a pair = (ρ, `), where ρ = ((S1, A1), · · · , (Sn, An))
with Si = [Bi,1, · · · , Bi,mi

] for each i ∈ [n] and Bi,j ∈ Act for j ∈ [mi], moreover,
` ∈ [n]∪{0}. We require (ρ, `) to satisfy that if ` ∈ [n], then A` = A0. Intuitively,
` is the index of the main task. (If ` = 0, then ρ contains no main task.) Let
ConfA denote the set of configurations of A. The initial configuration of A is
(ε, 0). The height of ρ is defined as max

i∈[m]
|Si|, where |Si| is the height of Si. By

convention, the height of ε is defined as 0.

We use the relation
A−→ which comprises the quadruples

((ρ, `), τ, i, (ρ′, `′)) ∈ ConfA ×∆× {0, 1, 2} × ConfA

to formalize the semantics of A.

Auxiliary functions and predicates. To specify the transition relation precisely
and concisely, we define the following functions and predicates. Here (ρ, `) is a
configuration with ρ = ((S1, A1), · · · , (Sn, An)) and B ∈ Act.

– Let S = [B1, · · · , Bm′ ] be a task, then Top(S) = B1 and Btm(S) = Bm′ .
– TopTsk(ρ) = S1, TopAct(ρ) = Top(TopTsk(ρ)).

– Push((ρ, `), B) = (((([B] · S1), A1), (S2, A2), · · · , (Sn, An)), `).

11 The name is inherited from the Android system.
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– MvAct2Top((ρ, `), B) = ((([B] · S′1 · S′′1 ), (S2, A2), · · · , (Sn, An)), `), if S1 =
S′1 · [B] · S′′1 with S′1 ∈ (Act \ {B})∗.

– ClrTop((ρ, `), B) = (((S′′1 , A1), (S2, A2), · · · , (Sn, An)), `) if S1 = S′1 ·S′′1 with
S′1 ∈ (Act \ {B})∗B.

– ClrTsk((ρ, `)) = ((([], A1), (S2, A2), · · · , (Sn, An)), `).

– Let i ∈ [n], then MvTsk2Top((ρ, `), Si) =

(((Si, Ai), (S1, A1), · · · , (Si−1, Ai−1), (Si+1, Ai+1), · · · , (Sn, An)), `′),

where `′ is defined as follows: if ` = 0, then `′ = 0; if ` = i, then `′ = 1; if
i+ 1 ≤ ` ≤ n, then `′ = `; if 1 ≤ ` ≤ i− 1, then `′ = `+ 1.
[Note that `′ is the simply the new position of the main task.]

– NewTsk((ρ, `), B) = ((([B], B), (S1, A1), · · · , (Sn, An)), `′), where `′ = 0 if
` = 0, and `′ = `+ 1 otherwise.

– GetRealTsk(ρ,B) = Si such that i ∈ [n] is the minimum index satisfying
Ai = B if such an index i exists; GetRealTsk(ρ,B) = ∗ otherwise.

– GetTsk(ρ,B) = Si such that i ∈ [n] is the minimum index satisfying Aft(Ai) =
Aft(B), if such an index i exists; GetTsk(ρ,B) = ∗ otherwise.

– Let i ∈ {1, 2} and Si = [B1, · · · , Bm′ ]. Then

RmAct((ρ, `), i) =

(0, (((S1, A1), · · · , (Si−1, Ai−1),
(Si+1, Ai+1), · · · , (Sn, An)), 0))

if m′ = 1 and ` = 0 or i,

(0, (((S1, A1), · · · , (Si−1, Ai−1),
(Si+1, Ai+1), · · · , (Sn, An)), `))

if m′ = 1 and 1 ≤ ` ≤ i− 1,

(0, (((S1, A1), · · · , (Si−1, Ai−1),
(Si+1, Ai+1), · · · , (Sn, An)), `− 1))

if m′ = 1 and i+ 1 ≤ ` ≤ n,

(i, (((S1, A1), · · · , (Si−1, Ai−1), ([B2, · · · , Bm′ ], Ai),
(Si+1, Ai+1), · · · , (Sn, An)), `))

if m′ > 1.

Intuitively, RmAct((ρ, `), i) = (i′, (ρ′, `′)), where (ρ′, `′) is obtained from (ρ, `)
by removing the top activity of Si from ρ, and i′ = 0, 1, 2 denotes the position
of the task Si in ρ′. (In particular, i′ = 0 denotes that the task Si disappears
in ρ′.)

Transition relation. For readability, we write ((ρ, `), τ, i, (ρ′, `′)) ∈ A−→ as (ρ, `)
A−−→
τ,i

(ρ′, `′). Intuitively, (ρ, `) is the current configuration, (ρ′, `′) is the configuration
obtained after executing the transition rule τ , and i = 0, 1, 2 corresponds to the
cases that the top task of ρ is absent in ρ′, remains to be the top task of ρ′, or
becomes the task immediately below the top task of ρ′, respectively.

For τ = (A, back) such that TopAct(S1) = A,

– if S1 contains at least two activities, then (ρ, `)
A−−→
τ,1

(ρ′, `′) with ρ′ =

((S′1, A1), (S2, A2), · · · , (Sn, An)), where S′1 is obtained from S1 by removing
the top activity A from S1;
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– otherwise, we have (ρ, `)
A−−→
τ,0

(ρ′, `′) with ρ′ = ((S2, A2), · · · , (Sn, An)) and

`′ = `− 1 if ` > 1 and 0 otherwise.

For τ = .→ start(A0,
∧
F∈F
¬F ), if (ρ, `) is the initial configuration (ε, 0), we

have (ρ, `)
A−−→
τ,0

(([A0], A0), 1). (Here 0 is used because there is no top task in ρ.)

In the sequel, we first present the semantics for τ = A
start(φ)−−−−→ B, which will

be followed by the semantics for τ = A
finishStart(φ)−−−−−−−−→ B.

Suppose ρ = ((S1, A1), · · · , (Sn, An)) for some n ≥ 1. Let A = TopAct(ρ).

Transition rules for τ = A
start(φ)−−−−→ B

We distinguish two cases, i.e., φ |= ¬TOH or φ |= TOH.

Case φ |= ¬TOH

Case Lmd(B) = SIT

– if GetRealTsk(ρ,B) = Sj for some j ∈ [n], then
• if j = 1, then i = 1 and (ρ′, `′) = (ρ, `),
• if j 6= 1, then i = 2 and (ρ′, `′) = MvTsk2Top((ρ, `), Sj),

– if GetRealTsk(ρ,B) = ∗, then i = 2 and (ρ′, `′) = NewTsk((ρ, `), B).

Case Lmd(B) = STK

– if GetRealTsk(ρ,B) = Sj or GetRealTsk(ρ,B) = ∗ ∧ GetTsk(ρ,B) = Sj , then
i = 1 if j = 1, and i = 2 otherwise. Moreover,
• if φ |= ¬CTK, then

∗ if B 6∈ Sj , then (ρ′, `′) = Push(MvTsk2Top((ρ, `), Sj), B),
∗ if B ∈ Sj , then (ρ′, `′) = Push(ClrTop(MvTsk2Top((ρ, `), Sj), B), B),

• if φ |= CTK, then (ρ′, `′) = Push(ClrTsk(MvTsk2Top((ρ, `), Sj)), B),
– if GetTsk(ρ,B) = ∗, then i = 2 and (ρ′, `′) = NewTsk((ρ, `), B).

Case Lmd(B) = STD

– if Lmd(A) 6= SIT and φ |= ¬NTK, then i = 1 and
• if φ |= STP ∨ RTF ∨ CTP and TopAct(ρ) = B, then (ρ′, `′) = (ρ, `),
• if φ |= ¬STP ∧ ¬RTF ∧ ¬CTP, or φ |= STP ∧ ¬RTF ∧ ¬CTP and

TopAct(ρ) 6= B,
or φ |= RTF ∨ CTP and B /∈ TopTsk(ρ), then (ρ′, `′) = Push((ρ, `), B),

• if φ |= RTF∧¬CTP andB ∈ TopTsk(ρ), then (ρ′, `′) = MvAct2Top((ρ, `), B),
• if φ |= CTP andB ∈ TopTsk(ρ), then (ρ′, `′) = Push(ClrTop((ρ, `), B), B),

– if φ |= NTK ∧ MTK, or Lmd(A) = SIT and φ |= MTK, then i = 2 and
(ρ′, `′) = NewTsk((ρ, `), B),

– if φ |= NTK ∧ ¬MTK, or Lmd(A) = SIT and φ |= ¬MTK, then
• if GetRealTsk(ρ,B) = Sj , then i = 1 if j = 1, and i = 2 otherwise.

Moreover,
∗ if φ |= ¬CTP ∧ ¬CTK, then
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· if j 6= `, or φ |= STP and Top(Sj) = B, then

(ρ′, `′) = MvTsk2Top((ρ, `), Sj),

· otherwise, (ρ′, `′) = Push(MvTsk2Top((ρ, `), Sj), B),
∗ if φ |= CTP ∧ ¬CTK, then

· if B 6∈ Sj , then (ρ′, `′) = Push(MvTsk2Top((ρ, `), Sj), B),
· otherwise,(ρ′, `′) = Push(ClrTop(MvTsk2Top((ρ, `), Sj), B), B),

∗ if φ |= CTK, then (ρ′, `′) = Push(ClrTsk(MvTsk2Top((ρ, `), Sj)), B),
• if GetRealTsk(ρ,B) = ∗ and GetTsk(ρ,B) = Sj , then i = 1 if j = 1, and
i = 2 otherwise. Moreover,

∗ if φ |= ¬STP ∧ ¬CTP ∧ ¬CTK, or φ |= STP ∧ ¬CTP ∧ ¬CTK and
Top(Sj) 6= B, then (ρ′, `′) = Push(MvTsk2Top((ρ, `), Sj), B),

∗ if φ |= STP ∧ ¬CTP ∧ ¬CTK and Top(Sj) = B, then (ρ′, `′) =
MvTsk2Top((ρ, `), Sj),

∗ if φ |= CTP ∧ ¬CTK, then
· if B 6∈ Sj , then (ρ′, `′) = Push(MvTsk2Top((ρ, `), Sj), B),
· otherwise, (ρ′, `′) = Push(ClrTop(MvTsk2Top((ρ, `), Sj), B), B),

∗ if φ |= CTK, then (ρ′, `′) = Push(ClrTsk(MvTsk2Top((ρ, `), Sj)), B),
• if GetTsk(ρ,B) = ∗, then i = 2 and (ρ′, `′) = NewTsk((ρ, `), B).

Case Lmd(B) = STP

The semantics is adapted from the case Lmd(B) = STD by assuming φ |=
STP (cf. the full version [7] for details).

Case φ |= TOH

We then consider the transition rules τ = A
start(φ)−−−−→ B with φ |= TOH. It

turns out that we can largely reuse the semantic definitions of the case that

φ |= ¬TOH. Namely, let τ ′ = A
start(φ′)−−−−−→ B where φ′ is obtained from φ by

replacing TOH with ¬TOH. (The behavior of τ ′ is fully prescribed before, viz,

(ρ, `)
A−−→
τ ′,i

(ρ′, `′) where ρ′ = ((S′1, A
′
1), · · · , (S′n′ , A′n′)).) Then we have that

– if i = 1, then (ρ, `)
A−−→
τ,i

(ρ′, `′),

– if i = 2, then (ρ, `)
A−−→
τ,0

(((S′1, A
′
1)), `′′), and `′′ = 1 if `′ = 1; 0 otherwise.

Note that if i = 2, then due to the effect of TOH, all the tasks in ρ′, except the
top one, will be removed.

Transition rules for τ = A
finishStart(φ)−−−−−−−−→ B

We now consider τ = A
finishStart(φ)−−−−−−−−→ B. Intuitively, A

finishStart(φ)−−−−−−−−→ B specifies
that B is started with the intent flags φ followed by the termination of A. Let

τ ′ = A
start(φ)−−−−→ B and (ρ, `)

A−−→
τ ′,i

(ρ′, `′), with ρ′ = ((S′1, A
′
1), · · · , (S′n′ , A′n′)).

Then the semantics of τ = A
finishStart(φ)−−−−−−−−→ B is defined as follows.
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– If i = 0 (this may happen when φ |= TOH), then (ρ, `)
A−−→
τ,0

(ρ′, `′).

– If i = 2, then (ρ, `)
A−−→
τ,i′

(ρ′′, `′′), where (i′, (ρ′′, `′′)) = RmAct((ρ′, `′), 2).

– If i = 1, then
• if |S′1| = |S1| + 1 (in this case, the top activity of S′1 is B, and the

top second is A), then let S′′1 obtained from S′1 by removing the second
activity from the top, and ρ′′ obtained from ρ′ by replacing S′1 with S′′1 ,

then we have (ρ, `)
A−−→
τ,1

(ρ′′, `′),

• if |S′1| = |S1|, then (ρ, `)
A−−→
τ,i′

(ρ′′, `′′), where if Top(S′1) = A, then

(i′, (ρ′′, `′′)) = RmAct((ρ′, `′), 1), otherwise (in this case, φ |= RTF,
Top(S′1) = B, and the top second activity of S′1 is A), i′ = 1, `′′ = `′,
and ρ′′ is obtained from ρ′ by removing from S′1 the top second activity,

• if |S′1| < |S1|, then (ρ, `)
A−−→
τ,1

(ρ′, `′).

3.3 High-level descriptions

We now present some high-level description which would facilitate the under-
standing of the semantics.

Task allocation mechanism. One of the main elements of the semantics of ASM is
the task allocation mechanism, namely, to specify, when an activity is launched,
to which task will it be allocated. Via extensive experiments, we identify a crucial
notion, i.e., real activity of tasks, in Android 7.0 and 8.0, which plays a pivotal
role in such a mechanism.

Generally speaking, for an activity B which is not to land on the top task,
the following three steps will apply: (1) If there is any task whose real activity
is B, then B will be put on the task; (2) Otherwise, if there is any task whose
real activity has the same task affinity as B, then B will be put on the task
(3) Otherwise, a new task is created to hold B. In the first two cases, if there
are multiple instances, the first occurrence starting from the top task will be
selected. Note that, due to the CTK flag, the bottom activity of a task may not
be the real activity of the task.

Dependencies between launch modes and intent flags. For transitions A
α(φ)−−−→ B,

the launch modes of A,B and the intent flags in φ may depend on each other.
The dependency can exhibit in the following three forms: n subsumes n′, i.e., n′

is ignored if n co-occurs with n′, (2) n enables n′, i.e., n′ takes effect if n co-occurs
with n′, (3) n implies n′, i.e., if n′ subsumes (resp. enables) n′′, then n subsumes
(resp. enables) n′′ as well. We summarize these dependencies in Figure 1, where
the solid lines represent the “subsume” relation, the dashed lines represent the
“enable” relation, the dotted lines represent the “implies” relation.

The following properties hold for these relations: (1) the “subsume” and
“imply” relations are transitive, (2) the composition of the “imply” relation
and the “subsume” (resp. “enable”) relation is a subset of the “subsume” (resp.
“enable”) relation. Moreover, we remark that the two “enable” edges to TOH
in Figure 1 are “incomplete” for TOH, in the sense that the two edges do not
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fully cover the situations where TOH takes effect, viz. the situations where the
launched activity B is not to land on the original top task.

A : not SIT, B : STP

A : SIT, B : STP A : SIT, B : STD

B : STK B : SIT

CTK NTK

STP CTP RTF

MTK

impliessubsumes enables

TOH

A : not SIT, B : STD

Fig. 1: Dependency graph for launch modes and intent flags in transitions A
α(φ)−−−→

B. The launch modes (resp. the intent flags) are in boxes (resp. circles)

The empty-string task affinity. Intuitively, if the task affinity of some activity A
is the empty string, then the transition rules involving A are the same as if the
task affinity of A were different from those of all the other activities. Formally,
suppose A1, · · · , Am′ are an enumeration of all the activities with the empty-
string task affinity, then the semantics of A is defined as that of A′, where A′
is obtained from A by setting Aft(Aj) = m + j for each j ∈ [m′] (recall that
m = |Act|).
The differences of the semantics for Android 6.0, 7.0, and 8.0. The semantics
of ASM for Android 7.0 and Android 8.0 are almost the same except that: In
Android 7.0, in case that Lmd(A) 6= SIT, Lmd(B) = STD/STP, B occurs on the
top task of ρ, and φ |= ¬NTK∧RTF∧¬CTP, the successor configuration (ρ′, `′)
is obtained from (ρ, `) by first clearing the top task, then pushing B into it. Note
that here, RTF acts like CTK,12 although CTK is not enabled and takes no effect
(see Figure 1).

The task allocation mechanism of Android 6.0 is considerably different, which
is irrelevant to the real activities of tasks and only uses the affinities of tasks. Its
semantics can be adapted from that of Android 8.0 and is given in the full version
[7]. We remark that the semantics of ASM for Android 6.0 formalized here is
essentially the same as that in [8,9] modulo some minor differences. Indeed, we
have found that some of transition rules given in [9] are inconsistent to our

semantics. For instance, in case A
start(φ)−−−−→ B where Lmd(A) = SIT, Lmd(B) =

STD, φ |= MTK ∧ STP, and there exists some task with the same affinity as B
in the current task stack: according to the 6th rule on page 22 of [9], the task
whose affinity is Aft(B) and which is closest to the top task will be moved to top
and no new task will be created, whereas in our semantics, a new task S′ = [B]
will be created and become the top of the task stack.

12 It is a confirmed bug of the multitasking mechanism affecting Android 4.4, 7.0 and
7.1.1; see https://issuetracker.google.com/issues/36986021 for the discussions.

https://issuetracker.google.com/issues/36986021
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Validation of the formal semantics. To validate that the formal semantics of
ASM conforms to the actual behavior of the respective Android versions, we have
conducted exhaustive experiments by designing a diagnosis app and comparing,
for each case in the definition of the formal semantics, the exhibited behavior
of the app against the formal semantics. The details of the experiments can be
found in the full version [7].

4 Static analysis of Apps

In this section, we consider static analysis of Android apps. At first, we show
how to build the ASM model out of Android apps. Then, we illustrate how to
solve the reachability and boundedness problems of ASM.

4.1 From Apps to ASM

We show how to construct an ASM model for an Android app. Recall that an
ASM model comprises a signature of activities and a transition relation.

We take the input as either an Android PacKage (apk) file or simply the
source code. We extract the manifest file from the source code or by decompiling
the apk file. From the manifest file, we can obtain the signature of activities,
namely, a list of activities of the app with their launch modes and task affinities,
as well as the main activity. In addition, the intent filters, which include actions,
categories and data, are also extracted from the manifest file to facilitate the
construction of the transition relation.

In a nutshell, we construct the transition relation by the static analysis of

the control- and data-flow of Android apps. Recall that a transition A
α(φ)−−−→ B

contains a caller activity A, a callee activity B, an action α, and intent flags
φ. It is noteworthy that a caller activity can start a callee activity, and finish
itself at the same time by invoking the function finish(). In terms of modeling
by an ASM, the action is finishStart if finish() is invoked, and start otherwise.
As mentioned before, Android may use intents and the functions startActivity()
and startActivityForResult() to activate activities. There are two types of intents:
explicit intents and implicit intents. The former sets the name of the callee
activity directly, while the latter declares the desired values of actions, categories
and data fields. Activities that can be activated by implicit intents will declare
intent filters in the manifest file. Android starts the activity that an implicit
intent intends to run by matching the parameters of the intent with all the intent
filters. If an implicit intent matches several intent filters of different activities,
users can pick up which activity to launch.

We locate all the methods invoking functions startActivity() or startActivity-
ForResult(), and all the activities accessing these methods, which are the caller
activities in these transitions. We then exploit data-flow analysis to identify the
sets of possible values of the parameters of the intents. From these values, we
then obtain the intent flags directly. For explicit intents, we also obtain the callee
activities whereas for implicit intents, we compute the set of callee activities by
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matching the values of these parameters with the intent filters obtained from
the manifest file.13

Remark that, in this work, we focus on activities and ignore the other Android
application components (e.g., services). Therefore, during the construction of the
ASM model, we ignore all the occurrences of startActivity() and startActivityFor-
Result() in the functions related to these components, e.g., “onServiceConnected()”.

4.2 Static analysis of ASM

We perform static analysis for Android apps based on the ASM model. We
shall focus on two types of analysis, i.e., configuration reachability and stack
boundedness analysis, with applications. For simplicity, we restrict our attention
to ASMs where the intent flag MTK is absent. This is not a severe restriction
as the proportion of benchmarks containing the MTK flag is approximately 1%
(37/3,245). However, it could tremendously facilitate our analysis because in
each configuration of the ASM, the affinities of non-SIT tasks would be distinct.

Configuration reachability. The configuration reachability problem is formally
defined as follows: Given an ASM A and a configuration ρ, decide whether

([A0], 1)
A
=⇒ (ρ, `) for some `, where

A
=⇒ is the reflexive and transitive closure of

A−→. Note here we ignore the components (τ, i) in tuples (ρ, `)
A−−→
τ,i

(ρ′, `′) and

take
A−→ as a binary relation over ConfA × N.

In the sequel, we assume that there is a given constant bound ~ on the heights
of tasks in the configurations, and the resulting reachability relation is called ~-
reachable. (Evidently, ~-reachable implies reachable but not vice versa.) This
assumption yields a finite, though exponential, state space, and the evolution
of configurations can be captured by a finite state machine (FSM). To tackle
the exponential state space we resort to the well-known symbolic model checker
nuXmv [5] to provide an efficient and scalable analysis.

Our general approach is to translate an ASM A with a constant bound ~
(over heights of tasks) to an FSM MA, the size of which is polynomial in the
size of A. Intuitively, the states of MA represent the configurations of A whose
heights are bounded by ~, and the transitions of MA simulate the transition
rules of A. More technically, since each configuration ρ contains at most m =
|Aft(Act \ ActSIT)|+ |ActSIT| tasks and the height of each back stack is bounded
by ~, ρ can be represented by a word of length exactly m(~ + 1). In particular,
each task is represented by a word of length ~+ 1, where the last letter specifies
the real activity of the task. (Dummy symbols ⊥ 6∈ Act are to be appended if
the number of tasks in ρ is less than m or the height of a task is less than ~.)

As per the semantics of ASM, after some transition, a task may emerge to be-
come the top task, which means that in the corresponding simulation, a subword
of length ~+ 1 will become the prefix of the new configuration representation. It
turns out that, for the translation purpose, this is cumbersome to define, so we
adapt the word representation of configurations as follows: an extra “pointer”

13 cf. https://developer.android.com/guide/components/intentsfilters
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word v of length m is introduced where each letter of v refers to a task currently
in the configuration via its real activity. The order of the tasks can then be
captured by permutations of v. (Note that if the number of tasks is less than m,
then the dummy symbol ⊥ is also used in v.) Generally, the “pointer” word is a
word of real activities, possibly followed by multiple ⊥’s, with a total length m.
The detailed encoding is technical and is given in the full version [7].

The configuration reachability problem is fundamental to static program
analysis and has various applications. Below we present an example; A further
application is given in the stack boundedness section.

Back pattern analysis. The back pattern analysis computes, for a given ac-
tivity A in A, the set of activities B such that when pressing the back button,
the foreground activity can switch from A to B. We shall denote this set by
Actback(A). Such information is valuable for developers of Android apps, for in-
stance, to validate the multitasking design of the app and to detect unexpected
behaviors.

For a given A ∈ Act, it is not hard to see that we can compute the desired
set of activities B by solving for each B ∈ Act, a slightly more general version of
the configuration reachability problem, namely, whether a configuration match-
ing the regular expression e = A⊥∗B is reachable. The nuXmv tool facilitates
handling this generalized version of the reachability problem. Furthermore, for
each A and B ∈ Actback(A), a path can be generated by nuXmv to witness an
occurrence of (some word matching) e.

Stack boundedness. Formally, an ASM A is said to be stack-unbounded, if for

every n ∈ N there is a configuration (ρ, `) of A such that (ε, 0)
A
=⇒ (ρ, `) and the

height of ρ is at least n. We will consider a relaxation of stack-unboundedness,
i.e., k-stack unbounded where k is a (purported small) natural number. Intu-
itively, an ASM A is k-stack unbounded if A is stack-unbounded and the un-
boundedness is caused by a particular task such that the height of the task is
unbounded during the evolution which involves the interplay with at most k
other tasks.

We are interested in the stack boundedness problem which is to decide whether
a given ASM is stack unbounded. While this turns out to be difficult, we hy-
pothesize that, most stack unbounded ASMs are actually k-stack unbounded for
a small number k (normally, k ≤ 2). As a result, as a practical solution, we can
appeal to checking k-stack unboundedness for a small k. (See the full version [7]
for justification.)

We start with some notations. Let Actreal be the set of activities A ∈ Act such
that one of the following conditions holds: 1) Lmd(A) = SIT, 2) Lmd(A) = STK,

3) Lmd(A) = STD or STP, and A occurs in some transition B
α(φ)−−−→ A such that

Lmd(B) = SIT or φ |= NTK. Intuitively, Actreal is the set of activities that may
occur as a real activity of tasks.

Two activities A,B ∈ Actreal are said to represent different tasks if one of
the following conditions holds: 1) Lmd(A) = Lmd(B) = SIT and A 6= B, 2)
Lmd(A) = SIT and Lmd(B) 6= SIT, 3) Lmd(A) 6= SIT and Lmd(B) = SIT,
4) Lmd(A) 6= SIT, Lmd(B) 6= SIT, and Aft(A) 6= Aft(B). For each activity
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A ∈ Actreal such that Lmd(A) 6= SIT, let Reach(∆,A) denote the least subset

Θ ⊆ ∆ satisfying that B
α(φ)−−−→ C ∈ Θ (where α = start or finishStart) whenever

the following two constraints are satisfied:

– B = A or there exists a transition A′
α′(φ′)−−−−→ B ∈ Θ (where α′ = start or

finishStart),
– Lmd(C) 6= SIT, and if Lmd(C) = STK or φ |= NTK, then Aft(C) = Aft(A).

Intuitively, Reach(∆,A) comprises all the transition rules that can be applied
and once applied would retain an A-task as the top task. By abusing the notation
slightly, Reach(∆,A) also denotes the graph whose edge set is Reach(∆,A).

Reach(∆,A) can be generalized to the case that A ∈ Actreal and Lmd(A) =
SIT, where Reach(∆,A) is regarded as the graph that contains a single node A
without edges.

In the rest of this section, we will sketch a procedure to check stack un-
boundedness for k = 0. The underpinning idea is to search, for each A ∈ Actreal,
a witness cycle, i.e., a sequence of transitions from Reach(∆,A), the execution
of which would force the stack to grow indefinitely.

Formally, a witness cycle is a simple cycle in Reach(∆,A) of the form

C = A1
α1(φ1)−−−−→ A2 · · ·An−1

αn−1(φn−1)−−−−−−−−→ An

where n ≥ 2 and αi = start or finishStart for each i ∈ [n] satisfying the following
two constraints:

[Non-clearing.] The content of an A-task is not cleared when C is executed.
Namely, for each i ∈ [n − 1], φi |= ¬CTP, moreover, either φi |= ¬CTK, or
φi |= ¬NTK and Lmd(Ai+1) 6= STK (intuitively, this means that CTK is not
enabled, cf. Figure 1).

[Height-increasing.] The height of the task content is increasing after C is ex-
ecuted. Namely, it is required that

∑
i∈[n−1] weightC(τi) > 0, where for each

i ∈ [n− 1], τi = Ai
αi(φi)−−−−→ Ai+1 and weightC(τi) is defined as follows.

– If αi = start, then
• if φi |= RTF, then weightC(τi) = 0,
• if φi |= ¬RTF, Ai = Ai+1, and either φi |= STP or Lmd(Ai+1) = STP,

then weightC(τi) = 0,
• otherwise, weightC(τi) = 1.

– If αi = finishStart, then
• if φi |= RTF, then weightC(τi) = −1,
• if φi |= ¬RTF, Ai = Ai+1, and either φi |= STP or Lmd(Ai+1) = STP,

then weightC(τi) = −1,
• otherwise, weightC(τi) = 0.

If a witness cycle exists for some A ∈ Actreal, the algorithm returns “stack
unbounded”. Otherwise, if ∆ is a directed acyclic graph, then the algorithm
returns “stack bounded”. Otherwise, the procedure reports “unknown”.



Android Multitasking Mechanism 17

The more general cases for k ≥ 1 are much more technical and involved. We
introduce the concept of “virtual transitions” for tasks to capture the situation
that the content of a task can be indirectly modified by first jumping off the
task and returning to the task later on. When this happens, the procedure adds
virtual transitions for each task before checking the existence of witness cycles.
The details of the procedure can be found in the full version [7].

As mentioned before, stack unboundedness suggests a potential security vul-
nerability. As a result, when this is spotted, it is desirable to synthesize a concrete
transition sequence so that the developers can, for instance, follow this sequence
to test and improve their apps. It turns out that the synthesis can be reduced
to the more general version of the configuration reachability problem mentioned
in the back pattern analysis. This can be easily incorporated and has been im-
plemented in the tool.

5 Evaluation

We implement the procedures in Section 4 and develop a tool TaskDroid which
comprises two modules, APP2ASM and ASMAnalyzer.

The former module builds ASM models from Android apps. The inputs
of APP2ASM are either Android PacKage (apk) files or simply source codes.
APP2ASM is based on the widely adopted Java bytecode analysis framework
soot [15]. APP2ASM uses soot to create call graphs (CG) to represent the calling
relationship between functions, and the control flow graphs (CFG) of functions
to represent the control flow of the function bodies. APP2ASM includes two sub-
modules, i.e., Manifest Analyzer and Transition Extractor which generate the
signature Sig and the transition relation ∆ of the ASM model respectively (cf.
Definition 1). Manifest Analyzer extracts the manifest file from the source code
or by decompiling the apk file. It then obtains the signature Sig from the mani-
fest file. Moreover, it also gets the intent filters from the manifest file and passes
them to the Transition Extractor for further analysis. Transition Extractor con-
structs the transition relation ∆ from the call graph and the control flow graphs
of functions (cf. Section 4.1). In order to make the model-building process more
efficient, Transition Extractor applies the program slicing technique to extract
those statements that are related to the attributes of intent objects correspond-
ing to callee activity classes, intent flags, as well as actions, categories, and data
of intent filters.

ASMAnalyzer carries out the static analysis on ASM models. ASMAnalyzer
includes two submodules for Reachability analysis and Boundedness analysis
respectively which implement the procedures given in Section 4.2. Note that
the Reachability submodule can generate witness paths for reachability. The
Boundedness submodule utilises the Reachability module to generate a path
starting from the main activity when the ASM is found to be stack unbounded.

Benchmarks. The benchmarks comprise 4,496 apps (apk files) collected from
three sources, i.e., the open-source F-Droid repository (https://f-droid.or
g/), the Google Play market, and app market Wandoujia (https://www.wand
oujia.com/). The statistics of these apps can be found in Table 1. For F-Droid,

https://f-droid.org/
https://f-droid.org/
https://www.wandoujia.com/
https://www.wandoujia.com/
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we use a web crawler to download all the available apps. For Google Play (resp.
the app market X), we download the first 500 apps of each of the 32 categories
(resp. 14 categories) according to the displaying order. (Note that Google Play
disallows direct app-downloading, so we use a third-party website APKLeecher
http://apkleecher.com/.) Note that we have removed the apps that use
fragment components which are not considered in this paper.

Table 1: Statistics of the benchmarks
Source F-Droid Google Play Market Wandoujia

Num. of apps 674(15.0%) 2,068(46.0%) 1,754(39.0%)

Avg. Size 3.1 MB 15 MB 18 MB

Max. Size 158.0 MB 103.9 MB 428.7 MB

Total num. of apps 4,496

We carry out all experiments on a Linux server with a CPU of Intel® Xeon®

Processor E5-2680 v4 at 2.40GHz and 64GB memory.

5.1 Scalability of our approaches

APP2ASM. We evaluate the scalability of APP2ASM on the 4,496 apps, where
the timeout is set to 600 seconds. The experimental results are shown in Table 2.
Out of these 4,496 apps, there are 1,251 apps that the soot tool fails to handle.
The average/maximum time of APP2ASM on these apps is 33.7/599.2 seconds.
In the end, APP2ASM outputs 3,245 ASM models to the ASMAnalyzer module.

Table 2: Scalability: APP2ASM

Total num. of apps
Num. of

soot-failing apps
Avg. time Max. time

4,496 1,251 33.7s 599.2s

Num. of ASMs output by APP2ASM

3,245

Reachability analysis. We evaluate the performance of the Reachability analysis
submodule by carrying out the back pattern analysis on the 3,245 ASMs (gen-
erated by the APP2ASM module), where the stack height bound ~ is set to 4
and the timeout period is set to 60 seconds. The experimental results are shown
in Table 3. Only 9 (0.3%) ASMs out of the 3,245 ASMs time out. Furthermore,
relatively large ASM models (e.g., with 50 activities and 128 transitions, or 72
activities and 72 transitions) can be handled successfully. The average (resp.
maximum) running time is only 0.1 second (resp. 3.3 seconds).

Boundedness analysis. We evaluate the performance of the Boundedness sub-
module based on the same 3,245 ASM models. The parameter k (i..e., the num-
ber of interplaying tasks, cf. Section 4.2) is set to 2 and the timeout is set to
60 seconds. The experimental results are shown in Table 4. On this occasion, no
timeout happened and the average (resp. maximum) running time is only 0.01
(resp. 0.4) second.

It is noteworthy that, for the reachability analysis, we hypothesize that the
heights of involved tasks are bounded by a small number (i.e., ~ ≤ 4). Likewise,

http://apkleecher.com/
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Table 3: Scalability: Reachability (Back pattern)
Avg. size (|Act|, |∆|) of ASMs (6.7, 12.0)

Max. size (|Act|, |∆|) of ASMs (130, 292)/(63, 677)

Num. of T.O. ASMs 9(0.3%)

Max. size of non-T.O. ASMs (50, 128)/(72, 72)

Avg. time 0.1s

Max. time 3.3s

Avg. of |Actback(A)| 1.7

Max. of |Actback(A)| 18

Table 4: Scalability: Boundedness
Total num. of ASMs 3,245

Avg. size (|Act|, |∆|) of ASMs (6.7, 12.0)

Max. size (|Act|, |∆|) of ASMs (130, 292)/(63, 677)

Num. of T.O. ASMs 0

Num. of stack-unbounded ASMs 989

Avg. time 0.01s

Max. time 0.4s

for the stack-boundedness analysis, we hypothesize that only a small number of
tasks are involved (k ≤ 2). In the full version [7] we empirically justify these
hypotheses which give sufficiently precise results for the ~ and k we have set.

The experimental results demonstrate efficiency and scalability of the model
construction and static analysis when applied to real-world Android apps.

5.2 Threat of stack unboundedness

As shown in the preceding section, TaskDroid has discovered that 989 ASMs
out of 3,245 ASMs are stack unbounded (cf. Table 4). We investigate whether
the stack unboundedness pose genuine threats in practice. Out of those 989
stack-unbounded ASMs, we select apps from F-Droid as examples to evaluate
the threat of the stack-unboundedness.14 We carry out the experiments using
Android Emulator15 to create a virtual device for Nexus 6 (RAM size 512 MB,
heap size 16 MB, and Android version 7.1.1). Moreover, we use Monkey16 and
ADB (Android Debug Bridge17) tools. The experiments proceed in the follow-
ing steps: (1) Generate a witness cycle as well as a reachability path for stack
unboundedness. (Note that the witness cycle is a segment of the reachability
path.) (2) For each activity A in the reachability path, locate the UI widget
corresponding to A by reading the source code and locating the occurrence of
the intent object corresponding to the activation of A. (3) Find the coordinates
of the UI widgets which are used to generate a Monkey script, specifically, a

14 The experiments need considerable manual work and are very time-consuming, we
choose to conduct experiments on the F-Droid apps only as they are relatively small
in size. We plan to carry out more extensive experiments in the near future.

15 https://developer.android.com/studio/run/emulator
16 http://developer.android.com/tools/help/monkey.html
17 https://developer.android.com/studio/command-line/adb

https://developer.android.com/studio/run/emulator
http://developer.android.com/tools/help/monkey.html
https://developer.android.com/studio/command-line/adb
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sequence of click operations, to simulate the witness cycle. (4) Install the app
in the virtual device, simulate the sequence of click operations manually until
reaching the witness cycle, then use Monkey to repeatedly run the script (corre-
sponding to the witness cycle). We use ADB to obtain the number of activities
in tasks and calculate the number of repetitions of the witness cycle.

The results of the experiments are reported in Table 5. Out of the analysed
101 F-Droid apps, the witness cycles synthesized by TaskDroid can be success-
fully simulated in 29 apps. After hundreds or thousands of repetitions of the
witness cycle, the 29 apps end up with either app crash, or black screen, or even
rebooting of device. These suggest that stack-unbounded apps can be potentially
harmful to, and thus a vulnerability of, the Android system, highlighting the im-
portance of such an analysis. For the other 72 apps, we were unable to simulate
the witness cycles, due to the following reasons: login is required (23 apps), apps
crash immediately after launching (14 apps), ASM models are imprecise (35
apps) so the potential threat returned by TaskDroid may be spurious.

Table 5: Threat of stack unboundedness

Abnormal behavior Num. of apps
Num. of repetitions of

the witness cycle
Avg. Min. Max.

App crash 21 709 66 1418

Black screen 6 1002 228 1213

Device reboot 2 2451 406 4495

6 Conclusion

We have provided a rigorous formalization of the Android multitasking mech-
anism, which gives a considerably more complete and concise account of the
evolution of the Android task stack in relation to activity activation, and high-
lights the discrepancy between the semantics of different Android versions. Based
on the formalized Android stack machine model and its semantics, we have pro-
vided new modeling and static analysis methods for Android apps, which have
been implemented in a prototype tool TaskDroid. Experiments on large-scale
benchmarks confirmed the efficacy and efficiency of our approaches.

Future work includes further improving the precision of the ASM modeling
and analysis, more extensive experiments on Android app markets, and in-depth
investigations of the decidability and complexity of static analysis.
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