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Abstract

Although data values are available in almost every computer system, reasoning about
them is a challenging task due to the huge data size or even infinite data domains.
Temporal logics are the well-known specification formalisms for reactive and concur-
rent systems. Various extensions of temporal logics have been proposed to reason
about data values, mostly in the last decade. Among them, one natural idea is to ex-
tend temporal logics with variable quantifications ranging over an infinite data domain.
Grumberg, Kupferman and Sheinvald initiated the research on this topic recently and
obtained several interesting results. However, there is still a lack of systematic investi-
gation on the theoretical aspects of the variable extensions of temporal logics. Our goal
in this paper is to fill this gap. Around this goal, we make the following choices: 1.
We consider the variable extensions of two widely used temporal logics, Linear Tem-
poral Logic (LTL) and Computation Tree Logic (CTL), and allow arbitrary nestings of
variable quantifications with Boolean and temporal operators (the resulting logics are
called respectively variable-LTL, in brief VLTL, and variable-CTL, in brief VCTL).
2. We investigate the decidability and complexity of both the satisfiability and model
checking problems, over both finite and infinite words (trees). In particular, we obtain
the following results: Existential variable quantifiers or one single universal quanti-
fier in the beginning already entail the undecidability of the satisfiability problems of
both VLTL and VCTL, over both finite and infinite words (trees); if only existential
path quantifiers are used in VCTL, then the satisfiability problem (over finite trees)
is decidable, no matter which variable quantifiers are available; for VLTL formulae
with one single universal variable quantifier in the beginning, if the occurrences of the

IA preliminary version of this paper appeared in FSTTCS 2014 (the 35th IARCS Annual Conference
on Foundations of Software Technology and Theoretical Computer Science), under the title “Extending
temporal logics with data variable quantifications”.
∗Corresponding author, wuzl@ios.ac.cn, P.O.Box 8718, #4 South 4th Street, Zhongguancun, Haidian

district, 100190, Beijing, China.

Preprint submitted to Information and Computation August 9, 2016



non-parameterized atomic propositions are guarded by the positive occurrences of the
quantified variables, then its satisfiability problem becomes decidable, over both finite
and infinite words; based on these results of the satisfiability problem, we deduce the
(un)decidability results of the model checking problem.

Keywords: Temporal logics, Data variable quantifications, Satisfiability, Model
checking, Decidability and complexity, Alternating register automata, Data automata
2010 MSC: 03

1. Introduction

Context. Data values are ubiquitous in computer systems. To see just the tip of the ice-
berg, we have the following scenarios: data variables in sequential programs, process
identifiers in concurrent parameterized systems where an unbounded number of pro-
cesses interact with each other, records in relational databases, attributes of elements in5

XML documents or nodes in graph databases. On the other hand, reasoning about data
values is a very challenging task. Either their sizes are huge, e.g. one single 4-byte in-
teger variable in C programs may take values from −2, 147, 483, 64 to 2, 147, 483, 647,
or they are even from an infinite domain, e.g. process identifiers in parameterized sys-
tems.10

Temporal logics are the formalisms widely used to specify the behaviors of con-
current, reactive as well as sequential systems. Linear Temporal Logic (LTL) ([1]) and
Computation Tree Logic (CTL) ([2]) are the two most widely used temporal logics.
Although temporal logics were orginially targeted to specify the behaviors of finite
state systems, various extensions of temporal logics have been proposed to deal with15

the infinite data values in computer systems (mostly in the last decade).

• First-order temporal logics, that is, first-order logic over relational structures ex-
tended with temporal operators, are a natural formalism to specify and reason
about infinite data values in computer systems. Although most of the work about
temporal logics focuses on the propositional ones, first-order temporal logics20

were investigated in fact at almost the same time as their propositional counter-
parts (see e.g. [3]). Initially, the investigations were around the axiomatization
issues ([4, 5, 6]). Later on, Hodkinson et al. started investigating the decidability
and complexity of the satisfiability problem ([7, 8]).

• Vianu and his coauthors used the first-order extensions of LTL to specify and25

reason about the behaviors of database-driven systems ([9, 10]).

• On the other hand, Demri and Lazic extended LTL with freeze quantifiers which
can store data values into registers and compare the data values with those stored
in the registers ([11]). The registers are also introduced into alternating free
model µ-calculus over data trees ([12]). Moreover, Figueira proposed an exten-30

sion of LTL with freeze quantifiers of only one register, where the quantifiers
are interpreted over the set of data values occurring before or after the current
position of data words ([13]).
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• Recently, Schwentick et al., Demri et al. , and Decker et al. considered exten-
sions of LTL with navigation mechanisms for one single data attribute or tuples35

of data attributes over multi-attributed data words, that is, data words where each
position carries multiple data values ([14, 15, 16]).

Another natural idea is to extend temporal logics with variable quantifications over an
infinite data domain, which is our focuses in this paper. Grumberg et al. initiated this
line of research. They considered the extension of LTL with variable quantifications40

where the formulae are in prenex normal form, that is, all the variable quantifications
are in the beginning and followed by LTL formulae. They investigated the decidability
of the satisfiability and the model checking problems over Kripke structures extended
with data variables ([17, 18]). Later on, as a follow-up work, they introduced variable
CTL∗ (VCTL∗), an extension of CTL∗ with variable quantifications ([19]), where the45

variable quantifications can be nested arbitrarily with Boolean operators and temporal
operators. Their main goal is to characterize the simulation pre-order over variable
Kripke structures with VCTL∗ formulae. Nevertheless, as far as we know, they have
not investigated the satisfiability and model checking problems of VCTL∗ yet (except
the aforementioned work on VLTL formulae in prenex normal form).50

Contribution. Our goal in this paper is to do a relatively complete investigation on the
decision problems of the extensions of temporal logics with variable quantifications.
Around this purpose, we make the following choices.

• We consider the extensions of both LTL and CTL with variable quantifications
(denoted by VLTL and VCTL respectively), where the variable quantifiers can55

be nested arbitrarily with Boolean and temporal operators.

• In addition, the variable quantifiers are interpreted over the full data domain, not
just over the set of data values occurring before or after the current position.

• Moreover, we investigate the decidability and complexity of both the satisfi-
ability and the model checking problems over both finite and infinite words60

(trees). More precisely, we consider four decision problems in this paper, the
satisfiability and model checking problems (over finite words and trees), the ω-
satisfiability and ω-model checking problems (over infinite words and trees).

Specifically, we obtain the following results.

1. Existential variable quantifiers (which may not occur in the beginning) or one65

single universal quantifier in the beginning already entail the undecidability of
the satisfiability and ω-satisfiability problems of both VLTL and VCTL (cf. the
results on ∃∗-VLTL, ∃∗-VCTL, ∀-VLTLpn f and ∀-VCTLpn f in Table 1).

2. If there are only existential variable quantifiers, and the existential variable quan-
tifiers are not nested, then the satisfiability problem becomes decidable for both70

VLTL and VCTL (cf. the results on NN-∃∗-VLTL and NN-∃∗-VCTL in Table 1).
The proof is obtained by a reduction to the nonemptiness problem of alternating
one register automata ([13]). On the other hand, in this case, the ω-satisfiability
problems of VLTL and VCTL are still undecidable.
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∃∗-VLTL ∀∗-VLTL NN-∃∗-VLTL NN-∀∗-VLTL ∃∗-VLTLpn f

SAT U (T. 4.1) U (T. 4.2) D (T. 4.10) U (T. 4.2) D (P. 2.5, [17])
ω-SAT U (T. 4.1) U (T. 4.2) U (T. 4.8) U (T. 4.2) D (P. 2.5, [17])

MC U (C. 4.14) U (C. 4.13) U (C. 4.14) D (C. 4.19) U (C. 4.14)
ω-MC U (C. 4.14) U (C. 4.13) U (C. 4.14) U (C. 4.17) U (C. 4.14)

∀∗-VLTLpn f ∃-VLTLpn f ∀-VLTLpn f ∃-VLTLgdap
pn f ∀-VLTLgdap

pn f

SAT U (T. 4.2) D (P. 2.5, [17]) U (T. 4.2) D (P. 2.5, [17]) D (T. 4.11)
ω−SAT U (T. 4.2) D (P. 2.5, [17]) U (T. 4.2) D (P. 2.5, [17]) D (T. 4.11)

MC D (P. 2.5, [17]) U (C. 4.14) D (P. 2.5, [17]) D (C. 4.20) D (P. 2.5, [17])
ω−MC D (P. 2.5, [17]) U (C. 4.14) D (P. 2.5, [17]) D (C. 4.20) D (P. 2.5, [17])

∃∀-VLTLnoap
pn f ∀∃-VLTLnoap

pn f ∃∃-VLTLnoap
pn f ∀∀–VLTLnoap

pn f ∀∀∃-RVLTLpn f

SAT U (T. 4.7) U (T. 4.7) D (P. 2.5, [17]) U (T. 4.7) U (T. 4.5)
ω−SAT U (T. 4.7) U (T. 4.7) D (P. 2.5, [17]) U (T. 4.7) U (T. 4.5)

MC U (C. 4.15) U (C. 4.15) U (C. 4.15) D (P. 2.5, [17]) U (T. 4.16)
ω−MC U (C. 4.15) U (C. 4.15) U (C. 4.15) D (P. 2.5, [17]) U (T. 4.16)

∀∃∀-RVLTLpn f ∃∗∀∗-RVLTLpn f ∀∗∃∗-RVLTLpn f ∀∀-RVLTL+
pn f ∃∃-RVLTL+

pn f

SAT U (T. 4.5) D (T. 4.12) U (T. 4.5) U (T. 4.3) D (P. 2.5, [17])
ω−SAT U (T. 4.5) ? U (T. 4.5) U (T. 4.3) D (P. 2.5, [17])

MC U (T. 4.16) U (T. 4.16) U (T. 4.16) D (P. 2.5, [17]) U (T. 4.16)
ω-MC U (T. 4.16) U (T. 4.16) U (T. 4.16) D (P. 2.5, [17]) U (T. 4.16)

∃∗-VCTL ∀∗-VCTL NN-∃∗-VCTL NN-∀∗-VCTL ∃∗-VCTLpn f

SAT U (C. 5.1) U (C. 5.2) D (T. 5.6) U (C. 5.2) D (T. 5.15)
ω−SAT U (C. 5.1) U (C. 5.2) U (C. 5.4) U (C. 5.2) D (T. 5.15)

MC U (T. 5.5) U (T. 5.5) U (T. 5.5) D (T. 5.10) U (T. 5.5)
ω−MC U (T. 5.5) U (T. 5.5) U (T. 5.5) U (T. 5.5) U (T. 5.5)

∀∗-VCTLpn f ∃-VCTLpn f ∀-VCTLpn f ∃-VCTLgdap
pn f ∀-VCTLgdap

pn f

SAT U (C. 5.2) D (T. 5.15) U (C. 5.2) D (T. 5.15) ?
ω−SAT U (C. 5.2) D (T. 5.15) U (C. 5.2) D (T. 5.15) ?

MC D (T. 5.16) ? D (T. 5.16) ? D (T. 5.16)
ω−MC D (T. 5.16) ? D (T. 5.16) ? D (T. 5.16)

∃∀-VCTLnoap
pn f ∀∃-VCTLnoap

pn f ∃∃-VCTLnoap
pn f ∀∀-VCTLnoap

pn f EVCTL
SAT U (C. 5.3) U (C. 5.3) D (T. 5.15) U (C. 5.3) D (T. 5.11)

ω−SAT U (C. 5.3) U (C. 5.3) D (T. 5.15) U (C. 5.3) ?
MC U (T. 5.5) U (T. 5.5) U (T. 5.5) D (T. 5.16) U (T. 5.5)

ω−MC U (T. 5.5) U (T. 5.5) U (T. 5.5) D (T. 5.16) U (T. 5.5)

Table 1: Summary of the results: U: Undecidable, D: Decidable, P: Proposition, T: Theorem, C: Corollary
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3. If only existential path quantifiers are used in VCTL, then the satisfiability prob-75

lem is decidable (NEXPTIME), no matter which variable quantifiers are avail-
able (cf. the results on EVCTL in Table 1). This result is shown by a small model
property. It is open whether the ω-satisfiability problem is decidable in this case.

4. For the fragments of VLTL with one single universal variable quantifier in the
beginning, if the occurrences of the non-parameterized atomic propositions are80

guarded by the positive occurrences of the universally quantified variables, then
the satisfiability and ω-satisfiability problems become decidable (cf. the re-
sults on ∀-VLTLgdap

pn f in Table 1). The proof is obtained by a reduction to the
nonemptiness of extended data automata ([20]). This decidability result is tight
in the sense that adding one more existential variable quantifier before or after85

the universal one implies undecidability (cf. the results on ∀∃-VLTLnoap
pn f and

∃∀-VLTLnoap
pn f in Table 1).

5. Moreover, since there are some subtle differences between the logics defined in
this paper and those in [17, 18], we also investigate the decidability status of the
two fragments defined in [17] and [18] and show that some claims in [17, 18] are90

inaccurate (cf. the results on the fragments of RVLTLpn f and RVLTL+
pn f in Ta-

ble 1). In particular, we show that the fragments in [17] behave quite differently
from the fragments in [18] with respect to the satisfiability problem.

6. Based on the above results of the satisfiability and ω-satisfiability problems, we
deduce the (un)decidability results of the model checking and ω-model checking95

problems (cf. the results on model checking and ω-model checking problems in
Table 1).

For reader’s convenience, the results obtained in this paper are summarized into Ta-
ble 1 (where ∃,∀ mean existential and universal variable quantifier, pn f means prenex
normal form, NN means non-nested, and the question mark means that the decidability100

is open). The reader can refer to Section 2 for the definitions of the fragments of VLTL
and VCTL.

This paper is the extended version of the paper published in FSTTCS 2014 ([21]).
Compared to [21], this paper is novel in the following aspects.

• We add a comparison of the expressiveness of VLTL with the other logical for-105

malisms over (multi-attributed) data words.

• We get more results on the satisfiability and model checking problems, as well
as extend the results in [21] to ω-satisfiability and ω-model checking problems.

• We write the detailed proofs for all the results, which were missing or only
sketched in [21].110

Related work.
First-order temporal logics. At first, we give a more specific description of the work
on first-order temporal logics. In ([22]), Bohn et al. proposed an algorithm for model
checking first-order CTL (FO-CTL) on first-order Kripke structures in which transi-
tions are labeled with conditional assignments, capturing the effect of taking a transi-115

tion on an underlying possibly infinite state space induced from a set of typed variables.
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Their algorithm is heuristic and may not terminate in some cases. Hodkinson et al. tried
to find decidable fragments of first order LTL (FO-LTL) and FO-CTL over natural num-
bers, and their expressive power and finite axiomatization ([7, 8]). They showed that
the satisfiability problem of monodic fragments of FO-LTL and FO-CTL in which all120

formulae beginning with a temporal operator have at most one free variable is decid-
able. Moreover, Hodkinson et al. investigated the complexity of the decidable frag-
ments of FO-LTL in ([23]). In particular, they proved that the satisfiability problem of
one-variable fragment of FO-LTL with the “global” temporal operator is EXPSPACE-
complete. Several resolution methods for checking the satisfaction and validity of the125

formulae in monodic fragments of FO-LTL are proposed in ([24, 25, 26]). Dixon et al.
considered the monodic fragments of FO-LTL with an additional XOR constraint on
predicates and showed that with the XOR constraint, a lower complexity upper bound
can be obtained for the satisfiability problem ([27]). Demri and D’Souza investigated
an extension of LTL where the constraints are interpreted over the concrete domains130

e.g. (Z, <,=) and (N, <,=) ([28]). Vianu et al. studied the model checking problem of
FO-LTL formulae over database driven systems and get some decidability results by
putting restrictions on both the systems and the specifications ([9, 10]). Moreover, Song
and Touili considered the variable extensions of LTL and CTL for malware detection,
where the variables range over a finite domain, although the variable quantifications135

can be nested arbitrarily with the other operators ([29, 30, 31]).
Indexed temporal logics. Since process identifiers are a concrete type of data values,
the indexed temporal logics used to specify and reason about parameterized concurrent
systems are also related to the extensions of temporal logic with variable quantifica-
tions. Indexed temporal logics are extensions of temporal logics with variable quan-140

tifications that range over a set of process identifiers. Browne, Clarke and Grumberg
proposed indexed CTL∗\X in ([32]) and proved the bisimulation between two Kripke
structures with the same set of indexed propositions but different sets of index values
with respect to indexed CTL∗\X. Emerson and Srinivasan proposed indexed simplified
CTL (SCTL) and investigated its satisfiability problem ([33]). In ([34, 35]), German145

and Sistla proposed indexed LTL and showed that the validity (resp. model checking)
problem of the indexed LTL is decidable (resp. undecidable). Emerson and Kahlon
studied the model checking problem of parameterized systems against some specific
fragments of indexed CTL∗\X ([36]). Later, Emerson and Namjoshi also used indexed
CTL∗\X to specify and reason about parameterized systems in ([37]). The main goal150

of ([36, 37]) is to prove the “cutoff” results. Compared with indexed temporal logics,
variables in VLTL and VCTL can range over not only a set of process identifiers but
also other data values such as content of messages. On the other hand, each position of
the data words/trees for indexed LTL and CTL has the same set of data values, that are
process identifies. While, each position of the data words/trees for VLTL and VCTL155

can have its own set of data values.

Besides the logical formalisms, researchers have also proposed various automata mod-
els to reason about data values.
Register automata and its variants. Kaminski and Francez initialized the research of
automata models over infinite alphabets. They introduced nondeterministic register160

automata ([38]), an extension of finite state automata with a set of registers which can
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store a symbol from an infinite alphabet. They studied closure properties of nonde-
terministic register automata and proved that its emptiness problem is decidable. In
([39]), Grumberg et al. proposed variable (Büchi) automata, a simple extension of fi-
nite (Büchi) automata in which the alphabet consists of letters as well as variables that165

range over the infinite alphabet domain. Variable automata is a sub-type of nondeter-
ministic register automata. Neven et al. studied the expressive power of the variants
(one-way v.s. two-way, deterministic v.s. non-deterministic, alternating v.s. non-
alternating) of register and pebble automata, and extensions of first-order logic and
monadic second-order logic ([40]). They proved that universality and containment of170

one-way nondeterministic register automata and non-emptiness of two-way determin-
istic register automata are undecidable and that non-emptiness is undecidable even for
weak one-way deterministic pebble automata. Demri and Lazic introduced alternating
one register automata and used it to decide the satisfiability of the fragments of LTL
with freeze quantifiers ([11]). Kaminski and Zeitlin extended nondeterministic register175

automata with ε−transitions which is able to make a non-deterministic reassignment
by “guessing” the content of an appropriate register ([41]). Adding ε−transitions en-
riches the expressiveness but still posses all decision procedures and closure properties
of nondeterministic register automata. Figueira proposed an extension of alternating
one register automata with spread operations and used it to decide the fragments of180

XPath with data comparison modalities ([13]).
Data automata and its variants. Data automata were introduced in [42], with the moti-
vation to decide the two-variable first-order logic over data words. Data automata turns
out to be a very expressive model for which nonemptiness is decidable and has the
same complexity as the reachability of Petri nets. Since it is a famous open problem185

whether the reachability of Petri nets can be decided with elementary complexity, it is
also unknown whether the nonemptiness of data automata can be decided in elemen-
tary time. In order to lower the complexity, two weaker versions of data automata were
introduced and their nonemptiness problems were shown to be elementary ([43, 44]).
On the other hand, an extension of data automata, called class automata, were intro-190

duced, in order to capture the expressiveness of XPath with data comparison modalities
([45]). Nevertheless, the nonemptiness of class automata is undecidable. To achieve
decidability, two sub-models of class automata: class automata with priority class con-
dition and class counting automata, were proposed ([46, 47]). Tan studied data trees
over a linearly ordered infinite data domain and proposed ordered-data tree automata195

and showed their nonemptiness problem can be solved in 3-NEXPTIME ([48]).
Pebble automata and its variants. Pebble automata were introduced in [40]. Several
variants of this model have been studied. For example, ([40]) studied alternating and
two-way pebble automata. Tan proposed a subclass of pebble automata, top view weak
pebble automata and showed that the nonemptiness problem is decidable ([49]). This200

model can capture all data languages expressible in LTL with one freeze quantifier.
Tan used graph reachability problem to investigate the expressiveness issues of pebble
automata, e.g. the strict hierarchy of pebble automata based on the number of pebbles
and the comparison of the expressiveness of pebble automata with the other formalisms
over infinite alphabets ([50]).205

Outline. The rest of this paper is organized as follows. Preliminaries are given in
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Section 2. Section 3 compares the expressiveness of VLTL with the other logical for-
malisms over data words. Section 4 considers the decision problems of VLTL. Section
5 is devoted to the decision problems of VCTL. Conclusion and future work are given
in Section 6.210

2. Preliminaries

In this section, we first fix some notations, then introduce Variable Kripke Structure
(VKS), Variable Linear Temporal Logic (VLTL), Variable Computation Tree Logic
(VCTL), alternating register automata and extended data automata. VLTL and VCTL
are extensions of LTL and CTL with variables and (∀,∃) quantifications. The VCTL215

and VLTL formulae are interpreted over computation traces and computation trees of
variable Kripke structures, respectively. Alternating register automata and extended
data automata are used to get the decidability results.

Let D be an infinite set of data values, AP a finite set of (non-parameterized) atomic
propositions, and T with AP ∩ T = ∅ a finite set of parameterized atomic propositions,220

where each of them carries one parameter (data value). Let A be a finite set of at-
tributes. To get an idea on the data value attributes, let us consider the scenario where
a printer is shared by different computers. In this scenario, a “print” event may carry
two data parameters which are denoted respectively by the attribute “cid” for computer
identifiers and the attribute “tid” for the identifiers of printing tasks, that is, the set of225

attributes A = {cid, tid}. Let Var be a countable set of data variables which range over
D. Let [k] denote the set {0, . . . , k − 1}, for all k ∈ N.

2.1. Words and trees

In this paper, we interpret temporal logic formulae over A-attributed data (ω-)words
or data (ω-)trees defined in the following.230

• A word (resp. ω-word) w over AP is a sequence from (2AP)∗ (resp. (2AP)ω).

• An A-attributed data word (resp. data ω-word) w over AP ∪ T is a sequence
from (2AP × (2T × D)A)∗ (resp. (2AP × (2T × D)A)ω).

• Given k ≥ 1, a k-ary tree (resp. ω-tree) is a finite (resp. infinite) set Z ⊆ [k]∗ s.t.
for all zi ∈ Z, z ∈ Z and z j ∈ Z for all j ∈ [i] (resp. for all zi ∈ Z, z ∈ Z and z j ∈ Z235

for all j ∈ [i], moreover, for each z ∈ Z, there is i ∈ [k] s.t. zi ∈ Z). The node ε is
called the root of the tree. For every z ∈ Z, the nodes zi ∈ Z for i ∈ [k] are called
the successors of z, denoted by suc(z). Let Leaves(Z) denote the set of leaves of
a tree Z, that is, the set of nodes z ∈ Z such that zi < Z for each i ∈ [k]. A path of
a tree Z is a set π ⊆ Z s.t. ε ∈ π and ∀z ∈ π, either z is a leaf, or there is an unique240

i ∈ [k] s.t. zi ∈ π. A path of an ω-tree Z is a set π ⊆ Z s.t. ε ∈ π and ∀z ∈ π, there
is an unique i ∈ [k] s.t. zi ∈ π.

• A k-ary labeled tree (resp. ω-tree) t over AP is a tuple (Z, L), where Z is a k-ary
tree (resp. ω-tree) and L : Z → 2AP is the labeling function.
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• A k-ary A-attributed data tree (resp. ω-tree) t over AP∪T is a tuple (Z, L), where245

Z is a k-ary tree (resp. ω-tree) and L : Z → 2AP×(2T ×D)A is a labeling function.

• Given a labeled or data tree (resp. ω-tree) t = (Z, L), let z ∈ Z and π be a path
of t, then t|z denotes the labeled or data subtree t rooted at z, and wπ denotes the
word or data word (resp. ω-word) on the path π of t.

• For z ∈ Z in a labeled or data tree (resp. ω-tree) t = (Z, L), define the tree type of250

z in t, denoted by typet(z), as the set {l0, . . . , lk−1} s.t. for every j ∈ [k], if z j ∈ Z,
then l j = O j, otherwise l j = O j (O j means that the j-th child of z exists).

• For a data word (or data ω-word) w = (α0, (βa,0, da,0)a∈A)(α1, (βa,1, da,1)a∈A) . . . ,
the projection of w, denoted by pr j(w), is defined as the word α0α1 . . . .

• Let t = (Z, L) and t′ = (Z′, L′) be two k-ary A-attributed data trees over AP ∪ T .255

Then an embedding of t into t′ is an injective mapping η from Z to Z′ that pre-
serves the root, the successor relation and the labels of nodes, more specifically,
η(ε) = ε, for each z1, z2 ∈ Z, z2 is a successor of z1 in t iff η(z2) is a successor of
η(z1) in t′, moreover, for each z ∈ Z, L(z) = L′(η(z)). An embedding η of t into
t′ is said to be leaf-preserving if for each z ∈ Z, z is a leaf in t iff η(z) is a leaf in260

t′. For instance, if t is a k-ary A-attributed data tree with a single node ε, and t′

is obtained from t by adding a node 0, then there is a unique embedding of t into
t′, but the embedding is not leaf-preserving.

In our definition of data (ω-)words and data (ω-)trees, every parameterized atomic
proposition is restricted to carry only one parameter (data value). This restriction does265

not restrict the expressiveness of the formalisms, as it is easy to encode a data (ω-
)word or data (ω-)tree where some parameterized atomic propositions have multiple
parameters into one satisfying the one-parameter constraint.

2.2. Variable Kripke Structure

Definition 2.1 (Variable Kripke Structures). A Variable Kripke Structure1 (VKS ) K is270

a tuple (AP∪T, X, S ,R, S 0, I, L, L′), where AP and T are defined as above, X and S are
finite sets of variables and states respectively, R ⊆ S ×S is the set of edges s.t. for each
s ∈ S , there is s′ ∈ S satisfying that (s, s′) ∈ R, S 0 ⊆ S is the set of initial states, I is
the invariant function that assigns to each state a formula which is a positive Boolean
combination of xi = x j and xi , x j for xi, x j ∈ X, L : S → 2AP∪T×X is the state labeling275

function, L′ : R→ 2{reset}×X is the edge labeling function.

Intuitively, if (reset, x) ∈ L′(s, s′), then the value of the variable x is reset (to any
value) when going from s to s′.

A finite (resp. infinite) path of K is a finite sequence of states s0s1 . . . sn (resp.
an infinite sequence of states s0s1 . . . ) s.t. ∀i ∈ [n] (resp. ∀i ≥ 0), (si, si+1) ∈ R.280

An X-attributed data word (resp. ω-word) w0w1 . . . is called a finite (resp. infinite)

1Variable Kripke structure defined here is the same as that in ([17]), except that the global invariants are
replaced by local state invariants.
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computation trace of K if there are a finite (resp. infinite) path s0s1 . . . in K with
s0 ∈ S 0 and a finite (resp. infinite ) sequence λ0λ1 . . . s.t.

• ∀i, λi : X −→ D is an assignment function satisfying that λi |= I(si), and
wi = ({p ∈ AP | p ∈ L(si)}, ({τ | (τ, x) ∈ L(si)} × {λi(x)})x∈X), where the satisfac-285

tion relation λi |= I(si) is defined in an obvious way, e.g. λi |= x = y iff
λi(x) = λi(y),

• for every i : i > 0, λi(x) = λi−1(x) if (reset, x) < L′(si−1, si).

Let L(K) denote the set of finite computation traces ofK and Lω(K) denote the set of
infinite computation traces of K .290

Let k be the maximum number of successors of states in K . A data tree (resp. ω-
tree) t = (Z, L1) is called a finite (resp. infinite) computation tree of K if there are a
k-ary labeled tree (resp. ω-tree) (Z, L2) over S and a collection of assignment functions
λz : X → D with z ∈ Z s.t.

• ∀z ∈ Z, L2(z) ∈ S is a singleton,295

• L2(ε) ∈ S 0,

• ∀z ∈ Z \ Leaves(Z), if L2(z) = s and s has exactly i successors, say s0, . . . , si−1,
in K , then suc(z) = {z0, . . . , z(i − 1)}, and ∀ j ∈ [i], L2(z j) = s j,

• for every z, zi ∈ Z, if L2(z) = s and L2(zi) = s′, then for every x ∈ X s.t.
(reset, x) < L′(s, s′), λzi(x) = λz(x),300

• for every z ∈ Z, if L2(z) = s, then L1(z) = (L(s) ∩ AP, ({τ | (τ, x) ∈ L(s)} ×
λz(x))x∈X).

Let T (K) (resp. Tω(K)) denote the set of finite (resp. infinite) computation trees of
K .

2.3. Variable Linear Temporal Logic305

Intuitively, VLTL extends LTL with the modalities τ(x) and x@a (where τ ∈ T
and a ∈ A), besides the existential and universal data variable quantifications. Here
τ(x) means that the parameterized atomic proposition τ holds, with the parameter rep-
resented by x, and x@a means that the data value represented by x is the one corre-
sponding to the attribute a in the current position. More specifically, VLTL formulae310

are defined by the following syntactic rules.

Definition 2.2 (VLTL). The syntax of Variable Linear Temporal Logic (VLTL) is de-
fined by the following rules,

ϕ := p | ¬p | τ(x) | ¬τ(x) | x@a | ¬x@a | ϕ ∨ ϕ | ϕ ∧ ϕ |
Xϕ | Xϕ | ϕ U ϕ | ϕ R ϕ | ∃x. ϕ | ∀x. ϕ,

where p ∈ AP, τ ∈ T, a ∈ A, x ∈ Var, and X is the dual operator of X such that
Xϕ ≡ ¬X¬ϕ.
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Let var(ϕ) and f ree(ϕ) denote respectively the set of variables occurring in ϕ and
the set of free variables of ϕ. VLTL formulae without free variables are called sen-315

tences. In addition, we use abbreviations true ≡ p ∨ ¬p, Fψ ≡ true U ψ, and
Gψ ≡ ¬F¬ψ.

VLTL formulae defined in [17, 18] are in prenex normal form. In addition, VLTL
formulae defined in ([17, 18]) allow explicit comparisons between data variables, e.g.
x , y for two data variables x, y. Moreover, there is a small difference between VLTL320

defined in [17] and [18]. The atomic formulae τ for τ ∈ T are allowed in [17], while
they are disallowed in [18]. The formula τ can be seen as an abbreviation of the for-
mula ∃x. τ(x). Therefore, strictly speaking, the formulae in [17] are not in prenex
normal form according to our notation. If the explicit data variable comparisons and
the formulae τ are ignored, then VLTL defined in [17, 18] is the set of VLTL formu-325

lae in prenex normal form in our framework. In our definition of VLTL, we make the
following technical choices.

• The formulae τ for τ ∈ T are disallowed, since we believe that it is a better idea
to make all the variable quantifications explicit.

• In addition, the explicit data variable comparisons x = y or x , y are disallowed,330

since we prefer defining a first-order extension of VLTL with the minimum first-
order features (arguably).

On the other hand, to facilitate the specifications of the properties of A-attributed data
words, the formulae x@a are introduced to specify that the data value represented by
x is the one corresponding to the attribute a in the current position. The fragments of335

VLTL defined in [18] and [17], excluding the data variable comparison modalities, are
called respectively as RVLTLpn f and RVLTL+

pn f in our framework (cf. Section 2.5).
VLTL formulae are interpreted over A-attributed data words and data ω-words. We

give the semantics for data words. The semantics for data ω-words are similar.
Let w = w0 . . .wn ∈

(
2AP × (2T × D)A

)∗
, ϕ be a VLTL formula, λ : f ree(ϕ) → D,340

and for every i : 0 ≤ i ≤ n, wi = (αi, (βa,i, da,i)a∈A), and wi = wi . . .wn. We define the
satisfaction relation w |=λ ϕ as follows:

• ϕ = p: w |=λ ϕ iff p ∈ α0,

• ϕ = ¬p: w |=λ ϕ iff p < α0,

• ϕ = τ(x): w |=λ ϕ iff (τ, λ(x)) ∈ ∪a∈A (βa,0 × {da,0}),345

• ϕ = ¬τ(x): w |=λ ϕ iff (τ, λ(x)) < ∪a∈A (βa,0 × {da,0}),

• ϕ = x@a: w |=λ ϕ iff da,0 = λ(x),

• ϕ = ¬x@a: w |=λ ϕ iff da,0 , λ(x),

• ϕ = ϕ1 ∨ ϕ2: w |=λ ϕ iff w |=λ ϕ1 or w |=λ ϕ2,

• ϕ = ϕ1 ∧ ϕ2: w |=λ ϕ iff w |=λ ϕ1 and w |=λ ϕ2,350

• ϕ = Xϕ1: w |=λ ϕ iff w , ε and w1 |=λ ϕ1,
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• ϕ = Xϕ1: w |=λ ϕ iff w , ε implies that w1 |=λ ϕ1,

• ϕ = ϕ1 U ϕ2: w |=λ ϕ iff there is i : 0 ≤ i ≤ n s.t. wi |=λ ϕ2, and for all
j : 0 ≤ j < i, w j |=λ ϕ1,

• ϕ = ϕ1 R ϕ2: w |=λ ϕ iff for all i : 0 ≤ i ≤ n, wi |=λ ϕ2, or there is i : 0 ≤ i ≤ n s.t.355

wi |=λ ϕ1, and for all j : 0 ≤ j ≤ i, w j |=λ ϕ2,

• ϕ = ∃x. ϕ1: w |=λ ϕ iff there is d ∈ D s.t. w |=λ[d/x] ϕ1, where (λ[d/x])(x) = d
and (λ[d/x])(y) = λ(y) for every y ∈ f ree(ϕ1) s.t. y , x,

• ϕ = ∀x. ϕ1: w |=λ ϕ iff for all d ∈ D, w |=λ[d/x] ϕ1.

If ϕ is a VLTL sentence, we will drop λ from |=λ. LetL(ϕ) (resp. Lω(ϕ)) denote the360

set of A-attributed data words (resp. ω-words) w satisfying ϕ. Let K be a VKS with
X as the set of variables and ϕ a VLTL sentence over X-attributed data words. Then
K satisfies ϕ, denoted by K |= ϕ, if for every finite computation trace w of K , w |= ϕ.
Similarly, we use K |=ω ϕ to denote the fact that for every infinite computation trace w
of K , w |= ϕ.365

For a VLTL formula ϕ, let ϕ denote the negation of ϕ, where p = ¬p, ¬p = p,
τ(x) = ¬τ(x), ¬τ(x) = τ(x), Xϕ1 = Xϕ1, ϕ1Uϕ2 = ϕ1Rϕ2, and so on. Let |ϕ| denote the
size of ϕ, that is, the number of symbols in ϕ. We will use ϕ1 → ϕ2 to mean ϕ1 ∨ ϕ2.
A VLTL formula that does not contain subformulae of the form ψ1 → ψ2 is called
normalized.370

Let ϕ be a normalized VLTL formula. For pi ∈ AP and an occurrence of pi (resp.
¬pi) in ϕ, define the UR-formula of the occurrence of pi (resp. ¬pi) in ϕ as the minimal
subformula of ϕ of the form ψ1Uψ2 or ψ1Rψ2 which contains the occurrence of pi (resp.
¬pi), if such a subformula exists (otherwise, the UR-formula is undefined). Note that
if the UR-formula of an occurrence of pi or ¬pi exists, then it is unique. An occurrence375

of pi or ¬pi is said to be persistent if the UR-formula of the occurrence exists, and the
following condition is satisfied:

• If the UR-formula is of the form ψ1Uψ2, then the occurrence of pi or ¬pi occurs
in ψ1.

• If the UR-formula is of the form ψ1Rψ2, then the occurrence of pi or ¬pi occurs380

in ψ2.

A non-persistent occurrence of pi or ¬pi is called eventual. Similarly, we can define the
persistent and eventual occurrences for τ(x) or ¬τ(x) or x@a or ¬x@a or subformulae
of the form Xψ. For instance, the occurrence of ¬p1 in the formula G(¬p1 ∨ XF p2) is
persistent, the occurrence of p2 is eventual, and the occurrence of XF p2 is persistent.385

2.4. Variable Computation Tree Logic

The syntax of variable computation tree logic is defined similarly to VLTL, by
adding the path quantifiers A and E before every temporal operator in the syntax rules
of VLTL.
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Definition 2.3 (VCTL). The syntax of Variable Computation Tree Logic (VCTL) for-
mulae is defined by the following rules:

ϕ :=
p | ¬p | τ(x) | ¬τ(x) | x@a | ¬x@a | ϕ ∨ ϕ | ϕ ∧ ϕ | AXϕ | EXϕ
| AXϕ | EXϕ | A(ϕUϕ) | E(ϕUϕ) | A(ϕRϕ) | E(ϕRϕ) | ∃x.ϕ | ∀x.ϕ

,

where p ∈ AP, τ ∈ T, a ∈ A, x ∈ Var.390

VCTL formulae are interpreted over A-attributed data trees. Let t = (Z, L) be a
k-ary A-attributed data tree with L(ε) = (α, (βa, da)a∈A), ϕ be a VCTL formula, λ :
f ree(ϕ)→ D, we define the satisfaction relation (Z, L) |=λ ϕ as follows. The semantics
of VCTL formulae over A-attributed data ω-trees are similar.

• ϕ = p: t |=λ ϕ iff p ∈ α,395

• ϕ = ¬p: t |=λ ϕ iff p < α,

• ϕ = τ(x): t |=λ ϕ iff (τ, λ(x)) ∈
⋃

a∈A βa × {da},

• ϕ = ¬τ(x): t |=λ ϕ iff (τ, λ(x)) <
⋃

a∈A βa × {da},

• ϕ = x@a: t |=λ ϕ iff da = λ(x),

• ϕ = ¬x@a: t |=λ ϕ iff da , λ(x),400

• ϕ = ϕ1 ∨ ϕ2: t |=λ ϕ iff t |=λ ϕ1 or t |=λ ϕ2,

• ϕ = ϕ1 ∧ ϕ2: t |=λ ϕ iff t |=λ ϕ1 and t |=λ ϕ2,

• ϕ = AXϕ1: t |=λ ϕ iff suc(ε) , ∅ and t|z |=λ ϕ1 for all z ∈ suc(ε),

• ϕ = EXϕ1: t |=λ ϕ iff suc(ε) , ∅ and t|z |=λ ϕ1 for some z ∈ suc(ε),

• ϕ = AXϕ1: t |=λ ϕ iff suc(ε) , ∅ implies that t|z |=λ ϕ1 for all z ∈ suc(ε),405

• ϕ = EXϕ1: t |=λ ϕ iff suc(ε) , ∅ implies that t|z |=λ ϕ1 for some z ∈ suc(ε),

• ϕ = A[ϕ1Uϕ2]: t |=λ ϕ iff for every path π ⊆ Z, there exists a node z ∈ π s.t.
t|z |=λ ϕ2, and for all strict prefixes z′ of z, t|z′ |=λ ϕ1,

• ϕ = E[ϕ1Uϕ2]: t |=λ ϕ iff there is a path π ⊆ Z and a node z ∈ π s.t. t|z |=λ ϕ2,
and for all strict prefixes z′ of z, t|z′ |=λ ϕ1,410

• ϕ = A[ϕ1Rϕ2]: t |=λ ϕ iff for every path π ⊆ Z, either tz |=λ ϕ2 for all z ∈ π, or
there is z ∈ π s.t. t|z |=λ ϕ1, and for all prefixes z′ of z, t|z′ |=λ ϕ2,

• ϕ = E[ϕ1Rϕ2]: t |=λ ϕ iff there is a path π ⊆ Z s.t. either t|z |=λ ϕ2 for all z ∈ π,
or there is z ∈ π s.t. t|z |=λ ϕ1, and for all prefixes z′ of z, t|z′ |=λ ϕ2,

• ϕ = ∃x.ϕ1: t |=λ ϕ if there is d ∈ D s.t. t |=λ[d/x] ϕ1,415

• ϕ = ∀x.ϕ1: t |=λ ϕ iff for all d ∈ D, t |=λ[d/x] ϕ1.

13



Let L(ϕ) (resp. Lω(ϕ)) denote the set of A-attributed data trees (resp. ω-trees) t
satisfying ϕ.

LetK be a VKS and ϕ be a VCTL sentence. ThenK satisfies ϕ, denoted byK |= ϕ,
if for every finite computation tree t of K , t |= ϕ. Similarly, we use K |=ω ϕ to denote420

the fact that every infinite computation tree t of K , t |=ω ϕ.
For a VCTL formula ϕ, the formula ϕ denoting the negation of ϕ, and |ϕ|, the size

of ϕ, can be defined similarly to those of VLTL formulae.

2.5. Syntactic fragments of VLTL and VCTL
In this paper, we consider the following fragments of VLTL.425

∃∗-VLTL and ∀∗-VLTL. Let ∃∗-VLTL (resp. ∀∗-VLTL) denote the set of VLTL for-
mulae without using ∀ (resp. ∃) quantifier. Note that the formulae in ∃∗-VLTL
and ∀∗-VLTL are not required to be in prenex normal form.

NN-VLTL. Let NN-VLTL denote the set of VLTL formulae where no variable quan-
tifiers are nested (in a strict sense), more precisely, for every pair of subformulae430

Qx.ψ1 and Q′y.ψ2 (where Q,Q′ ∈ {∃,∀}) s.t. x , y, and Q′y.ψ2 is a subformula
of ψ1, it holds that x < f ree(ψ2). For instance, the formula ∀x.(τ(x)→ ∃y.τ′(y))
is in NN-VLTL, while ∀x.∀y. G[(τ(x) ∧ τ′(y))→ XG(¬τ(x) ∧ ¬τ′(y))] is not.

VLTLpn f . Let VLTLpn f denote the set of VLTL formulae in prenex normal form
Q1x1 . . .Qk xk. ψ, where Q1, . . . ,Qk ∈ {∃,∀}, and ψ is a quantifier-free VLTL435

formula. Note that in general VLTL formulae cannot be turned into equivalent
prenex normal forms2. Suppose θ = Q1 . . .Qk ∈ {∀,∃}

∗, let θ-VLTLpn f denote
the set of VLTLpn f formulae of the form Q1x1 . . .Qk xk. ψ. Suppose Θ ⊆ {∀,∃}∗,
let Θ-VLTLpn f = ∪θ∈Θ θ-VLTLpn f .

VLTLnoap
pn f . For θ ∈ {∃,∀}∗ (resp. Θ ⊆ {∃,∀}∗), let θ-VLTLnoap

pn f (resp. Θ-VLTLnoap
pn f )440

denote the set of θ-VLTLpn f (resp. Θ-VLTLpn f ) formulae where AP = ∅, that is,
the set of θ-VLTLpn f (resp. Θ-VLTLpn f ) formulae containing no occurrence of
non-parameterized atomic propositions.

VLTLgdap
pn f . For θ ∈ {∃,∀}∗ (resp. Θ ⊆ {∃,∀}∗), let θ-VLTLgdap

pn f (resp. Θ-VLTLgdap
pn f )

denote the set of θ-VLTLpn f (resp. Θ-VLTLpn f ) formulae Q1x1 . . .Qk xk. ψ s.t.
θ = Q1 . . .Qk (resp. Q1 . . .Qk ∈ Θ), and all the occurrences of p and ¬p in ψ are
guarded by the positive occurrences of x. More precisely, ψ is a quantifier-free
VLTL formula defined by the following rules,

ψ := p ∧ τ(x) | ¬(p ∧ τ(x)) | ¬p ∧ τ(x) | ¬(¬p ∧ τ(x)) | p ∧ x@a |
¬(p ∧ x@a) | ¬p ∧ x@a | ¬(¬p ∧ x@a) | τ(x) | ¬τ(x) | x@a |
¬x@a | ψ ∨ ψ | ψ ∧ ψ | Xψ | Xψ | ψUψ | ψRψ,

where p ∈ AP, τ ∈ T , a ∈ A, x ∈ Var, and the superscript “gdap” means
“guarded atomic propositions”. For instance, the formula ∀x. G(openFile(x) →445

2For instance, we conjecture that there are no VLTLpn f formulae equivalent to the VLTL formula
G(∃x.τ(x)), but presently we do not know how to prove this.

14



closeFile(x)) is in ∀-VLTLgdap
pn f , while the formula ∀x. G[openFile(x) → (p ∧

¬write(x)) U closeFile(x)] is not, since the occurrence of p is not guarded by a
positive occurrence of x.

RVLTLpn f and RVLTL+
pn f . Let RVLTL denote the set of VLTL formulae where the

formulae of the form x@a or ¬x@a are not used (The fragment defined in [18],450

excluding the data variable comparison modalities, corresponds to RVLTLpn f ).
Moreover, in order to facilitate the comparison with the fragments in [17], we use
RVLTL+

pn f to denote the extension of RVLTLpn f with the formulae τ for τ ∈ T
which is equivalent to ∃x. τ(x).

Note that by combining the above definitions, more syntactic fragments can be defined.455

For instance, the fragment NN-∃∗-VLTL is the set of ∃∗-VLTL formulae where no
variable quantifiers are nested.

The syntactic fragments of VCTL can also be defined similarly to VLTL, with the
additional distinction between EVCTL and AVCTL, that is, the fragment of VCTL
using only path quantifiers E and A respectively.460

2.6. Decision problems of VLTL and VCTL
We consider the following decision problems for VLTL and VCTL.

Satisfiability problem. Given a VLTL (resp. VCTL) sentence ϕ, decide whether ϕ is
satisfiable, that is, whether there is a data word w (resp. there are k ≥ 1 and a
k-ary A-attributed data tree t) s.t. w |= ϕ (resp. t |= ϕ).465

ω-Satisfiability problem. Given a VLTL (resp. VCTL) sentence ϕ, decide whether
there is a data ω-word w (resp. there are k ≥ 1 and a k-ary A-attributed data
ω-tree t) s.t. w |=ω ϕ (resp. t |=ω ϕ).

Model checking problem. Given a VKS K and a VLTL/VCTL sentence ϕ, decide
whether K |= ϕ.470

ω-Model checking problem. Given a VKS K and a VLTL/VCTL sentence ϕ, decide
whether K |=ω ϕ.

Remark 2.4. We interpret VLTL and VCTL formulae over both finite and infinite data
words (trees). The considerations of temporal logics interpreted over finite words and
trees are normally motivated by the verification of safety properties of concurrent sys-475

tems (cf. [51]) as well as the verification of properties of sequential programs.

The following result is proved essentially in the same way as Theorem 6 in [17].
The main idea is to bound the number of data values satisfying a ∃∗-VLTLpn f formula.

Proposition 2.5. The following problems are PSPACE-complete3:

• the satisfiability and ω-satisfiability problems of ∃∗-VLTLpn f ,480

• the model checking and ω-model checking problems of ∀∗-VLTLpn f .

3In ([17]), only the model checking problem of ∀∗-RVLTL+
pn f is considered. The results of the (ω-)

satisfiability and (ω-)model checking problems of ∃∗-VLTLpn f can be shown by following the same idea.
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2.7. Nondeterministic tree automata and nondeterministic Büchi tree automata

A Nondeterministic Tree Automaton (NTA) A is a tuple (AP,Q,Q0, δ,Q f ), where
AP is a finite set of atomic propositions, Q is a finite set of states, Q0,Q f ⊆ Q are the
sets of initial and final states, δ ⊆ (Q×2AP)∪ (Q×2AP× (Q1∪· · ·∪Qk)) is the transition485

relation (A transition (q, P) ∈ Q × 2AP means that the current node is a leaf).
NTAs are used to accept k-ary labeled trees over AP. The semantics of NTA are

defined in a standard way. The reader may refer to [52] for the detailed definition. Let
L(A) denote the set of k-ary labeled trees accepted byA.

A Nondeterministic BÜChi Tree Automaton (NBTA)A is a tuple (AP,Q,Q0, δ,Q f ),490

where AP is a finite set of atomic propositions, Q is a finite set of states, Q0,Q f ⊆ Q
are the sets of initial and accepting states, δ ⊆ Q×2AP× (Q1∪· · ·∪Qk) is the transition
relation. NBTAs are used to accept k-ary labeled ω-trees over AP. Let t be a labeled
ω-tree t over AP. A run of an NBTA A over t can be defined in a natural way. A run
is accepting iff over each infinite path of the run, there is a state from Q f occurring495

infinitely often. Let L(A) denote the set of k-ary labeled ω-trees accepted byA.

Proposition 2.6. ([52, 53]) The nonemptiness of NTAs (resp. NBTAs) is in PTIME.

2.8. Alternating Register Automata

We next define alternating register automata over k-ary A-attributed data trees
where A is a singleton by adapting the definition of alternating register automata over500

data (ω-)words and unranked data trees ([11, 13]).
In this subsection, we always assume that A is a singleton.

Definition 2.7 (Alternating register automata). An Alternating Register Automaton
(ATRA) over k-ary A-attributed data trees where A is a singleton is a tuple A =

(AP ∪ T,Q, q0, δ), where AP (resp. T) is a finite set of atomic propositions (resp. pa-
rameterized atomic propositions), Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q→ Φ is the transition function, where Φ is defined by the following grammar4,

true | f alse | p | ¬p | τ | ¬τ | Oi? | Oi? | eq | eq | q∨q′ | q∧q′ | store(q) | guess(q) | Oiq,

where p ∈ AP, τ ∈ T, q, q′ ∈ Q, and i ∈ [k].

Intuitively, p,¬p, τ,¬τ are used to detect the occurrences of (parameterized) atomic
propositions. Oi?,Oi? are used to describe the types of nodes in trees, eq, eq are used to505

check whether the data value in the register is equal to the current one, q ∨ q′ makes a
nondeterministic choice, q∧ q′ creates two threads with the state q and q′ respectively,
store(q) stores the current data value (note that A is a singleton and there is exactly
one data value over each position) to the register and transfers to the state q, guess(q)
guesses a data value for the register and transfers to the state q, Oiq moves to the i-th510

child of the current node and transfers to the state q.
An ATRA A = (AP ∪ T,Q, q0, δ) is called alternating register automaton over

A-attributed data words (AWRA) where A is a singleton if k = 1.

4The spread mechanism in [13] is dropped, since it is not used in this paper.
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The semantics of ATRAs over k-ary A-attributed data trees where A is a singleton
are defined in a completely analogous way as those of ATRAs over unranked trees in515

([13]). To make the paper more self-contained, we describe the semantics of ATRAs
in the following.

LetA be an ATRA and t = (Z, L) be a k-ary A-attributed data tree. A node config-
uration c ofA is a tuple (z, typet(z), L(z),Λ), where z ∈ Z, Λ ⊆ Q × D is a finite set of
active threads at node z in which each thread (q, d) denotes that the thread is at state q520

and has the data value d, satisfying the following condition: For every (q, d) ∈ Λ s.t.
δ(q) = Oiq′ for some q′ ∈ Q, we have Oi ∈ typet(z). A tree configuration C of A is
a finite set of node configurations. Let NA denote the set of node configurations of A,
and TA ⊆ 2NA be the set of tree configurations. A tree configuration C is called initial
if C = {(ε, typet(ε), L(ε), {(q0, d)})} s.t. L(ε) = (A, (B, d)) for some A ⊆ AP and B ⊆ T .525

To define a run of A, we introduce two types of transition relations, the non-moving
relation −→ε⊆ NA × NA and the moving relations −→Oi⊆ NA × NA for i ∈ [k]. For
a given node configuration c = (z, typet(z), L(z), {(q, d)} ∪ Λ), the non-moving relation
updates a thread (q, d) of c according to the transition function δ(q), and does not move
to any child of z in t. Formally, −→ε⊆ NA × NA is defined as follows,530

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = true;

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = p, and there
exist A ⊆ AP, B ⊆ T , and d′ ∈ D such that L(z) = (A, (B, d′)) and p ∈ A;

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = ¬p, and there
exist A ⊆ AP, B ⊆ T , and d′ ∈ D such that L(z) = (A, (B, d′)) and p < A;535

• (z, typet(z), L(z), {(q, d)}∪Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = τ and there exist
A ⊆ AP, B ⊆ T , and d′ ∈ D such that L(z) = (A, (B, d′)) and τ ∈ B;

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = ¬τ and there
exist A ⊆ AP, B ⊆ T , and d′ ∈ D such that L(z) = (A, (B, d′)) and τ < B;

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = Oi? and zi ∈ Z;540

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = Oi? and zi < Z;

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = eq and there
exist A ⊆ AP and B ⊆ T such that L(z) = (A, (B, d));

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z),Λ), if δ(q) = eq and there
exist A ⊆ AP, B ⊆ T and d′ ∈ D such that L(z) = (A, (B, d′)) and d , d′;545

• for j = 1, 2, (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z), {(q j, d)} ∪ Λ) if
δ(q) = q1 ∨ q2;

• (z, typet(z), L(z), {(q, d)}∪Λ) −→ε (z, typet(z), L(z), {(q1, d), (q2, d)}∪Λ), if δ(q) =

q1 ∧ q2;

• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z), {(q′, d′)} ∪ Λ), if δ(q) =550

store(q′) and there exist A ⊆ AP and B ⊆ T such that L(z) = (A, (B, d′));
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• (z, typet(z), L(z), {(q, d)} ∪ Λ) −→ε (z, typet(z), L(z), {(q′, d′)} ∪ Λ) for all d′ ∈ D,
if δ(q) = guess(q′).

A node configuration (z, typet(z), (A, B),Λ) is moving if for every (q, d) ∈ Λ, we have
δ(q) = Oiq′ for some i ∈ [k]. The moving relations −→Oi advance some threads of a
moving node configuration to the i-th child. Suppose i ∈ [k] and (z, typet(z), L(z),Λ) is
a moving node configuration s.t. Oi ∈ typet(z). Then

(z, typet(z), L(z),Λ) −→Oi (zi, typet(zi), L(zi),Λ′),

where Λ′ = {(q′, d) | (q, d) ∈ Λ, δ(q) = Oiq′}. Note that Λ′ may be ∅ if there are no
(q, d) ∈ Λ such that δ(q) = Oiq′.555

The transition relation −→ of tree configurations is defined as follows. Let C1,C2
be two tree configurations. Then C1 −→ C2 if one of the following conditions holds:

• C1 = {c} ∪C′ and C2 = {c′} ∪C′ s.t. c→ε c′.

• C1 = {c} ∪ C′, c = (z, typet(z), L(z),Λ), typet(z) = {O0, . . . ,Oi,Oi+1, . . . ,Ok−1}

for some i ∈ [k], there is no (q, d) ∈ Λ s.t. δ(q) = O jq′ for j : i < j < k and560

q′ ∈ Q, and C2 = {c′0, . . . , c
′
i} ∪C′ s.t. c→O j c′j for every j : 0 ≤ j ≤ i.

A run ofA over a data tree t = (Z, L) is a sequence of tree configurations C0 . . .Cn

s.t. C0 is initial and for all i : 1 ≤ i ≤ n, Ci−1 −→ Ci. A run C0 . . .Cn is accepting if
Cn ⊆ {(z, typet(z), L(z), ∅) | z ∈ Z}. A data tree t = (Z, L) is accepted byA if there is an
accepting run of A over t. Let L(A) denote the set of all k-ary A-attributed data trees565

accepted byA.
The closure properties and the decidability of the nonemptiness of ATRAs over

finite words can be proved in the same way as alternating register automata over un-
ranked trees, by utilizing well-structured transition systems (cf. [13]).

Theorem 2.8 ([11, 13]). ATRAs are closed under intersection and union. The nonempti-570

ness problem of ATRAs is decidable and non-primitive recursive.

2.9. Extended Data Automata

We also assume that A = {a} is a singleton in this subsection and introduce extended
data automata ([20]), another automata model over (A-attributed) data (ω-)words. Ex-
tended data automata are an extension of the seminal model of data automata over data575

(ω-)words ([54]).

Definition 2.9 (Extended data automata). An Extended Data Automaton (EDA)D over
A-attributed data words is a tuple (AP ∪ T,A,B) s.t. AP and T are defined as above,
A is a nondeterministic letter-to-letter transducer over finite words from the alphabet
2AP × 2T to some output alphabet Σ, and B is a finite automaton over Σ ∪ {0} (where580

0 < Σ). On the other hand, an extended data automaton D over A-attributed data ω-
words (abbreviated as ω-EDA) is a tuple (AP∪T,A,B) whereA is a nondeterministic
letter-to-letter transducer over ω-words from the alphabet 2AP × 2T to some output
alphabet Σ, and B is a Büchi automaton over Σ ∪ {0}.
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Let D = (AP ∪ T,A,B) be an EDA and w = (α0, (βa,0, da,0)) . . . (αn, (βa,n, da,n))585

be an A-attributed data word. Then w is accepted by D if over (α0, βa,0) . . . (αn, βa,n),
the transducer A outputs a word w′ = σ0 . . . σn over the alphabet Σ, s.t. for every
data value d ∈ D, cstrd(w′′) is accepted by B, where w′′ = (σ0, da,0) . . . (σn, da,n) and
cstrd(w′′) is defined as σ′0 . . . σ

′
n, satisfying that for every i : 0 ≤ i ≤ n, σ′i = σi if

da,i = d, and σ′i = 0 otherwise. Note that for every data value d not occurring in w′′,590

cstrd(w′′) = 0n+1.
Let D = (AP ∪ T,A,B) be an ω-EDA and w = (α0, (βa,0, da,0))(α1, (βa,1, da,1)) . . .

be an A-attributed data ω-word. Then w is accepted byD if over (α0, βa,0)(α1, βa,1) . . . ,
A outputs an ω-word w′ = σ0σ1 . . . over the alphabet Σ, s.t. for every data value
d ∈ D, cstrd(w′′) is accepted by B, where w′′ = (σ0, da,0)(σ1, da,1) . . . and cstrd(w′′) is595

defined as σ′0σ
′
1 . . . , satisfying that for every i : i ≥ 0, σ′i = σi if da,i = d, and σ′i = 0

otherwise. Note that for every data value d not occurring in w, cstrd(w′′) = 0ω.

Theorem 2.10. ([54, 20]) EDAs and ω-EDAs are closed under intersection and union.
The nonemptiness problems of EDAs and ω-EDAs are decidable.

3. Expressiveness600

In the following, we compare the expressiveness of VLTL with first-order logic
(FO), freeze LTL ([55]) and BDLTL ([14, 16]) over A-attributed data words.

3.1. Comparison with First-order logic
The syntax of first-order logic over A-attributed data words is defined by the fol-

lowing rules,

ϕ := p(x) | ¬p(x) | τ(a@x) | ¬τ(a@x) | a@x = b@y | ¬ a@x = b@y
| x = y | x , y | x < y | ϕ ∨ ϕ | ϕ ∧ ϕ | ∃x. ϕ | ∀x. ϕ,

where p ∈ AP, τ ∈ T, a, b ∈ A.
The atomic formula τ(a@x) states that (τ, d) occurs in the position x, where d is605

the data value corresponding to the attribute a. The atomic formula a@x = b@y states
that the data value d and d′ are the same, where d is the data value corresponding to
the attribute a of the position x, and d′ is the data value corresponding to the attribute
b of the position y.

Proposition 3.1. VLTL ≤ FO.610

Proof. Without loss of generality, we assume that for every VLTL formula ϕ, no vari-
ables in ϕ are quantified twice. Let x1, . . . , xn be the set of variables occurring in ϕ, and
x′1, . . . , x

′
n be a tuple of variables distinct from x1, . . . , xn.

In the following, we provide a translation of the VLTL formula ϕ into a FO formula
ψ. The intuition of the translation is to replace the quantifiers over the data domain615

by the quantifiers over the positions in the data words. For each variable quantifier
∃x.ϕ1, we distinguish between the situation that the data value assigned to x will occur
hereafter or not. If the former situation happens, the reference to the data value assigned
to x can be replaced by a reference to some future position x′ in data words.
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By induction on the structure of VLTL formulae, for a given VLTL formula ϕ with620

the set of free variables {xi1 , . . . , xik } (where 1 ≤ i1, . . . , ik ≤ n), we translate ϕ into a FO
formula trη(ϕ)(z) as follows, where η is a function assigning a j@x′i j

for some a j ∈ A to
xi j for each j : 1 ≤ j ≤ k.

• trη(p)(z) = p(z), trη(¬p)(z) = ¬p(z),

• trη(τ(x))(z) = ∨a∈A(η(x) = a@z ∧ τ(a@z)),625

• trη(¬τ(x))(z) = ∧a∈A(¬η(x) = a@z ∨ ¬τ(a@z)),

• trη(ϕ1 ∨ ϕ2)(z) = trη(ϕ1)(z) ∨ trη(ϕ2)(z), trη(ϕ1 ∧ ϕ2)(z) = trη(ϕ1)(z) ∧ trη(ϕ2)(z),

• trη(Xϕ1)(z) = ∃y. y = z + 1 ∧ trη(ϕ1)(y),

• trη(Xϕ1)(z) = ∀y. y = z + 1→ trη(ϕ1)(y),

• trη(ϕ1 U ϕ2)(z) = ∃y. z ≤ y ∧ trη(ϕ2)(y) ∧ ∀z′. (z ≤ z′ ∧ z′ < y)→ trη(ϕ1)(z′),630

• trη(∃xi.ϕ1)(z) = trη(ϕ′1)(z) ∨ ∨a∈A∃x′i . (z ≤ x′i ∧ trη[a@x′i/xi](ϕ1)(z)), where ϕ′1 is
obtained from ϕ1 by replacing each occurrence of τ(xi) and xi@a′ for τ ∈ T and
a′ ∈ A with f alse,

• trη(∀xi.ϕ1)(z) = trη(ϕ′1)(z) ∧ ∧a∈A∀x′i . (z ≤ x′i → trη[a@x′i/xi](ϕ1)(z)), where ϕ′1 is
obtained from ϕ1 by replacing each occurrence of τ(xi) and xi@a′ for τ ∈ T and635

a′ ∈ A with f alse.

Claim. Let w be an A-attributed data word, ϕ be a VLTL formula, λ : f ree(ϕ) → D,
η be a function with the domain f ree(ϕ) such that for each x ∈ f ree(ϕ), η(x) = a@x′

for some a ∈ A, λ′ : {x′ | x ∈ f ree(ϕ)} → N. In addition, for each x ∈ f ree(ϕ) s.t.
η(x) = a@x′, λ(x) is equal to the data value corresponding to the attribute a of the640

position λ′(x′) in w. Then w |=λ ϕ iff w |=λ′[0/z] trη(ϕ).
Then a VLTL sentence ϕ is equal to the FO formula ∃z.(∀z′.z ≤ z′)∧ tr(ϕ)(z), where

η is omitted since its domain is empty. �

3.2. Comparison with freeze LTL
A fragment of LTL with freeze quantifiers (Freeze-LTL) over A-attributed data

words was considered in [55]. Freeze-LTL is defined by ignoring the parameterized
atomic propositions, that is, T = ∅, and adding a finite set of registers R. Freeze-LTL
formulae are defined by the following rules,

ϕ ::= p | ¬p | ↓a
r ϕ | ↑

∼a
r | ↑

/a
r | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Xϕ | ϕUϕ | ϕRϕ,

where a ∈ A and r ∈ R.645

The atomic formula ↓a
r ϕ is used to store the data value corresponding to the at-

tribute a in the current position into the register r, and ↑∼a
r (resp. ↑/a

r ) states that the
data value corresponding to the attribute a is equal (resp. not equal) to that stored in
the register r.

Proposition 3.2. Freeze-LTL ≤ VLTL.650
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Proof. For each freeze-LTL formula ϕ, an equivalent VLTL formula tr(ϕ) can be in-
ductively constructed as follows, where a distinct data variable xr is associated for each
r ∈ R,

• tr(p) = p, tr(¬p) = ¬p,

• tr(↓a
r ϕ1) = ∃xr. xr@a ∧ tr(ϕ1),655

• tr(↑∼a
r ) = xr@a, tr(↑/a

r ) = ¬xr@a,

• tr(ϕ1 ∧ ϕ2) = tr(ϕ1) ∧ tr(ϕ2), tr(ϕ1 ∨ ϕ2) = tr(ϕ1) ∨ tr(ϕ2),

• tr(Xϕ1) = Xtr(ϕ1), tr(Xϕ1) = Xtr(ϕ1),

• tr(ϕ1Uϕ2) = tr(ϕ1) U tr(ϕ2),

• tr(ϕ1Rϕ2) = tr(ϕ1) R tr(ϕ2).660

�

3.3. Comparison with BDLTL

BDLTL formulae from [14, 16] are defined by ignoring the parameterized atomic
propositions, that is, T = ∅.

The syntax of BDLTL is defined by the following rules,

ϕ ::= p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Xϕ | ϕUϕ | ϕRϕ | Ci
aψ,

ψ ::= @a | ¬@a | ψ ∧ ψ | ψ ∨ ψ | X=ψ | X
=
ψ | ψU=ψ | ψR=ψ | ϕ,

where p ∈ AP, i ∈ N, a ∈ A. The formulae ϕ are called the state formulae, while the665

formulae ψ are called the class formulae.
Intuitively, Ci

aψ means that the data value d corresponding to the attribute a is
stored into the (unique) register and the class formula ψ holds in the i-th position after
the current position, under the context that the register stores the data value d. The class
formula @a (resp. ¬@a) states that the data value corresponding to the attribute a is670

equal (resp. not equal) to that stored in the register. The class formula X=ψ requires
that ψ holds in the position corresponding to the next occurrence of the data value d.
Similarly for X

=
ψ. The formula ψ1U=ψ2 describes the fact that ψ2 holds in some future

position i where the data value d occurs, and in each position j : 0 ≤ j < i where the
data value d occurs, ψ1 holds. Similarly for ψ1R=ψ2.675

Remark 3.3. Since VLTL is defined without past temporal operators, we consider
BDLTL with only future temporal operators here.

Proposition 3.4. BDLT L < VLT L.

Proof. Each BDLTL state formula ϕ can be translated into a VLTL formula. The
translation is obvious, except for the rule Ci

aψ and the class formulae. The formula680

Ci
aψ can be translated into the formula ∃x. x@a ∧ Xi trx(ψ), where trx(ψ) is defined

inductively as follows,
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• trx(@a) = x@a, trx(¬@a) = ¬x@a,

• trx(ψ1 ∧ ψ2) = trx(ψ1) ∧ trx(ψ2), trx(ψ1 ∨ ψ2) = trx(ψ1) ∨ trx(ψ2),

• trx(X=ψ1) = X ((∧a∈A(¬x@a)) U (∨a∈Ax@a ∧ trx(ψ1))),685

• trx(X
=
ψ1) = X f alse ∨ trx(X=ψ1),

• trx(ψ1U=ψ2) = ((∨a∈Ax@a)→ trx(ψ1)) U (∨a∈Ax@a ∧ trx(ψ2)),

• trx(ψ1R=ψ2) = ((∨a∈Ax@a) ∧ trx(ψ1)) R ((∨a∈Ax@a)→ trx(ψ2)).

The argument for the strictness of the inclusion is as follows: Consider the ∃∗-
VLT L formula ϕ in Theorem 4.1 that expresses the solution of the PCP problem, ϕ690

cannot be expressed in any BDLTL formula due to the fact the the satisfiability for
BDLTL is decidable ([14]). �

4. Decision problems of VLTL

4.1. Satisfiability problem
4.1.1. Undecidability695

In this subsection, we will present the undecidability results of the satisfiability and
ω-satisfiability problems for various fragments of VLTL. We will only do the proofs
for the satisfiability problem, and it is easy to see that the undecidability proofs carry
over to the ω-satisfiability problem.

Theorem 4.1. The satisfiability and ω-satisfiability problems of ∃∗-VLTL are undecid-700

able.

Proof. The proof is by a reduction from the PCP problem.
Let (ui, vi)1≤i≤n be an instance of the PCP problem over an alphabet Σ. A solution

of the PCP problem is a sequence of indexes i1 . . . im s.t. ui1 . . . uim = vi1 . . . vim .
During the proof, we will use the following alphabet, Σ′ = Σ ∪ {a | a ∈ Σ} ∪705

{1, . . . , n} ∪ {1, . . . , n} ∪ {#}.
The alphabet Σ′ can be encoded by dlog(|Σ′|)e bits. Let AP be a set of atomic propo-

sitions of size dlog(|Σ′|)e. For each σ ∈ Σ′, let atom(σ) denote the element of 2AP cor-
responding to the encoding of σ, and type(σ) denote the conjunction of atomic propo-
sitions or negated atomic propositions from AP corresponding to the binary encoding710

of σ. For instance, if σ is encoded by 10 and AP = {p1, p2}, then atom(σ) = {p1} and
type(σ) = p1 ∧ ¬p2. The definition of atom(σ) can be naturally extended to atom(u)
for words u ∈ (Σ′)+. In addition, let T = {τ} and A = {a}.

We intend to encode a solution of the PCP problem, say i1 . . . im, as an A-attributed
data word of the form wi1 wi2 . . .wim (atom(#), ({τ}, d)) wi1 . . .wim s.t.715

• pr j(wi j ) = atom(i j) atom(ui j ) and pr j(wi j ) = atom(i j) atom(vi j ) for every j : 1 ≤
j ≤ m,

• the two sequences of data values in the positions corresponding to respectively
atom(i1) . . . atom(im) and atom(i1) . . . atom(im) are the same,
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• the two sequences of data values in the positions corresponding to respectively720

atom(ui1 ) . . . atom(uim ) and atom(vi1 ) . . . atom(vim ) are the same.

The A-attributed data words satisfying the above conditions can be expressed by
the ∃∗-VLTL formula ϕ which is the conjunction of the following ∃∗-VLTL formulae.

• There is only one occurrence of atom(#) in the data word,

ϕ1 = F type(#) ∧G(type(#)→ XG¬type(#)).

• For every j : 1 ≤ j ≤ n (resp. j̄), every occurrence of atom( j) (resp. atom( j̄)) is
followed by atom(u j) (resp. atom(v j)),

ϕ2 =
∧

1≤ j≤n

G(type( j)→ Xψu j ) ∧G(type( j̄)→ Xψv j ),

where ψu j is the VLTL formula expressing that atom(u j) will occur in the next
|u j| positions and will be followed by another letter from {atom(1), . . . , atom(n)}
or atom(#). For instance, if u j = σ1σ2σ1, then

ψu j = type(σ1) ∧ Xtype(σ2) ∧ XX

type(σ1) ∧

X
∨

1≤ j′≤n

type( j′) ∨ Xtype(#)


 .

Similarly for ψv j , where Xtype(#) is replaced by X f alse.725

• No data values in two positions labeled by letters from {atom(1), . . . , atom(n)}
(resp. {atom(1), . . . , atom(n)}) are the same,

ϕ3 =
∧

1≤ j≤n


G


type( j)→

∃x.
(
type( j) ∧ τ(x) ∧ XG

( ∧
1≤ j′≤n

(¬type( j′) ∨ ¬τ(x))
)) 

∧G

 type( j)→

∃x.
(
type( j) ∧ τ(x) ∧ XG

( ∧
1≤ j′≤n

(¬type( j′) ∨ ¬τ(x))
)) 


.

• No data values in two positions labeled by letters from {atom(σ) | σ ∈ Σ} (resp.
letters from {atom(σ) | σ ∈ Σ}) are the same, ϕ4 can be constructed similarly to
ϕ3.

• The first position (of the data word) and the first position after atom(#) have the
same data value,

ϕ5 = ∃x.
∨

1≤ j≤n

(type( j) ∧ τ(x) ∧ F(type(#) ∧ X(type( j) ∧ τ(x))).

• The second position and the second position after atom(#) have the same data
value,

ϕ6 = ∃x.
∨
σ∈Σ

(X(type(σ) ∧ τ(x)) ∧ F(type(#) ∧ XX(type(σ) ∧ τ(x))).
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• The last occurrence of letters from {atom(1), . . . , atom(n)} and the last occurrence
of letters {atom(1), . . . , atom(n)} have the same data value,

ϕ7 = ∃x.F
∨

1≤ j≤n

(
type( j) ∧ τ(x) ∧ X |u j |+1type(#) ∧ F(type( j) ∧ τ(x) ∧ X |v j |(X f alse))

)
.

• The last position and the last position before atom(#) have the same data value,

ϕ8 = ∃x.F
∨
σ∈Σ

(
type(σ) ∧ τ(x) ∧ Xtype(#) ∧ F(type(σ) ∧ τ(x) ∧ X f alse)

)
.

• For every two consecutive occurrences of letters from {atom(1), . . . , atom(n)},
there are two consecutive occurrences of letters from {atom(1), . . . , atom(n)}with
the same letters (by viewing atom( j) the same as atom( j)) and the same data
values,

ϕ9 = G
∧

1≤ j1, j2≤n

(
(type( j1) ∧ X |u j1 |+1type( j2))→ ∃x.∃y.(ψ1 ∧ Fψ2)

)
,

where ψ1 = τ(x)∧X |u j1 |+1τ(y) and ψ2 = type( j1)∧τ(x)∧X |v j1 |+1(type( j2)∧τ(y)).

• For every two consecutive occurrences of letters from {atom(σ) | σ ∈ Σ}, there
are two consecutive occurrences of letters from {atom(σ) | σ ∈ Σ} with the same
letters (by viewing atom(σ) the same as atom(σ)) and the same data values,

ϕ10 = G
∧

σ1,σ2∈Σ

(ψ0 → ∃x.∃y.(ψ1 ∧ Xψ2 ∧ F(ψ3 ∧ Xψ4))),

where ψ0 = type(σ1) ∧ X(type(σ2) ∨ ∨1≤ j≤n(type( j) ∧ Xtype(σ2)))), ψ1 =730

type(σ1)∧τ(x), ψ2 = (type(σ2)∧τ(y))∨∨1≤ j≤n(type( j)∧X(type(σ2)∧τ(y))), and
ψ3 = type(σ1)∧τ(x), ψ4 = (type(σ2)∧τ(y))∨∨1≤ j≤n(type( j)∧X(type(σ2)∧τ(y))).

From the construction, we know that the instance of the PCP problem has a solution
iff the ∃∗-VLTL formula ϕ =

∧
1≤i≤10

ϕi is satisfiable. �

By a similar reduction from the nonemptiness of two-counter machines as in the735

proof of Theorem 4.1 of [13], we can show the following result.

Theorem 4.2. The satisfiability and ω-satisfiability problems of ∀-VLTLpn f are unde-
cidable.

Proof. The proof is by a reduction from the nonemptiness problem of two-counter
machines.740

LetA = (Q, qI , δ, F) be a two-counter machine over the alphabet Σ, where qI is the
initial state, F is the set of final states, and δ ⊆ Q × (Σ ∪ {ε}) × {inci, deci, i f zi | i =

1, 2} × Q.
The set of transition rules δ can be encoded by dlog(|δ|)e bits. Define AP as a set

of atomic propositions of size dlog(|δ|)e. In addition, let T = ∅ and A = {a}. For each745

24



(q, σ, `, q′) ∈ δ, let atom((q, σ, `, q′)) denote the element of 2AP corresponding to the
binary encoding of (q, σ, `, q′), and type((q, σ, `, q′)) denote the conjunction of atomic
propositions or negated atomic propositions corresponding to the binary encoding of
(q, σ, `, q′).

An accepting run of a two counter machine can be encoded by an A-attributed data750

word w satisfying the following conditions,

1. pr j(w) is of the form

atom((q0, σ1, `1, q1))atom((q1, σ2, `2, q3)) . . . atom((qn−1, σn, `n, qn))

s.t. q0 = qI , for every i : 1 ≤ i ≤ n, (qi−1, σi, `i, qi) ∈ δ, and qn ∈ F,
2. for every j = 1, 2, no two occurrences of atom((qi−1, σi, `i, qi)) s.t. `i = inc j

(resp. `i = dec j) have the same data value,
3. for every j = 1, 2 and every occurrence of atom((qi−1, σi, `i, qi)) s.t. `i = inc j,755

there is an occurrence of atom((qi′−1, σi′ , `i′ , qi′ )) s.t. `i′ = dec j on the right
with the same data value, in addition, in between, there is no occurrence of
atom((qi′′−1, σi′′ , `i′′ , qi′′ )) s.t. `i′′ = i f z j,

4. for every j = 1, 2 and every occurrence of atom((qi−1, σi, `i, qi)) s.t. `i = dec j,
there is an occurrence of atom((qi′−1, σi′ , `i′ , qi′ )) s.t. `i′ = inc j with the same760

data value.

The first condition is expressed by the following VLTL formula ϕ1, without vari-
ables,

ϕ1 = ψp ∧ ψi ∧ ψ f ∧ ψt,

where ψp states that in each position of data words, at most one element of δ occurs,

ψp =
∧

θ1,θ2∈δ,θ1,θ2

G
(
type(θ1)→ type(θ2)

)
,

ψi and ψ f describes the the initial and final state respectively,

ψi =
∨

(qI ,σ,`,q)∈δ

type((qI , σ, `, q)),

ψ f = F
∨

(q,σ,`,q′)∈δ,q′∈F

(
type((q, σ, `, q′)) ∧ X f alse

)
,

and ψt states the conformance to the transition relation,

ψt =
∧

(q1,σ1,`1,q2)∈δ

G

type((q1, σ1, `1, q2))→ X
∨

(q2,σ2,`2,q3)∈δ

type((q2, σ2, `2, q3))

 .
For ` = inc j, dec j (where j = 1, 2), let ψ`,x = x@a ∧

∨
(q,σ,`,q′)∈δ

type((q, σ, `, q′)). In

addition, for ` = i f z1, i f z2, let ψ` =
∨

(q,σ,`,q′)∈δ
type((q, σ, `, q′)). Note that the formula

x@a, instead of τ(x), is used in ψ`,x.
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The second condition is expressed by

ϕ2 =
∧
j=1,2

(
G

(
ψinc j,x → XG(ψinc j,x)

)
∧G

(
ψdec j,x → XG(ψdec j,x)

))
.

The third condition is expressed by

ϕ3 =
∧
j=1,2

G
(
ψinc j,x →

(
XFψdec j,x ∧ XG(ψi f z j → XGψdec j,x)

))
.

The fourth condition is expressed by

ϕ4 =
∧
j=1,2

(
Fψdec j,x → Fψinc j,x

)
,

Then the formula ϕ = ∀x. (ϕ1 ∧ ϕ2 ∧ ϕ3 ∧ ϕ4) defines the set of A-attributed data765

words that encode accepting runs ofA.
From the construction, the language L(A) is nonempty iff ϕ is satisfiable. �

In [18], it is claimed that if A is a singleton, the satisfiability problem of the VLTL
formulae in prenex normal form, where the quantifier prefixes are of the form ∃∗∀,
is decidable, which seems contradicting to Theorem 4.2. However, VLTL defined in770

[18] is incomparable with VLTL defined in this paper, in the sense that the atomic
formulae x@a are not available in [18] and the data variable comparison modalities
are not available in VLTL defined in this paper. The fragment in [17], excluding the
data variable comparison modalities, corresponds to RVLTLpn f in our framework (cf.
Section 2.3). Moreover, in the conclusion of [18], it was mentioned that the satisfia-775

bility of “∀∀-RVLTLpn f ” is undecidable, by adapting the undecidability proof of the
model checking problem of “∃∃-RVLTLpn f ” over variable Kripke structures in [17].
This statement is questionable since the definition of the logic in [18] is different from
that in [17] (recall that the logic in [17] includes the modalities τ, while that in [18]
does not). The fragment in [18], excluding the data variable comparison modalities,780

corresponds to RVLTL+
pn f in our framework. In the following, we clarify the decid-

ability frontier of RVLTLpn f and RVLTL+
pn f and show that the two logics behave quite

differently for the satisfiability problem.

RVLTL+
pn f . The satisfiability of ∀∀-RVLTL+

pn f is undecidable; moreover, if A is a
singleton, then the satisfiability of ∀-RVLTL+

pn f is undecidable (cf. Theorem785

4.3).

RVLTLpn f . The satisfiability of ∀∀∃-RVLTLpn f and ∀∃∀-RVLTLpn f is undecidable;
moreover, if A is a singleton, then the satisfiability of ∀∃-RVLTLpn f is undecid-
able (cf. Theorem 4.5). On the other hand, the satisfiability of ∃∗∀∗-RVLTLpn f

is decidable (no matter whether A is a singleton or not, even extended with data790

variable comparison modalities), by utilizing a quantifier-elimination argument
(cf. Section 4.1.4).

Theorem 4.3. The satisfiability and ω-satisfiability problems of ∀∀-RVLTL+
pn f are un-

decidable. In addition, if the set of attributes A is a singleton, then the satisfiability
and ω-satisfiability problems of ∀-RVLTL+

pn f are undecidable.795

26



Proof. We first consider the situation that A is a singleton, say {a}. Then there is a
unique data value at each position of A-attributed data words.

The reduction is the same as that in the proof of Theorem 4.2, with the following
modifications,

• T = {τ},800

• the formula x@a in ψ`,x is replaced by τ(x),

• moreover, a formula ϕ5 = G τ is added to ϕ, that is, ϕ = ∀x. ϕ1∧ϕ2∧ϕ3∧ϕ4∧ϕ5.

The formula ϕ5 guarantees that the parameterized atomic proposition τ occurs at each
position, which removes the trivial satisfaction of ϕ by letting τ occur nowhere in the
data words.805

We then consider the situation that A is not a singleton. Then there are multiple
data values at each position. The reduction in this case is an adaptation of the above
reduction by setting ϕ = ∀x∀y.

∧
0≤i≤5

ϕi, where ϕ1, . . . , ϕ5 are the same as above, and

ϕ0 = F(τ(x) ∧ τ(y)) → G(τ(x) ↔ τ(y)). The formula ϕ0 is used to avoid the bad
situation that an occurrence of inc j ( j = 1, 2) carries two distinct data values d1, d2, but810

there are two distinct occurrences of dec j, with one carrying the data value d1 and the
other carrying the data value d2. If such a situation happens, then the increments and
decrements of the two-counter machine cannot be matched in the desired way and the
validity of the zero tests cannot be guaranteed. �

Remark 4.4. It is open whether the satisfiability and ω-satisfiability problems of ∀-815

RVLTL+
pn f are decidable, when A is not a singleton.

Theorem 4.5. The satisfiability and ω-satisfiability problems of ∀∀∃-RVLTLpn f and
∀∃∀-RVLTLpn f are undecidable. In addition, if the set of attributes A is a singleton,
then the satisfiability and ω-satisfiability problems of ∀∃-RVLTLpn f are undecidable.

Proof. We first consider the situation that A is a singleton, say {a}.820

The reduction is the same as the case that A is a singleton in Theorem 4.3, with
the following modifications: ϕ0 = ∀x∃z.

∧
1≤i≤5

ϕi, where ϕ1, ϕ2, ϕ3, ϕ4 are the same as

in Theorem 4.3, and ϕ5 = G(¬τ(x) → τ(z)). Since each position n of A-attributed
data words carries a bounded number of data values, there is d ∈ D such that ¬τ(x) is
satisfied in the position n, so τ(z) is satisfied in the position n for some z. Therefore, ϕ5825

here plays the same role as Gτ in Theorem 4.3.
We then consider the situation that A is not a singleton. The reduction is still the

same as the case that A is not a singleton in Theorem 4.3, with the modification that
ϕ0 = ∀x∀y∃z.

∧
1≤i≤5

ϕi or ϕ0 = ∀x∃z∀y.
∧

1≤i≤5
ϕi, where ϕ1, . . . , ϕ4 are the same as in

Theorem 4.3, and ϕ5 = G(¬τ(x)→ τ(z)). �830

Remark 4.6. It is open whether the satisfiability and ω-satisfiability problems of ∀∃-
RVLTLpn f are decidable, when A is not a singleton.

Theorem 4.7. The satisfiability and ω-satisfiability problems of ∃∀-VLTLnoap
pn f , ∀∃-

VLTLnoap
pn f , and ∀∀-VLTLnoap

pn f are undecidable.
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Proof. We first consider ∃∀-VLTLnoap
pn f .835

From Theorem 4.2, we know that the satisfiability of ∀-VLTLpn f is undecidable. In
the proof of Theorem 4.2, the atomic propositions from AP are essential to express the
first condition, that is, the projection of a data word conforms to the transition relation
of the two-counter machine. Since atomic propositions from AP are forbidden in ∃∀-
VLTLnoap

pn f , we propose a way to encode the atomic propositions by the equality relation840

of data values in the following.
Let ϕ = ∀x.ψ be the formula constructed in the proof of the undecidability of ∀-

VLTLpn f in Theorem 4.2. Suppose ϕ = ∀x.ψ is in negation normal form. Our goal is
to construct an ∃∀-VLTLnoap

pn f formula ϕ′ such that ϕ is satisfiable iff ϕ′ is satisfiable.
The undecidability of the satisfiability of ∃∀-VLTLnoap

pn f then follows from Theorem 4.2.845

Note that the formula ψ uses X, X, F,G temporal operators, but not U or R, and it uses
no parameterized atomic propositions from T . Without loss of generality, we assume
that T = ∅.

Suppose AP = {p1, . . . , pk}, T = ∅, and A = {a}. Let AP′ = ∅ and T ′ = {τ′0}. We
intend to encode an A-attributed data word w over AP ∪ T into an A-attributed data850

word over AP′ ∪ T ′ satisfying the following conditions,

• there is a data value d such that d occurs in all the positions i(k + 2) for i ∈ N (the
position indices start from 0),

• τ′0 occurs in all the positions i(k + 2) for i ∈ N, but nowhere else,

• for each i ∈ N, the position i of w is encoded by the block of w′ from the position855

i(k + 2) to the position (i + 1)(k + 2) − 1, where the data value d at the position i
of w is put in the position (i + 1)(k + 2)− 1 = i(k + 2) + (k + 1) of w′, and for each
j, p j (resp. τ j) is true in the position i of w iff d occurs in the position i(k + 2) + j
(resp. i(k + 2) + k + j) of w′.

We construct a VLT Lnoap
pn f formula ϕ′ = ∃y∀x. ψ0 ∧ ψ

′ as follows.860

• ψ0 expresses that τ′0(y) occurs in the position i(k+2) for every i ∈ N, but nowhere
else,

ψ0 = τ′0(y) ∧G

τ′0(y)→

X
(k+2)

τ′0(y) ∧
∧

1≤i<k+2

Xi¬τ′0(y)


 ,

• ψ′ is obtained from ψ by applying the following replacements in bottom-up along
the syntax tree of ψ. Here we assume that ψ is in positive normal form (Note that
some formulae in Theorem 4.2 are not in positive norm form, which are put on
purpose to ease the reading).

1. For each eventual occurrence of p j (resp. ¬p j) in ψ, replace p j (resp. ¬p j)865

with the formula τ′0(y) ∧ X jy@a (resp.τ′0(y) ∧ X j¬y@a), where p j ∈ AP.
2. For each persistent occurrence of p j (resp. ¬p j), replace p j (resp. ¬p j)

with the formula τ′0(y) → X jy@a (resp. τ′0(y) → X j¬y@a), where
p j ∈ AP.

3. For each eventual occurrence of x@a (resp. ¬x@a), replace x@a (resp.870

¬x@a) with the formula τ′0(y) ∧ Xk+1x@a (resp. τ′0(y) ∧ Xk+1¬x@a).
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4. For each persistent occurrence of x@a (resp. ¬x@a), replace x@a (resp.
¬x@a) with the formula τ′0(y)→ Xk+1x@a (resp. τ′0(y)→ Xk+1¬x@a).

5. For each eventual occurrence of the subformula of the form Xφ (resp. Xφ),
replace Xφ (resp. Xφ) with the formula τ′0(y) ∧ Xk+2(τ′0(y) ∧ φ′) (resp.875

τ′0(y) ∧ X
k+2

(τ′0(y) ∧ φ′)).
6. For each persistent occurrence of the subformula of the form Xφ (resp.

Xφ), replace Xφ (resp. Xφ) with the formula τ′0(y) → Xk+2(τ′0(y) ∧ φ′)

(resp. τ′0(y)→ X
k+2

(τ′0(y) ∧ φ′)).

For instance, let k = 2 and ϕ = XG((¬p1) ∨ XF p2), then the following formula ϕ′

is constructed,

ϕ′ = ∃y. τ′0(y) ∧ X4(τ′0(y) ∧G[(τ′0(y)→ X¬y@a)∨
(τ′0(y)→ X4(τ′0(y) ∧ F(τ′0(y) ∧ X2y@a)))]).

From this example, the reader may understand better why we need distinguish between880

eventual and persistent occurrences of the subformulae.
From the construction, we know that ϕ is satisfiable iff ϕ′ is satisfiable.
For ∀∃-VLTLnoap

pn f , the construction is similar, with the modification that ϕ′ is re-
placed by ϕ′′ = ∀x∃y. ψ0 ∧ ψ

′. Because A = {a} is a singleton, it follows that ϕ is
satisfiable iff ϕ′′ is satisfiable.885

For ∀∀-VLTLnoap
pn f , let ϕ′′′ = ∀y∀x. (y@a → (ψ0 ∧ ψ

′)). Since there is exactly one
data value occurring in the position 0 of an A-attributed data word (recall that A = {a}),
it follows that ϕ is satisfiable iff ϕ′′′ is satisfiable.

Finally, it is easy to see that the proofs can be adapted to the ω-satisfiability of
∃∀-VLTLnoap

pn f , ∀∃-VLTLnoap
pn f and ∀∀-VLTLnoap

pn f . �890

In the following, we state an undecidability result for the ω-satisfiability problem,
while the corresponding satisfiability problem is decidable (c.f. Theorem 4.10).

Theorem 4.8. The ω-satisfiability problem of NN-∃∗-VLTL is undecidable.

Proof. We reduce from the nonemptiness of two-counter machines with incrementing
errors over infinite words, which is known to be undecidable ([11]). The reduction is
similar to that in Theorem 4.2, the conjunction of the first three conditions there can be
expressed by a NN-∃∗-VLTL formula ϕ′, with the formula ψ f replaced by

ψ′f = GF
∨

(q,σ,`,q′)∈δ,q∈F

type((q, σ, `, q′)).

Then the nonemptiness of a two-counter machine A with incrementing errors over
infinite words is reduced to the ω-satisfiability of ϕ′. �895

4.1.2. Decidability: NN-∃∗-VLTL
We first present the encodings of A-attributed data words into A′-attributed data

words where A′ is a singleton.
Suppose A = {a0, . . . , aK−1} and A′ = {a′}.
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Suppose that w = w0 . . .wn is an A-attributed data word over AP ∪ T s.t. for900

every i : 1 ≤ i ≤ n, wi = (Ai, ((Bi,0, di,0), . . . , (Bi,K−1, di,K−1))). Let p′ < AP ∪ T
and AP′ = AP ∪ {p′}. An A′-attributed encoding of w, denoted by enc(w), is a data
word w′ = w′0,0 . . .w

′
0,K−1 . . .w

′
n,0 . . .w

′
n,K−1 over AP′ ∪ T s.t. for every i : 0 ≤ i ≤ n,

w′i,0 = (Ai ∪ {p′}, (Bi,0, di,0)), and for every j : 1 ≤ j ≤ K − 1, w′i, j = (Ai, (Bi, j, di, j)).
Figure 1 shows an example of A′-attributed encoding of A-attributed data words, where905

AP = {p}, T = {τ}, K = 2, A = {a0, a1}, each position of w is encoded by two
consecutive positions in enc(w), and the atomic proposition p′ holds in the positions of
even indices, that is, 0, 2, . . . .

A = {a0, a1}AP = {p} T = {τ}

∅
({τ}, d1)
(∅, d2)

{p}
(∅, d3)

({τ}, d4)

{p}
({τ}, d5)
({τ}, d6)

({p′}, ({τ}, d1)) (∅, (∅, d2)) ({p, p′}, (∅, d3)) ({p}, ({τ}, d4)) ({p, p′}, ({τ}, d5)) ({p}, ({τ}, d6))

w :

enc(w) :

a0

a1

Figure 1: A′-encoding of A-attributed data words

We then present an encoding of VLTL formulae over A-attributed data words to
VLTL formulae over A′-attributed data words.910

Suppose that ϕ is a normalized VLTL formula. Then enc(ϕ) = ϕ′1 ∧ ϕ
′
2 with ϕ′1 and

ϕ′2 defined as follows.

• ϕ′1 puts restrictions on the occurrences of p′ and the atomic propositions from
AP,

ϕ′1 = p′ ∧G

p′ →

∧
p∈AP

[(∧0≤i≤K−1Xi p) ∨ (∧0≤i≤K−1Xi¬p)]∧∧
1≤i≤K−1

Xi¬p′ ∧ X
K

p′

 .
Intuitively, ϕ′1 states that p′ occurs in the first position, for every occurrence of
p′ in some position, p′ will occur in the K-th position after it if there is such a
position, but does not occur in between, moreover, for every p ∈ AP, either p915

occurs in all the positions between two adjacent occurrences of p′, or occurs in
none of them.

• ϕ′2 is obtained from ϕ by the following procedure.

1. Replace every eventual occurrence of Xφ (resp. Xφ) by p′ ∧ XKφ (resp.
p′ ∧ X

K
φ).920

2. Replace every persistent occurrence of Xφ (resp. Xφ) by p′ → XKφ (resp.
p′ → X

K
φ).

3. For every p ∈ AP, replace every eventual occurrence of p (resp. ¬p) by
p′∧∨0≤i≤K−1Xi p (resp. p′∧∨0≤i≤K−1Xi¬p), and every persistent occurrence
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of p (resp. ¬p) by p′ → ∨0≤i≤K−1Xi p (resp. p′ → ∨0≤i≤K−1Xi¬p). The925

formula ∨0≤i≤K−1Xi p (resp. ∨0≤i≤K−1Xi¬p) states that p (resp. ¬p) occurs
in one of the next K positions. This is sound since for every p ∈ AP, ϕ′1
requires that either p occurs in all of them or none of them.

4. For every τ ∈ T and x ∈ Var, replace every eventual occurrence of τ(x)
(resp. ¬τ(x)) by p′ ∧ ∨0≤i≤K−1Xiτ(x) (resp. p′ ∧ ∨0≤i≤K−1Xi¬τ(x)), and930

every persistent occurrence of τ(x) (resp. ¬τ(x)) by p′ → ∨0≤i≤K−1Xiτ(x)
(resp. p′ → ∨0≤i≤K−1Xi¬τ(x)).

5. For every i ∈ [K], replace every eventual occurrence of x@ai (resp. ¬x@ai)
with p′∧Xix@a′ (resp. p′∧Xi¬x@a′), every persistent occurrence of x@ai

(resp. ¬x@ai) with p′ → Xix@a′ (resp. p′ → Xi¬x@a′).935

Proposition 4.9. For every VLTL formula ϕ over A-attributed data words, it holds that
enc(L(ϕ)) = L(enc(ϕ)).

Theorem 4.10. The satisfiability problem of NN-∃∗-VLTL is decidable and non-primitive
recursive.

Proof. The proof is by a reduction to the nonemptiness problem of AWRA.940

Let ϕ be a NN-∃∗-VLTL sentence. From the definition of enc(ϕ), it is not hard
to observe that enc(ϕ) is also a NN-∃∗-VLTL sentence. In addition, from Proposition
4.9, we know that enc(L(ϕ)) = L(enc(ϕ)). Therefore, it is sufficient to consider the
satisfiability of enc(ϕ) over A′-attributed data words (recall that A′ is a singleton).

Since the quantifiers are not nested, without loss of generality, we assume that945

there is only one variable, say x, used in ϕ. Note that the variable x may be reused and
existentially quantified for many times.

Our goal is to construct an AWRA Aenc(ϕ) s.t. L(Aenc(ϕ)) = L(enc(ϕ)). We will
construct the AWRA by an induction on the syntax of NN-∃∗-VLTL formulae.

The construction of an AWRA for atomic formulae or negated atomic formulae,950

Boolean operators and temporal operators is similar to the construction of alternating
automata from LTL formulae (cf. [1]).

For existential quantification ϕ = ∃x.ψ, suppose that an AWRAAψ with the initial
state qψ has been constructed, then an AWRAAϕ can be constructed by adding a state
qϕ as the new initial state and adding the transitions δ(qϕ) = guess(qψ).955

The non-primitive recursive lower bound is by a reduction from the nonemptiness
problem of two-counter machines with incrementing errors over finite words (cf. [11]).
The reduction is similar to that in Theorem 4.2, where all the four conditions, except
the last, can be expressed in NN-∃∗-VLTL. �

4.1.3. Decidability: ∀-VLTLgdap
pn f960

In the following, we state and prove the decidability result for ∀-VLTLgdap
pn f .

Theorem 4.11. The satisfiability and ω-satisfiability problems of ∀-VLTLgdap
pn f are de-

cidable.

Proof. Suppose ϕ = ∀x. ψ is a ∀-VLTLgdap
pn f sentence over AP ∪ T .
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From the definition of enc(·), we know that enc(ϕ) = ϕ′1 ∧ ϕ
′
2 and ϕ′2 = ∀x. ψ′ for965

some quantifier free VLTL formula ψ′. Then enc(ϕ) can be rewritten into ∀x. (ϕ′1∧ψ
′),

since no variables occur in ϕ′1. So enc(ϕ) is a ∀-VLTLpn f sentence over AP′∪T , where
AP′ = AP ∪ {p′}. The formula ϕ′1 requires that p′ occurs in the positions pos s.t.
pos ≡ 0 mod K. It is not hard to observe that if ϕ is a ∀-VLTLgdap

pn f sentence, then ψ′

can be rewritten into a quantifier free VLTL formula where all the occurrences of p970

and ¬p for p ∈ AP are guarded by the positive occurrences of x (that is, τ(x) for some
τ ∈ T , or x@a′). For instance,

• for an eventual occurrence of p∧τ(x) in ψ s.t. p ∈ AP and τ ∈ T , it is transformed
into (p′ ∧

∨
0≤i≤K−1

Xi p) ∧ (p′ ∧
∨

0≤i≤K−1
Xiτ(x)) in ψ′, which is equivalent to p′ ∧∨

0≤i≤K−1
Xi(p ∧ τ(x)), since either none of Xi p holds or all of them hold,975

• for an eventual occurrence of ¬(p ∧ τ(x)) in ψ s.t. p ∈ AP and τ ∈ T , it is
equivalent to ¬p ∨ ¬τ(x) ≡ (¬p ∧ τ(x)) ∨ ¬τ(x), which is then transformed into
[p′ ∧

∨
0≤i≤K−1

Xi(¬p ∧ τ(x))] ∨ [p′ ∧
∧

0≤i≤K−1
Xi¬τ(x)] in ψ′,

• for an eventual occurrence of p ∧ x@ai in ψ s.t. p ∈ AP and ai ∈ A, it is
transformed into (p′∧

∨
0≤ j≤K−1

X j p)∧ (p′∧Xix@a′) in ψ′, which can be replaced980

by p′ ∧ Xi(p ∧ x@a′), since either none of X j p holds or all of them hold,

• for an eventual occurrence of ¬(p ∧ x@ai) in ψ s.t. p ∈ AP and ai ∈ A, it
is equivalent to (¬p ∧ x@ai) ∨ ¬x@ai, which is then transformed into (p′ ∧
Xi(¬p ∧ x@a′)) ∨ (p′ ∧ Xi¬x@a′) in ψ′.

By abuse of notation, we still denote the resulting formula by ψ′. Note that the formula985

∀x. (ϕ′1 ∧ ψ
′) is not a ∀-VLTLgdap

pn f formula since the occurrences of p′ are not guarded.
To continue the proof, we introduce the following notation. Suppose w = w0 . . .wn

is an A′-attributed data word over AP′ ∪ T . Then pr jAP′∪T (w) = w0|AP′∪T . . .wn|AP′∪T ,
where for every i : 0 ≤ i ≤ n, suppose that wi = (Ai, (Bi, di)), then wi|AP′∪T = (Ai, Bi).
The definition of pr jAP′∪T (·) can be naturally generalized to languages of A′-attributed990

data words.
From Proposition 4.9, we know that the satisfiability of ϕ over A-attributed data

words is reduced to the nonemptiness of the language L(enc(ϕ)) over A′-attributed
data words. The nonemptiness of L(enc(ϕ)) is then reduced to the nonemptiness of
pr jAP′∪T (L(enc(ϕ))).995

In the following, we will construct an EDADenc(ϕ) from enc(ϕ) = ∀x. (ϕ′1 ∧ ψ
′) s.t.

L(Denc(ϕ)) = pr jAP′∪T (L(enc(ϕ))). The decidability then follows from Theorem 2.10.
The EDADenc(ϕ) = (AP′ ∪ T,A,B) is constructed as follows.

• A is the identity transducer which checks that the atomic propositions from AP′

occur in a desired way, that is, p′ occurs exactly in the positions pos s.t. pos ≡1000

0 mod K, and for each p ∈ AP and a position pos : pos ≡ 0 mod K, either p
occurs in all the positions pos, pos + 1, . . . , pos + K − 1, or p occurs in none of
them.
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• B is constructed from ∀x. (ϕ′1 ∧ ψ
′) by the following procedure.

1. Construct an LTL formula ψ′′ from ψ′ as follows. Intuitively, ψ′′ verifies1005

that the constraint ψ′ is satisfied for a fixed valuation of x (the positions
where the data value assigned to x occurs are exactly the positions where
the symbols (A, B, 1) ∈ 2AP′ × 2T × {1} occur).

– Replace every occurrence of p′ (resp. ¬p′) by the formula ({p′}, 0) ∨∨
p′∈A⊆AP′,B⊆T

(A, B, 1) (resp. (∅, 0) ∨
∨

p′<A⊆AP′,B⊆T
(A, B, 1)).1010

– Replace every occurrence of p∧τ(x) (resp. ¬(p∧τ(x))) by the formula∨
p∈A⊆AP′,τ∈B⊆T

(A, B, 1) (resp. ({p′}, 0) ∨ (∅, 0) ∨
∨

p<A⊆AP′,B⊆T
(A, B, 1) ∨∨

A⊆AP′,τ<B⊆T
(A, B, 1)). Similarly for ¬p ∧ τ(x) and ¬(¬p ∧ τ(x)).

– Replace every occurrence of p∧ x@a′ (resp. ¬(p∧ x@a′)) by the for-
mula

∨
p∈A⊆AP′,B⊆T

(A, B, 1) (resp. ({p′}, 0)∨ (∅, 0)∨
∨

p<A⊆AP′,B⊆T
(A, B, 1)).1015

– Replace every occurrence of τ(x) by the formula
∨

A⊆AP′,τ∈B⊆T
(A, B, 1).

– Replace every occurrence of ¬τ(x) by the formula ({p′}, 0) ∨ (∅, 0) ∨∨
A⊆AP′,τ<B⊆T

(A, B, 1).

– Replace every occurrence of x@a′ by the formula
∨

A⊆AP′,B⊆T
(A, B, 1).

– Replace every occurrence of ¬x@a′ by the formula ({p′}, 0) ∨ (∅, 0).1020

2. Construct a finite state automaton Aψ′′ over the alphabet Σ′ = 2AP′ × 2T ×

{1} ∪ 2{p
′} × {0} from ψ′′.

3. Finally, from Aψ′′ = (Σ′,Q,Q0, δ,Q f ), construct a finite automaton B =

(Σ,Q × [K],Q0 × {0}, δ′,Q f × {K − 1}). Intuitively, B guesses the occur-
rences of p′ in the positions pos s.t. pos ≡ 0 mod K, and simulates Aψ′′ .1025

Formally, inB, Σ = (2AP′×2T ×{1})∪{0}, and δ′ is defined by the following
rules,

– if (q, (A, B, 1), q′) ∈ δ for A ⊆ AP′ s.t. p′ ∈ A, then ((q, 0), (A ∩
AP, B, 1), (q′, 1)) ∈ δ′,

– if (q, (A, B, 1), q′) ∈ δ for A ⊆ AP′ s.t. p′ < A, then for each j : 0 <1030

j < K, ((q, j), (A, B, 1), (q′, j + 1 mod K)) ∈ δ′,
– if (q, ({p′}, 0), q′) ∈ δ, then ((q, 0), 0, (q′, 1)) ∈ δ′,
– if (q, (∅, 0), q′) ∈ δ, then for each j : 0 < j < K, ((q, j), 0, (q′, j +

1 mod K)) ∈ δ′.

For the ω-satisfiability problem, the construction of the ω-EDA is adapted from the1035

EDA constructed above, with the following modifications.

• Construct from ψ′′ a Büchi automaton Aψ′′ over the alphabet Σ′ = 2AP′ × 2T ×

{1} ∪ 2{p
′} × {0}.

• From Aψ′′ = (Σ′,Q,Q0, δ,Q f ), a Büchi automaton B = (Σ,Q × [K],Q0 ×

{0}, δ′,Q f × [K]) is constructed, with Σ and δ′ defined the same as above.1040

The decidability of theω-satisfiability of ∀-VLTLgdap
pn f then follows from Theorem 2.10.

�
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4.1.4. Decidability: ∃∗∀∗-RVLTLpn f

Theorem 4.12. The satisfiability of ∃∗∀∗-RVLTLpn f is in EXPSPACE and PSPACE-
hard. In particular, the satisfiability of ∃k∀∗-RVLTLpn f (where k is a constant) is1045

PSPACE-complete. The results hold even for the extension of ∃∗∀∗-RVLTLpn f with
data variable comparison modalities.

Proof. The proof is obtained by a special way to eliminate the universal variable quan-
tifiers from the formulae.

Without loss of generality, we assume that for each ∃∗∀∗-RVLTLpn f sentence ϕ, no1050

variables in ϕ are quantified twice.
Let ϕ = ∃x1 . . .∃xk∀y1 . . .∀yl. ψ be an ∃∗∀∗-RVLTLpn f sentence. For each function

f from {1, . . . , l} to {0, 1, . . . , k}, define the formula elm f (ψ) as follows: For each i ∈
{1, . . . , l},

• if f (i) = 0, then for each τ ∈ T , replace each occurrence of τ(yi) (resp. ¬τ(yi))1055

with f alse (resp. true),

• otherwise, replace each occurrence of yi with x f (i).

Note that the formulae elm f (ψ) contain only the variables x1, . . . , xk. In addition, let
elm∀(ϕ) denote the sentence ∃x1 . . .∃xk. ∧ f elm f (ψ). The size of elm∀(ϕ) is exponential
over k. In the following, we will show that ϕ is satisfiable iff elm∀(ϕ) is satisfiable.1060

The complexity upper bounds then follow from the fact that the satisfiability of ∃∗-
RVLTLpn f is PSPACE-complete (cf. Proposition 2.5). The complexity lower bound is
from that of LT L.
Claim. ϕ is satisfiable iff elm∀(ϕ) is satisfiable.
Proof of the claim.1065

The “Only if” direction is easy. We only present the proof for the “If” direction.
Suppose elm∀(ϕ) is satisfiable. Then there is an A-attributed data word w such that

w |= ∃x1 . . .∃xk. ∧ f elm f (ψ). So there are d1, . . . , dk such that w |=λ ∧ f elm f (ψ),
where λ is the function that assigns d j to x j for each j : 1 ≤ j ≤ k. Let w′ be
the data word obtained from w as follows: For each occurrence of (β, d) such that1070

β ∈ 2T and d < {d1, . . . , dk}, replace (β, d) with (∅, d). In the following, we show that
w′ |=λ ∀y1 . . .∀yl.ψ. Thus w′ |= ∃x1 . . .∃xk∀y1 . . .∀yl.ψ and ϕ is satisfiable.

To show that w′ |=λ ∀y1 . . .∀yl.ψ, it is sufficient to show that for each tuple of data
values d′1, . . . , d

′
l , w′ |=λ[d′1/y1,...,d′l /yl] ψ.

Let d′1, . . . , d
′
l be a tuple of data values and f be the function from {1, . . . , l} to1075

{0, 1, . . . , k} such that for each i : 1 ≤ i ≤ l, f (i) = 0 if d′i < {d1, . . . , dk}, and f (i) =

min({ j | 1 ≤ j ≤ k, d′i = d j}) otherwise. Then w |=λ elm f (ψ). Let d′ be a data value not
occurring in w and λ′ be the function that extends λ by assigning d′ to yi if f (i) = 0,
and d f (i) to yi otherwise. Because w |=λ elm f (ψ), and for each i : 1 ≤ i ≤ l such
that f (i) = 0, τ(yi) (resp. ¬τ(yi)) is replaced by f alse (resp. true) when constructing1080

elm f (ψ) from ψ, moreover, λ′(τ(yi)) (resp. λ′(¬τ(yi))) evaluates to f alse (resp. true) in
each position of w, we deduce that w |=λ′ ψ.

For each τ ∈ T and i : 1 ≤ i ≤ l such that f (i) = 0, we know that λ′(yi) = d′. Since
d′ does not occur in w, according the construction of w′ from w, we know that d′ does
not occur in w′. Therefore, λ′(τ(yi)) (resp. λ′(¬τ(yi))) evaluates to f alse (resp. true) in1085
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each position of w′. Because w |=λ′ ψ and w′ and w are identical in the positions that
hold the data values d1, . . . , dk, we deduce that w′ |=λ′ ψ.

Moreover, for each τ(yi) such that f (i) = 0, since d′i < {d1, . . . , dk}, we deduce
that (λ[d′1/y1, . . . , d′l/yl])(τ(yi)) (resp. (λ[d′1/y1, . . . , d′l/yl])(¬τ(yi))) evaluates to f alse
(resp. true) in each position of w′. Because λ′ and λ[d′1/y1, . . . , d′l/yl] agree on the1090

data values assigned to x1, . . . , xk as well as to the variables yi such that f (i) , 0, we
conclude that w′ |=λ[d′1/y1,...,d′l /yl] ψ. �

The results of Theorem 4.12 can be extended to the situation that the data variable
comparison modalities e.g. x = y and ¬x = y are available by adapting the construc-
tion of elm∀(ϕ) slightly to include the equality and inequality information between the1095

variables yi’s s.t. f (i) = 0. Thus Theorem 4.12 extends the results in [18], where the
satisfiability of ∃∗∀-RVLTLpn f (with data variable comparisons) was claimed to be de-
cidable. On the other hand, it is open whether the ω-satisfiability of ∃∗∀∗-RVLTLpn f is
decidable.

4.2. Model checking problem1100

In this section, we prove the undecidability of the model checking and ω-model
checking problems for fragments of VLTL. We will only present the proofs for the
model checking problem and the proofs can be easily extended to the ω-model check-
ing problem.

Since a VKS can be defined to accept the set of all A-attributed data words where1105

A is a singleton, we deduce the following result from Theorem 4.1.

Corollary 4.13. The model checking and ω-model checking problems of ∀∗-VLTL are
undecidable.

Proof. We prove the corollary by a reduction from the satisfiability problem of ∃∗-
VLTL over A-attributed data words where A is a singleton.1110

Suppose ϕ is an ∃∗-VLTL sentence over AP ∪ T . Then the negation of ϕ, more
precisely, ϕ, is a ∀∗-VLTL sentence.

Define a VKS K = (AP, X, S ,R, S 0, I, L, L′) as follows:

• X = {x},

• S = S 0 =
{
si | 1 ≤ i ≤ |2AP ∪ 2T |

}
,1115

• R = {(s, s′) | ∀s, s′ ∈ S },

• I(s) = {true} for all s ∈ S ,

• L is a bijection function from S to 2AP ∪ 2T × X,

• L′(e) = {reset} × X for every e ∈ R.

It is easy to see that L(K) is the set of all the A-attributed data words over AP ∪ T1120

where A is a singleton. Thus, ϕ is satisfiable iff ϕ is not valid iff L(K) * L(ϕ) iff
K 6|= ϕ. �

Similarly, we deduce from Theorem 4.2 and Theorem 4.7 the following two results.
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Corollary 4.14. The model checking and ω-model checking problems of ∃-VLTLpn f

are undecidable.1125

Corollary 4.15. The model checking and ω-model checking problems of ∀∃-VLTLnoap
pn f ,

∃∀-VLTLnoap
pn f , and ∃∃-VLTLnoap

pn f are undecidable.

Theorem 4.16. The model checking and ω-model checking problems of ∃-RVLTLpn f

are undecidable.

Proof. In the following, we only present the arguments for model checking problem.1130

It is easy to see that the arguments can be extended to ω-model checking problem.
We prove the theorem by a reduction from the satisfiability problem of ∀-VLTLpn f .

Let ϕ′ be the sentence obtained from ϕ constructed in the proof of Theorem 4.2 by
replacing x@a with τ(x), where τ is a newly introduced parameterized atomic propo-
sition. Let A be the two counter machine defined as in the proof of Theorem 4.2. It is1135

easy to see that L(A) is nonempty iff ϕ′ is satisfiable over the A-attributed data words
in which τ occurs at each position (Note that A = {a}). Note that ϕ′ is a ∀-RVLTLpn f

sentence and ϕ′ (the negation of ϕ′) is an ∃-RVLTLpn f sentence.
Define a VKS K = (AP, X, S ,R, S 0, I, L, L′) as follows:

• X = {x},1140

• S = S 0 =
{
si | 1 ≤ i ≤ |2AP|

}
,

• R = {(s, s′) | ∀s, s′ ∈ S },

• I(s) = {true} for all s ∈ S ,

• L is a bijection function from S to {P ∪ {(τ, x)} | P ⊆ AP},

• L′(e) = {(reset, x)} for every e ∈ R.1145

It is easy to see that L(K) is the set of all the X-attributed data words over AP ∪ T in
which τ occurs in each position (Note that X is a singleton). Thus, ϕ′ is satisfiable over
X-attributed data words in which τ occurs in each position iff L(K) ∩ L(ϕ′) , ∅ iff
L(K) * L(ϕ′) iff K 6|= ϕ′.

Therefore, the model checking problem of ∃-RVLTLpn f is undecidable. �1150

We can also deduce from Theorem 4.8 the following result.

Corollary 4.17. The ω-model checking problem of NN-∀∗-VLTL is undecidable.

In the following, we will deduce from the decidability of the satisfiability problem
of NN-∃∗-VLTL the decidability of the model checking problem of the dual fragment.
For this purpose, we show the following preliminary result.1155

Proposition 4.18. Let K be a VKS . Then enc(L(K)) can be defined by an AWRA.
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Proof. Let K = (AP ∪ T, X, S ,R, S 0, I, L, L′) be a VKS and K = |X|. Suppose AP =

{p1, . . . , pl}, T = {τ1, . . . , τm}, X = {x0, . . . , xK−1}, and S = {s1, . . . , sn}. Without loss of
generality, we assume that S 0 = {s1, . . . , sr} for some r : 1 ≤ r ≤ n. In addition, we
assume that for every s ∈ S , a linear order is fixed for R(s), that is, the set of successors1160

of s. Let k be the maximum number of successors of states in K .
Let p′ < AP ∪ T , AP′ = AP ∪ {p′}, and A′ = {a′}. Then enc(L(K)) is a set of

A′-attributed data words over AP′ ∪ T .
Construct an AWRA A = (AP′ ∪ T,Q, q0, δ) to define enc(L(K)) as follows. In-

tuitively, when reading an A′-attributed data word w′,A nondeterministically chooses1165

a finite path π of K and verifies that w′ conforms to the invariants I(s) for s ∈ S and
the constraints induced by the edge-labeling function L′ (e.g. for an edge (s, s′) ∈ R
s.t. (reset, x) < L′(s, s′), the value of x in s is the same as that in s′). Note that during
the construction, for the convenience of the presentation, we use the arbitrary positive
Boolean combinations of states in the definition of δ. Auxiliary states can be intro-1170

duced to transform δ into the standard definition. More specifically, A is constructed
as follows.

• Q includes all the states occurring in the definition of δ, where

– the states ((s, s′), j) for j ∈ [K] are used to record the choice of the edges
out of s (where the indices j are added due to the fact that each position of1175

w corresponds to K consecutive positions in enc(w)),

– the states (s,−, j) where j ∈ [K] are used to indicate that the current path
of K stops in the state s,

– the states (s, 0, ψ), the states (s, j, xi op xi′ ), and the states (s, j, (xi)op) are
used to enforce the invariants I(s) for s ∈ S , where ψ is a subformula of1180

I(s), j ∈ [K] and op ∈ {=,,},

– the states (s, 0, ψ), the states (s, j, pi) and (s, j,¬pi), and the states (s, j′, τi(x j))
and (s, j′,¬τi(x j)) are used to verify the conformance to the state-labeling
function L, where ψ is a subformula of ϕL(s) (defined later), pi ∈ AP, τi ∈ T ,
x j ∈ X and j, j′ ∈ [K − 1],1185

– the states ((s, s′), j, xi) and the states ((s, s′), j, (xi)=) are used to enforce the
constraints between the pair of variable valuations in s and s′ respecitvely
induced by the edge-labeling function L′(s, s′).

• q0 is the initial state.

• δ is defined as follows.1190

For each state s ∈ S , let ϕL(s) denote the formula (θ1 ∧ (θ2 ∧ . . . (θl−1 ∧ θl) . . . ) ∧(
η1,0 ∧ (η1,1 ∧ . . . (η1,K−1 ∧ (η2,0 ∧ (· · · ∧ (ηm,K−2 ∧ ηm,K−1) . . . ))) . . . )

)
, where for

every i : 1 ≤ i ≤ l, θi = pi if pi ∈ L(s), θi = ¬pi otherwise; for every i : 1 ≤ i ≤ m
and j : 0 ≤ j ≤ K − 1, ηi, j = τi(x j) if (τi, x j) ∈ L(s), ηi, j = ¬τi(x j) otherwise.

– δ(q0) = (s1, 0) ∨ (s2, 0) ∨ · · · ∨ (sr, 0).1195

– For every s ∈ S , let R(s) = {s′0, . . . , s
′
i}, then δ((s, 0)) = p′ ∧ (s, 0, I(s)) ∧

(s, 0, ϕL(s)) ∧ ([(s, s′1, 0) ∨ · · · ∨ (s, s′i , 0)] ∨ (s,−, 0)). Intuitively, when the
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current path is in the state s, either some successor s′i′ of s (where 0 ≤ i′ ≤ i)
is chosen as the next state in the path and the state of A is changed to
((s, s′i′ ), 0), or (s,−, 0) is chosen and the path stops in the state s.1200

– For every s ∈ S and j ∈ [K − 1], δ((s,−, j)) = O0(s,−, j + 1), moreover,
δ((s,−,K − 1)) = O0?.

– For every s ∈ S and every subformula ψ = ψ1 op ψ2 of I(s) (where op =

∨,∧), δ((s, 0, ψ)) = (s, 0, ψ1) op (s, 0, ψ2).

– For every s ∈ S , every subformula xi op xi′ (where op ∈ {=,,} and i < i′)1205

of I(s), and every j : 0 ≤ j < i, δ((s, j, xi op xi′ )) = O0(s, j + 1, xi op xi′ ),
δ((s, i, xi op xi′ )) = store((s, i, (xi′ )op)).

– For every s ∈ S , i : 0 ≤ i ≤ K − 1, j : 0 ≤ j < i, and op ∈ {=,,},
δ((s, j, (xi)op)) = O0(s, j+1, (xi)op), δ((s, i, (xi)=)) = eq, δ((s, i, (xi),)) = eq.

– For every s ∈ S and every subformula ψ = ψ1 ∧ ψ2 of ϕL(s), δ((s, 0, ψ)) =1210

(s, 0, ψ1) ∧ (s, 0, ψ2),

– For every s ∈ S , i : 1 ≤ i ≤ l, δ((s, 0, pi)) = pi, δ((s, 0,¬pi)) = ¬pi.

– For every s ∈ S , i : 1 ≤ i ≤ m, j : 0 ≤ j ≤ K − 1 and j′ : 0 ≤
j′ < j, δ((s, j′, τi(x j))) = O0(s, j′ + 1, τi(x j)), δ((s, j′,¬τi(x j))) = O0(s, j′ +
1,¬τi(x j)), moreover, δ((s, j, τi(x j))) = τi, and δ((s, j,¬τi(x j))) = ¬τi.1215

– For every (s, s′) ∈ R, let Y = {xi | (reset, xi) < L′(s, s′)}, then δ(((s, s′), 0)) =

O0((s, s′), 1) ∧
∧

xi∈Y
((s, s′), 0, xi). Intuitively, ((s, s′), 0, xi) is used to verify

that the value of xi in the state s′ is the same as that of s.

– For every s ∈ S , let R(s) = {s′0, . . . , s
′
i}, then for every i : 0 ≤ i′ ≤ i and

j : 0 ≤ j < K − 1, δ(((s, s′i′ ), j)) = O0((s, s′i′ ), j + 1), δ(((s, s′i′ ),K − 1)) =1220

O0(s′i′ , 0).

– For every (s, s′) ∈ R, i : 0 ≤ i ≤ K − 1 and j : 0 ≤ j < i, δ(((s, s′), j, xi)) =

O0((s, s′), j + 1, xi), δ(((s, s′), i, xi)) = store(((s, s′), i, (xi)=)). Intuitively,
((s, s′), i, (xi)=) means that the data value assigned to xi on s has been stored
in the register, and this value should be equal to that of s′.1225

– For every (s, s′) ∈ R, i : 0 ≤ i ≤ K − 1 and j : i ≤ j < K − 1,
δ(((s, s′), j, (xi)=)) = O0((s, s′), j + 1, (xi)=).

– For every s ∈ S , let R(s) = {s′0, . . . , s
′
i}, then for every i′ : 0 ≤ i′ ≤ i and

j : 0 ≤ j ≤ K − 1, δ(((s, s′i′ ),K − 1, (x j)=)) = O0(s′i′ , 0, (x j)=). Intuitively,
by going to the state (s′i′ , 0, (x j)=), the fact that the data value stored in the1230

register, which is the data value of x j in the state s, should be equal to the
value of x j in the state s′i′ , will be checked.

�

Corollary 4.19. The model checking problem of NN-∀∗-VLTL is decidable and non-
primitive recursive.1235
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Proof. For every VKS K = (AP ∪ T, X, S ,R, S 0, I, L, L′) and every NN-∀∗-VLTL
sentence ϕ over X-attributed data words, we have K 6|= ϕ iff L(K) ∩ L(ϕ) , ∅ iff
enc(L(K)) ∩ enc(L(ϕ)) , ∅ iff enc(L(K)) ∩ L(enc(ϕ)) , ∅.

From the proof of Theorem 4.10, we know that an AWRA Aenc(ϕ) can be con-
structed from enc(ϕ) s.t. L(Aenc(ϕ)) = L(enc(ϕ)).1240

From Proposition 4.18, we know that an AWRA AK can be constructed from K
s.t. L(AK ) = enc(L(K)).

Because the language defined by AWRAs are closed under intersection, it follows
that an AWRA can be constructed to define L(AK ) ∩ L(Aenc(ϕ)). The decidability of
the model checking problem then follows from Theorem 2.8.1245

For the lower bound, it follows from Theorem 4.10 and the following argument:
Since a VKS K can be constructed to define the set of all A-attributed data words
where A is a singleton, we have that for every NN-∃∗-VLTL formula ϕ, ϕ is satisfiable
over A-attributed data words iff K 6|= ϕ. �

Then we deduce from the satisfiability and ω-satisfiability problems of ∀-VLTLgdap
pn f1250

the decidability of the model checking and ω-model checking problems of the dual
fragment.

Corollary 4.20. The model checking and ω-model checking problems of ∃-VLTLgdap
pn f

are decidable.

Proof. We first consider model checking problem.1255

Let K = (AP ∪ T, X, S ,R, S 0, I, L, L′) be a VKS and ϕ be an ∃-VLTLgdap
pn f sentence

over X-attributed data words. From Proposition 4.9, K |= ϕ iff L(K) ∩ L(ϕ) = ∅ iff
enc(L(K)) ∩ L(enc(ϕ)) = ∅.

On the other hand, it is not hard to observe that enc(L(K)) ∩ L(enc(ϕ)) , ∅ iff
pr jAP′∪T (enc(L(K))) ∩ pr jAP′∪T (L(enc(ϕ))) , ∅. The “only if” direction is trivial.1260

For the “if” direction, suppose pr jAP′∪T (enc(L(K))) ∩ pr jAP′∪T (L(enc(ϕ))) , ∅. Then
there are w′ ∈ enc(L(K)) and w′′ ∈ L(enc(ϕ)) s.t. pr jAP′∪T (w′) = pr jAP′∪T (w′′). Since
in w′ and w′′, p′ occurs in the same positions, it follows that w′ = w′′. Therefore,
w′ ∈ enc(L(K)) ∩ L(enc(ϕ)).

From the proof of Theorem 4.11, we know that from pr jAP′∪T (enc(ϕ)), an equiva-1265

lent EDA can be constructed. From Theorem 2.10, it is sufficient to construct an EDA
defining pr jAP′∪T (enc(L(K))).

It is not hard to observe that pr jAP′∪T (enc(L(K))) can be defined by a nondeter-
ministic register automaton (NRA) (cf. [38]). On the other hand, it is known that from
a NRA, an equivalent DA can be constructed (cf. [56]). Since a DA is a special EDA,1270

it follows that an EDA can be constructed to define pr jAP′∪T (enc(L(K))).
The argument for the ω-model checking problem is similar, with NRAs and EDAs

replaced by ω-NRAs and ω-EDAs. �

5. Decision problems of VCTL

5.1. Undecidability1275

By adding a universal path quantifier A before every temporal operator of ϕ in the
proof of Theorem 4.1, we get a reduction to the satisfiability problem of ∃∗-AVCTL.
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Corollary 5.1. The satisfiability and ω-satisfiability problems of ∃∗-AVCTL formulae
are undecidable.

Proof. The reduction in Theorem 4.1 can be adapted into a reduction to ∃∗-AVCTL as1280

follows: We first normalize the formula ϕ in Theorem 4.1 by replacing every subfor-
mula ψ1 → ψ2 with ψ1 ∨ ψ2. Then we add the universal path quantifier A before every
occurrence of temporal operators. Let ϕ′ be the resulting ∃∗-AVCTL formula5.

In the following, we will show that ϕ is satisfiable over data words iff ϕ′ is satisfi-
able over data trees.1285

Suppose ϕ is satisfiable, then there is a data word w s.t. w |= ϕ. Let tw be a k-ary
data tree where the data word on every path of tw is w, then it is not hard to see that
tw |= ϕ′.

On the other hand, suppose that ϕ′ is satisfiable. Then there are k ≥ 1 and a k-ary
data tree t s.t. t |= ϕ′. Let ϕi for i = 1, . . . , 10 be the subformulae defined as in the proof1290

of Theorem 4.1. Take an arbitrary path π in t, we want to show that for every formula
ϕi (where i = 1, . . . , 10), we have wπ |= ϕi.

We use ϕ10 to exemplify the proof.
Let ϕ′10 be the ∃∗-AVCTL formula by adding A before every occurrence of temporal

operators in ϕ10.1295

Then t |= ϕ′10. This implies that for every σ1, σ2 ∈ Σ and every node πi on π,
t|πi |= ψ′0 → ∃x∃y(ψ′1 ∧ AXψ′2 ∧ AF(ψ′3 ∧ AXψ′4)), where ψ′0 is the formula obtained
from ψ0 by adding the existential path quantifier E before every occurrence of temporal
operators, ψ′1, ψ

′
2, ψ

′
3 are the formulae obtained from respectively ψ1, ψ2, ψ3 by adding

A before every occurrence of temporal operators.1300

To show wπ |= ϕ10, that is for all σ1, σ2 ∈ Σ, wπ |= ψσ1,σ2 , it is sufficient to
show that for every σ1, σ2 ∈ Σ and i : 0 ≤ i < |π|, if (wπ)i |= ψ0, then (wπ)i |=

∃x∃y(ψ1 ∧ Xψ2 ∧ F(ψ3 ∧ Xψ4)).
Suppose (wπ)i |= ψ0, then t|πi |= ψ′0. From the fact that t|πi |= ψ′0 → ∃x∃y(ψ′1 ∧

AXψ′2 ∧ AF(ψ′3 ∧ AXψ′4)), we know that t|πi |= ∃x∃y(ψ′1 ∧ AXψ′2 ∧ AF(ψ′3 ∧ AXψ′4)).1305

Therefore, there is an assignment λ : {x, y} → D s.t. t|πi |=λ ψ
′
1∧AXψ′2∧AF(ψ′3∧AXψ′4).

Since (wπ)i is a data word corresponding to a path in t|πi , it follows that (wπ)i |=λ

ψ1∧Xψ2∧F(ψ3∧Xψ4). From this, we conclude that (wπ)i |= ∃x∃y(ψ1∧Xψ2∧F(ψ3∧

Xψ4)). �

The argument in the proof of Corollary 5.1 relies essentially on the universal path1310

quantifiers A. Later on, we show that the satisfiability is decidable if only existential
path quantifiers E are allowed, no matter whatever variable quantifications are used.
In addition, unlike VLTL, from the undecidability of the satisfiability problem of a
fragment of VCT L, the undecidability of the model checking problem of the dual frag-
ment does not follow directly. The reason is that there does not exist a variable Kripke1315

structure which defines the set of all A-attributed data trees or even the set of all k-ary
A-attributed data trees for a fixed k. For instance, later on, we will show that the satisfi-

5If ϕ is not normalized, then for every subformula ψ1 → ψ2, E should be added before each occurrence
of temporal operators in ψ1, so that we still get an ∃∗-AVCTL formula.
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ability problem of ∃∗-EVCT L (in fact EVCT L) is decidable, while the model checking
problem for ∀∗-AVCTL is undecidable.

Similarly, from Theorem 4.2 and Theorem 4.7, we deduce the following result.1320

Corollary 5.2. The satisfiability and ω-satisfiability problems of ∀-AVCTLpn f are un-
decidable.

Corollary 5.3. The satisfiability and ω-satisfiability problems of ∃∀-VCTLnoap
pn f , ∀∃-

VCTLnoap
pn f and ∀∀-VCTLnoap

pn f are undecidable.

Moreover, from Theorem 4.8, we deduce the following result.1325

Corollary 5.4. The ω-satisfiability problem of NN-∃∗-VCTL is undecidable.

Next we consider the model checking and ω-model checking problems.

Theorem 5.5. The model checking and ω-model checking problems are undecidable
for the following fragments: ∀∗-AVCTL, ∀∗-EVCTL, ∃∃-VCTLnoap

pn f , ∀∃-VCTLnoap
pn f , ∃∀-

VCTLnoap
pn f , NN-∃∗-VCTL. Moreover, the ω-model checking problem of NN-∀∗-VCTL is1330

undecidable.

Proof. We present the arguments for the model checking problem. The arguments can
be easily extended to the ω-model checking problem.

We prove the theorem by reductions from the satisfiability problems of ∃∗-VLTL
and ∀-VLTL over A-attributed data words where A is a singleton.1335

We first show the argument for the model checking problem of ∀∗-AVCTL.
Let ϕ be an ∃∗-VLTL sentence over AP ∪ T . We will construct a VKS K and an

∃∗-EVCTL sentence ϕ′ s.t. ϕ is satisfiable iff K 6|= ϕ′. Note that ϕ′ is a ∀∗-AVCTL
sentence.

The idea of the reduction is as follows: We construct a VKS K which is a single1340

loop (without branchings). Thus each computation tree of K is in fact a data word.
Then we obtain from ϕ by adding existential path quantifiers E before every temporal
operator occurring in ϕ (plus some other modifications) to obtain ϕ′. SinceK is a linear
structure, the satisfaction of ϕ′ over the computation trees ofK mimics the satisfaction
of ϕ over data words.1345

Suppose AP = {p1, . . . , pm}, T = {τ1, . . . , τn−m} (where m ≤ n), and τ′0, τ
′
1 < AP∪T .

Define the VKSK = (AP′∪T ′, {x}, S ,R, S 0, I, L, L′) as follows: AP′ = ∅, T ′ = {τ′0, τ
′
1},

S = {s0, s1, . . . , s2n+1}, R = {(si, si+1 mod 2n+2) | 0 ≤ i ≤ 2n + 1}, S 0 = {s0}, for every
si ∈ S , I(si) = true, L(s0) = {(τ′0, x)}, L(si) = {(τ′1, x)} for every i : 1 ≤ i ≤ 2n + 1, and
L′(si, si+1 mod 2n+2) = {(reset, x)} for every i : 0 ≤ i ≤ 2n + 1.1350

s0 s1 s2n s2n+1· · ·
{(reset, x)} {(reset, x)} {(reset, x)} {(reset, x)}

{(reset, x)}

{τ ′0(x)} {τ ′1(x)} {τ ′1(x)} {τ ′1(x)}

Figure 2: The Kripke Structure.
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Notice that in K , T ′ only contains two parameterized atomic propositions. The set
of atomic propositions AP will be encoded by equalities and inequalities between the
data values of two adjacent τ′1-labeled positions in K . Thus each position (A, B, d) in
an A-attributed data word over AP ∪ T will be encoded by a segment of computation
traces in K of length 2n + 2 s.t. the position 0 is labeled by τ′0, the position 2i − 1 and1355

2i encode the satisfaction on A∪ B of the i-th atomic proposition from AP∪ T , and the
last position in the segment holds the data value d. In addition, x is reset on each edge
(si, si+1 mod 2n+2) (0 ≤ i ≤ 2n + 1) so that an arbitrary data value can be assigned to x on
each position s0, s1, . . . , s2n+1.

Construct the ∃∗-EVCTL sentence ϕ′ ::= ∃y. (τ′0(y) ∧ ϕ′0 ∧ ϕ
′
1) as follows.1360

• ϕ′0 restricts the format of the computation traces of K ,

ϕ′0 = EG[τ′0(y)→ ((EX)2n+2τ′0(y) ∧ ∧1≤i≤n(EX)2i−1τ′1(y))].

Intuitively, ϕ′0 states that if (τ′0, d0) (assume that the data value d0 is assigned to
y) occurs in some position, then (τ′0, d0) will occur in the (2n+2)-th position after
it if there is such a position, and (τ′1, d0) will occur in all the (2i − 1)-th positions
for 1 ≤ i ≤ n after it (But not necessarily occur in the 2i-th position).

• ϕ′1 is constructed from ϕ by the following procedure.1365

1. For every eventual occurrence of Xφ (resp. Xφ), replace Xφ (resp. Xφ) by
τ′0(y) ∧ X2n+2φ (resp. τ′0(y) ∧ X

2n+2
φ),

2. for every persistent occurrence of Xφ (resp. Xφ), replace Xφ (resp. Xφ) by
τ′0(y)→ X2n+2φ (resp. τ′0(y)→ X

2n+2
φ),

3. for every proposition pi ∈ AP, replace every eventual occurrence of pi1370

(resp. ¬pi) by τ′0(y) ∧ X2i−1(τ′1(y) ∧ Xτ′1(y)) (resp. τ′0(y) ∧ X2i−1(τ′1(y) ∧
X¬τ′1(y))), and replace every persistent occurrence of pi (resp. ¬pi) by
τ′0(y)→ X2i−1(τ′1(y) ∧ Xτ′1(y)) (resp. τ′0(y)→ X2i−1(τ′1(y) ∧ X¬τ′1(y))),

4. for every proposition τi ∈ T and x ∈ Var, replace every eventual oc-
currence of τi(x) (resp. ¬τi(x)) by τ′0(y) ∧ X2(m+i)−1(τ′1(y) ∧ Xτ′1(y)) ∧1375

X2n+1τ′1(x) (resp. τ′0(y) ∧ [X2(m+i)−1(τ′1(y) ∧ X¬τ′1(y)) ∨ X2n+1¬τ′1(x)]), and
replace every persistent occurrence of τi(x) (resp. ¬τi(x)) by τ′0(y) →
[X2(m+i)−1(τ′1(y) ∧ Xτ′1(y)) ∧ X2n+1τ′1(x)] (resp. τ′0(y) → [X2(m+i)−1(τ′1(y) ∧
X¬τ′1(y)) ∨ X2n+1¬τ′1(x)]),

5. add E before every occurrence of temporal operators.1380

For instance, suppose AP = ∅ and T = {τ1, τ2}, then the ∃∗-EVCTL formula corre-
sponding to ∃∗-VLTL formula ∃x.G(¬τ1(x)∨FXτ2(x)) is ∃y.[τ′0(y)∧ϕ′0∧∃x.EG(ψ1∨

EF(τ′0(y)∧ (EX)6ψ2))], where ψ1 = τ′0(y)→ [EX(τ′1(y)∧ EX¬τ′1(y)))∨ (EX)5¬τ′1(x)]
and ψ2 = τ′0(y) ∧ (EX)3(τ′1(y) ∧ EXτ′1(y)) ∧ (EX)5τ′1(x).

Then from the construction, we know that ϕ is satisfiable iff there is a computation1385

tree t of K s.t. t |= ϕ′, that is, iff K 6|= ϕ′.
Because all the computation trees of K are just computation traces, the same re-

duction works for ∀∗-EVCTL, by replacing A with E.
Next we consider the model checking problem of ∃∃-VCTLnoap

pn f .

42



We reduce from the the satisfiability problem of ∀-VLTLpn f over A-attributed data1390

words where A is a singleton.
Let ϕ = ∀x. ψ be a normalized ∀-VLTLpn f sentence.
We construct a VKS K and a ∀∀-VCTLnoap

pn f formula ϕ′ s.t. ϕ is satisfiable iff
K 6|= ϕ′. Note that ϕ′ is an ∃∃-VCTLnoap

pn f sentence.
The construction of the VKSK is the same as above. The formula ϕ′ is constructed1395

as ∀x∀y.[(ϕ′0 ∧ τ
′
0(y))→ ϕ′1], where ϕ′0 is the same as above and ϕ′1 is obtained from ψ

by doing the same replacements as in the construction of ϕ′1 from ϕ above.
The argument for the construction is as follows: ∀x.ψ is satisfiable iff there is a

computation tree t ofK s.t. t |= ∀y.((ϕ′0∧τ
′
0(y))→ ∀x.ϕ′1), i.e. t |= ∀x∀y.((ϕ′0∧τ

′
0(y))→

ϕ′1). This is equivalent to K 6|= ∃x∃y.(ϕ′0 ∧ τ
′
0(y) ∧ ϕ′1).1400

For the model checking problem of ∃∀-VCTLnoap
pn f (resp. ∀∃-VCTLnoap

pn f ), the reduc-
tion is the same as ∃∃-VCTLnoap

pn f , with the formula ϕ′ replaced by ∀x∃y.(ϕ′0∧τ
′
0(y)∧ϕ′1)

(resp. ∃y∀x.(ϕ′0 ∧ τ
′
0(y) ∧ ϕ′1)).

Then, we consider the model checking problem of NN-∃∗-VCTL. We still reduce
from the satisfiability of ∀-VLTLpn f over A-attributed data words where A is a single-1405

ton.
Let ∀x. ψ be a ∀-VLTLpn f sentence.
To avoid nesting quantifiers, we add one atomic proposition {p′0} to the VKS K .

More specifically, K is obtained by adapting the construction above as follows: AP′ =

{p′0}, T ′ = {τ′}, L(s0) = {p′0, (τ
′, x)}, and L(si) = {(τ′, x)} for every i : 1 ≤ i ≤ 2n + 1.1410

Construct the NN-∀∗-VCTL formula ϕ′ as ∀x. ϕ′1, where ϕ′1 is constructed from ψ
by the following procedure.

1. For every eventual occurrence of Xφ (resp. Xφ), replace Xφ (resp. Xφ) by p′0 ∧

X2n+2φ (resp. p′0 ∧ X
2n+2

φ).
2. For every persistent occurrence of Xφ (resp. Xφ), replace Xφ (resp. Xφ) by1415

p′0 → X2n+2φ (resp. p′0 → X
2n+2

φ).
3. For every proposition pi ∈ AP, replace every eventual occurrence of pi (resp.
¬pi) by p′0∧X2i−1∀y.(τ′(y)→ Xτ′(y)) (resp. p′0∧X2i−1∀y.(τ′(y)→ X¬τ′(y))), and
replace every persistent occurrence of pi (resp. ¬pi) by p′0 → X2i−1∀y.(τ′(y) →
Xτ′(y)) (resp. p′0 → X2i−1∀y.(τ′(y)→ X¬τ′(y))).1420

4. For every proposition τi ∈ T and x ∈ Var, replace every eventual occurrence of
τi(x) (resp. ¬τi(x)) by p′0 ∧X2(m+i)−1∀y.(τ′(y)→ Xτ′(y))∧X2n+1τ′(x) (resp. p′0 ∧
[(X2(m+i)−1∀y.(τ′(y) → X¬τ′(y))) ∨ X2n+1¬τ′(x)]), and replace every persistent
occurrence of τi(x) (resp. ¬τi(x)) by p′0 → [X2(m+i)−1∀y.(τ′(y) → Xτ′(y)) ∧
X2n+1τ′(x)] (resp. p′0 → [(X2(m+i)−1∀y.(τ′(y)→ X¬τ′(y))) ∨ X2n+1¬τ′(x)]).1425

5. Add E before every occurrence of temporal operators.

From the construction, we know that ∀x.ψ is satisfiable iff there is a computation tree t
of K s.t. t |= ϕ′ iff K 6|= ϕ′.

Finally, let us consider the ω-model checking problem of NN-∀∗-VCTL. Let K be
the VKS constructed as in the model checking problem of NN-∃∗-VCTL above. Let1430

ϕ′ be the NN-∃∗-VLTL formula constructed in the proof of Theorem 4.8. From ϕ′, we
construct a formula ϕ′′ just as the construction of ϕ′1 from ψ above, with the adaption
that the formulae ∀y.(τ′(y)→ Xτ′(y)) are replaced by ∃y.τ′(y) ∧ Xτ′(y).

43



It is easy to see that ϕ′′ is still an NN-∃∗-VCTL formula and ϕ′′ is an NN-∀∗-VCTL
formula.1435

Then K 6|=ω ϕ′′ iff there is t ∈ Tω(K) s.t. t |= ϕ′′ iff ϕ′ is ω-satisfiable. From
Theorem 4.8, we conclude that the ω-model checking problem of NN-∀∗-VCTL is
undecidable. �

5.2. Decidability

This section is devoted to the decidability results of the decision problems of VCTL1440

formulae.

5.2.1. Non-nested existential data variable quantifiers
Theorem 5.6. The satisfiability problem of NN-∃∗-VCTL is decidable and non-primitive
recursive.

Before we give the proof of Theorem 5.6, similar to the proof for NN-∃∗-VLTL,1445

we first define A′-attributed encodings of A-attributed data trees and enc(ϕ) for NN-
∃∗-VCTL formulae ϕ.

A = {a0, a1}AP = {p} T = {τ}

∅
({τ}, d1)
(∅, d2)

{p}
(∅, d3)

({τ}, d4)

{p}
({τ}, d5)
({τ}, d6)

({p′}, ({τ}, d1))

(∅, (∅, d2))

({p, p′}, (∅, d3))

({p}, ({τ}, d4))

({p, p′}, ({τ}, d5))

({p}, ({τ}, d6))

t
enc(t)

a0

a1

Figure 3: A′-attributed encoding of A-attributed data trees

Similar to the A′-encodings of A-attributed data words, we define A′-attributed
encodings of A-attributed data trees as follows (cf. Figure 3 for an example). Let
A = {a0, . . . , aK−1} and A′ = {a′}. Suppose that t = (Z, L) is a k-ary A-attributed data1450

tree over AP ∪ T s.t. for every z ∈ Z, L(z) = (Az, ((Bz,0, dz,0), . . . , (Bz,K−1, dz,K−1))). Let
p′ < AP ∪ T and AP′ = AP ∪ {p′}. An A′-attributed encoding of t, denoted by enc(t),
is a data tree t′ = (Z′, L′) over AP′ ∪ T s.t. Z′ is a k-ary tree satisfying the following
conditions,

• for every z = i1 . . . in ∈ [k]∗, we have i1 . . . in ∈ Z iff 0K−1i1 . . . 0K−1in0K−1 ∈ Z′,1455

• for every z = i1 . . . in ∈ Z, L′(0K−1i1 . . . 0K−1in) = (Az ∪ {p′}, (Bz,0, dz,0)), and for
every j : 1 ≤ j ≤ K − 1, L′(0K−1i1 . . . 0K−1in0 j) = (Az, (Bz, j, dz, j)).

Proposition 5.7. Let K be a VKS . Then enc(T (K)) can be defined by an ATRA.

44



Proof. Let K = (AP ∪ T, X, S ,R, S 0, I, L, L′) be a VKS and K = |X|.
Suppose AP = {p1, . . . , pl}, T = {τ1, . . . , τm}, X = {x0, . . . , xK−1}, and S = {s1, . . . , sn}.1460

Without loss of generality, we assume that S 0 = {s1, . . . , sr} for some r : 1 ≤ r ≤ n. In
addition, we assume for every s ∈ S , a linear order is fixed for R(s), that is, the set of
successors of s. Let k be the maximum number of successors of states in K .

Let p′ < AP ∪ T and AP′ = AP ∪ {p′}.
Construct an ATRA A = (AP′ ∪ T,Q, q0, δ) over k-ary A′-attributed data trees as1465

follows. Intuitively, when reading an A′-attributed data tree t′,A check that t′ is indeed
a data tree obtained by unwinding K as follows,

• A nondeterministically chooses to stop in the current state s, or to continue un-
winding by creating one thread for each successor of s,

• in addition, A verifies that t′ conforms to the invariants I(s) for s ∈ S and the1470

constraints induced by the edge-labeling function L′ (e.g. for an edge (s, s′) ∈ R
s.t. (reset, x) < L′(s, s′), the value of x in s is the same as that in s′).

Note that during the construction, for the convenience of the presentation, we use
the arbitrary positive Boolean combinations of states in the definition of δ. Auxiliary
states can be introduced to transform δ into the standard definition. Specifically, A is1475

constructed as follows.

• Q includes all the states occurring in the definition of δ. The intuitive meaning
of the states is the same as that in the proof of Proposition 4.18.

• q0 is the initial state.

• δ is defined as follows.1480

For each state s ∈ S , a formula ϕL(s) can be defined as in the proof of Proposi-
tion 4.18 to describe the satisfaction of (parameterized) atomic propositions.

– δ(q0) = (s1, 0) ∨ (s2, 0) ∨ · · · ∨ (sr, 0).

– For every s ∈ S , let R(s) = {s′0, . . . , s
′
i}, then δ((s, 0)) = p′ ∧ (s, 0, I(s)) ∧

(s, 0, ϕL(s))∧([(s, s′1, 0)∧· · ·∧(s, s′i , 0)]∨(s,−, 0)). Intuitively, when a thread1485

is in the state (s, 0), either for each successor s′i′ of s (where 0 ≤ i′ ≤ i), a
thread is created and the state is changed to ((s, s′i′ ), 0), or (s,−, 0) is chosen.

– For every s ∈ S and j ∈ [K − 1], δ((s,−, j)) = O0(s,−, j + 1), moreover,
δ((s,−,K − 1)) =

∧
0≤ j′<k

O j′?.

– For every s ∈ S and every subformula ψ = ψ1 op ψ2 of I(s) (where op =1490

∨,∧), δ((s, 0, ψ)) = (s, 0, ψ1) op (s, 0, ψ2).

– For every s ∈ S , every subformula xi op xi′ (where op ∈ {=,,} and i < i′)
of I(s), and every j : 0 ≤ j < i, δ((s, j, xi op xi′ )) = O0(s, j + 1, xi op xi′ ) ∧∧
1≤ j′<k

O j′?, δ((s, i, xi op xi′ )) = store((s, i, (xi′ )op)).

– For every s ∈ S , i : 0 ≤ i ≤ K − 1, j : 0 ≤ j < i, and op ∈ {=,,1495

}, δ((s, j, (xi)op)) = O0(s, j + 1, (xi)op) ∧
∧

1≤ j′<k
O j′?, δ((s, i, (xi)=)) = eq,

δ((s, i, (xi),)) = eq.
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– For every s ∈ S and every subformula ψ = ψ1 ∧ ψ2 of ϕL(s), δ((s, 0, ψ)) =

(s, 0, ψ1) ∧ (s, 0, ψ2),

– For every s ∈ S i : 1 ≤ i ≤ l, δ((s, 0, pi)) = pi, δ((s, 0,¬pi)) = ¬pi.1500

– For every s ∈ S , i : 1 ≤ i ≤ m, j : 0 ≤ j ≤ K − 1 and j′ : 0 ≤ j′ < j,
δ((s, j′, τi(x j))) = O0(s, j′ + 1, τi(x j)) ∧

∧
1≤ j′′<k

O j′′?, δ((s, j′,¬τi(x j))) =

O0(s, j′ + 1,¬τi(x j)) ∧
∧

1≤ j′′<k
O j′′?, moreover, δ((s, j, τi(x j))) = τi, and

δ((s, j,¬τi(x j))) = ¬τi.

– For every (s, s′) ∈ R, let Y = {xi | (reset, xi) < L′(s, s′)}, then δ(((s, s′), 0)) =1505

O0((s, s′), 1)∧
∧

1≤ j<k
O j?∧

∧
xi∈Y

((s, s′), 0, xi). Intuitively, ((s, s′), 0, xi) is used

to verify that the value of xi in the state s′ is the same as that of s.

– For every s ∈ S , let R(s) = {s′0, . . . , s
′
i}, then for every i : 0 ≤ i′ ≤ i

and j : 0 ≤ j < K − 1, δ(((s, s′i′ ), j)) = O0((s, s′i′ ), j + 1) ∧
∧

1≤ j′<k
O j′?,

δ(((s, s′i′ ),K − 1)) = Oi′ (s′i′ , 0) ∧
∧

i< j′<k
O j′?.1510

– For every (s, s′) ∈ R, i : 0 ≤ i ≤ K − 1 and j : 0 ≤ j < i, δ(((s, s′), j, xi)) =

O0((s, s′), j + 1, xi) ∧
∧

1≤ j′<k
O j′?, δ(((s, s′), i, xi)) = store(((s, s′), i, (xi)=)).

Intuitively, ((s, s′), i, (xi)=) means that the data value assigned to xi on s has
been stored in the register, and this value should be equal to that of s′.

– For every (s, s′) ∈ R, i : 0 ≤ i ≤ K − 1 and j : i ≤ j < K − 1,1515

δ(((s, s′), j, (xi)=)) = O0((s, s′), j + 1, (xi)=) ∧
∧

1≤ j′<k
O j′?.

– For every s ∈ S , let R(s) = {s′0, . . . , s
′
i}, then for every i′ : 0 ≤ i′ ≤ i and

j : 0 ≤ j ≤ K − 1, δ(((s, s′i′ ),K − 1, (x j)=)) = Oi′ (s′i′ , 0, (x j)=) ∧
∧

i< j′<k
O j′?.

�

Suppose that ϕ is a normalized VCTL formula. Then enc(ϕ) = ϕ′1 ∧ ϕ
′
2 with ϕ′1 and1520

ϕ′2 defined as follows.

• ϕ′1 puts restrictions on the occurrences of p′ and the atomic propositions from
AP,

ϕ′1 = p′ ∧G

p′ →

∧
p∈AP

[(
∧

0≤i≤K−1
(AX)i p) ∨ (

∧
0≤i≤K−1

(AX)i¬p)] ∧∧
1≤i≤K−1

(AX)i¬p′ ∧ (AX)K p′

 .
Intuitively, ϕ′1 states that p′ occurs in the first position, for every occurrence of
p′ in some position, p′ will occur in the K-th position after it if there is such a
position, but does not occur in between, moreover, for every p ∈ AP, either p
occurs in all the positions between two adjacent occurrences of p′, or occurs in1525

none of them.

• ϕ′2 is obtained from ϕ by the following procedure.
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1. Replace every eventual occurrence of AXφ (resp. AXφ, EXφ, EXφ) by
p′ ∧ (AX)Kφ (resp. p′ ∧ (AX)Kφ, p′ ∧ (EX)Kφ, p′ ∧ (EX)Kφ).

2. Replace every persistent occurrence of AXφ (resp. AXφ, EXφ, EXφ) by1530

p′ → (AX)Kφ (resp. p′ → (AX)Kφ, p′ → (EX)Kφ, p′ → (EX)Kφ).
3. For every p ∈ AP, replace every eventual occurrence of p (resp. ¬p) by p′∧∨

0≤i≤K−1
(AX)i p (resp. p′ ∧

∨
0≤i≤K−1

(AX)i¬p), and every persistent occurrence

of p (resp. ¬p) by p′ →
∨

0≤i≤K−1
(AX)i p (resp. p′ →

∨
0≤i≤K−1

(AX)i¬p).

The formula
∨

0≤i≤K−1
(AX)i p (resp.

∨
0≤i≤K−1

(AX)i¬p) states that p (resp. ¬p)1535

occurs in one of the next K positions. This is sound since for every p ∈ AP,
ϕ′1 requires that either p occurs in all of them or none of them.

4. For every τ ∈ T and x ∈ Var, replace every eventual occurrence of τ(x)
(resp. ¬τ(x)) by p′ ∧

∨
0≤i≤K−1

(AX)iτ(x) (resp. p′ ∧
∨

0≤i≤K−1
(AX)i¬τ(x)),

and replace every persistent occurrence of τ(x) (resp. ¬τ(x)) by p′ →1540 ∨
0≤i≤K−1

(AX)iτ(x) (resp. p′ →
∨

0≤i≤K−1
(AX)i¬τ(x)).

5. For every i ∈ [K], replace every eventual occurrence of x@ai (resp. ¬x@ai)
with p′ ∧ (AX)ix@a′ (resp. p′ ∧ (AX)i¬x@a′), every persistent occurrence
of x@ai (resp. ¬x@ai) with p′ → (AX)ix@a′ (resp. p′ → (AX)i¬x@ai).

Theorem 5.6 is proved in the same way as Theorem 4.10, by utilizing the following1545

two results.

Proposition 5.8. For each VCTL formula ϕ over k-ary A-attributed data trees, it holds
enc(L(ϕ)) = L(enc(ϕ)).

Proposition 5.9. For every ∃∗-VCTL sentence ϕ, if ϕ is satisfiable over an A-attributed
data tree where A is a singleton, then there is a (2|ϕ|)-ary A-attributed data tree satis-1550

fying ϕ.

Proof. We first introduce some notations.
Let ϕ be an ∃∗-VCTL formula, define the closure of ϕ, denoted by cl(ϕ), as the

minimum subset of ∃∗-VCTL formulae satisfying the following conditions.

• ϕ ∈ cl(ϕ),1555

• for every p ∈ AP occurring in ϕ, it holds p,¬p ∈ cl(ϕ),

• for every τ(x) ∈ T × var(ϕ) occurring in ϕ, it holds τ(x),¬τ(x) ∈ cl(ϕ),

• for every ψ ∈ cl(ϕ) s.t. ψ := ψ1 ∧ ψ2 or ϕ := ψ1 ∨ ψ2, it holds ψ1, ψ2 ∈ cl(ϕ),

• for every ψ ∈ cl(ϕ) s.t. ψ := EXψ1 or ψ := AXψ1 or ψ := EXψ1 or ψ := AXψ1, it
holds ψ1 ∈ cl(ϕ),1560

• for every ψ ∈ cl(ϕ) s.t. ψ := E(ψ1Uψ2) or ψ := E(ψ1Rψ2), it holds ψ1, ψ2, EXψ ∈
cl(ϕ),
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• for every ψ ∈ cl(ϕ) s.t. ψ := A(ψ1Uψ2) or ψ := A(ψ1Rψ2), it holds ψ1, ψ2, AXψ ∈
cl(ϕ),

• for every ψ ∈ cl(ϕ) s.t. ψ := ∃x.ψ1, it holds ψ1 ∈ cl(ϕ).1565

From the above definition, we know that |cl(ϕ)| ≤ 2|ϕ|.
Let ϕ be an ∃∗-VCTL sentence and t = (Z, L) be a data tree s.t. t |= ϕ. Without loss

of generality, we assume that for every variable x ∈ var(ϕ), x is quantified only once.
In the following, we will construct a (2|ϕ|)-ary data tree t′ from t and ϕ s.t. t′ |= ϕ.

Intuitively, t′ is constructed from t in a top-down manner by1570

1. labeling each node z of t with the pairs (ψ, λ) ∈ cl(ϕ) × (Var → D) s.t. λ :
f ree(ψ)→ D and t|z |=λ ψ,

2. for each node t and each ψ ∈ cl(ϕ), selecting exactly one assignment function λ
s.t. (ψ, λ) belongs to the label of t (this is sufficient to make ϕ satisfied, due to
the fact that only existential quantifications are used in ϕ),1575

3. as a result of this special property, selecting a bounded number of subtrees for
each node of t and removing all the else from t.

In the following, we present a detailed construction of t′ from t. Before that, we
first introduce some definitions and notations.

Define a new labeling function L′ for nodes in Z as follows: for every z ∈ Z, L′(z)1580

is the set of pairs (ψ, λ) ∈ cl(ϕ) × (Var → D) s.t. λ : f ree(ψ)→ D and t|z |=λ ψ.
Let z ∈ Z and Φ ⊆ L′(z). Then Φ is said to be functional if the following two

conditions hold,

• for every ψ ∈ cl(ϕ), there is at most one λ s.t. (ψ, λ) ∈ Φ,

• for every formula (ψ1, λ1), (ψ2, λ2) ∈ Φ, λ1| f ree(ψ1)∩ f ree(ψ2) = λ2| f ree(ψ1)∩ f ree(ψ2).1585

Suppose z ∈ Z and Φ ⊆ L′(z) s.t. Φ is nonempty and functional. Then Φ′ ⊆ L′(z) is
said to be a completion of Φ with respect to z, denoted by Φ →z,comp Φ′, if Φ′ can be
constructed from Φ by the following procedure.

1. Initially, let Φ′ = Φ.
2. Repeat the following procedure until all the formulae in Φ′ are one of the fol-1590

lowing forms: p,¬p, τ(x),¬τ(x), EXψ, AXψ, EXψ, AXψ.

For every (ψ, λ) ∈ Φ′, let Φ′ = Φ′ \ {(ψ, λ)}, and do one of the follow-
ing.

• ψ = ψ1 ∨ ψ2:
– if (ψ1, λ| f ree(ψ1)) ∈ L′(z), then Φ′ = Φ′ ∪ {(ψ1, λ| f ree(ψ1))} (if1595

there is already (ψ1, λ
′) ∈ Φ′ before adding {(ψ1, λ| f ree(ψ1))}

into Φ′, then from the functionality of Φ and the construc-
tion, it must be the case that λ′ = λ| f ree(ψ1), therefore, the
functionality of Φ′ is preserved, the same remark applies be-
low),1600

– otherwise, Φ′ = Φ′ ∪ {(ψ2, λ| f ree(ψ2))},
• ψ = ψ1 ∧ ψ2: Φ′ = Φ′ ∪ {(ψ1, λ| f ree(ψ1)), (ψ2, λ| f ree(ψ2))},
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• ψ = E(ψ1Uψ2):
– if (ψ2, λ| f ree(ψ2)) ∈ L′(z), then Φ′ = Φ′ ∪ {(ψ2, λ| f ree(ψ2))},
– otherwise, Φ′ = Φ′ ∪ {(ψ1, λ| f ree(ψ1)), (EXψ, λ)},1605

• ψ = A(ψ1Uψ2):
– if (ψ2, λ| f ree(ψ2)) ∈ L′(z), then Φ′ = Φ′ ∪ {(ψ2, λ| f ree(ψ2))},
– otherwise, Φ′ = Φ′ ∪ {(ψ1, λ| f ree(ψ1)), (AXψ, λ)},

• ψ = E(ψ1Rψ2):
– if (ψ1, λ| f ree(ψ1)) ∈ L′(z), then Φ′ = Φ′∪{(ψ1, λ| f ree(ψ1)), (ψ2, λ| f ree(ψ2))},1610

– otherwise, Φ′ = Φ′ ∪ {(ψ2, λ| f ree(ψ2)), (EXψ, λ)},
• ψ = A(ψ1Rψ2):

– if (ψ1, λ| f ree(ψ1)) ∈ L′(z), then Φ′ = Φ′∪{(ψ1, λ| f ree(ψ1)), (ψ2, λ| f ree(ψ2))},
– otherwise, Φ′ = Φ′ ∪ {(ψ2, λ| f ree(ψ2)), (AXψ, λ)},

• ψ = ∃x.ψ1: If there does not exist d ∈ D s.t. (ψ1, λ[d/x]) ∈ Φ′,1615

select a data value d ∈ D s.t. (ψ1, λ[d/x]) ∈ L′(z), let Φ′ =

Φ′ ∪ {(ψ1, λ[d/x])}.

Since in the above construction, for every ∃x.ψ1, only one instantiation of x is
allowed, it follows that if Φ is functional and Φ →z,comp Φ′, then Φ′ is functional as
well.1620

Now we are ready to construct t′ = (Z′, L′′) from t. The construction is done in
a top-down manner. During the construction, two functions F and F′ are also con-
structed.

1. Select an assignment function λ s.t. (ϕ, λ) ∈ L′(z). Let ε ∈ Z′, L′′(ε) = L(ε), and
F(ε) = {(ϕ, λ)}.1625

2. Repeat the following procedure.
For every z ∈ Z′ s.t. z is currently a leaf in Z′, let F′(z) be a completion of F(z)
with respect to z. Do one of the following.

(a) If F′(z) contains neither elements of the form (AXψ1, λ) nor elements of
the form (EXψ1, λ), then z is a leaf in t′.1630

(b) If F′(z) contains elements of the form (AXψ1, λ) (this implies that z cannot
be a leaf in t′), but neither elements of the form (EXψ1, λ) nor elements of
the form (EXψ1, λ), then add z0 into Z′, and L′′(z0) = L(z0).

(c) If F′(z) contains elements of the form (AXψ1, λ) or (EXψ1, λ) (this implies
that z cannot be a leaf in t′), moreover, F′(z) contains elements of the form1635

(EXψ1, λ) or (EXψ1, λ), then for every (EXψ1, λ) ∈ F′(z) or (EXψ1, λ) ∈
F′(z), select a child of z in t, say zi, s.t. (ψ1, λ) ∈ L′(zi). We can assume
that all these selected children are distinct from each other, since otherwise
we can just copy the subtrees of z to satisfy this property. Let idxEXψ1

(resp. idxEXψ1
) denote the natural number s.t. z idxEXψ1 (resp. z idxEXψ1

)1640

is the child of z selected for EXψ1 (resp. EXψ1) above. Suppose that
there are r elements in F′(z) of the form (EXψ1, λ) or (EXψ1, λ). Without
loss of generality, we assume that the set of indices idxEXϕ1 and idxEXϕ1

is [r]. Then add z0, . . . , z(r − 1) into Z′, let L′′(zi) = L(zi) for every i :
0 ≤ i ≤ r − 1, and set F(z idxEXψ1 ) (resp. F(z idxEXψ1

)) as {(ψ1, λ)} ∪1645
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{(ψ′, λ′) | (AXψ′, λ′) ∈ F′(z) or (AXψ′, λ′) ∈ F′(z)}. Note that all these sets
F(z idxEXψ1 ) and F(z idxEXψ1

) are functional, since F′(z) is.
The above procedure terminates, since t |= ϕ and all the leaves z of t satisfy that
L′(z) contains neither elements of the form (AXψ1, λ) nor elements of the form
(EXψ1, λ).1650

From the construction, we know that the arities of nodes in t′ are bounded by 2|ϕ|
and t′ |= ϕ. �

Proof of Theorem 5.6. Let ϕ be a NN-∃∗-VCTL sentence. From the definition of enc(ϕ),
it is not hard to observe that enc(ϕ) is also a NN-∃∗-VCTL sentence. In addition, from
Proposition 5.8, we know that enc(L(ϕ)) = L(enc(ϕ)). Therefore, it is sufficient to con-1655

sider the satisfiability of enc(ϕ) over A′-attributed data trees where A′ is a singleton.
Moreover, from Proposition 5.9, it is sufficient to consider the satisfiability of enc(ϕ)
over (2|ϕ|)-ary A′-attributed data trees.

Similar to the proof of Theorem 4.10, we can prove by an induction on the structure
of formulae that from enc(ϕ), an equivalent ATRAAenc(ϕ) over (2|ϕ|)-ary A′-attributed1660

data trees can be constructed. The decidability then follows from Theorem 2.8.
The lower bound proof is also similar to that of NN-∃∗-VLTL. �

Theorem 5.10. The model checking problem of NN-∀∗-VCTL is decidable and non-
primitive recursive.

Proof. Let K be a VKS and ϕ be a NN-∀∗-VCTL sentence. Then K 6|= ϕ iff there is a1665

computation tree t of K s.t. t |= ϕ iff T (K) ∩ L(ϕ) , ∅ iff enc(T (K)) ∩ enc(L(ϕ)) , ∅
iff enc(T (K)) ∩ L(enc(ϕ)) , ∅.

From Proposition 5.7, we know that there is an ATRAA s.t. L(A) = enc(T (K)).
Let k be the maximum number of successors of states in K . Since enc(ϕ) is a

NN-∃∗-VCTL formula, we can prove by an induction on the structure of formulae that1670

from enc(ϕ), an equivalent ATRA Aenc(ϕ) over k-ary A′-attributed data trees can be
constructed (where A′ is a singleton).

Then K 6|= ϕ iff L(A) ∩ L(Aenc(ϕ)) , ∅.
Since ATRAs are closed under intersection, the decidability then follows from The-

orem 2.8.1675

The non-primitive lower bound follows from the fact that the satisfiability of NN-
∃∗-VLTL can be reduced in polynomial time to the model checking problem of NN-
∀∗-VCTL, by using the idea in the proof of Theorem 5.5. �

5.2.2. Existential path quantifiers for VCTL
Theorem 5.11. The satisfiability problem of EVCTL is in NEXPTIME.1680

For the proof of Theorem 5.11, we first state and prove several facts about EVCTL.
From the fact that EVCTL formulae contain only existential path quantifiers, we

have the following observation.

Lemma 5.12. Let t be an A-attributed data tree, ϕ be an EVCTL formula, and λ :
f ree(ϕ)→ D s.t. t |=λ ϕ. Then the following two facts hold.1685
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1. Let t′ be an A-attributed data tree s.t. there is a leaf-preserving embedding of t
into t′. Then t′ |=λ ϕ.

2. Let η be an injective partial function from D to D s.t. the domain of η includes
all the data values occurring in (t, λ), moreover, for each data value d occurring
in λ, η(d) = d. Then η(t) |=λ ϕ, where η(t) is obtained from t by replacing each1690

data value d with η(d).

Intuitively, the argument for the first fact in Lemma 5.12 is as follows: Since there is
a leaf-preserving embedding η of t into t′, for each path π of t, there is a corresponding
path η(π) in t′. Since ϕ contains only existential path quantifiers, and t |=λ ϕ, we can
restrict our attention to the paths η(π) in t′ (where π is a path in t) and ensure t′ |=λ ϕ.1695

Then we show that for the satisfaction of EVCTL formulae, a bounded number of
data values are sufficient.

Lemma 5.13. Let ϕ be an EVCTL formula, t be an A-attributed data tree, and λ :
f ree(ϕ) → D s.t. t |=λ ϕ. Then an A-attributed data tree t′ can be constructed from
(t, λ) s.t. t′ |=λ ϕ, the label of the root of t′ is the same as that of t, all the data values in1700

t′ also occur in t, and (t′, λ) contains at most (|A| + 1)|ϕ| data values.

Lemma 5.13 cannot be extended to data ω-trees. For instance, let ϕ = ∀x. EF p(x).
Then ϕ is ω-satisfiable. Nevertheless, any data ω-tree satisfying ϕ has to contain all the
data values from D.

Proof of Lemma 5.13. We construct t′ from t by an induction on the syntax of EVCTL
formulae. Recall that EVCTL formulae are defined by the following rules,

ϕ := p | ¬p | τ(x) | ¬τ(x) | ϕ ∨ ϕ | ϕ ∧ ϕ | EXϕ | EXϕ
| E(ϕUϕ) | E(ϕRϕ) | ∃x.ϕ | ∀x.ϕ

,

where p ∈ AP, τ ∈ T and x ∈ Var.1705

The basic idea of the construction is as follows. For each formula ϕ, suppose the de-
sired subtrees have been constructed for the subformulae of ϕ, then we glue these sub-
trees in a proper way to obtain a tree which still satisfies ϕ (attributed to Lemma 5.12).
Moreover, when dealing with the universal quantifications, some data values in these
subtrees are renamed in order to bound the number of data values occurring in t′.1710

The induction base ϕ := p,¬p, τ(x),¬τ(x), x@a,¬x@a: Trivial.
The induction step.
ϕ := ϕ1 ∨ ϕ2: Suppose t |=λ ϕ1∨ϕ2, then t |=λ ϕ1 or t |=λ ϕ2. If t |=λ ϕ1, then by the

induction hypothesis, an A-attributed data tree t1 can be constructed from (t, λ| f ree(ϕ1))
s.t. t1 |=λ| f ree(ϕ1) ϕ1, the root label of t1 is the same as that of t, all the data values of t1 also1715

occur in t, and (t1, λ| f ree(ϕ1)) contains at most (|A| + 1)|ϕ1| data values. Let t′ = t1. Then
t′ |=λ ϕ, the root label of t′ is the same as that of t, all the data values in t′ also occur in
t, and (t′, λ) contains at most (|A|+1)|ϕ1|+ | f ree(ϕ2)\ f ree(ϕ1)| ≤ (|A|+1)(|ϕ1|+ |ϕ2|) ≤
(|A| + 1)|ϕ| data values. The situation that t |=λ ϕ2 can be discussed similarly.

ϕ := ϕ1 ∧ ϕ2: Suppose t |=λ ϕ1 ∧ ϕ2. Then t |=λ ϕ1 and t |=λ ϕ2. By the induction1720

hypothesis, t1 and t2 can be constructed from (t, λ| f ree(ϕ1)) and (t, λ| f ree(ϕ2)) s.t. for each
i = 1, 2, ti |=λ| f ree(ϕi ) ϕi, the root label of ti is the same as that of t, all the data values in ti
also occur in t, and (ti, λ| f ree(ϕi)) contains at most (|A| + 1)|ϕi| data values. Let t′ be the
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data tree obtained from t1 by adding all the subtrees of the root of t2 as the new subtrees
of the root of t1 (with the original subtrees of the root of t1 untouched). From the fact1725

that t1 and t2 are substructures of t′ and Lemma 5.12, we deduce that t′ |=λ| f ree(ϕ1) ϕ1
and t′ |=λ| f ree(ϕ2) ϕ2. Therefore, t′ |=λ ϕ1 ∧ ϕ2. In addition, the root label of t′ is the
same as that of t, all the data values in t′ also occur in t, and (t′, λ) contains at most
(|A| + 1)(|ϕ1| + |ϕ2|) ≤ (|A| + 1)|ϕ| data values.

ϕ := EXϕ1: Let t |=λ EXϕ1. Then there is a child of the root of t, say the node i, s.t.1730

t|i |=λ ϕ1. By the induction hypothesis, an A-attributed data tree t′ can be constructed
from (t|i, λ) s.t. t′ |=λ ϕ1, the root label of t′ is the same as that of t|i, all the data values
in t′ occur in t|i, and (t′, λ) contains at most (|A| + 1)|ϕ1| data values. Let t′′ be the
data tree obtained from t′ by adding the root of t as the parent of the root of t′. Then
t′ |=λ EXϕ1, the root of t′ is the same as that of t, all the data values in t′ also occur in1735

t, and (t′, λ) contains at most (|A| + 1)|ϕ1| + |A| ≤ (|A| + 1)|ϕ| data values.
ϕ := EXϕ1: Let t |=λ EXϕ1. Then either t is a just a single node or otherwise

t |=λ EXϕ1. The first case is trivial. The second case can be discussed similarly to
ϕ := EXϕ1.

ϕ := E(ϕ1Uϕ2): Suppose t |=λ ϕ. Then there are a path π = π0 . . . πn in t and1740

i : 0 ≤ i ≤ n satisfying that t|πi |=λ ϕ2 and for every j : 0 ≤ j < i, t|π j |=λ ϕ1. We
distinguish between i = 0 and i > 0.

• If i = 0, then t |=λ ϕ2. By the induction hypothesis, an A-attributed data tree
t′ can be constructed from (t, λ| f ree(ϕ2)) s.t. t′ |=λ| f ree(ϕ2) ϕ2, the root label of t′ is
the same as that of t, all the data values in t′ also occur in t, and (t′, λ| f ree(ϕ2))1745

contains at most (|A| + 1)|ϕ2| data values. Then (t′, λ) is the desired pair for ϕ.

• If i > 0, then t|πi |=λ ϕ2 and t|π0 |=λ ϕ1. By the induction hypothesis, the data trees
t1 and t2 can be constructed from (t|π0 , λ| f ree(ϕ1)) and (t|πi , λ| f ree(ϕ2)) respectively
s.t. t1 |=λ| f ree(ϕ1) ϕ1, t2 |=λ| f ree(ϕ2) ϕ2, the root labels of t1 and t2 are the same as that
of t|π0 and t|πi respectively, all the data values in t1 and t2 also occur in t|π0 and t|πi1750

respectively, in addition, (t|π0 , λ| f ree(ϕ1)) and (t|πi , λ| f ree(ϕ2)) contain respectively at
most (|A| + 1)|ϕ1| and (|A| + 1)|ϕ2| data values. Let t′ be the data tree obtained
from t, t1 and t2 as follows: t′ contains a path of length (number of nodes) i + 1,
say the sequence (ε, 0, 02, . . . , 0i), s.t. a copy of t2 is attached to 0i, and for every
j : 0 ≤ j < i, a copy of t1 is attached to 0 j. Note that the root label of t′ is1755

the same as that of t1, thus the same as that of t|π0 = t. From Lemma 5.12 and
the fact that t2 is a substructure of t′|0i and t1 is a substructure of t′|0 j for every
j : 0 ≤ j < i, we know that t′|0i |=λ| f ree(ϕ2) ϕ2, and t′|0 j |=λ| f ree(ϕ1) ϕ1 for every
j : 0 ≤ j < i. Therefore, t′ |=λ E(ϕ1Uϕ2), the root label of t′ is the same
as that of t, all the data values in t′ also occur in t, and (t′, λ) contains at most1760

(|A| + 1)(|ϕ1| + |ϕ2|) ≤ (|A| + 1)|ϕ| data values.

ϕ := E(ϕ1Rϕ2): Suppose t |=λ ϕ. Then there is a path π = π0 . . . πn in t s.t. either
t|πi |=λ ϕ2 for every i : 0 ≤ i ≤ n, or there is i : 0 ≤ i ≤ n s.t. t|πi |=λ ϕ1 and for every
j : 0 ≤ j ≤ i, t|π j |=λ ϕ2.

• The case t|πi |=λ ϕ2 for every i : 0 ≤ i ≤ n. If n = 0, that is, t is a single node,1765

then the argument is trivial. Otherwise, by the induction hypothesis, a data tree
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t′1 can be constructed from (t, λ| f ree(ϕ2)) s.t. t′1 |=λ| f ree(ϕ2) ϕ2, the root label of t′1 is
the same as that of t, all the data values in t′1 also occur in t, and (t′1, λ| f ree(ϕ2))
contains at most (|A| + 1)|ϕ2| data values. Let t′ be the data tree obtained from t
and t′1 as follows: t′ contains a path (ε, 0) s.t. a copy of t′1 is attached to ε, and1770

the label of 0 is the same label as that of πn in t (thus 0 is a leaf in t′). Then from
t|πn |=λ ϕ2, we know that t′|0 |=λ ϕ2. Moreover, from Lemma 5.12 and the fact
that t′1 is a substructure of t′, we deduce that t′ |=λ ϕ2. Therefore, t′ |=λ E(ϕ1Rϕ2),
the root label of t′ is the same as that of t, all the data values in t′ also occur in t,
and t′ contains at most (|A| + 1)|ϕ2| + |A| ≤ (|A| + 1)|ϕ| data values.1775

• The case that there is i : 0 ≤ i ≤ n s.t. t|πi |=λ ϕ1 and for every j : 0 ≤ j ≤ i,
t|π j |=λ ϕ2. We distinguish between the following two situations.

– If i = 0, then t |=λ ϕ1 ∧ ϕ2. Then the argument is similar to the case
ϕ = ϕ1 ∧ ϕ2 above.

– If i > 0, then by the induction hypothesis, a data tree t′2 can be constructed1780

from (t, λ| f ree(ϕ2)) s.t. t′2 |=λ| f ree(ϕ2) ϕ2, the root label of t′2 is the same as that of
t, all the data values in t′2 also occur in t, and t′2 contains at most (|A|+1)|ϕ2|

data values. Similarly, a data tree t′′2 can be constructed from (t|πi , λ| f ree(ϕ2))
s.t. t′′2 |=λ| f ree(ϕ2) ϕ2, the root label of t′′2 is the same as t|πi , all the data values
in t′′2 also occur in t|πi , and (t′′2 , λ| f ree(ϕ2)) contain at most (|A| + 1)|ϕ2| data1785

values. Moreover, a data tree t′1 can be constructed from (t|πi , λ| f ree(ϕ1)) s.t.
t′1 |=λ| f ree(ϕ1) ϕ1, the root label of t′1 is the same as t|πi , all the data values in t′1
also occur in t|πi , and (t′1, λ| f ree(ϕ1)) contain at most (|A|+ 1)|ϕ1| data values.
Let D be a set of (|A| + 1)|ϕ2| + |A| data values that includes all the data
values occurring in (t′2, λ| f ree(ϕ2)) and those occurring in the root of t′′2 . Let1790

η be an injective partial function from D to D s.t.

∗ the domain of η is D((t′′2 , λ| f ree(ϕ2))) (i.e., the set of data values occur-
ring in (t′′2 , λ| f ree(ϕ2))),

∗ η is the identity function when restricted to the range of λ| f ree(ϕ2), and
the set of data values occurring in the root of t′′2 ,1795

∗ the range of η is a subset of D.

Such a function exists due to the fact that ((t′′2 , λ| f ree(ϕ2))) contains at most
(|A| + 1)|ϕ2| data values. From Lemma 5.12, we deduce that η(t′′2 ) |=λ| f ree(ϕ2)

ϕ2. Let t′ be the data tree obtained from t, η(t′′2 ), t′1 as follows: t′ contains
a path (ε, 0) s.t. a copy of t′2 is attached to ε, and a copy of t′1 as well as a1800

copy of η(t′′2 ) are attached to 0 (note that the root label of η(t′′2 ) is the same
as that of t′1). From Lemma 5.12 again, we know that t′|0 |=λ ϕ1 ∧ ϕ2 and
t′ |=λ| f ree(ϕ1) ϕ1. Therefore, we conclude that t′ |=λ E(ϕ1Rϕ2), the root label
of t′ is the same as that of t, all the data values in t′ also occur in t, and
(t′, λ) contains at most |D|+ (|A|+1)|ϕ1| = (|A|+1)|ϕ2|+ |A|+ (|A|+1)|ϕ1| ≤1805

(|A| + 1)|ϕ| data values.

ϕ := ∃x. ϕ1: Suppose t |=λ ∃x. ϕ1. Then there is d ∈ D s.t. t |=λ[d/x] ϕ1. By the
induction hypothesis, a data tree t1 can be constructed from (t, λ[d/x]) s.t. t1 |=λ[d/x] ϕ1,
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the root label of t1 is the same as that of t, all the data values in t1 also occur in t, and
(t1, λ[d/x]) contains at most (|A|+ 1)|ϕ1| data values. Then (t1, λ) is the desired pair for1810

ϕ.
ϕ := ∀x. ϕ1: Suppose t |=λ ∀x. ϕ1. Then for every d ∈ D, t |=λ[d/x] ϕ1. If (t, λ)

contains less than (|A| + 1)|ϕ1| data values, then we are done. Otherwise, let D be a
subset of (|A| + 1)|ϕ1| data values occurring in (t, λ) s.t. D contains all the data values
occurring in the root of t and in λ. Suppose D = {d1, . . . , d(|A|+1)|ϕ1 |}. In addition, let1815

d0 ∈ D s.t. d0 < D and d0 does not occur in (t, λ). Then for each i : 0 ≤ i ≤ (|A|+ 1)|ϕ1|,
t |=λ[di/x] ϕ1. From the induction hypothesis, for each i : 0 ≤ i ≤ (|A| + 1)|ϕ1|, a data
tree t′i can be constructed from (t, λ[di/x]) s.t. t′i |=λ[di/x] ϕ1, the root label of t′i is the
same as that of t, all the data values in t′i also occur in t, and (t′i , λ[di/x]) contains at
most (|A|+ 1)|ϕ1| data values. Since |D| = (|A|+ 1)|ϕ1|, for each i : 0 ≤ i ≤ (|A|+ 1)|ϕ1|,1820

there is an injective partial function ηi s.t.

1. the domain of ηi includes all the data values occurring in (t′i , λ[di/x]),
2. ηi is the identity function when restricted to the set of data values occurring in

λ[di/x] as well as in the root of t′i (note that the root label of t′i is the same as that
of t),1825

3. the range of ηi is a subset of D ∪ {d0},
4. the set of data values occurring in ηi(t′i ) is a subset of D (thus d0 does not occur

in ηi(t′i )).

The function ηi’s exist. For instance, since (t′0, λ[d0/x]) contains at most (|A| + 1)|ϕ1|

data values, it follows that except d0 and the data values occurring in the root of t′0,1830

there are at most (|A| + 1)(|ϕ1| − 1) additional data values from (t′0, λ[d0/x]); therefore,
it is possible to define an injective partial function η0 to map those data values into D.

Then from Lemma 5.12, ηi(t′i ) |=λ[di/x] ϕ1. Let t′′ be the data tree obtained from
ηi(t′0), . . . , ηi(t′(|A|+1)|ϕ1 |

) by merging their roots (recall that their root labels are the same),
that is, all the subtrees of the roots of ηi(t′0), . . . , ηi(t′(|A|+1)|ϕ1 |

) are the subtrees of the1835

root in t′′. We claim that t′′ |=λ ∀x. ϕ1. At first, for every di with i : 0 ≤ i ≤
(|A| + 1)|ϕ1|, from ηi(t′i ) |=λ[di/x] ϕ1 and Lemma 5.12, we deduce that t′′ |=λ[di/x] ϕ1.
Let d < {d0, . . . , d(|A|+1)|ϕ1 |}. Since t′0 |=λ[d0/x] ϕ1 and neither d nor d0 occurs in η0(t′0),
assigning d to x has the same impact as assigning d0 to x for the satisfaction of ϕ1
on η0(t′0). Therefore, η0(t′0) |=λ[d/x] ϕ1. From Lemma 5.12 again, we deduce that1840

t′′ |=λ[d/x] ϕ1. From the fact that d is an arbitrary data value not in {d0, . . . , d(|A|+1)|ϕ1 |},
we conclude that t′′ |=λ ∀x. ϕ1, the root label of t′′ is the same as that of t, all the data
values in t′′ also occur in t (recall that the set of data values occurring in ηi(t′i ) is a
subset of D and D is a subset of data values occurring in t), and (t′′, λ) contains at most
(|A| + 1)|ϕ1| + 1 ≤ (|A| + 1)|ϕ| data values. �1845

Proof of Theorem 5.11. Suppose ϕ is an EVCTL sentence. Without loss of generality,
we assume that each variable occurring in ϕ is only quantified once. From Lemma
5.13, we know that if ϕ is satisfiable, then it is satisfiable over a data tree containing at
most (|A| + 1)|ϕ| data values. Let V = {d1, . . . , d(|A|+1)|ϕ|}.

Construct ECTL formula ϕ′ over AP ∪ (T × V) from ϕ as follows: Let {x1, . . . , xl}1850

be the set of variables occurring in ϕ. Then ϕ′ is obtained from ϕ by replacing each ∃xi
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(resp. ∀xi) with
∨

di∈V
(resp.

∧
di∈V

), and every occurrence of τ(xi) with (τ, di). The size of

ϕ′ is exponential over the size of ϕ.
Since the satisfiability problem of ECTL over labeled trees is decidable in NP

([57]), it follows that the satisfiability problem of EVCTL is in NEXPTIME. �1855

Remark 5.14. It is open whether the ω-satisfiability problem of EVCTL is decidable.

5.2.3. Data variable quantifiers in the beginning
Theorem 5.15. The satisfiability and ω-satisfiability problems of ∃∗-VCTLpn f are EX-
PTIME complete.

Proof. The upper bound. For every sentence of the form ∃x1...∃xn.ψ s.t. ψ is a quanti-1860

fier free VCTL formula, we only need to consider at most n + 1 values. It is sufficient
to show that there is a data tree (resp. ω-tree) t = (Z, L) satisfying ∃x1...∃xn.ψ iff there
is a data tree t′ = (Z, L′) using only n + 1 different data values s.t. t′ |= ∃x1...∃xn.ψ.
Suppose the data tree (resp. ω-tree) t satisfies ∃x1...∃xn.ψ and uses values more than
n + 1. W.l.o.g., suppose x1, ..., xn take the values from the set D = {d1, ..., dn} in t, then1865

each d ∈ D \ D used in t can be replaced by the same data value d′ ∈ D \ D without
affecting the satisfiability of the formula ∃x1...∃xn. ψ. Thus to decide the satisfiability
(resp. ω-satisfiability) of ∃x1...∃xn.ψ, it is sufficient to do as follows: For each function
f : X −→ D ∪ {d′} (there are exponentially many of them), decide the satisfiability
(resp. ω-satisfiability) of the CTL formula ψ′ over AP ∪ (T × (D ∪ {d′})), obtained by1870

replacing each variable xi by f (xi).
Since it is known that the satisfiability (resp. ω-satisfiability) of CTL formulae can

be decided in exponential time, it follows that the satisfiability (resp. ω-satisfiability)
problem of ∃∗-VCTLpn f is in EXPTIME.

The lower bound follows from the satisfiability problem of CTL. �1875

Theorem 5.16. The model checking and ω-model checking problems of ∀∗-VCTLpn f

are decidable in EXPT IME.

Theorem 5.16 can be easily deduced from the following lemma.

Lemma 5.17. Let K = (AP, X, S ,R, S 0, I, L, L′) be a VKS and ∀x1...∀xn.ψ be a ∀∗-
VCTLpn f sentence. Then there is a computation tree (resp. ω-tree) t = (Z, L) of K1880

s.t. t |= ∃x1...∃xn.ψ iff there is a computation tree (resp. ω-tree) t′ = (Z, L′) of K s.t.
t′ |= ∃x1...∃xn.ψ and t′ contains at most |X| + n different values.

Proof. (=⇒) Suppose there is a computation tree (resp. ω-tree) t = (Z, L) of K s.t. t |=
∃x1...∃xn.ψ. W.l.o.g., we assume that the number of different values used in t is greater
than |X| + n (otherwise we are done). Then there is an assignment λ : {x1, . . . , xn} → D1885

s.t. t |=λ ψ. Let D = {λ(xi) | 1 ≤ i ≤ n} and D′ = {d′1, . . . , d
′
|X|} be a set of |X| data values

that are different from all the data values occurring in t and the data values from D.
Let t′ = (Z, L′) be the computation tree (resp. ω-tree) obtained from t by replacing

all the data values in D \ D with the data values in D′, while respecting the invariants
of the states in K as well as the reset constraints on the edges of K . It is not hard to1890

see that it is possible to do these replacements and these replacements do not affect the
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satisfaction of ∃x1 . . .∃xn.ψ. Therefore, we obtain a computation tree (resp. ω-tree) t′

of K that contains at most |X| + n data values and satisfies ∃x1...∃xn.ψ.

(⇐=) trivial. �

Proof of Theorem 5.16. Let K = (AP ∪ T, X, S ,R, S 0, I, L, L′) be a VKS , and ϕ =1895

∀x1...∀xnψ be a ∀∗-VCTLpn f sentence. By Lemma 5.17, we only need to consider the
computation trees of K that contains at most |X| + n data values. Let D be a set of data
values of size |X|+ n. Given a function λ : X −→ D and a state s ∈ S , let Θ(s, λ) denote
the set (AP ∩ L(s)) ∪ {(τ, λ(x)) | (τ, x) ∈ L(s)}.

Let k be the maximum number of successors of the states in K . We construct a1900

NTA (resp. NBTA)AK = (AP ∪ T × D,Q, δ,Q0,Q f ) over k-ary labeled trees s.t. AK
defines the set of computation trees of K containing only data values from V .

• Q = Q f = {(s, P) ∈ S × 2AP∪T×D | ∃λ : X −→ D : λ |= I(s) ∧ P = Θ(s, λ)},

• Q0 = Q ∩ S 0 × 2AP∪T×D,

• δ ⊆ Q × 2AP∪T×D × Q≤k is computed as follows: For every state (s, P) ∈ Q s.t.1905

R(s) = {s1, ..., sr}, δ contains all the transition rules ((s, P), P, ((s1, P1), . . . , (sr, Pr)))
s.t. there are functions λ, λ1, ...λr : X −→ D satisfying that

– P = Θ(s, λ),

– for every i : 1 ≤ i ≤ r, Pi = Θ(s, λi), and for every (reset, x) < L′(s, si):
λ(x) = λi(x).1910

Note that the size ofAK is exponential over the size of K and ϕ.
On the other hand, construct a CTL formula ϕ′ over AP ∪ T × D from ϕ as the

formula
∨

λ:{x1,...,xn}→D
ψλ, where ψλ is obtained from ψ by replacing every occurrence of

τ(xi) (resp. ¬τ(xi)) s.t. τ ∈ T and 1 ≤ i ≤ n by (τ, λ(xi)) (resp. ¬(τ, λ(xi))).
To decide whether there is a computation tree (resp. ω-tree) of K satisfying ϕ =1915

∃x1 . . .∃xn.ψ, it remains to decide whether L(AK ) ∩ L(ϕ′) , ∅ (resp. Lω(AK ) ∩
Lω(ϕ′) , ∅).

Since it is well known that an equivalent NTA (resp. NBTA) of exponential size
can be constructed from a CTL formula (cf. [58]), it follows that from each formula
ψλ, a NTA (resp. NBTA) Aψλ of exponential size can be constructed, then the union1920

of these Aψλ , denoted byA′ϕ, is equivalent to ϕ′ and still of exponential size. So the
problem reduces to the nonemptiness of the intersection ofAK andAϕ′ .

From Proposition 2.6, we conclude that the model checking problem (resp. ω-
model checking problem) of ∀∗-VCTLpn f is in EXPTIME. �

6. Conclusion and Future Work1925

In this paper, we systematically investigated the theoretical aspects of VLTL and
VCTL, the variable extensions of LTL and CTL respectively. At first, we compared
the expressiveness of VLTL with the other logical formalisms over data words. Then
we considered the decidability and complexity of the satisfiability and model checking

56



problem of VLTL and VCTL, over both finite and infinite words (trees). We identified1930

the decidability frontier of these decision problems of fragments of VLTL and VCTL
and got a relatively complete picture (see Table 1).

For the future work, one obvious direction is to solve the questions left open in
this paper. For instance, the questions whether the ω-satisfiability problems of ∃∗∀∗-
RVLTLpn f and EVCTL are decidable. It is also interesting to consider the model check-1935

ing problem of VLTL and VCTL over counter machines or some proper extensions of
pushdown systems that contain data values, e.g. pushdown register automata intro-
duced in [59].
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