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ABSTRACT
Entering commands on touchscreens can be noisy, but exist-
ing interfaces commonly adopt deterministic principles for
deciding targets and often result in errors. Building on prior
research of using Bayes’ theorem to handle uncertainty in
input, this paper formalized Bayes’ theorem as a generic guid-
ing principle for deciding targets in command input (referred
to as “BayesianCommand”), developed three models for es-
timating prior and likelihood probabilities, and carried out
experiments to demonstrate the effectiveness of this formal-
ization. More specifically, we applied BayesianCommand
to improve the input accuracy of (1) point-and-click and (2)
word-gesture command input. Our evaluation showed that ap-
plying BayesianCommand reduced errors compared to using
deterministic principles (by over 26.9% for point-and-click
and by 39.9% for word-gesture command input) or applying
the principle partially (by over 28.0% and 24.5%).

Author Keywords
Bayes’ theorem; command input; point-and-click;
word-gesture shortcuts; touchscreen.

CCS Concepts
•Human-centered computing → Human computer inter-
action (HCI); Interaction techniques; User studies;

INTRODUCTION
Command input is essential to human-computer interaction.
There is no exception in the era of mobile and wearable
computing where people regularly issue commands on touch-
screens with finger touch or gesture [1, 17, 38, 42]. These
input modalities are natural to use, but they inevitably intro-
duce uncertainty. For example, touch input is notoriously
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known to be noisy and imprecise due to occlusion and the
uncertainty of converting a “fat” contact region into a single
touchpoint [26, 32, 33, 63, 64, 65]; a recognizer in a gestural
command input system may yield erroneous output if the input
gestures deviate from the predefined templates [43, 71].

Despite the wide existence of uncertainty, the existing com-
mand input methods are ill-positioned for handling it because
they often adopt a deterministic principle to decide which
command will be issued. For example, to trigger a command
with finger touch, the user needs to land the touchpoint pre-
cisely within the target boundaries; to input a command with
a gesture, the decoded command name should match the exact
command label.

Inspired by prior work of adopting Bayes’ theorem to decide
touch selection target [10], this work incorporates prior prob-
ability into the target deciding process, and generalizes the
Bayes’ theorem as a principle (referred to as BayesianCom-
mand) for both point-and-click and gestural command input.
Our experiments (explained later) showed incorporating the
prior increased command input accuracy by more than 20%
(relatively) over using likelihood only [10]. Our work focuses
on command input, which also contributes to a large body of
research of using a probabilistic framework to handle uncer-
tainty in interaction (e.g., text entry [27], navigation [45], file
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Figure 1. Overview of BayesianCommand. Given an input signal s and
a set of n commands C = {c1, . . . , cn}, the goal of a command input task
is to find c∗ that maximizes P(c|s). BayesianCommand views the input
signal s as a random variable carrying likelihood information, and uses
Bayes’ theorem to combine it with the prior probability P(ci) to infer
P(c|s). The target command information is then used to update the prior
probability model.
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retrieval [46], estimating capacitive sensing uncertainty [59],
inferring interaction intention for probabilistic widgets [14]).

BayesianCommand sets out from a probabilistic perspective
to interpret the ambiguity in command input: the input sig-
nals are viewed as a random variable that carries likelihood
information of the target command. The posterior belief is
formed accordingly via Bayes’ theorem. The candidate with
the highest posterior probability should be decided as the tar-
get. This information is in turn used to update the prior proba-
bility model for future command input. Figure 1 provides an
overview of BayesianCommand. Because BayesianCommand
is algorithmic and requires no visual change of the layout, it
is advantageous to frequency-based layout rearrangement and
less likely to slow users down [20].

Overall, we made the following three contributions: (1) We
formally described how to use Bayes’ theorem for command
input, and established that it should be the principle for de-
ciding the target command; (2) We proposed three models
for applying BayesianCommand: a prior probability model,
a dual-Gaussian likelihood model for point-and-click input,
and a two-step likelihood model for recall-based gestural com-
mand input; (3) We conducted experiments to demonstrate the
effectiveness of BayesianCommand over using the existing
deterministic principles or applying them partially.

RELATED WORK
This work is related to handling uncertainty in user input,
touch pointing and gestural command input technologies.

Handling Uncertainty in User Input
Probabilistic frameworks have been proposed to deal with the
uncertainty in input processes, such as considering the input as
a continuous control process in which the system continuously
infers a distribution over potential user goals [13, 67, 70], or
carrying the uncertainty of input forward all the way through
the interaction [61, 62]. Other examples include Dasher [66],
which used probabilistic models to adapt screen layouts, and
Semantic pointing [12], which adapted the control-to-display
ratio according to cursor distance to nearby targets. Bayes’
theorem has also been adopted to reduce uncertainty in in-
teraction, such as the statistical decoding algorithm of soft
keyboards [27], and the Bayesian Information Gain (BIG)
framework [45, 46].

Distinct from the previous work, we focus on command in-
put, adding to the vast body of research of using probabilis-
tic frameworks to handle input uncertainty. BayesianCom-
mand uses Bayes’ theorem to incorporate the previous com-
mand input history to improve input accuracy. Although
previous research has explored adapting the menu visuals
(e.g., Morphing menu [16]) to accommodate the command
frequency, BayesianCommand is algorithmic and requires
no visual change, making the UI visual consistent to users
throughout the interaction.

Understanding and Improving Finger Touch
There has been extensive research on understanding and im-
proving touch pointing accuracy. On a capacitive touchscreen,
a touchpoint is converted from the finger’s contact region with

noise and uncertainty in the converting process. Factors such
as hand posture [14, 26], finger angle [32, 33], and body move-
ment [25, 55] may affect the size and shape of the contact
region, unintentionally altering the touch position. The lack
of feedback on where the finger lands due to occlusion (the
“fat finger” problem) further exacerbates the issue [32, 33, 63,
64, 65]. Previous research has explored various approaches
to improve touch accuracy. Examples include compensating
for the offset caused by different finger input angles [32, 33]
or location on screens [31], displaying the touch location in a
non-occluded area [64], and using the back of the device for
selection [68, 69]. Others also explored using various finger
gestures to assist target selection, including crossing [2, 15, 51,
52, 58], sliding [14, 54, 72, 73], rubbing [57, 60], circling [34],
and multi-touch gestures [8].

Our first application of using BayesianCommand to improve
point-and-click command input is in particular related to
Bayesian Touch Criterion (BTC) [10]. The main difference
is that BayesianCommand involves both prior and likelihood
probability calculation, while BTC ignored the prior probabil-
ity and only used the likelihood. We compared BayesianCom-
mand with BTC in our user study. We showed that incorpo-
rating prior is an essential step toward truly adopting Bayes’
theorem, and it substantially improves the touch accuracy over
BTC. Apart from point-and-click input, our second application
of gestural command input is different from BTC [10].

Word-Gesture Command Input
Gestural input has been widely explored as a command input
method on touchscreen devices, thanks to the human’s ability
in memorizing pictorial information [56]. It has been adopted
in marking menu [39, 40, 41] and its variants [5, 6, 22, 23, 75,
76], gesture-based interfaces [7, 24, 42, 47, 48, 49, 50], and
multi-touch gesture frameworks [35, 36].

To assist users in memorizing the mappings between com-
mands and gestures, previous researchers have explored using
word-gestures [37, 74] for command input – entering a com-
mand by gliding finger over letters in the command name on
a virtual keyboard. Word-gesture was initially invented for
text entry on touchscreen devices [37, 74], which was later
extended as a method for command input. For example, Com-
mand Strokes [38] and CommandBoard [1] support triggering
a command by drawing its word-gesture on a soft keyboard,
and HotStrokes [17] supports word-gesture command input
on a laptop trackpad.

The existing gestural command input systems (e.g., [1, 17,
38] often adopt a deterministic principle to decide the target
command: the decoder matches the input gesture with the
predefined gesture template of each command candidate; the
candidate with highest matching score is the target command.
It has little room for handling uncertainty and would result in
errors if the input gesture deviates greatly from the template
or some commands share the similar predefined templates.
In this paper we proposed BayesianCommand to replace the
typical deterministic principle to handle such uncertainty.
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BayesianCommand: A BAYESIAN PERSPECTIVE ON
COMMAND INPUT
From a Bayesian perspective, a command input task can be
described as follows: assuming C = {c1, c2, . . . , cn} is a set of
n available commands, given the input signal s, the goal of a
command input task is to find c∗ in C that maximizes P(c|s).
According to Bayes’ theorem, it can be calculated as:

c∗ = arg max
c∈C

P(c|s) = arg max
c∈C

[P(s|c)P(c)]
P(s)

. (1)

Assuming P(s) is a constant across c (because s is a fixed value
for a given input), we can further simplify Equation (1) to:

c∗ = arg max
c∈C

[P(s|c)P(c)], (2)

where P(c) is the prior probability of c being the intended
command without the observation of s, and P(s|c) describes
how probable s is if the intended target is c (the likelihood).
We refer to this principle as BayesianCommand in this paper.

Obtaining the prior and likelihood is the key to apply Bayesian-
Command. We developed one prior probability model, and
two likelihood models: a dual-Gaussian likelihood model for
point-and-click and a two-step likelihood model for command
shortcut. The dual-Gaussian likelihood model was inspired by
the dual Gaussian distribution hypothesis [9, 10]. Note that
these models represent only one approach of estimation. We
use them to establish that BayesianCommand is the principled
framework for command input.

PRIOR PROBABILITY MODEL
We first developed a model to predict P(c) – the prior proba-
bility of the candidate c being the intended target – from the
command input history.

In the prior probability model, we assume that the distribution
of the intended command among candidates is not entirely
random, and the command input history is observable. We
formed this assumption based on the findings that the patterns
of menu selection [16, 44], command triggering [3, 19], and
smartphone app launching [53] are not random and often fol-
low certain distributions (e.g., Zipfian distributions). These
are all scenarios involving frequent command input.

Before deriving the model, we define two criteria that the
model should satisfy:

(1) Without observing any selection history, each candidate is
equally probable as the target.

(2) With a large number of observations, P(c) approximates
the frequency that the candidate c was selected as the
target in the past.

We propose the frequency model as follows. Assuming we
observe that the candidate ci has been selected ti times in the
past as the target, P(ci) is calculated as:

∀i, P(ci) =
k + ti

k · n +
∑n

i=1 ti
, (3)

where n is the number of available commands (e.g., the number
of items in a menu), and k is the update rate, a positive constant

which determines how fast P(ci) will be learned from the
selection history.

The proposed model (Equation (3)) satisfies aforementioned
criteria (1) and (2). If no selection history is observed, i.e.,
ti = 0, i ∈ [1, n], Equation (3) shows P(ci) = 1

n . It indicates that
each candidate is equally probable as the target. On the other
hand, if we have a large number of observations on selection
history (i.e., ti � k · n and ti � k, i ∈ [1, n])), Equation (3)
shows P(ci) ≈ ti∑n

i=1 ti
, which is the frequency of ci being the

target in the past.

The update rate k in the model controls the balance between
two extreme views on calculating P(ci):

(A) P(ci) is identical to the frequency of ci being the target in
the past.

(B) all the candidates are equally probable as the target.

If k = 0, P(ci) = ti∑n
i=1 ti

, which is the view (A). If k → +∞,

P(ci) ≈ 1
n , which is the view (B). A positive k controls the

weights between these two views. Later we explain how we
used a simulation-based approach to determine an optimal k
in our applications.

LIKELIHOOD MODELS
We have developed two likelihood models: a dual-Gaussian
likelihood model for point-and-click command input, and a
two-step likelihood model for recall-based gestural command
input. Because each of the likelihood models is tightly con-
nected to the specific command input method, we describe
how to obtain them when describing applications.

After obtaining prior probability and likelihood, we can ap-
ply BayesianCommand to decide the target command. Algo-
rithm 1 shows how the BayesianCommand principle works.

Algorithm 1 BayesianCommand
1: Input: s – the input signal s,
2: C – a set of command candidates {c1, · · · , cn}

3: Output: the target command c∗
4: for i = 1, 2, · · · , n do
5: obtain prior probability P(ci) from Equation (3)
6: calculate P(s|ci) from the likelihood model
7: select c∗ = arg maxP(s|ci)P(ci) as the target command
8: update prior probability P(ci) for each ci based on Equa-

tion (3), given that c∗ is the selected command.

APPLICATION 1: APPLYING BayesianCommand TO
POINT-AND-CLICK COMMAND SELECTION
We first applied BayesianCommand to improve the command
input accuracy on a touch-based point-and-click interface:
triggering a command by touch pointing the corresponding
icon, button, or menu item. We expect that BayesianCommand
will improve the command input accuracy over the typical
boundary criterion, which decides the target by examining
whether the touchpoint falls within the target boundary.

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 642 Page 3



To apply BayesianCommand to point-and-click command se-
lection, we used the prior probability model (Equation (3))
to estimate P(c). Next, we explain how to obtain P(s|c) for
point-and-click interfaces.

Dual-Gaussian Likelihood Model for Point-and-Click
We adopted a dual-Gaussian likelihood model to calculate
P(s|c), assuming that the touchpoints approximately follow
a Gaussian distribution [4, 31, 32]. Assuming for a 2-
dimensional target we observe a touchpoint s as (sx, sy), P(s|c)
can be calculated as:

P(s|c) =
1

2πσxσy
exp
− z

2(1 − ρ2
i )

 , (4)

where

z ≡
(sx − µx)2

σ2
x

−
2ρ(sx − µx)(sy − µy)

σxσy
+

(sy − µy)2

σ2
y

. (5)

(µx, µy) is the target center, σx and σy are the standard devia-
tions of users’ touchpoints, and ρ is the correlation coefficient
between x and y. We followed the next two steps to estimate
the parameters of Equations (4) and (5).

First, we assumed that the center of touchpoint distribution
(µx, µy) co-locates with the center of the target. Previous re-
search showed that (µx, µy) has only a small offset from the
target center, and the magnitude and direction of the offset are
affected by various factors including the target position on the
screen, users’ postures, and finger angle, etc. [4, 31, 32, 67,
77]. Without further knowledge on these factors, we assume
(µx, µy) is located at the target center. Similarly, previous re-
search also showed the correlation coefficient (ρ) between x
and y largely depends on a variety of factors such as on-screen
location, hand posture, and finger angle. Similar to the ap-
proach adopted in Bi and Zhai [11], we assume ρ ≈ 0 without
further knowledge of these factors.

Second, we adopted the dual Gaussian distribution hypoth-
esis [9, 10] to estimate σx and σy. For a point-and-click
interface, the dual distribution hypothesis [9, 10] states that
the variance of touchpoints (σ) has a linear relationship to d2:

σ2 = σ2
r + σ2

α = α × d2 + σ2
α, (6)

where α and σa are empirically determined parameters, and d
is the target size.

Parameterizing the dual-Gaussian Likelihood Model
Following the procedure reported in the previous research [10],
we conducted a target acquisition study to obtain α and σa
values for Equation (6).

We recruited 36 participants (12 female) aged between 19
and 37 (average 25.4±4.2). Each participant was instructed
to naturally select a circular target, which randomly appeared
on a Nexus 5X touchscreen device. The study included four
levels of target size (diameter): 8, 12, 16, 20 mm, each with
20 trials. To avoid over-fitting, we randomly divided the data
into two sets: 29 (∼ 80%) participants as the training set and
the rest as the test set. Both data sets included a mix of two
postures (index finger, thumb).

We established the touch model of the training set following
the procedure described in [10]. More specifically, we first
calculated the mean and standard deviation of the touchpoints
relative to the target center. As conventional in Android and
iOS, we assume the positive x-direction is right, and the pos-
itive y-direction is down. Table 1 shows the touch model
parameters (in mm) of the training set data.

d µx µy σx σy

8 0.472 0.327 1.372 1.598
12 0.648 0.348 1.756 2.010
16 0.628 0.411 1.843 2.350
20 0.973 0.348 2.138 2.451

Table 1. Touchpoint distribution for different target sizes. All units are
in mm. The target center is (0,0). d is the diameter of the target. µx, µy
are the mean of the touchpoints. σx and σx are the standard deviations
of the touchpoints.

We then ran linear regression for the variance of x and y direc-
tions against d2. The estimations are shown in Figure 2. The
α and σa values serve as the parameters for Equation (6). To
verify the trained parameters, we tested them on the σ values
on the test dataset, the mean (SD) RMSE were 0.10 (0.11)
mm on σx and 0.12 (0.04) mm on σy across different d. This
confirmed the validity of the model.

64 144 256 400
d2 (mm2)

0

2

4

6

σ2
x / σ2

y

(mm2)
σ2

x = 0.0074× d2 + 1.6444
R2 = 0.9704

σ2
y = 0.0102× d2 + 2.3393

R2 = 0.9478

x direction
y direction

Figure 2. Regression between the variance in x directions (σ2
x) / y direc-

tion (σ2
y ) and the target width (d2).

In this section, we provide the dual-Gaussian likelihood model
for point-and-click command input by building a touch model
that predicts the probability of observing a touchpoint s given
c as the intended command. This touch model not only serves
as the likelihood function for BayesianCommand but can also
be used to generate touchpoints in the following simulation
study in which we determined how fast the prior probability
model should be updated from the command input history.

Determining the Update Rate of Prior Probability Model
After obtaining the prior probability and likelihood models,
we investigated how fast the prior probability P(ti) will be
updated from the selection history. In other words, we decided
the optimal k value in Equation (3) via a simulation study.

The simulation worked as follows. We first designed a 6 by
4 touchscreen grid layout for command selection (Figure 3).
Each cell in the grid corresponded to a command candidate.
We then implemented BayesianCommand as the principle for
deciding the target on this grid interface, using the previously
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described prior probability model and likelihood model. We
implemented a set of BayesianCommand-based criteria with
different k values in the prior probability models. We used the
touch models of test set users to generate the touchpoints, fed
the touchpoints into this grid layout and evaluated the accuracy
of different BayesianCommand models to determine which k
value led to optimal performance.

We ran the simulation using the data collected in the previous
study. We used the training set to train a touch model which
served as the likelihood model in BayesianCommand (Fig-
ure 2). We developed independent touch models for each user
in the test set to generate the touchpoints for testing.

On this grid layout, we assumed the target frequency follows
the Zipfian distribution [79]:

f (l; s,N) =
1/ls∑N

n=1(1/ns)
, (7)

where N is the number of elements, l ∈ {1, 2, . . . ,N} is the rank
of the element, and s is the value of the exponent character-
izing the distribution. We randomly picked 12 square targets
from a grid layout (Figure 3) and simulated two different dis-
tributions with exponent s = 1 and s = 2, based on 600 total
selections. The generated frequencies were (216, 106, 98, 79,
52, 25, 7, 6, 4, 4, 2, 1) for s = 1 and (430, 142, 14, 3, 2, 2, 2, 1,
1, 1, 1, 1) for s = 2. We assumed these 12 frequencies showed
how frequently a target would be the intended command, and
assigned these 12 frequencies to the selected 12 targets.

Figure 3. The grid layout used in the simulation. The yellow block shows
the simulated target. The finger illustrates the simulated touchpoint.

Seven target sizes (4, 5, 6, 7, 8, 9, and 10mm) were tested.
We ran the simulation for every user in the test set separately.
The target order was randomized. In each simulation trial, we
picked one candidate as the target, and generated a touchpoint
for selecting this target following the test user’s individual
touch model. Given the touchpoint location, we then deter-
mined the selected target using BayesianCommand with dif-
ferent k values in the prior probability models. We repeated
the procedure five times.

In total, the simulation included: 2 Zipfian distributions × 7
target sizes × 7 test users × 600 trials × 5 repetitions = 294000
simulation trials.

To determine which k should be used in the prior probability
model, we compared the following k values when applying
BayesianCommand:

(1) optimal k. We searched for the optimal k in the prior
probability model by initializing k to 0.1, and increasing
it to 20 with a step length of 0.1. The k that led to the
highest accuracy was optimal.

(2) k = 1. We used k = 1 across users and conditions. We
discovered that k = 1 performed well in pilot simulation
runs and would like to see if it could be generalized.

Results
We calculated the target acquisition accuracy of each repetition
as the total number of correct selections divided by the total
number of selections averaged across the users in the test set.
Figure 4 shows the average accuracy over the five repetitions.

4 5 6 7 8 9 10
Square target width (mm)

80

90

100
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cu
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)

s=2, optimal k
s=2, k=1
s=1, optimal k
s=1, k=1

Figure 4. Average target acquisition accuracy by target size for different
target frequency (Zipfian distribution with s = 1 or s = 2) and k.

The optimal value of k varied across different runs, but gen-
erally fell within the range of [0.5, 3]. As shown in Figure 4,
when k = 1, the average accuracy was close to the optimal
accuracy. Therefore, we chose k = 1 in the prior probability
model (Equation (3)) and used this value for implementation.
Note that the choice of k is specific to our particular appli-
cation. Different values should be selected depending on the
actual scenario.

After determining the update rate (i.e., the k parameter), we
conducted a study to evaluate BayesianCommand for point-
and-click command input, using the proposed prior probability
model and the dual-Gaussian likelihood model.

Experiment I: Evaluating BayesianCommand for Point-
and-Click Command Input
The purpose of the study was to evaluate BayesianCommand
for point-and-click command input. We expected Bayesian-
Command to outperform the typical boundary criterion be-
cause BayesianCommand was a more principled approach to
handle the ambiguity in touch pointing input. We were also in-
terested in comparing BayesianCommand with the BTC [10].
As explained in the related work section, BTC ignores the
prior probability and only uses the likelihood probability to
decide the target.

Participants and Apparatus
18 adults (4 females) aged between 21 and 35 (average
27.3 ± 3.3) participated in the study. 16 participants were
right-handed. The self-reported average usage time of mobile
phones was 24.5 hours per week. We used a Ticwatch S Smart-
watch with a 45mm diameter screen in the study (Figure 5a).

Experiment Setup
The study was a within-subject design. There were 2 indepen-
dent variables: target size and target deciding principle. We
evaluated two target sizes: 3mm and 4mm square targets on
a 4 by 6 grid layout. The target deciding principles included
three levels:
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• BayesianCommand. It used BayesianCommand (Algo-
rithm 1) to decide the target. We used Equation (3) as
the prior probability model and Equation (6) (Figure 2 for
parameters) to obtain the likelihood value. We chose k = 1
in the prior probability model according to the previously
described simulation study.

• BTC [10]. BTC uses only the likelihood function to decide
the target command. As with BayesianCommand, BTC
also used the dual Gaussian distribution hypothesis [9, 10]
to obtain the likelihood value. To be consistent with the
BayesianCommand experimental condition, we used the
same parameters used in BayesianCommand (Figure 2) for
BTC.

• Boundary Criterion. This is the commonly adopted criterion
that decides the target command by examining whether the
touchpoint falls within the target boundaries. It served as a
baseline in our experiment.

In the BayesianCommand and BTC conditions, we used the
same touch model obtained from the previous study in the
likelihood model. Except for the form factor, the two devices
used capacitive touch screens and were both running Android
OS, i.e., the underlying mechanism to convert the finger touch
to a touchpoint was the same. We assumed the previously
developed touch model was valid on our testing device.

We designed a point-and-click command input task. The item
corresponding to the target command was highlighted in yel-
low. Participants were instructed to select the target item as fast
and accurately as possible. When a selection was made, the
selected item would be highlighted with a blue background. A
trial was completed if the selection was correct or three failed
attempts were made.

(a) (b)
Figure 5. The setup of Experiment I. (a) shows a participant selecting a
4mm target, and (b) shows the application with 3mm square targets. The
ones highlighted by yellow were the targets tested in the experiment.

We randomly selected 12 items as targets. We used the same
set of targets across participants and conditions. The target
positions were fixed, as shown in Figure 5b. Target item
frequencies were generated according to Zipfian distribution
with exponent s = 1 based on 30 selections. The generated
frequencies, i.e., the number of occurrences, were (7, 5, 4,
4, 2, 2, 1, 1, 1, 1, 1, 1). The frequency assignments were
randomized across participants and conditions. Participants
were not informed of the frequency distribution of the items
or the position of the most frequent items.

We balanced the frequency assignments on the target items
across all participants and conditions. Each target item was
assigned to each frequency an equal number of times to ensure
that the same total number of selections was collected for
each target. The order of the targets within each block was
randomized. A similar strategy was used in [3, 28].

Before the formal study, participants were introduced to the
task and performed a warm-up session of 5 trials. Each condi-
tion contained two blocks, each with 30 trials. Every partici-
pant performed the task three times in a row, using a different
target deciding principle each time. The order of the three prin-
ciples was fully counterbalanced across the 18 participants.

In total, the study included: 18 participants × 3 principles × 2
target sizes × 60 trials = 6480 trials.

Results
Error rates. This metric measures the ratio of the number
of incorrect selections over the total number of trials. The
average error rates by target deciding principle are shown
in Figure 6.
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Figure 6. Average error rate (95% confidence interval) of the three tar-
get deciding principles on 3mm and 4mm targets.

BayesianCommand reduced the error rates: on 4mm targets,
it reduced the error rate by 37.2% and 39.3% compared to
the boundary criterion and BTC; on 3mm targets, the error
rate reduction was 26.9% and 28.0% respectively. ANOVA
showed there was a significant main effect of the target de-
ciding principle on the error rates (F2,34 = 7.98, p < .005).
Pairwise comparisons with Bonferroni adjustment showed
that the difference was significant between BayesianCom-
mand vs. BTC (p = .004) and between BayesianCommand
vs. boundary criterion (p = .017). The 4mm targets were
less error-prone and easier to select than the 3mm targets.
ANOVA showed the differences were significant for target
size (F1,17 = 39.93, p < .005). We did not observe a signifi-
cant interaction effect of target deciding principle × target size
(F2,34 = 0.33, p = .72).

Target acquisition time. We compared the average target ac-
quisition time, which was the elapsed time from a target being
highlighted on the screen to the time the participant made the
first selection. We only considered the first attempt in every
trial, regardless of whether it was correct or not.
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Target size Boundary criterion BTC [10] BayesianCommand
4mm 0.74 ± 0.25 0.78 ± 0.26 0.71 ± 0.15
3mm 0.86 ± 0.26 0.88 ± 0.24 0.94 ± 0.44

Table 2. Average target acquisition time in seconds.

The target size had a main effect on the target acquisition time
(F1,17 = 6.98, p = .017). We did not observe a main effect
of the target deciding principle (F2,34 = 0.30, p = .75) or any
interaction effect (F2,34 = 1.45, p = .25). As shown in Table 2,
using different target deciding principles had little effect on
the target acquisition time.

Subjective feedback. We used a subset of NASA-TLX [30]
questions to measure the perceived workload of the task, in-
cluding mental demand, physical demand, and effort. The
rating was from 0 to 10. The lower the rating the better.

For 4mm targets, the median ratings were 4 (mental demand),
3 (physical demand), and 3 (effort) for BayesianCommand;
3, 4, 4 for the boundary criterion, and 3.5, 4, 4 for BTC. For
3mm targets, the median ratings were 4, 5, 5 for Bayesian-
Command; 5, 5, 5 for the boundary criterion, and 5, 5, 6 for
BTC. BayesianCommand was perceived slightly less mentally
demanding than the other two principles on 3mm targets.

Discussion
The empirical study showed that BayesianCommand outper-
formed the boundary criterion and BTC. Using BayesianCom-
mand substantially reduced the touch pointing error rate for
both large and small menu targets. The reduction was espe-
cially remarkable for small targets: around 26% over both
boundary criterion and BTC. It also showed that learning
the prior probability distribution and combining it with the
likelihood function outperforms using the likelihood function
alone. Since BayesianCommand is algorithmic, these improve-
ments were achieved without altering any UI layout, which
was advantageous to frequency-based menu adaptation (e.g.,
morphing menu [16]), and thus less likely to slow users down
or reduce user satisfaction [20].

BTC had almost identical error rates to the boundary crite-
rion. According to the definition of BTC (Equation (1) in
[10]), when the target sizes are equal, BTC is equivalent to
comparing the distance from the touchpoint to the target center
(touchpoint-to-center distance). Since the targets were of the
same size and were arranged in a grid with no gaps between
them in our experiment, BTC was equivalent to boundary cri-
terion: the item whose boundary contains the touchpoint is
also the target that has the shortest distance to the touchpoint.
Although we only allowed 3 failed attempts per trial, our inves-
tigation showed it had minor effects on the overall error rates.
16 participants could correctly finish all trials within 3 attempts
in all conditions. The rest two failed 0.56% (= 4/720) of the
trials 3 times, which were for 3mm targets in the Bayesian-
Command condition. These 2 participants were able to select
the targets correctly when the same trials repeated, indicating
that these items remained accessible for them.

How can designers or developers leverage the benefits of
BayesianCommand? Many applications and software have col-

lected usage patterns of menus, buttons, and commands, e.g.,
the command usage frequency of Microsoft Word 2003 [29].
These accumulated frequencies and patterns could serve as the
prior probability for adopting BayesianCommand; the system
can then adapt the prior probability as a user is interacting with
the system. If no prior command history is available, the sys-
tem can assume every command is equally probable and learn
the distribution probability as more actions are observed. We
would also like to point out that BayesianCommand works un-
der the assumption that the command input distribution model
can be established. It might not show significant benefits for
some applications if their command frequency model is not
that obvious (e.g., Maps).

APPLICATION 2: APPLYING BayesianCommand TO
WORD-GESTURE SHORTCUTS
In this application, we investigated how to apply Bayesian-
Command for word-gesture shortcuts – entering a command
by drawing the word-gesture [37, 74] of the command name
(e.g., Figure 7). We first propose a two-step likelihood model
for gestural input and combine it with the previously proposed
prior probability model. A user study showed using Bayesian-
Command outperformed the existing deterministic principle,
which selects command simply based on the highest matching
score from a gesture decoder.

Note that the two-step likelihood model is not a gesture de-
coder; it is a model that uses a gesture decoder and combines
the decoding outcomes with available command candidates to
estimate P(s|c), where s is an input gesture and c is a command.
It is independent of a gesture decoder. In this application, we
used the i’sFree gesture decoder [78] as an example, but it can
be replaced with other decoders such as S HARK2 [37].

Yelp

Figure 7. Launch Yelp with word-gesture shortcuts: drawing the word-
gesture (in green) of the word Yelp on an imaginary Qwerty keyboard.
We use the i’sFree gesture decoder [78] in this example, so the keyboard
is invisible to the users (illustrated as semi-transparent).

Two-Step Likelihood Model for Word-Gesture Shortcuts
To develop the model, we first view the decoding process, i.e.,
the procedure of mapping an input gesture s to a command c
as a two-step process:

• Step-1: s is first decoded into a word w by a gesture decoder
(e.g., S HARK2 [37, 74] or i’sFree decoder [78]).

• Step-2: w is mapped to a specific command c. Note that
a user may trigger a command with different words. For
example, to launch a clock application, users could input
clock, time, timer, or watch.

CHI 2020 Paper  CHI 2020, April 25–30, 2020, Honolulu, HI, USA

Paper 642 Page 7



If we view s, w, and c as random variables, the following
graphical model describes their dependencies (Figure 8):

S W C
Input gesture Decoded word Command

clock

Decoding example:

Conditional dependencies:

Figure 8. A graphical model showing the conditional dependencies be-
tween the input gesture s, decoded word w, and command c. The exam-
ple shows the process of triggering the command “clock” with a word-
gesture. The word-gesture is entered on a keyboard, and the yellow dot
illustrates the start of the gesture.

We developed the two-step likelihood model based on this
graphical model. According to the law of total probability, we
can get P(s|c) as:

P(s|c) =

N∑
i=1

P(s,wi|c) =

N∑
i=1

P(s|wi, c)P(wi|c), (8)

where s is the input gesture, wi is a decoded word candidate
from a gesture typing decoder, N is the total number of de-
coded word candidates, and c is a command candidate.

The graphical model (Figure 8) suggests that c and s are con-
ditional independent given w. Therefore, Equation (8) can be
further expressed as:

P(s|c) =

N∑
i=1

P(s|wi, c)P(wi|c) =

N∑
i=1

P(s|wi)P(wi|c). (9)

Equation (9) is our two-step likelihood model. As shown, the
key of using this model is to obtain P(s|wi) and P(wi|c). These
two terms can be calculated as follows.

The term P(s|wi) represents the probability of observing the
input gesture s if wi is the target word. From a gesture typing
decoder’s perspective, it is the spatial score of wi given s is the
input gesture [37, 74]. In this research, we adopted the eyes-
free gesture decoder [78] to obtain it. We swapped the original
language model used in the eyes-free gesture decoder [78]
with the command set C = {c1, c2, . . . , cn}, because our goal
was to predict an available command in a command set, rather
than as a general text entry method.

The term P(wi|c) represents the probability of inputting the
word wi if the c is the intended command. Since a command
might be triggered by different words (e.g., launching a clock
with clock, timer, or watch), we calculate P(wi|c) as follows.
For a given command c, we first form a set of words cor-
responding to it: M = {m0,m1,m2, ...,mK} from a thesaurus
(e.g., thesaurus.com), where mi is a valid word for triggering c.
If a decoded word candidate wi does not belong to this set, we
assume P(wi|c) = 0. Otherwise, P(wi|c) = 1

K , assuming that
each word in this thesaurus has equal probability for triggering
command c.

Equation (9) is the two-step likelihood model for decoding
word-gesture command input. After obtaining P(wi|c) and
P(s|wi), we can then use it to calculate P(s|c). Together
with the prior probably model (Equation (3)), we can apply
BayesianCommand (Algorithm 1) to decide the target com-
mand for word-gesture shortcuts. Note that this is only one
design option for the likelihood model. Our purpose is not to
prove it is superior over other options. Instead, we used it as an
example to demonstrate how to use BayesianCommand as the
principled way to decide target command in gestural command
input. There could be other alternatives. For example, we may
use the decoding likelihood P(s|wi) from a gesture decoder to
directly approximate P(s|c), assuming there is a one-to-one
mapping between w and c. We adopted the two-step model
because it reflects the gesture command decoding procedure,
and offers more flexibility. For example, it can model situa-
tions where different words wi can trigger the same command
c, and the same word w can trigger multiple commands (e.g.,
depending on the application context) by including the same
w in multiple M sets.

Experiment II: Evaluating BayesianCommand for word-
gesture shortcuts
We conducted a user study to evaluate using BayesianCom-
mand for word-gesture shortcuts. We compared Bayesian-
Command with the typical deterministic strategy for deciding
target command.

Participants and Apparatus
18 adults (4 females) aged between 23 to 31 (average 26.9±2.5)
participated in the study. The self-reported average usage time
of mobile phones was 30.1 hours per week. 17 participants
were right-handed. The median of self-reported familiarity
with Qwerty layout (1: not familiar at all, 5: very familiar)
was 4.5. The median familiarity with gesture typing was 3. A
Google Pixel running Android 9.0 was used for the study, as
shown in Figure 9b.

Experiment Setup
The study was a within-subject design. The independent vari-
able was the command deciding principles with three levels:

• BayesianCommand: we applied BayesianCommand (Al-
gorithm 1) as the principle to decide the target command,
using Equation (3) to calculate prior probability and the
two-step likelihood model in Equation (9) to calculate like-
lihood. Similar to Experiment I, we chose k = 1 in the prior
probability model.

• Likelihood-only: the command candidate with the highest
likelihood value (the two-step likelihood model in Equa-
tion (9)) is the intended target. It uses likelihood value only.
We included this condition to understand how much per-
formance gain in BayesianCommand was provided by the
prior probability, and how much gain was provided by the
likelihood function. This approach can also be viewed as
using BayesianCommand but assuming all the command
candidate has equal prior probability: under this assumption
P(c|s) will be determined by the likelihood P(s|c) only.
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• Deterministic approach. This is the typical target deciding
principle for gestural command input. The gesture decoder
used a set of available command names as the dictionary and
matched the input gesture with the words in this dictionary.
The word with the highest matching score was the intended
command.

We used the same gesture decoder [78] across all three condi-
tions. We swapped the language model in the original decoder
with the command set used the study (including all the trigger
words for each command in Appendix A). The composition
of the command set is explained in detail later.

Before the study, participants were shown the 20 commands
and their corresponding graphical representations. Participants
needed to memorize ≥ 80% of the commands before they
could proceed to the formal study: they had to recall at least
one of the trigger words of the commands. This procedure
ensured that the results wouldn’t be affected by participants’
familiarity with the commands, or any external cause other
than the three principles.

For each trial, an icon was first displayed on the screen as the
target command. The participants then gestured the word in
the white space below it to trigger the command. The input
command name was shown to the participants after the fin-
ger lifted off from the screen, regardless of whether it’s the
intended command or not, as shown in Figure 9a. A trial was
completed if the input command was correct or three failed
attempts were made. For each condition, participants first
performed a warm-up session of two trials, followed by 60
trials divided into two blocks. Participants were allowed to
take a short break after the completion of each block. Each
participant performed the task three times, with different target
deciding principles each time. The orders of three target decid-
ing principles were fully counterbalanced across participants.

(a) (b)
Figure 9. (a): the application for Experiment II. The user draws a word-
gesture command, then the target command will be shown on the screen.
(b): experiment setup.

calculator delete keyboard rotate
camera download mail search
clock edit network share
copy file print weather
cut help recent zoom

Table 3. List of the 20 commands. The underlined commands were
tested in the experiment.

A subset of 12 commands was picked as the targets. The same
set of commands were used across participants. We used the
same item frequencies as in Experiment I, i.e., the number
of occurrences for the commands was (7, 5, 4, 4, 2, 2, 1, 1,
1, 1, 1, 1). Participants were not informed of the frequency
distribution of the items. The rest of the experiment design
is similar to Experiment I. For each command, a set of 10
additional words for triggering this command was created
from [18]. The list of commands is shown in Table 3. The
command set included 20 commands. Each command has 11
corresponding trigger words (10 synonyms and the command
name). The command set includes 220 words in total, which
was incorporated into the decoder used in the study.

In total, the study included: 18 participants × 3 principles ×
60 trials = 3240 trials.

Results
Error rates. This metric measures the ratio of the number of
incorrect gesture inputs over the total number of trials. The
average error rates are shown in Figure 10.
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Figure 10. Average error rate (95% confidence interval) of the three
principles for word-gesture shortcuts.

BayesianCommand lowered the error rate by 39.9% and
24.5% compared to the deterministic and the likelihood-
only approaches. ANOVA showed a significant main ef-
fect of the command deciding principle on the error rates
(F2,34 = 5.56, p < .01). Pairwise comparisons with Bonferroni
adjustment showed that the difference was significant between
BayesianCommand vs. deterministic strategy (p = .01), but
not for BayesianCommand vs. likelihood-only (p = .13) or
likelihood-only vs. deterministic strategy (p = .54).

Command triggering time. We compared the average com-
mand triggering time, which was the elapsed time from a
target command icon being shown on the screen to the comple-
tion of a gesture command. The average command triggering
time was 2.91 ± 1.32 seconds for the deterministic strategy,
2.83 ± 0.98 seconds for the likelihood-only approach, and
2.98 ± 1.35 seconds for BayesianCommand. We did not ob-
serve a main effect of the principle (F2,34 = 0.19, p = .83).
This result also indicates that using different principles had
little effect on the overall command triggering time.

Use of trigger words. We examined the trigger words of
each command in the deterministic condition. We counted
the number of unique trigger words (i.e., the decoded word
from the gesture recognizer) of each command when it was
successfully triggered. We excluded the BayesianCommand
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and the likelihood-only conditions as they used probabilistic
approaches, and the decoded word did not always correspond
to the command label. The average number of trigger words
was 2.92 (S D=1.38) across the 12 tested commands. This
result supported the validity of the graphical model (Figure 8)
and our hypothesis that multiple trigger words could be used
for a command.

Subjective feedback. A subset of NASA-TLX [30] questions
was used to measure the perceived workload of the task. The
range of the ratings was 1 to 10 (the smaller the rating, the
better). The median ratings were 4 (mental demand), 2.5
(physical demand), and 3 (effort) for BayesianCommand; 5,
4, 5 for the deterministic method, and 4.5, 4, 5 for likelihood-
only. BayesianCommand was perceived less demanding than
the other two principles in all questions.

Discussion
The results showed that BayesianCommand effectively im-
proved the input accuracy for word-gesture shortcuts. It re-
duced the command triggering error rate by 39.9% compared
to the deterministic method. Notably, it performed better than
the deterministic strategy when the gesture decoder failed to
distinguish commands in similar shapes. For example, the av-
erage input error rate for the command “cut” was 34.2% for the
deterministic method, because its gesture trace was very sim-
ilar to “copy” on a Qwerty keyboard. 65% of input for “cut”
was misrecognized to “copy” for the deterministic method.
BayesianCommand reduced the error rate to 16.2%, showing
that combining prior and likelihood resolved some ambiguity
introduced in the gesture decoding. BayesianCommand also
outperformed the likelihood-only approach by 24.5%. The
results also substantiated our claim that fully applying the
Bayes’ theorem could be adopted in various applications to
deal with the input uncertainty.

Likewise, limiting the number of failed attempts to 3 had mi-
nor effects on the results. Nine participants correctly finished
all trials in under three tries in all conditions. For the rest 9 par-
ticipants, the average percentage of trials that failed three times
was 1.30±1.67% for the deterministic approach, 1.02±1.53%
for likelihood-only, and 1.30 ± 2.78% for BayesianCommand.
Compared to the other two conditions, BayesianCommand did
not introduce more trials that failed three times or contained
inaccessible commands. The percentage increased over Ex-
periment I as gesture input is a more complex procedure with
higher cognitive and motor execution demands.

While the application focused on word-gesture shortcuts,
BayesianCommand could be extended to other gestural com-
mand input methods, e.g., Command Strokes [38], Command-
Board [1], or HotStrokes [17]. The prior probability and the
likelihood models are independent of the gesture decoder, thus
being applicable to other gestural command input methods
with minor modification. Investigation on the generalization
and other recall-based methods are interesting future work.

LIMITATIONS AND FUTURE WORK
A side effect of incorporating prior probability is that it could
make the less frequent items difficult to select. Although our
experiments did not show severe consequences, the infrequent

items would become more and more challenging to select
as their prior probabilities are decreasing [44]. We could
mitigate the problem by adding a lower bound for command
frequency to ensure that no command will become hard to
access or inaccessible. In real-world applications, we could
leverage user actions to address them. For example, if the
previous selection is an error (back/cancel button is pressed
immediately), the probability of this command will decrease
for the subsequent command input, preventing users from re-
peatedly selecting the same incorrect command and increasing
the chance of selecting the intended one.

Our investigation on point-and-click input was under the as-
sumption that the target size decided the likelihood model
P(s|c). Such a hypothesis did not reflect the possibility that
users may adapt their interaction behavior as frequent items
were becoming easier to select. It is worth investigating
whether adapting P(s|c) according to user interaction expe-
rience would lead to more accurate likelihood models.

Additionally, BayesianCommand is essentially adjusting the
command activation space according to command frequencies.
In the current investigation, we did not communicate such
adjustment to users via visuals to avoid disruption caused by
interface visual changes. It is worth investigating whether
communicating this adjustment would affect users’ interaction
behavior and how we develop more accurate likelihood models
to capture it.

Our two examples (i.e., point-and-click and gestural command
input) were two experiments demonstrating the effectiveness
of BayesianCommand. Many design choices for the models
(e.g., the value of k, the command set, and the trigger words)
were specific to these experiment settings. As shown in [21],
we could make more mature decisions for real-world applica-
tions with more contextual information such as the interaction
scenarios, command set sizes, and users’ preferences. For ex-
ample, if we can access detailed command input history (e.g.,
command usage patterns for Microsoft Word [29]), we may
build a more advanced prior model (e.g., n-gram command
sequence) and follow the similar principle proposed in this
paper to improve the command selection accuracy.

CONCLUSIONS
In this paper, we have formalized Bayes’ theorem as a guiding
framework for deciding the target in command input. To
support this principle, we have developed three models: (1) a
prior probability model, (2) a dual-Gaussian likelihood model
for point-and-click, and (3) a two-step likelihood model for
word-gesture shortcuts. Our experiments showed that applying
BayesianCommand with the proposed models substantially
improved the command input accuracy. Compared to the
deterministic principles or applying the principle partially,
BayesianCommand reduced the command input error rate
by 26.9% and 28.0% for point-and-click, and by 39.9% and
24.5% for word-gesture command input.
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APPENDIX
TRIGGER WORDS OF THE COMMANDS
Table 4 shows the 11 trigger words of the 20 commands in Ex-
periment II. The words in bold were the trigger words used by

the participants to trigger the corresponding commands in the
deterministic condition. Note that these words represent the
decoding output from the gesture recognizer, not necessarily
what the participants intended to input.

Command Trigger words

calculator, calculators, calculate, calculation, compute, computer,
computation, microcomputer, count, appraise, spreadsheet

camera, cameras, camcorder, video, photograph, photographer,
cameraman, videocamera, tripod, lens, projector

clock, clocks, timer, time, dial, watch, stopwatch, alarm, tick,
seconds, wristwatch

copy, copying, copyist, replicate, replica, imitate, reproduce,
emulate, duplicate, plagiarize, clone

cut, cutting, slice, trim, reduce, prune, shorten, truncate,
curtail, scissors, clippers

delete, deleting, deleted, deletes, deletion, remove, uninstall,
eliminate, omit, overwrite, discard

download, downloads, downloadable, upload, redownload, load,
downloader, browse, access, file-sharing, homepage

edit, editing, editor, edits, edited, annotate, annotated, essay,
alter, revise, rewrite

file, files, filing, filename, filed, refile, folder, document,
documents, archive, directory

help, helping, helps, helped, assist, assistance, aid, support,
avail, advice, service

keyboard, keyboards, touchpad, trackpad, keypad, qwerty, stylus,
numberpad, typewriter, typing, laptop

mail, mails, mailbox, mailing, e-mail, email, spam, letter,
postal, post, mailed
network, networks, networked, net, internet, web, cable, channel,
connectivity, networking, interconnect

print, printing, printer, printed, reprint, handwritten, photocopy,
publish, publication, booklet, distribute

recent, subsequent, recently, latest, previous, past, earlier, prior,
preceding, later, coming

rotate, rotation, rotational, tilted, pivot, tilt, rotating, rotated,
revolving, swivel, spin

search, searches, searching, retrieve, discover, check, find, look,
quest, searcher, scour

share, shared, sharing, exchange, swap, commonality, pool,
combine, express, collect, common

weather, inclement, meteorological, windy, forecast, forecaster,
winter, foggy, thunderstorm, meteorologist, blizzard

zoom, zoom-in, close-up, enlarge, magnify, magnifier, scroll,
augment, enhance, expand, amplify

Table 4. The trigger words for the 20 commands used in Experiment II.
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