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to rely on for future designers and practitioners for such interactive technique. In the second study, we assessed the feasibility
and accuracy of inferring the types of grasped objects via using forearm muscular activity as a cue. Our results indicate
that the types of objects can be recognized with up to 94.2% accuracy by employing user-dependent training. In the third
study, we investigated the robustness of this approach in a realistic office setting where users were allowed to interact with
objects as they would naturally. Our approach achieved up to 82.5% accuracy in discriminating 15 types of objects, even when
training and testing phrases were purposefully performed on different days to incorporate changes in EMG patterns over
time. Overall, this work contributes a set of fundamental findings and guidelines on using EMG technologies for object-based
activity tracking.
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1 INTRODUCTION

Knowing the object in a user’s hand can offer rich contextual information revealing both her current activity
and future intention, which is crucial in designing intelligent interfaces for ubiquitous computing or accessible
environments [1, 7, 23, 24, 33]. However, it is challenging to make such an approach robust or scalable due to
challenges in variations of surrounding environments, the ambiguity of human activities, and the high cost of
physical instrumentation on every object in a uniform style (e.g., with fiducial mark [32], RFID [4, 7, 25], acoustic
barcode [18]). Furthermore, it may be hard to differentiate whether users are intentionally interacting with the
objects or are just nearby.

Researchers have explored detecting uninstrumented objects by recognizing their characteristic signatures,
such as electromagnetic noise [23], sound [41], magnetic field [27], and micro-vibration [23]. However, it is hard
to identify a distinctive signature that can apply in each category of everyday objects. For example, EM-Sense
[23] detects electromagnetic noise as the object signature, yet only the objects that produce such signals can be
detected. Moreover, most of these techniques are sensitive to ambient noise due to the low signal-noise-ratio
(SNR) of such signatures.

Compared with aforementioned intrinsic-oriented recognition where objects share identification information
via either dedicated instrumentations or unique signatures, we propose a novel extrinsic-oriented approach
which leverages forearm muscular activities to infer the type of grasped objects indirectly. Variations in object
properties such as shape, size, weight, functionality, as well as intended use combined lead to different grip poses,
muscle activation intensities and arm/hand movement patterns, which in turn result in characteristic muscle
activation patterns (e.g., when and which muscle is activated and how active it is). Since electromyography
(EMG) measures electrical potentials generated by muscle cells and reflects how active a muscle is at a given
time point, we hypothesize that sensing and classifying EMG signals can enable a reliable detection of when an
object is used and what type that object is. Compared with prior work, our method has three strengths. First,
it relieves the costly need for target object instrumentation with identification technologies such as RFID tags
[7, 25]. Second, it detects objects that people are actually interacting with, rather than simply nearby. Third,
sensing human muscular activities allows the system to recognize a wider range of objects that may or may not
produce a distinctive sound [41] or other specific signatures.

While EMG-based hand gesture/posture recognition has been well explored and validated in previous studies
[2, 17, 19, 28, 34-36], we make the distinction that our goal is to recognize objects rather than grip postures.
Relying on grip pose solely can be ambiguous for object detection, especially when different objects are interacted
with similar grasp types. In comparison, our proposed method relies on not only grip poses, but also other factors
such as muscle activation intensities or hand movement patterns during object manipulation. In other words, our
approach detects objects based on a combination of characteristic factors rather than a single property such as
grip.

The primary goal of this work is to determine whether forearm EMG can be used as a cue to recognize the
object a user is interacting with, thus providing activity-related context. To achieve this goal, we conducted three
studies to gain a fundamental understanding of both the potentials and limits of such approach. More specifically,
in the first study, we investigated and quantified influences of multiple physical properties of objects including
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shape, size, weight, and all these factors combined on EMG signals. We demonstrate through empirical evidence
that the uniqueness of EMG signal is caused by variations in all these factors together. We also conducted a
thorough exploration of the feature space and sensor positions which can provide a solid base to rely on for future
designers and practitioners for such interactive technique. In the second study, we assessed the feasibility and
accuracy of inferring the types of grasped objects via using off-the-shelf EMG sensors. The results indicate that
by employing user-dependent training, the proposed method can recognize 12 everyday objects with an average
accuracy of 92.6% when holding the objects statically, and 95.8% when manipulating the objects dynamically. To
give some real-world practicality to our problem, we performed the third study in a realistic office setting where
users were allowed to interact with objects as they would naturally. Our approach achieved up to 82.5% accuracy
in discriminating 15 types of objects, even when training and testing phrases were purposefully performed
on different days to incorporate changes in EMG patterns over time. Overall, this work contributes a set of
fundamental findings and guidelines on using EMG technologies for activity tracking in a fine-grained manner.

2 RELATED WORK
2.1 Object-based Activity Recognition

Traditional approaches rely on motion sensors (e.g., wearable accelerometers [3, 9, 21, 38]) to infer user activities.
They have achieved high accuracies (e.g., 91.7 % in [21], 96.7% in [9], and 99.0% in [38]) in differentiating
ambulatory motions and basic postures such as sitting, walking, or standing. However, such gross movements
cannot fully reflect people’s fine-grained everyday activities.

According to Activity Theory [20], activities have objectives and are accomplished by using tools and objects.
Therefore, one can assume that we may be able to infer something regarding the activity that a user is currently
engaged in if we know the object that the user is interacting with. Some approaches have been created to detect
users’ immediate activities in this manner. To achieve robust recognition of large quantity and variety of objects
in dynamic and complex environments, most of them rely on intrinsic-oriented exploration where objects share
identification information explicitly through sensor-based technologies such as fiducial marker [32], RFID tag
[4, 7, 25], acoustic barcode [18], and NFC [16]. We must acknowledge that RFID-based approaches [4, 7, 25] can
achieve finer-grained detection-they can discriminate every single item even though they are identical ones. In
comparison, our approach is model-level detection-we can discriminate objects of different models (e.g., having
different shapes, sizes, weights, etc.), rather than fully identical ones. However, such instrumentations on target
objects are impractical for many scenarios in terms of cost, performance, reliability, and social acceptance of tag
installations hindered by ethical concerns [40]. Therefore, it is difficult for such approaches to achieve widespread
adoption. We believe that there is a tradeoff between detection granularity, cost, and efforts required to register
objects in the system. Integrating different approaches together to achieve a better balance can be interesting
future work but beyond the scope of this paper.

Researchers also explored detecting uninstrumented everyday objects via sensing unique object signatures and
building machine learning algorithms for recognition [22, 23, 27, 33, 41, 42]. Camera-based detection methods
differentiate objects based on visual features (e.g. color and texture in [33]). However, they may easily break
when the lighting condition is bad or when occlusion exists. Laput et al. [23] utilized a low-cost, software-defined
radio to sense the electromagnetic (EM) noise generated by an object’s operation as the unique signature. They
reported accurate results (i.e. 97.9%) in differentiating 23 everyday objects that spanned a wide range of contexts
including home, office, workshop, large structural features and transportation. Similarly, Ward et al. [41] used
accelerometers and microphone to recognize workshop tools via vitro-acoustic sound generated during operation.
While choosing the right signature could help discriminate objects effectively, it limits the sensing scope. As in
the aforementioned examples, neither [23] nor [41] can detect a book since it does not generate EM noise or
vitro-acoustic sound.
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Fig. 1. The design space of in-use object detection.

Besides sensing object signatures directly, another line of research detects in-use objects indirectly via sensing
and classifying physiological signatures of human body. Such approaches are extrinsic-oriented where human
body serves as a specialized sensing device that extracts information from the object that a user is interacting
with. The underlying rationale is that grasped objects varying in physical properties or functionalities could
result in different physiological responses when being manipulated. For example, Vatavu et. al [40] recognized the
physical properties (e.g., 6 basic shapes, each had 3 levels in size) of the grasped objects with over 90.0% accuracy
via measuring postures of the grasping hand through glove sensors. Similarly, Paulson et al. [30] achieved 97.0%
accuracy in differentiating 12 objects in an office environment. However, wearing a glove directly on the dominant
hand is intrusive and cumbersome, which interferes with normal finger activities. Besides, these methods rely on
grip posture information solely via measuring the grasping hand. When different objects are interacted with
similar grasp types, detection ambiguities might occur. We argue that other characteristic factors such as the
weight of the object or the hand/arm movement patterns during manipulation can contribute to the discerning
power, while such information cannot be fully reflected in hand posture measurements (e.g., positioning and
orientation of the fingers and palm).

In this work, we explored recognizing grasped objects via sensing and decoding forearm muscular activities.
The variations in physical design, functionality, and hand/arm movement pattern when interacting with different
types of object could lead to differences in 1) the subset of muscles involved; 2) how active they are; 3) the
temporal regularity of combining 1 and 2. Since EMG signals reflect muscular activities in high-fidelity, we
hypothesize that sensing and classifying EMG in real time could enable a quick and robust detection of the
object in use. Compared with prior work relying on hand posture solely [30, 40], our proposed method does rely
on, but is not limited to hand postures; it also relies on other factors (e.g., muscle activation intensities, hand
movement patterns, etc.) which might be determined by the weight or functionality of the grasped object. These
factors can be reflected in forearm EMG rather than grip measurements. Moreover, our method is relatively
unobtrusive compared with wearing data gloves [30]. To summarize, we use a design space (Figure 1) covering
two dimensions (i.e. object instrumentation and signature sensing) to organize the state-of-the-art techniques of
fine-grained object recognition, which demonstrates the relationship between our approach with the existing
ones as well. We hope the design space could inspire new ideas for future research.
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2.2 EMG Sensing and Its Applications

Humans make skeletal movements through muscle contractions. The brain first initiates a contraction process by
sending an electrical signal through the nervous system. When the signal reaches the target muscle, a subset of
its motor units will be activated, and then the corresponding muscle fibers contract to make body movements.
EMG senses muscular activities via measuring the electrical potentials between sensor and ground electrodes [8].

Traditionally, EMG was frequently used to assess muscle functions [14] and to control prosthetics [13] in
clinical settings. Recent work demonstrated the feasibility of using EMG as an input modality in muscle-computer
interfaces [2, 12, 15, 17, 19, 26, 28, 34-36, 39]. For example, [34] achieved 78.0% accuracy in classifying wrist,
finger, and combined wrist and finger flexion via forearm EMG sensing. [35] moved beyond gross movement
classification to detect finger gestures in real-time with high accuracies (79.0% for pinching, 85.0% while holding a
travel mug). Following this line, one most recent advance [19] achieved 82.9% accuracy in classifying fine-grained
thumb gestures including left swipe, right swipe, tap, and long press.

Although highly related, the essential distinction is that our goal is to recognize objects rather than hand
gestures. Most prior work focused on recognizing dynamic gestures which typically include a continuous sequence
of hand postures and refer to the changes in both finger/palm positioning and hand orientation. Actually, our
method is more relevant to hand posture recognition, which refers to the static finger/palm positioning and hand
orientation. Researchers have also explored using EMG sensing and classification to detect hand postures (a.k.a.
static gestures) [12]; however, as we discussed earlier, relying on posture solely can be ambiguous for object
detection. Our approach detects objects based on a combination of characteristic factors including shape, size,
weight, and functionality of an object. Variations in these factors combined can result in unique EMG signatures.
Our purpose is to investigate whether forearm EMG can yield a fine enough resolution to reliably determine the
object that a user is currently interacting with.

3 STUDY 1: UNDERSTANDING THE INFLUENCES OF OBJECT PROPERTIES ON FOREARM EMG
3.1 Experiment Design

The goal of this study is to gain a thorough understanding of the influences of various object properties (e.g.,
shape, size, weight) on forearm EMG. We believe that it is rigorous to start with such fundamental research
questions which once answered construct the base for more future work on the use and applications of such
technique.

We start our investigation from surveying the existing taxonomies of the grasping hand based on object
properties. It is difficult to create a complete taxonomy due to the huge variations in both physical geometry
and intended use of everyday objects. A very early and simple yet effective one summarized by Schlesinger [37]
characterizes natural human grasping grips consisting of the following six categories:

e Cylindrical: holding cylindrical objects (e.g., water bottle) with open fist grip

e Spherical: holding spherical objects (e.g., ball) with spread fingers and arched palm

o Tip: gripping small and sharp objects (e.g., pen)

o Hook: supporting heavy objects (e.g., toolbox)

e Palmar: holding flat and thick objects (e.g., tablet) between thumb and other fingers

e ateral: grasping flat and thin objects (e.g., card) primarily between thumb and index finger

Informed by the classification of prehensile postures of Schlesinger [37], we started by selecting six everyday
objects (e.g., bottle, ball, tablet, pen, card and toolbox) in accordance with the above taxonomy. Note that
discriminating these six objects can be trivial since they are different in multiple aspects, such as shape, size and
weight, but nevertheless we can get some preliminary insights and references to easy cases. Then we conducted
controlled studies to investigate the influences of object shape, size, and weight on EMG signals while controlling
other factors. Specifically, we selected three basic shapes and included four different sizes (i.e. control weight)
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Fig. 2. Objects used in Study 1. In the basic group, we selected six everyday objects in accordance with the Schlesinger
taxonomy [37]. In the size group (control weight), there are four levels in size for each shape and all objects have the same
weight of 100g. In the weight group (control size), objects sharing the same shape have the same size while there are four
levels in weight. The objects in the latter two groups were 3D printed. Weights were controlled by adding iron sand inside.

and four different weights (i.e. control size) for each shape. The properties of the objects used for this study are
illustrated in Figure 2. In the following, four different sizes were labeled for our reference as small, medium,
large and largest while four different weights were labeled as light, medium, heavy and heaviest. We specifically
introduced objects with basic geometries and similar physical properties to investigate whether such minimal
variations can be captured by EMG sensing. We believe such design can help us better understand the limits of
this approach.

3.2 Participants and Apparatus

We recruited 10 participants (4 female) from a local university for this study. They ranged from 16 to 31 years
of age with an average of 25. There was no muscular condition or skin allergy reported. All of them were
right-handed. The study took around 1 hour and each participant got a $15 gift card after completion. We used
the BIOPAC MP150 [5] system as the EMG sensing device. The system supports up to 16 sensing channels and
we used eight channels in this study, following the configurations in prior literature [34]. Each channel had two
electrodes in the ends and one ground electrode in the middle, and was sampled at 1000 Hz. The eight channels
are placed in an approximately uniform ring around each participant’s upper forearm (Figure 3). The average
time for setup was less than 10 minutes.
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Fig. 3. (Left) EMG sensors worn on the upper forearm of a participant. (Right) Positions of the eight sensors/channels.

3.3 Procedure

We divided the data collection into four rounds in each of the three object groups. Each round consisted of a
single repetition of each object in a randomized order. In each trial, a participant held an object firmly in a stable
grip for 3 seconds. The participants could pause and had a break any time during the study. We collected 1,200
3-second data samples in total, including 240 (6 objects x 4 rounds x 10 participants) in the basic group, 480
(12 objects x 4 rounds x 10 participants) in the size group (control weight), and 480 (12 objects x 4 rounds x 10
participants) in the weight group (control size).

3.4 Results

We first explored and quantified the influence of object properties on the output values of EMG sensors. We
further investigated such influence on features generated based on the sensor output values. Then we assessed
the discriminatory power of various features in the feature space by comparing their classification performances.
Lastly, we analyzed the relative independence of each sensing position and suggested the ones that might be
more informative for classification.

3.4.1 Influence of Object Properties on EMG Sensor Outputs. We first report whether and how variations in
physical properties of the grasped objects influence the forearm EMG regarding the data from each sensing
channel. For each 3-second data sample, we calculated the root mean square of the raw values generated by each
sensor. We conducted one-way ANOVA (i.e. F test) in each object group to analyze if the null hypothesis, that
samples in all conditions are drawn from populations with the same mean values, can be rejected. Figure 4 shows
the results obtained where statistical significance noted as: p< 0.001(***), p< 0.01(**) and p < 0.05(*). In the basic
group, variations in shape, size and weight together exhibited significant effects on all sensing channels (e.g.,
all with significance p<0.001). In the size group (control weight), variations in object size exhibited significant
effects on 5, 5, 6 out of 8 channels when grasping cylinders, spheres, surfaces, respectively. In the weight group
(control size), variations in object weight exhibited significant effects on all sensing channels when grasping all
the objects in this group (e.g., all with significance p<0.001). Therefore, it is safe to draw the conclusion that
variations in either a single property or a combination of multiple properties can both significantly influence the
output values of EMG sensors, and thus contribute to the uniqueness of EMG signatures.

3.4.2 Discriminatory Power of EMG Features. In the past decade’s literature on EMG sensing and classification,
the success of achieving a high classification performance depends almost entirely on the selection of EMG
features [31, 43]. A comprehensive comparison among various features can give us insights about the usefulness
and relevance of certain features in this task. EMG features can be separated into three groups including time
domain (TD) features, frequency domain (FD) features, and time-frequency domain (TFD) features based on the
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Fig. 4. Averaged output values of eight sensors when grasping different objects. Statistical significances are noted as: p<
0.001(***), p< 0.01(**) and p < 0.05(*).

literature [29]. We explored 12 types of features (e.g., 7 TD, 4 FD, 1 TFD) and all of them have been previously
used in the analysis of surface EMG signals. Note that different features can have different numbers of dimension
in the feature vector (e.g., Mean Absolute Value has 8 dimensions corresponding to the 8 sensors while Energy
Total has only 1 dimension). In total there are 169 dimensions in the feature vector. The optimal parameters for
calculating these features are based on the suggestion of related works and our preliminary experiments. Table 1
shows the features explored in this study.

Following the analysis in the previous section, we first investigate whether and how physical properties of
objects influence the features in the future space. Within each object group, we conducted pairwise comparisons
between objects in different levels regarding the value of each feature in the feature space. This included a total
of 8,619 comparisons (2,535 in the basic group, 3,042 in each of the other two groups). Figure 5 shows the results
of the pairwise comparisons regarding the statistical differences achieved. We found that within each of the
three object groups, 84.8%, 35.3%, and 72.0% among all comparisons exhibited significant differences, respectively.
This suggests that variations in shape, size, and weight combined (e.g., in the basic group) can make EMG more
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Fig. 5. The color-coded results of pairwise comparisons made in this study.

unique compared with variations in size (e.g., in the size group) or weight (e.g., in the weight group) solely.
Moreover, variations in weight have a more significant effect on EMG than variations in size-this finding is
consistent regardless of object shape (e.g., 63.9% vs. 39.2% for cylinders, 75.4% vs. 30.4% for spheres, 76.7% vs.
35.3% for surfaces). We also compared the statistical significances achieved in different features in the feature
space. Overall, higher percentages of significant difference were achieved on MAV (77.3%), WEC (76.7%), and
RMS (76.1%), which suggests that these features can be more sensitive to the variations in object properties.

To further verify these findings, we assessed the classification performances of using different features.
Compared with other classifiers such as random forest, K-nearest-neighbor (KNN), and decision tree, we found
support vector machine (SVM) classifiers with linear kernel achieved higher accuracies in our preliminary studies.
Please note that SVMs are only directly applicable for two-class classification tasks. We applied the LIBSVM
Toolkit [11] in our experiments. In their implementation, the problem of multiclass classification is reduced to
multiple binary classification problems. A total of N(N-1)/2 binary classifiers are built to distinguish between
every pair of the N classes (i.e. one-versus-one). Classification is done by a max-wins voting strategy [6], in which
every classifier assigns the unseen instance to one of the two classes, the class with the most votes gets predicted
by the combined classifier. We applied half-half cross-validation for each participant (user-dependent training)
and Figure 6 shows the corresponding averaged accuracies. We found that using all features together can result
in significant higher accuracies than using each single feature solely in each group. Besides using all features
together, the highest three overall classification accuracies were achieved when using WEC (64.4%), RMS (56.2%),
and MAV (55.6%) only, which confirmed our previous finding that these features can be more discriminative than
others when the physical properties of the grasped objects vary.

3.4.3 Degree of Independence of Sensor Positions. In this section we report results on correlation analysis for
muscle activations in order to detect shared variance between sensor outputs. Forearm muscles co-activate to
perform hand and finger movements [2]-knowing the independence of each sensor position can potentially inform
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better designs of both the sensing device (e.g., using less sensors to reduce information overlap or redundancy)
and the classification techniques (e.g., adopting a weighting scheme based on information gain by each sensor).
Figure 7 (Left) illustrated the color-coded Pearson correlation coefficients computed between all eight sensors on
the entire dataset in this study (N = 9,600). All coefficients were significant at p<0.05 (2-tailed). Sensor locations
are shown earlier in Figure 3 (Right).

For each sensor we calculated the average correlation with all the other seven sensors and define the degree
of independence for each sensor as the complement of the averaged correlation value with respect to one. The
sensors with highest four degrees of independence are CH5 (0.49), CH1 (0.47), CH2 (0.42), and CH7 (0.42). Sensors
with lower degrees of independence include CH6 (0.41), CH8 (0.40), CH4 (0.40), and CH3 (0.37). We further
assess the classification performances of using the output values from sensors varying in degree of independence
(Figure 7 Right). We found that the classification accuracy of using all eight sensors is significantly higher than
using four high-independence sensors (p<0.01) and using four low-independence sensors (p<0.01). We also found
that using high-independence sensors can achieve higher accuracy than using low-independence sensors while
the difference is marginal (p=0.07).

3.5 Brief Summary

In this study, we investigated and quantified the influences of multiple physical properties of objects including
shape, size, weight, and all these factors together on EMG signals. We also conducted a thorough exploration of
the feature spaces and sensor positions regarding their discriminatory power. Our empirical findings include: 1)
variations in either an individual property or a combination of multiple properties can both significantly influence
the EMG sensor outputs as well as the values of the features, but the degrees of impact vary; 2) variations in all
factors combined can make EMG more unique compared with variations in size or weight solely; 3) variations in
weight have a more significant effect on EMG than variations in size and such finding is consistent regardless
of object shape; 4) the MAV, WEC, and RMS features are more sensitive to the variations in object properties
and are relatively more informative for the classification; 5) high-independence sensor positions (CH1, 2, 5, 7)
can result in higher classification accuracies than low-independence sensor positions (CH3, 4, 6, 8) while the
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Fig. 7. Correlation analysis between the output values generated by sensors at various positions: (Left) Pearson correlation
coefficients computed on the whole dataset (N=9,600, all coefficients were significant at p<0.05); (Right) classification
accuracies of using all 8 sensors vs. using 4 more independent sensors vs. using 4 less independent sensors.

difference is marginal. We believe that such foundational findings can help the community gain a comprehensive
understanding about the relationship between physical properties of grasped objects and EMG signals.

4 STUDY 2: EXPLORING THE FEASIBILITY OF RECOGNIZING EVERYDAY OBJECTS VIA
FOREARM EMG SENSING

In Study 1, we show that variations in physical properties, either individually or together, can significantly
influence the forearm EMG signals. In this study, we explore the feasibility and accuracy of detecting everyday
objects that users are interacting with based on EMG signals. We tried to make our dataset more representative
for grasping objects in daily life by 1) extending the detection targets from objects with basic shapes (in Study
1) to everyday objects that are frequently and actually used; 2) including object manipulation condition where
a large variety of postures or finger configurations would presumably be employed. This new scenario was
specifically introduced to provide a better coverage of daily scenarios and therefore to better understand the
feasibility.

4.1 Object Selection

We have three criteria in choosing the objects: 1) they should be frequently used in our daily life; 2) they should
cover different grip poses in the Schlesinger taxonomy [37]; 3) we should also include objects sharing similar
grip poses to see if this causes classification confusion, which may help us better understand the limits of EMG
sensing in this task. According to our criteria, we first conducted a poll with 33 participants (ages ranged from
21 to 45, came from a variety of occupations) on their frequently used everyday objects. Each participant could
name up to ten objects. Then we ranked the objects and chose two most frequently mentioned items for each
grip type. The following is the final list (Figure 8) along with the numbers of vote: smartphone (31), water bottle
(24), pen (23), mouse (18), electric toothbrush (15), key (13), ID card (10), handbag (9), tablet (9), portable charger
(7), spoon (6), and toolbox (2).

In this object set, we purposefully included highly confusable objects such as those sharing similar grip poses
(e.g., objects in the same column in Figure 8), weights (e.g., key vs. ID card, etc.), and operation patterns (e.g.,
toolbox vs. handbag, etc.), which can provide answers to questions such as: whether and to what extent this
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Fig. 8. Objects used in Study 2. The averaged sensor outputs when holding the objects statically and manipulating the
objects dynamically are visualized in the radar charts, using solid lines and dash lines, respectively. Objects in the same
column share similar grip poses.

approach can discriminate objects with/without similar grip poses; whether it can differentiate objects sharing
similar grips and weights while being manipulated differently (e.g., key vs. ID card), etc. Although investigating
techniques for classifying all possible objects is clearly important, as the first empirical study on using EMG for
object detection, our goal at current stage is to acquire a fundamental understanding of the discerning power of
EMG signals which can lay a foundation for detecting a broader range of objects in the future.

4.2 Participants and Apparatus

We recruited 12 participants (4 female) from a local university for this study. They ranged from 18 to 35 years
of age with an average of 26. There was no muscular condition or skin allergy reported. All of them were
right-handed. The study took around 2 hours and each participant got a $20 gift card after completion. The
apparatus was the same with Study 1.

4.3 Procedure

We collected data in two conditions, i.e. C1) holding the objects statically and C2) manipulating the objects
dynamically. Putting them together provides a better coverage of our everyday usage of the objects. To enhance
the classifier generality and avoid over-fitting, we encouraged participants to apply various hand poses in C1
and to mimic their daily usage patterns as much as they could in C2. The order of these two conditions was
counter-balanced across participants.

We divided the data collection into 20 rounds in both C1 and C2. Each round consisted of a single repetition of
each object in a randomized order. Each trial (i.e. one-time hold/manipulation of an object) lasted 3 seconds. This
design is important as it avoided the inherent similarities if the same object was manipulated back-to-back, thus
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Fig. 9. Examples of actual grips (a, c) and the corresponding simulated grips (b, d).

could help prevent overfitting of the model. The participants could pause and have a break any time during the
study. In total, we collected 5,760 data samples (12 objects x 20 rounds x 2 conditions x 12 participants) in C1 and
C2.

In addition, we added a "hand-free" class and collected data when participants were 1) performing simulated
grips of each object without truly having the object in hand (Figure 9); 2) performing free-style gestures as
background data. This allows us 1) to validate the resistance of our approach to false positives (i.e. some object
is detected as "being handled" while the user is not interacting with anything); 2) to analyze the difference in
EMG signals between actual grips and simulated grips with the same hand posture, which may help us answer
questions such as: is the uniqueness of EMG signal caused by the grip posture or by the object-in-hand?

4.4 Results

While we observed huge variability in how different users interact with the same objects (e.g., difference in grip
postures, finger configurations, hand movement patterns, etc.), we applied half-half cross-validation for each
participant (user-dependent training) and reported the corresponding classification results. We also report the
results of user-independent training at the end of this section.

4.4.1  Actual Grip vs. Simulated Grip. We first investigated whether and to what extent the EMG signals are
different between actual grips (i.e. having the object in hand) and simulated grips (i.e. not having the object in
hand) with the same grip posture for each object (Figure 9, a vs. b, ¢ vs. d). With two-class SVMs, most of the
objects reached an accuracy of 100% in discriminating these two types except the followings: mouse (90.0%), pen
(75.0%), key (90.0%) and ID card (85.0%). We further compared the object classification accuracy by using EMG
signals of actual grips vs. simulated grips. T-test showed that the actual grips were more informative and can
lead to significantly higher object classification accuracy (94.2% vs. 75.0%, p<0.01).

These results suggested that: 1) even with visually similar grips, having the object truly in hand can make the
EMG signal highly different with that of a simulated grip; 2) the posture of grip plays an important role in object
classification (i.e. achieved 75.0% accuracy when only relying on posture itself); 3) other factors that are not
reflected directly in hand posture (e.g., object weight) also contribute to the uniqueness of EMG signals, which
supported a conclusion that our method detected objects relying on, but not limited to grip pose; it also relied on
other factors as well.

4.4.2  Classification Confusion. The classifier achieved an overall accuracy of 94.2% (SD=4.5%) across the 13
classes (12 objects + "hand-free" class) on the whole dataset of this study. Figure 10 shows the confusion matrixes
in both static holding and dynamic manipulation conditions. Smaller bounding boxes show the confusions
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Fig. 10. Object confusion matrixes of holding the objects statically (Left) and manipulating the objects dynamically (Right).
Smaller bounding boxes show the confusions of objects sharing similar grip poses.

of objects sharing similar grip poses. Darker areas that occur off the diagonal indicate more confusions. The
detection accuracies reached the level of 90% on 11 out of the 13 classes. We also found that the false positive rate
is low (3.8%), despite the inclusion of simulated grips in the "hand-free" class.

Among all the confusions, 21.4% involved objects sharing similar grips while 78.6% involved objects with
dissimilar ones. However, please note the unbalance in object quantity of these two classes-in other words, 21.4%
of the confusions occurred on 1 object with a similar grip while 78.6% occurred on a total of 11 objects with
dissimilar grips. We further calculated the probabilities of confusing two objects with similar vs. dissimilar grips,
and t-test showed that the former probability was significantly higher than the latter (1.8% vs. 0.6%, p<0.05),
which indicated that differentiating objects with dissimilar grip postures can be easier than those with similar
grip postures.

We found that the classification accuracy was higher when objects were manipulated dynamically (95.8%) than
they were held statically (92.6%). T-test showed that the difference was significant (p=0.005), which suggested that
dynamic manipulation could provide richer information (e.g., hand/arm movement patterns, dynamics of muscle
activation, etc.) and help to make the EMG signatures more unique. For example, the classifier made 28 confusions
when differentiating key and card while users grasped them statically; in comparison, the classifier only made 2
confusions when they are manipulated dynamically. We attribute such improvement to the variations in hand
movement patterns when interacting with these two objects.

By ranking and dividing the 12 objects into two groups based on their weights (6 heavy items vs. 6 light items,
weight averaged 1611.67g and 46.33g, respectively), t-test showed the average recognition accuracy of heavy
objects was higher while the difference was marginal (95.2% vs. 91.5%, p=0.07). One potential reason might be that
it was easier for EMG devices to capture the details of more intense muscular activities when handling heavier
items.

4.4.3 User-dependent System vs. User-independent System. In this study, we also explored using user-independent
classifiers via leave-one-subject-out training, and the overall detection accuracy was 47.9% (chance was 7.7%). We
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attributed this to the huge variety of the ways between different users who interact with the same objects, which
can introduce additional interference. Considering that our classifier achieved an overall accuracy of 94.2% with
a total of 2 minutes recording when handling each object, it is still promising in that the requirement on training
examples can be low.

4.5 Brief Summary

In this study, we investigated the feasibility and accuracy of inferring the types of grasped objects via using off-
the-shelf EMG sensors. Our empirical findings include: 1) handled object recognition via sensing and classifying
forearm EMG signals is accurate (94.2%), despite purposeful inclusion of highly confusable objects with visually
similar postures and simulated grips; 2) we confirmed the finding presented in Study 1 that the uniqueness of
EMG signals is caused not only by the grasping grips, but also by other characteristic factors of the objects that
users are interacting with; 3) compared with static holding, manipulating objects dynamically could provide
richer information which is useful for classification (95.8% vs. 92.6%); 4) it is more accurate to detect heavier
objects than lighter objects (95.2% vs. 91.5%). Collectively, these findings shed light on the feasibility of leveraging
muscle activity as a cue for detecting object-based interactions.

5 STUDY 3: GRASPED OBJECT RECOGNITION IN A REALISTIC OFFICE SETTING

To investigate the practicality of the proposed approach, we conduct another study in a realistic office setting
where users were allowed to interact with objects as they would naturally. Moreover, prior literature indicated
that a practical issue of EMG-based approach is the changes in EMG patterns over time, even on two consecutive
days [31]. Therefore, we aimed to explore these practical issues and assess the robustness of this method in a
naturalistic environment.

First of all, we conducted a field study to identify the types of object interactions that can be performed in
an office environment. Informed by the observations, we recruited 12 participants and asked them to perform
these activities while their forearm EMG signals were collected. In the rest of this section, we report the detailed
procedure as well as the experimental results.

5.1 Object Selection

We conducted a field study to identify the different types of object interactions that can be performed an office
setting. The study was located at a local IT office where 20 employees (7 females) worked. Each employee had
a single-person open cubical and basic office equipment including a desktop computer, a telephone, pens and
notebooks, etc. We observed and recorded their object-based activities in one-hour time intervals over the course
of two consecutive weekdays, with a total time period of approximately 16 business hours. We observed the
following types of object interactions that were frequently performed by the employees:

e Typing: putting the hands on the keyboard while pressing the keys

e Using a Mouse: moving, clicking or scrolling a mouse

o Making a Phone Call: holding and dialing on a smartphone or holding the headset of a telephone

e Reading: holding a book to read

e Drinking: grasping a mug or a bottle to drink

o Eating: using a utensil to eat

e Writing: gripping a pen or pencil to write

o Organizing Paperwork: cutting papers with a scissor, assembling papers with a stapler or glue

Informed by the observations in this field study, we chose a total of 15 types of objects for this study, including

mouse, keyboard, smartphone, telephone, book, paper, pen, mug, knife, water sprayer, apple, scissor, stapler, glue
bottle and glass kettle (Figure 11).
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Fig. 11. The setup of the cubicle in this study. Types of objects include: (1) mouse, (2) keyboard, (3) smartphone, (4) telephone,
(5) water sprayer, (6) book, (7) pen, (8) paper, (9) stapler, (10) scissor, (11) glue bottle, (12) knife, (13) apple, (14) glass kettle,
and (15) mug.

5.2 Participants

We recruited 12 participants (5 female) for this study. They ranged from 25 to 35 years of age with an average of
28. There was no muscular condition or skin allergy reported. All of them were right-handed. The EMG apparatus
was the same with Study 1 & 2. Figure 11 shows the setup of the cubicle used in this study. Each participant got a
$20 gift card after completion.

5.3 Procedure

Participants completed this study over the course of two adjacent days. We collected training data on the first
day and collected testing data on the second day. This design was informed by a recent finding that EMG data
measured in one day can be relatively different from that in another day even on the same subject [31]. Therefore,
collecting training data and testing data on different days can provide a better illustration of robustness while
considering the changes in EMG patterns over time.

On the first day, participants were asked to interact with the above 15 objects that may be typically found
around the desk in an office. Each participant manipulated each object for 4 times and each trial lasted around 15
seconds. In total we collected 180-minute (15 seconds x 4 rounds x 15 objects x 12 participants) EMG data for the
training dataset.

On the second day, participants were asked to freely manipulate and explore the objects on the table for 10
minutes. Note that we only provided a recommended activity list (e.g., typing, using a mouse, making a phone call,
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Fig. 12. Classification accuracies with various amounts of training data per object class.

reading, drinking, writing, eating, and organizing paperwork) for their reference without any explicit instruction
on how or when they should perform these activities. We believe such design can simulate the real situations
quite closely and enable enough variety in the testing dataset as well. The study was videotaped from which two
experimenters manually generated the ground truth labels.

5.4 Results

We segmented the training and testing data into 3-second samples and excluded hand-free intervals and the
ones involving object interaction transitions. In total we got 3,600 training samples and 1,621 testing samples.
We first explored user-dependent approaches where the classifier was trained using only data from a given test
user. We assessed the classification accuracies with an increasing amount of training data. For each level, certain
amount of random samples in each object class were used for training and all the samples in the testing dataset
were used for testing. The results of each level were averaged across 10 folds. Figure 12 shows the averaged
classification accuracies with various amounts of training data per object class. Not surprisingly, the average
accuracy improved as more examples were used for training. As the amount of training data increases to 60
seconds per object class, the classifier reached a maximum average accuracy of 82.5% (chance was 6.7%). The
minimum accuracy for one user was 75.0%, while the maximum accuracy for another user was 89.3%.

Figure 13 shows the color-coded confusion matrix of the user-dependent approach using all the training data
of the given test user. Dark areas that occur off the diagonal indicate high confusion while lighter areas indicating
little confusion. Figure 14 plots both the actual (above) and predicted (below) grasped objects at each point in time
for each participant, which provides more detailed information about where and when the confusions occurred.
We found that the most notable confusions occurred when discriminating knife vs. glue bottle (21), apple vs. book
(14), and apple vs. paper (10). By localizing these confusions in Fig. 14, we found that the vast majority of each
type of confusion were associated with one particular user. For example, 15 out of 21 knife-glue bottle confusions
were associated with P9; 10 out of 10 apple-paper confusions were associated with P8; 10 out of 14 apple-book
confusions were associated with P7. We further inspected the recorded videos of these three users and found that
they behaved quite differently when interacting with the aforementioned objects on the two days. For instance,
P9 gripped the knife statically when collecting training examples on the first day but she used the knife to cut
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Fig. 13. Confusion matrix of objects by employing user-dependent training. Dark areas that occur off the diagonal indicate
high confusion while lighter areas indicating little confusion.

the apple when collecting testing examples on the second day. P7 and P8 grasped the apple firmly on the first day
while they actually ate the apple on the second day. We believe that the classification performance can be further
enhanced by incorporating more in-situ training examples.

We also applied leave-one-subject-out cross validation to test the user-independent performance and the
average accuracy was 45.1% (chance was 6.7%). Note that given a 6-second piece of training data of a test user,
the accuracy of user-dependent method (61.1%) is already higher than the accuracy of the best user-independent
method. As discussed earlier in Study 2, we attributed this to the high degree of variation in the way that users
interacted with the same objects, especially in a natural and unconstrained environment.

Detecting Non-registered Objects. In practice, it is not possible to obtain supervision for all the relevant everyday
objects. Therefore, it is important to validate the detection performance with the interference of non-registered
objects. In addition to the standard multi-class classification settings that we reported above, we also explored
a two-stage approach where the first stage is detecting non-registered (and registered) objects and the second
stage is discriminating the objects that are predicted as registered objects in the prior stage. Essentially, detecting
non-registered objects in this task is an anomaly detection problem which has been researched extensively within
diverse research areas and application domains. We applied a multi-class classification based anomaly detection
technique [10] to recognize non-registered objects. Specifically, for each registered object class, a discriminative
boundary was learned using a one-class classification algorithm (e.g., one-class SVMs [11] were used in our
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Fig. 14. Visualization of the actual (above) and predicted (below) grasped objects at each point in time for each participant.
The light gray color indicates hand-free intervals. (We recommend readers to access the web version of this article for
interpretation of the color coding.)

implementation). An object is considered as non-registered if it does not fall within the learned boundary of any
registered object class. In our analysis, for each time five objects were randomly selected as non-registered objects
and the other ten objects were then considered as registered objects. We validated the detection performance in
this setting and repeated this process for 100 times. Please note that for each time, the data of the non-registered
objects was unseen by the system-for each testing sample, the system first determined whether it was anomalous.
If yes, the system predicted it as "non-registered"; otherwise the system assigned it to a registered object class.
In this setting, our approach achieved an average overall accuracy of 81.7% (compared with 82.5% accuracy
achieved in the standard multi-class classification settings), which suggest the robustness of our approach with
the interference of non-registered objects.

Robustness over time. Based on the literature, EMG signals may fluctuate over time due to electrode location
shift across sessions [2, 19] and variations in muscle contraction effort (e.g., muscle fatigue) over time [31]. Some
of the prior studies collected training and testing data from different sessions on one or a few days [2, 19, 34].
Following the tradition, we also collected our training and testing data from two separate days to validate the
cross-session robustness of this approach. However, we believe that it is still necessary to validate the robustness
against the long-term effect of fluctuating EMG signals. Therefore, we conducted another experiment five months
after we collected the training data-we recruited 11 out of the 12 participants in this study again and asked them
to freely manipulate and explore the objects again for 10 minutes. The procedure and apparatus were the same
with Day 2 of this study. The overall detection accuracy was 80.6% (chance was 6.7%). The maximum accuracy for
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one user was 87.1%, while the minimum accuracy for another user was 69.1%. There was no significant difference
between the results of the two sessions conducted five months apart (80.6% vs. 82.5%, p=0.66). The results suggest
that this approach can be robust over time.

6 DISCUSSIONS AND FUTURE WORK

This paper presents a thorough exploration of the feasibility, accuracy, and robustness of recognizing the
uninstrumented object in a user’s hand by sensing and decoding her forearm muscular activities via off-the-shelf
electromyography (EMG) sensors. We conducted three studies and present a set of useful findings to advance our
understanding about both potentials and limits of EMG-based grasped object recognition. With the advent of
commodity EMG devices, such as Myo arm band device (http://www.thalmic.com) , we hope this work could
inspire future researchers to move beyond gesture recognition and to push the limits of what can be done with
EMG sensing.

We should emphasize that the proposed approach detects objects based on a combination of characteristic
factors including shape, size, weight, and functionality of an object, rather than relying on grip pose solely.
Variations in these factors together result in unique EMG signatures. For example, the classification accuracy in
Study 2 was 75.0% based on grip alone, which suggested that grip (mostly affected by object size and shape) was
important but other factors (e.g., weight and usage pattern) were also essential to achieve the final accuracy of
94.2%. Looking at the combination of these factors that come with daily objects enables us to detect a reasonable
range of objects via EMG. However, we should also mention that this approach cannot differentiate items that
are identical in all the dimensions at the same time: grip, weight and usage pattern (e.g., hanging a handbag
or a toolbox with the same weight), although we feel this kind of multi-dimensional identical case can be rare.
Compared with existing approaches which rely on either 1) physical instrumentation on every object (e.g., RFID
[4, 7, 25]) or 2) sensing certain signatures generated directly by the objects (e.g., EM-noise [23]), our approach
can achieve a better balance among cost, accuracy and sensing scope.

In addition to user-dependent models, we also validated user-independent models in our studies. Being able to
do this has implications for the potential of creating systems that require little or no user-specific training. Our
approach achieved an overall accuracy of 47.9% (chance was 7.7%) in Study 2 and 45.1% (chance was 6.7%) in
Study 3 via leave-one-user-out cross validations. We attribute the degradation of the accuracy to inter-individual
differences in how they interact with a same object, as well as differences in the positioning of electrodes across
users. While most of the prior works on using EMG for Human Computer Interaction adopted user-dependent
settings [2, 19, 34-36], such accuracy degradations have been reported as well by the literature [2, 34]. The
generalization of the classifier across subjects is still an open research question in this research direction and
remains our future work. On the other side, we also notice that the classifiers performed considerably better than
chance, suggesting that there exists potential for building user-independent classifiers in this domain. Moreover,
considering that our classifier achieved an overall accuracy of 94.2% with a total of 2-minute recording when
handling each of the 12 objects in Study 2, and achieved 82.5% accuracy with a total of 1-minute recording when
handling each of the 15 objects in Study 3, it is still promising in that the requirement on training examples can
be low.

Based on the detection granularity, existing methods that detect in-use objects are either item-level detection
or model-level detection. Item-level approaches such as IFID-based method [4, 7, 25] can discriminate every
single item, even though they are identical objects (i.e. finest grained detection). Our approach is model-level,
which means that we can discriminate objects of different models (e.g., having different shapes, sizes, weights,
etc.), even though they may belong to the same category. Compared with item-level detection, the benefit is that
we do not need to register every single target object in the system; instead, we only need to register one of the
identical items and the system can detect the other ones afterwards. It is interesting to explore whether this
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method can further generalize to detect a range of different objects/models in a particular category while some
objects/models are unseen by the system (i.e. category-level detection). We believe that it could be promising
when the EMG database of known objects grows until having diverse examples in each category, as users add
newly encountered objects over time. Exploring and quantifying such generalizability can be interesting future
work.

One of the major goals of this research is to fundamentally explore the influence of physical properties of
objects such as shape, size, and weight on EMG signals, which can gain our understanding of the opportunities
that EMG brings in object interaction recognition. To achieve this goal, we need to collect high-fidelity EMG
signals to avoid the potential interference introduced by the sensing device due to low sampling rates so that we
can uncover the truth as much as possible. Thus, we chose the current research device which has 1k Hz sampling
rate in our studies and we believe that such device might become ubiquitous in the near future. Moreover, the
high-density recordings of EMG signals (dataset available at: url) can serve as a common ground for future
research and performance comparison of different approaches on EMG based wearable interfaces.

One limitation regarding object selection in this work is that all chosen objects were rigid or semi-rigid. In
the future, we plan to explore detecting soft and deformable objects as well as detecting simultaneous grasps of
multiple objects. Moreover, the current approach detects the manipulation of objects as a list of discrete actions.
It would be interesting to detect the stage (e.g., reaching, starting, holding, releasing, etc.) and the strength of the
grip (e.g., weak, medium, strong) to further improve the interactions supported. A large amount of data were
acquired for this work. In order for other researchers to replicate and advance our results, we decide to release
the dataset as well as the source code used for the analysis under a BSD license. Please contact the first author to
make a request.

7 CONCLUSION

The primary goal of this work is to determine whether forearm EMG can be used as a cue to recognize the object
that a user is interacting with, thus providing some form of activity-related context. We present results from
three studies to gain a fundamental understanding of both potentials and limits of such approach. In the first
study, we investigated and quantified the influences of multiple sources such as object shape, size, weight, and
all these factors combined on EMG signals. We demonstrate through empirical evidence that the uniqueness
of EMG signal is caused by variations in all these factors together. We also conducted a thorough exploration
of the feature space and sensor positions which can provide a solid base to rely on for future designers and
practitioners for such interactive technique. In the second study, we assessed the feasibility and accuracy of
inferring the types of grasped objects via using forearm muscular activity as a cue. Our results indicate that the
types of objects can be recognized with up to 92.6% accuracy in firm grasp conditions and up to 95.8% in object
manipulation conditions by employing user-dependent training. To investigate the robustness of this approach,
we performed the third study in a realistic office setting where users were allowed to interact with objects as
they would naturally. Our approach achieved up to 82.5% accuracy in discriminating 15 types of objects, even
while the training and testing phrases were purposefully performed on different days to incorporate changes in
EMG patterns over time. This work pushes the boundaries of EMG-based detection to a new level and we hope it
can lead HCI developments in fine-grained activity tracking towards the future world of ubiquitous computing.

ACKNOWLEDGMENTS

The work is supported by the National Key Research and Development Plan under Grant No.: 2016YFB1001402,
Key Research Program of Frontier Sciences, CAS under Grant No.: QYZDY-SSW-JSC041, and partially supported
by the CAS 100-Talent Program.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 161. Publication date: December 2018.



161

:22 « J.Fanetal.

REFERENCES

(1]
(2]

(3]
(4]

(10]
(11]
(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

[20]
[21]

[22]

Jake K Aggarwal and Michael S Ryoo. 2011. Human activity analysis: A review. ACM Computing Surveys (CSUR) 43, 3 (2011), 16.
https://doi.org/10.1145/1922649.1922653

Christoph Amma, Thomas Krings, Jonas Boer, and Tanja Schultz. 2015. Advancing muscle-computer interfaces with high-density
electromyography. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 929-938. https:
//doi.org/10.1145/2702123.2702501

Ling Bao and Stephen S Intille. 2004. Activity recognition from user-annotated acceleration data. In International Conference on Pervasive
Computing. Springer, 1-17. https://doi.org/10.1007/978-3-540-24646-6_1

Eugen Berlin, Jun Liu, Kristof Van Laerhoven, and Bernt Schiele. 2010. Coming to grips with the objects we grasp: detecting interactions
with efficient wrist-worn sensors. In Proceedings of the fourth international conference on Tangible, embedded, and embodied interaction.
ACM, 57-64. https://doi.org/10.1145/1709886.1709898

Inc BIOPAC Systems. 2017. MP System Hardware Guide. Retrieved March 31, 2017 from https://www.biopac.com/wp-content/uploads/
MP-Hardware-Guide.pdf

Christopher M Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). 4 (2006), 049901.
Michael Buettner, Richa Prasad, Matthai Philipose, and David Wetherall. 2009. Recognizing daily activities with RFID-based sensors. In
Proceedings of the 11th international conference on Ubiquitous computing. ACM, 51-60. https://doi.org/10.1145/1620545.1620553
Baptiste Caramiaux, Marco Donnarumma, and Atau Tanaka. 2015. Understanding gesture expressivity through muscle sensing. ACM
Transactions on Computer-Human Interaction (TOCHI) 21, 6 (2015), 31. https://doi.org/10.1145/2687922

Graeme S Chambers, Svetha Venkatesh, Geoff AW West, and Hung Hai Bui. 2002. Hierarchical recognition of intentional human
gestures for sports video annotation. In Pattern Recognition, 2002. Proceedings. 16th International Conference on, Vol. 2. IEEE, 1082-1085.
https://doi.org/10.1109/ICPR.2002.1048493

Varun Chandola, Arindam Banerjee, and Vipin Kumar. 2009. Anomaly detection: A survey. ACM computing surveys (CSUR) 41, 3 (2009),
15. https://doi.org/10.1145/1541880.1541882

Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: a library for support vector machines. ACM transactions on intelligent systems and
technology (TIST) 2, 3 (2011), 27. https://doi.org/10.1145/1961189.1961199

Xun Chen and Z Jane Wang. 2013. Pattern recognition of number gestures based on a wireless surface EMG system. Biomedical Signal
Processing and Control 8, 2 (2013), 184-192. https://doi.org/10.1016/j.bspc.2012.08.005

Christian Cipriani, Christian Antfolk, Marco Controzzi, Géran Lundborg, Birgitta Rosén, Maria Chiara Carrozza, and Fredrik Sebelius.
2011. Online myoelectric control of a dexterous hand prosthesis by transradial amputees. IEEE Transactions on Neural Systems and
Rehabilitation Engineering 19, 3 (2011), 260-270. https://doi.org/10.1109/TNSRE.2011.2108667

Catherine Disselhorst-Klug, Thomas Schmitz-Rode, and Giinter Rau. 2009. Surface electromyography and muscle force: Limits in
sEMG-force relationship and new approaches for applications. Clinical biomechanics 24, 3 (2009), 225-235. https://doi.org/10.1016/].
clinbiomech.2008.08.003

Nadine Fligge, Holger Urbanek, and Patrick van der Smagt. 2013. Relation between object properties and EMG during reaching to grasp.
Journal of Electromyography and Kinesiology 23, 2 (2013), 402-410. https://doi.org/10.1016/j.jelekin.2012.10.010

Tobias Grosse-Puppendahl, Sebastian Herber, Raphael Wimmer, Frank Englert, Sebastian Beck, Julian von Wilmsdorff, Reiner Wichert,
and Arjan Kuijper. 2014. Capacitive near-field communication for ubiquitous interaction and perception. In Proceedings of the 2014 ACM
International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 231-242. https://doi.org/10.1145/2632048.2632053

Faizan Haque, Mathieu Nancel, and Daniel Vogel. 2015. Myopoint: Pointing and clicking using forearm mounted electromyography and
inertial motion sensors. In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 3653-3656.
https://doi.org/10.1145/2702123.2702133

Chris Harrison, Robert Xiao, and Scott Hudson. 2012. Acoustic barcodes: passive, durable and inexpensive notched identification tags.
In Proceedings of the 25th annual ACM symposium on User interface software and technology. ACM, 563-568. https://doi.org/10.1145/
2380116.2380187

Donny Huang, Xiaoyi Zhang, T Scott Saponas, James Fogarty, and Shyamnath Gollakota. 2015. Leveraging dual-observable input for
fine-grained thumb interaction using forearm EMG. In Proceedings of the 28th Annual ACM Symposium on User Interface Software &
Technology. ACM, 523-528. https://doi.org/10.1145/2807442.2807506

Kari Kuutti. 1996. Activity theory as a potential framework for human-computer interaction research. Context and consciousness: Activity
theory and human-computer interaction 17 (1996).

Jennifer R Kwapisz, Gary M Weiss, and Samuel A Moore. 2011. Activity recognition using cell phone accelerometers. ACM SigKDD
Explorations Newsletter 12, 2 (2011), 74-82. https://doi.org/10.1145/1964897.1964918

Gierad Laput, Robert Xiao, and Chris Harrison. 2016. Viband: High-fidelity bio-acoustic sensing using commodity smartwatch
accelerometers. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. ACM, 321-333. https:
//doi.org/10.1145/2984511.2984582

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 161. Publication date: December 2018.


https://doi.org/10.1145/1922649.1922653
https://doi.org/10.1145/2702123.2702501
https://doi.org/10.1145/2702123.2702501
https://doi.org/10.1007/978-3-540-24646-6_1
https://doi.org/10.1145/1709886.1709898
https://www.biopac.com/wp-content/uploads/MP-Hardware-Guide.pdf
https://www.biopac.com/wp-content/uploads/MP-Hardware-Guide.pdf
https://doi.org/10.1145/1620545.1620553
https://doi.org/10.1145/2687922
https://doi.org/10.1109/ICPR.2002.1048493
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.bspc.2012.08.005
https://doi.org/10.1109/TNSRE.2011.2108667
https://doi.org/10.1016/j.clinbiomech.2008.08.003
https://doi.org/10.1016/j.clinbiomech.2008.08.003
https://doi.org/10.1016/j.jelekin.2012.10.010
https://doi.org/10.1145/2632048.2632053
https://doi.org/10.1145/2702123.2702133
https://doi.org/10.1145/2380116.2380187
https://doi.org/10.1145/2380116.2380187
https://doi.org/10.1145/2807442.2807506
https://doi.org/10.1145/1964897.1964918
https://doi.org/10.1145/2984511.2984582
https://doi.org/10.1145/2984511.2984582

What is That in Your Hand? Recognizing Grasped Objects via Forearm Electromyography Sensing + 161:23

(23]

[24]

[25]

[26]

(27]

(28]

[29]
(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

(43]

Gierad Laput, Chouchang Yang, Robert Xiao, Alanson Sample, and Chris Harrison. 2015. Em-sense: Touch recognition of uninstrumented,
electrical and electromechanical objects. In Proceedings of the 28th Annual ACM Symposium on User Interface Software & Technology.
ACM, 157-166. https://doi.org/10.1145/2807442.2807481

Matthew L Lee and Anind K Dey. 2015. Sensor-based observations of daily living for aging in place. Personal and Ubiquitous Computing
19, 1 (2015), 27-43. https://doi.org/10.1007/s00779-014-0810-3

Hanchuan Li, Can Ye, and Alanson P Sample. 2015. IDSense: A human object interaction detection system based on passive UHF RFID.
In Proceedings of the 33rd Annual ACM Conference on Human Factors in Computing Systems. ACM, 2555-2564. https://doi.org/10.1145/
2702123.2702178

Minas V Liarokapis, Panagiotis K Artemiadis, and Kostas J Kyriakopoulos. 2013. Task discrimination from myoelectric activity:
a learning scheme for EMG-based interfaces. In Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on. IEEE, 1-6.
https://doi.org/10.1016/j.jelekin.2013.03.009

Takuya Maekawa, Yasue Kishino, Yasushi Sakurai, and Takayuki Suyama. 2011. Recognizing the use of portable electrical devices
with hand-worn magnetic sensors. In International Conference on Pervasive Computing. Springer, 276-293. https://doi.org/10.1007/
978-3-642-21726-5_18

Jess McIntosh, Charlie McNeill, Mike Fraser, Frederic Kerber, Markus Lochtefeld, and Antonio Kriiger. 2016. EMPress: Practical hand
gesture classification with wrist-mounted EMG and pressure sensing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. ACM, 2332-2342. https://doi.org/10.1145/2858036.2858093

Mohammadreza Asghari Oskoei, Huosheng Hu, et al. 2008. Support vector machine-based classification scheme for myoelectric control
applied to upper limb. IEEE Trans. Biomed. Engineering 55, 8 (2008), 1956-1965. https://doi.org/10.1109/TBME.2008.919734

Brandon Paulson, Danielle Cummings, and Tracy Hammond. 2011. Object interaction detection using hand posture cues in an office
setting. International journal of human-computer studies 69, 1-2 (2011), 19-29. https://doi.org/10.1016/j.ijhcs.2010.09.003

Angkoon Phinyomark, Franck Quaine, Sylvie Charbonnier, Christine Serviere, Franck Tarpin-Bernard, and Yann Laurillau. 2013. EMG
feature evaluation for improving myoelectric pattern recognition robustness. Expert Systems with applications 40, 12 (2013), 4832-4840.
https://doi.org/10.1016/j.eswa.2013.02.023

Jun Rekimoto and Yuji Ayatsuka. 2000. CyberCode: designing augmented reality environments with visual tags. In Proceedings of DARE
2000 on Designing augmented reality environments. ACM, 1-10. https://doi.org/10.1145/354666.354667

Xiaofeng Ren and Matthai Philipose. 2009. Egocentric recognition of handled objects: Benchmark and analysis. In Computer Vision and
Pattern Recognition Workshops, 2009. CVPR Workshops 2009. IEEE Computer Society Conference on. IEEE, 1-8. https://doi.org/10.1109/
CVPRW.2009.5204360

T Scott Saponas, Desney S Tan, Dan Morris, and Ravin Balakrishnan. 2008. Demonstrating the feasibility of using forearm electromyog-
raphy for muscle-computer interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 515-524.
https://doi.org/10.1145/1357054.1357138

T Scott Saponas, Desney S Tan, Dan Morris, Ravin Balakrishnan, Jim Turner, and James A Landay. 2009. Enabling always-available
input with muscle-computer interfaces. In Proceedings of the 22nd annual ACM symposium on User interface software and technology.
ACM, 167-176. https://doi.org/10.1145/1622176.1622208

T Scott Saponas, Desney S Tan, Dan Morris, Jim Turner, and James A Landay. 2010. Making muscle-computer interfaces more practical.
In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. ACM, 851-854. https://doi.org/10.1145/1753326.1753451
Georg Schlesinger. 1919. Der mechanische aufbau der kiinstlichen glieder. In Ersatzglieder und Arbeitshilfen. Springer, 321-661.

Isabel Suarez, Andreas Jahn, Christoph Anderson, and Klaus David. 2015. Improved activity recognition by using enriched acceleration
data. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing. ACM, 1011-1015. https:
//doi.org/10.1145/2750858.2805844

Marian Theiss, Philipp M Scholl, and Kristof Van Laerhoven. 2016. Predicting grasps with a wearable inertial and EMG sensing
unit for low-power detection of in-hand objects. In Proceedings of the 7th Augmented Human International Conference 2016. ACM, 4.
https://doi.org/10.1145/2875194.2875207

Radu-Daniel Vatavu and Ionut Alexandru Zaiti. 2013. Automatic recognition of object size and shape via user-dependent measurements
of the grasping hand. International Journal of Human-Computer Studies 71, 5 (2013), 590-607. https://doi.org/10.1016/j.ijhcs.2013.01.002
Jamie A Ward, Paul Lukowicz, Gerhard Troster, and Thad E Starner. 2006. Activity recognition of assembly tasks using body-
worn microphones and accelerometers. IEEE transactions on pattern analysis and machine intelligence 28, 10 (2006), 1553-1567.
https://doi.org/10.1109/TPAMI2006.197

Hui-Shyong Yeo, Gergely Flamich, Patrick Schrempf, David Harris-Birtill, and Aaron Quigley. 2016. Radarcat: Radar categorization
for input & interaction. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology. ACM, 833-841.
https://doi.org/10.1145/2984511.2984515

Mabhyar Zardoshti-Kermani, Bruce C Wheeler, Kambiz Badie, and Reza M Hashemi. 1995. EMG feature evaluation for movement control
of upper extremity prostheses. IEEE Transactions on Rehabilitation Engineering 3, 4 (1995), 324-333. https://doi.org/10.1109/86.481972

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 161. Publication date: December 2018.


https://doi.org/10.1145/2807442.2807481
https://doi.org/10.1007/s00779-014-0810-3
https://doi.org/10.1145/2702123.2702178
https://doi.org/10.1145/2702123.2702178
https://doi.org/10.1016/j.jelekin.2013.03.009
https://doi.org/10.1007/978-3-642-21726-5_18
https://doi.org/10.1007/978-3-642-21726-5_18
https://doi.org/10.1145/2858036.2858093
https://doi.org/10.1109/TBME.2008.919734
https://doi.org/10.1016/j.ijhcs.2010.09.003
https://doi.org/10.1016/j.eswa.2013.02.023
https://doi.org/10.1145/354666.354667
https://doi.org/10.1109/CVPRW.2009.5204360
https://doi.org/10.1109/CVPRW.2009.5204360
https://doi.org/10.1145/1357054.1357138
https://doi.org/10.1145/1622176.1622208
https://doi.org/10.1145/1753326.1753451
https://doi.org/10.1145/2750858.2805844
https://doi.org/10.1145/2750858.2805844
https://doi.org/10.1145/2875194.2875207
https://doi.org/10.1016/j.ijhcs.2013.01.002
https://doi.org/10.1109/TPAMI.2006.197
https://doi.org/10.1145/2984511.2984515
https://doi.org/10.1109/86.481972

161:24 + J.Fanet al.

Received May 2018; revised August 2018; accepted October 2018

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 2, No. 4, Article 161. Publication date: December 2018.



	Abstract
	1 Introduction
	2 RELATED WORK
	2.1 Object-based Activity Recognition
	2.2 EMG Sensing and Its Applications

	3 STUDY 1: UNDERSTANDING THE INFLUENCES OF OBJECT PROPERTIES ON FOREARM EMG
	3.1 Experiment Design
	3.2 Participants and Apparatus
	3.3 Procedure
	3.4 Results
	3.5 Brief Summary

	4 STUDY 2: EXPLORING THE FEASIBILITY OF RECOGNIZING EVERYDAY OBJECTS VIA FOREARM EMG SENSING
	4.1 Object Selection
	4.2 Participants and Apparatus
	4.3 Procedure
	4.4 Results
	4.5 Brief Summary

	5 STUDY 3: GRASPED OBJECT RECOGNITION IN A REALISTIC OFFICE SETTING
	5.1 Object Selection
	5.2 Participants
	5.3 Procedure
	5.4 Results 

	6 DISCUSSIONS AND FUTURE WORK
	7 CONCLUSION
	Acknowledgments
	References

