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ABSTRACT
Parkinson’s disease (PD) is a chronic neurological disorder
causing progressive disability that severely affects patients’
quality of life. Although early interventions can provide sig-
nificant benefits, PD diagnosis is often delayed due to both
the mildness of early signs and the high requirements im-
posed by traditional screening and diagnosis methods. In this
paper, we explore the feasibility and accuracy of detecting
motor impairment in early PD via sensing and analyzing
users’ common touch gestural interactions on smartphones.
We investigate four types of common gestures, including
flick, drag, pinch, and handwriting gestures, and propose a
set of features to capture PD motor signs. Through a 102-
subject (35 early PD subjects and 67 age-matched controls)
study, our approach achieved an AUC of 0.95 and 0.89/0.88
sensitivity/specificity in discriminating early PD subjects
from healthy controls. Our work constitutes an important
step towards unobtrusive, implicit, and convenient early PD
detection from routine smartphone interactions.

CCS CONCEPTS
•Human-centered computing→ Empirical studies in
HCI; Empirical studies in ubiquitous and mobile computing;
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1 INTRODUCTION
Parkinson’s disease (PD) is the most common movement dis-
order and the second most common neurodegenerative dis-
ease [56]. Age-standardized incidence rates of PD in population-
based studies from Europe and the USA range from 8.6 to 19
per 100,000 inhabitants [11]. The prevalence of PD among
elderly is even much higher (e.g., 9.5 per 1,000 people 65 or
older [22]). PD is characterized by bothmotor symptoms (e.g.,
tremor, rigidity, bradykinesia, and postural instability) and
non-motor symptoms (e.g., cognitive alteration and sleep dis-
turbances) [57], which severely affects patients’ well-being
and quality of life. Besides, PD brings economic burdens to
both patients and the society. The total annual cost of the
disease was estimated to be 13,800 Euros per individual in
a Swedish survey [19], and the costs increase significantly
with disease severity.

While early treatment can produce significant benefits for
patients, the clinical diagnosis of PD is usually delayed in
practice. Due to the mildness of many early signs, patients
may not undergo clinical examinations during early stages.
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Figure 1: Common touch gestures explored in this study. A: flick gestures; B: drag gestures; C: handwriting gestures; D: pinch
gestures; E: tap gestures (typing); F: alternating finger tapping (AFT, included as a clinical reference).

Moreover, the traditional procedure of PD screening and
diagnosis rely heavily on the clinical judgement of neurol-
ogists. The Unified Parkinson’s Disease Rating Scale (UP-
DRS) [17] is the most widely used scale to evaluate subjects’
overall conditions. In particular, motor status is assessed in
the clinician-scored motor section (UPDRS Part III), based
on the evaluation of the observed performance in a series
of standardized motor tasks. Such evaluation suffers from
both inter-rater variability [57] and recall-bias of partici-
pants [42]. Besides, the need for a specialist and the presence
of the subject at the clinic limit the frequency of screening
and monitoring of PD symptoms. As a result, the disease
may be undiagnosed for many years. In a prior study [54],
researchers found that most presentations of motor impair-
ments, such as tremor and bradykinesia, occurred within
2 years before the first clinical diagnosis of PD. They also
showed that the incidence of tremor was already higher in
PD subjects compared with the control group at up to 10
years before diagnosis.
Researchers, clinicians, as well as patients share a keen

interest in the development of more accessible tools that can
provide objective PD assessment, which can lead to timely
diagnosis and consequent improvement of the prospective
patient’s life quality via early therapeutic interventions [40].
A variety of techniques have been proposed to achieve this
goal. One of the main trends is the application of IMUs (In-
ertial Measurement Units) mounted on human bodies for
motor assessment [1, 2, 8, 12, 27, 30, 43, 44, 49]. During recent
years, the use of commodity devices such as smartphones
[1, 2, 4, 24] has been more preferred over systems using
specialized sensors, since such non-obtrusive approaches
show more potential for transferring PD screening and mon-
itoring in the daily life. The mPower study [6] is one of
the most well-known studies of longitudinal and large-scale
smartphone-based data collection for PD research. Partic-
ipants (PD patients and healthy subjects) perform certain

tasks, such as touchscreen tapping, memory, voice, and gait
(walk) tests, to contribute data remotely. Although it has
involved more than 9,000 participants, the drop-out rate was
high. Bot et al. [6] reported that there were less than 10%
participants who performed the tapping test for more than 5
days. This reveals a common limitation of prior work-they
require users’ explicit and active participation, in the sense
that users need to be reminded to mount/wear sensing de-
vices and perform certain tests. Such requirements lead to
reduced compliance due to the lack of sustained motivation,
especially when the symptoms are not evident or even not
noticeable.
We propose a solution that takes advantage of the per-

vasiveness and ubiquity of touchscreens in the smartphone
era. Performing touch gestures is a daily interaction task
of modern humans, yet making precise finger movement
on touchscreens requires users’ fine motor skills as well as
motor coordination abilities. Since PD motor phenotype is
described by tremor, slowness, and rigidity, which may affect
the unconstrained finger performance while interacting with
smartphones, we hypothesize that we can build a machine
learning model which can discriminate PD patients from
healthy subjects via sensing and analyzing their touch be-
haviors. Compared with previous approaches that require
users to mount sensing equipment, explicitly launch mon-
itoring apps, and spend an uninterrupted amount of time
in data collection, our approach has the potential to make
the detection more "implicit" since it can be a side effect of
performing everyday interaction tasks.
In this paper, we explore the feasibility and accuracy of

detecting motor impairment in early PD through common
touch gestural interactions. Specifically, we investigate four
types of common gestures including flick (quickly brush sur-
face with fingertip), drag (move fingertip over surface with-
out losing contact), pinch (touch surface with two fingers
and move them together/apart), and handwriting gestures
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(i.e. multi-stroke free-form path gestures). We propose a set
of touch gesture features including path/trajectory-based
features, time-based features, pressure-based features and
IMU-based features, to capture PD motor signs. We also con-
ducted a thorough exploration of the feature space to gain
a holistic understanding about the discriminative power of
each category of features. Through a 102-subject study (35
early PD patients and 67 age-and-gender-matched controls),
our approach achieved an AUC (area under the ROC curve)
of 0.95 and 0.89/0.88 sensitivity/specificity in discriminat-
ing PD and control subjects. In comparison, the results of
the alternating finger tapping (AFT) test, a well-established
motor test in clinics, were 0.83 AUC and 0.86/0.69 sensitiv-
ity/specificity. These results shed light on the feasibility of
unobtrusive and implicit early PD detection from everyday
smartphone interactions.

The contributions of our research are three fold. First, we
propose a new methodology to quantify PD motor impair-
ment through common touch gestural interactions. To the
best of our knowledge, this is the first exploration of using
touchscreen gesturing as a cue for early PD detection. Sec-
ond, we conduct a thorough investigation of both common
touch gestures and their corresponding feature spaces, and
provide a set of fundamental findings which can provide a
solid base to rely on for future researchers and practition-
ers. Third, we contribute a touch gesture dataset consisting
of data collected from 35 early-PD and 67 control subjects,
which can serve as a common ground for future research
and performance comparison of different approaches.

2 RELATEDWORK
Emerging Technologies for Objective and
Quantitative PD Assessment
As we discussed earlier, traditional measurement methods of
PD, e.g., UPDRS [17], rely heavily on raters’ experience and
subjects’ self-reports, thus suffer from inter-rater variability
and subjects’ recall bias. The need for objective, quantitative,
and more accessible assessment has resulted in an exponen-
tial development of technologies in this field [1, 2, 4, 8, 12, 14,
16, 24, 27, 29, 30, 43, 44, 49, 52, 53]. Since motor impairment
is the most dominant symptom of PD, the overwhelming
majority of works focus on monitoring subjects’ motor func-
tions. Ghika et al. [16] were among the earliest researchers to
explore the use of sensing technologies (e.g., accelerometers
mounted on the hand) to quantify and monitor motor ab-
normalities including tremor, bradykinesia, and rigidity. The
advances in sensor miniaturization and wireless technology
allows recent researchers to develop solutions based on un-
modified commodity devices such as smartphones [1, 2, 4, 24]
and Google Glass [36, 37]. In addition to accelerometers and

gyroscopes (alone or combined, which we categorize as in-
ertial measurement units, IMUs) which were the primary
choice of sensors of existing approaches, recent works also
explored using Kinect sensors [14], microphones [2], and
ad hoc solutions for objective PD assessment. The intended
applications range from the improvement of diagnosis to the
assessment of PD progression and the evaluation of therapy
efficacy [40]. Please refer to [53] for a systematic review of
848 articles published from 2005 to 2015, which provides
a panoramic overview of technological innovations in PD
evaluation of the past decade.

Smartphone-based Assessment Methods
We pay special attention to smartphone-based assessment
methods [1–3, 8, 12, 24, 27–30, 34, 43–45, 48, 49], which
are more related to our work. While most of them focused
on detecting motor abnormalities via the embedded IMUs
[1, 2, 8, 12, 27, 30, 43, 44, 49], a few studies leveraged touch-
screen as a source of data to quantify PD signs [3, 24, 29, 49].
For example, Lee et al. [29] implemented and validated finger-
tapping (FT) tests [41] on smartphones. FT tests are standard-
ized finger-movement tests to detect and quantify psychomo-
tor dysfunction andwere traditionally performed onmechan-
ical tappers. When transferred to touchscreen tappers, they
achieved a 0.92 AUC when distinguishing PD patients and
controls. Similarly, the mPower study [6] included alternat-
ing finger-tapping (AFT) tests [23] on smartphones. AFT is
one of the varieties of FT, in which the tested subject has to
alternatively press two specific buttons as fast as possible
during a predefined time. The test is repeated for both hands
and the final score is the average number of pressed keys
between the two. In addition to AFT tests, the mPower study
also included memory tests, audio tests, and gait (walk) tests.
For instance, in the audio test, a participant is asked to "say
’Aaaaah’ into the microphone for as long as you can". The
audio will be collected for further analysis. Similar with prior
test-based approaches, the mPower study also suffers from
high drop-out rates (e.g., >90% subjects dropped out AFT
tests within 5 days) since the data collection requires users’
active participation and it is therefore, subject to adherence.
Moreover, according to the observer effect (aka Hawthorne
effect [39]) which indicates that individuals modify some
aspect of their behavior in response to their awareness of
being observed, data collected in such tests can hardly reflect
the natural behavior of the user, which may further impact
the results to certain extent.
To address these problems, recent research has explored

using keystroke dynamics (i.e. timing information associated
with keystrokes) of typing activities to classify subjects as
having PD or not [3, 4, 24]. Arroyo-Gallego et al. [4] used
statistics of hold time (time between pressing and releasing a
key), flight time (delay between consecutive key presses), and
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other raw typing metrics generated when subjects typed on
a mechanical keyboard and achieved a 0.83 AUC in discrimi-
nating early PD subjects and controls. They further validated
this approach using a touchscreen smartphone and achieved
a 0.91 AUC with the best performing feature [3]. Iakovakis
et al. [24] further extended this approach by including more
features (e.g., touch pressure) and achieved a 0.92 AUC (the
method proposed in [3] achieved a 0.82 AUC on the same
dataset).

Although highly related, we go beyond existing literature
by presenting the first exploration of detecting early PD
signs from common touch gestural interactions. Whereas
typing behaviors can reflect one’s fine motor control abilities
in the form of repeated target selection, gesturing behaviors
can reflect one’s abilities in making precise finger movements.
By including one recent work [24] as a baseline method in
our evaluation, we demonstrate through empirical evidence
that the combination of typing and gesturing can outper-
form either of them solely. Moreover, introducing gesturing
as another cue for PD detection can provide a better cover-
age regarding usage scenarios. Besides, we explore an en-
riched feature set covering not only time-based features and
pressure-based features, but also path-based features and
IMU-based features, which have not been fully covered by
prior works. We believe such exploration can help the com-
munity gain a holistic understanding of the effects caused
by PD motor symptoms on touch gesturing.

Utilizing Side Effects of Touch Interactions
Recent studies in psychology literature have shown that
touch behaviors in a social context (person-person commu-
nication) can convey not only the valence of an emotion
but also the type of that emotion (e.g., happy or upset) [21].
Motivated by such psychological findings, researchers in the
HCI community have explored using the touch modality to
capture users’ emotional states [5, 15, 25, 31]. Bailenson et
al. [5] found that emotions can be communicated through a
two degrees of freedom force feedback joystick. Khanna &
Sasikumar [25] found that keyboard typing behavior can be
affected by users’ emotional states and developed a system
that can discriminate positive, neutral and negative states
based on keystroke behaviors with up to 87.7% accuracy. Lv
et al. [31] achieved 93.4% accuracy in discriminating six emo-
tions (neutral, anger, fear, happiness, sadness, and surprise)
via a keyboard with pressure sensors. Gao et al. [15] explored
detecting players’ emotional states in a naturalistic setting
of touchscreen-based games via analyzing their finger stroke
behaviors, and achieved up to 77% accuracy in discriminating
between four emotional states.
In addition to emotional states, researchers have also ex-

plored detecting situational impairments imposed by inebri-
ation via touch-based interaction tasks [33], which is more

in line with our work. In that work, researchers proposed
five drunk user interfaces (DUIs), including typing, swiping,
balancing & heart rate, simple reaction, and choice reaction.
Among these tasks, the typing and swiping interfaces are
particularly related to our research. As we illustrate in later
sections, this work has partially informed the selection of
features in our study; nevertheless, there are several major
distinctions between these two works. First, DUIs focus on
detecting motor abnormalities caused by inebriation while
our work focuses on detecting PD motor signs, which may
differ from each other. Second, in addition to typing and swip-
ing (i.e. tracing pattern passwords), we explore a wider range
of gestures such as flick, pinch, and handwriting gestures.
Third, DUIs were designed to be dedicated task-based inter-
faces while we intend to collect and analyze users’ data when
performing common touch gestures in a task-free manner.

3 EXPERIMENT
In the modern era of smartphones, touch gestural interac-
tions are common tasks that users perform every day. Per-
forming touch gestures involve precise, coordinated and
successive finger and hand movements. While prior clinical
experiments showed that PD motor phenotype described
by bradykinesia/slowness, lack of spontaneous movement,
rigidity and tremor can reduce the coordination of fingers in
fine motor control [35, 58], we believe such clinical picture
can also affect the finger performance while interacting with
smartphone touchscreens. Therefore, analyzing the quan-
titative information arising from this type of interaction is
the focus of our research. Moreover, such information can
be captured unobtrusively and implicitly in the background
during routine interaction scenarios. In this way, it can better
reflect the natural behavior of the user while reducing the
observer effect [39].
In this study, we investigate the possibility of detecting

motor impairments in early PD via analyzing users’ touch
gestural behaviors. Specifically, we introduce a set of nu-
merical features derived from common touch gestures and
investigate the characteristic PD patterns that can facilitate
the detection and quantification of the motor signs related
to this disease. The data in this study was collected from 102
subjects (35 early PD patients and 67 healthy controls). In
the rest of this section, we describe the selection of gestures
and the extraction of features, and cite a subset of clinical
experiments and prior studies that informed them. We also
describe the participants and the data collection procedure
of this study.

Gestures
We explore four types of common touch gestures including
flick, drag, handwriting, and pinch (Figure 1). These gestures
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Figure 2: Ideal finger paths (dashed lines, hidden from the
user) and actual finger paths (solid paths).

combined can provide a good coverage of daily touch ges-
tural interactions. Previous studies on PD research suggests
that PD motor impairments can affect patients’ fine-motor
coordination and control abilities [35, 58]; to the best of our
knowledge, though, there has been no work that has quan-
titatively analyzed the effect of PD on gestural interactions
performed on touchscreens. In addition, we also include two
external references in the evaluation: typing [24] and the
AFT test (a well-established clinical test [23]).

Flick. A flick is a unidirectional touch gesture that re-
quires the user to quickly brush the screen surface with
her fingertip. It is typically characterized by high speed and
high degree of straightness. We hypothesize that the bradyki-
nesia/slowness, tremor, and other PD symptoms can affect
patients’ efficiency when performing flick gestures regard-
ing both finger movement speed and path efficiency (e.g.,
straight or zigzag path).

Drag. A drag gesture requires the user to move fingertip
over touchscreen surface without losing contact. Typically,
each trial has both a desired starting position and a desired
end position, thus it can be considered as a steering task
with explicit or implicit tunnels. When comparing the actual
finger trajectory with the ideal path (e.g., the shortest path
between the starting and end positions), one hypothesis is
that PD patients wouldmove their fingers less efficiently than
healthy subjects. To our knowledge, the effect of PD motor
impairment on drag gestures performed on touchscreens
has yet to be explored, but there have been related studies
involving the effect of inebriation. For example, Mariakakis
et al. [33] demonstrated that motor abnormalities caused
by inebriation can affect both finger speed and trajectory
efficiency when tracing pattern passwords on an Android
3x3 lock screen.

Handwriting. Handwriting gestures can be considered
as free-form multi-stroke path gestures. Handwriting in-
put is widely adopted by smartphone users worldwide. For
example, Google Handwriting Input1 alone has attracted
more than 10 million installs to date. Compared with drag
gestures, handwriting gestures can reflect less-constrained
finger movements. Prior studies showed that PD symptoms
could affect keystroke temporal dynamics and touch pres-
sures when typing with an onscreen Qwerty keyboard [24],
we explore whether and how PD symptoms affect handwrit-
ing behaviors in terms of path smoothness, movement speed,
and touch pressure.

Pinch. A pinch gesture requires the user to touch screen
surface with two fingers and move them closer or apart,
which involves multi-finger coordination. While the well-
known AFT test [23] measures one’s ability in performing
alternating and successive finger tapping tasks, pinch be-
haviors can reflect one’s ability in making simultaneous,
continuous, and precise finger movements. Thus we believe
certain characteristic PD patterns can be detected via sensing
and analyzing users’ pinch behaviors.

Tap. Prior research has investigated PD patients’ tap be-
haviors in both AFT tests [29] and typing activities [3, 24].
We include both in this study as external references and
baseline methods. In the AFT test, a user alternately taps
two separate buttons on the screen by using her index finger
and middle finger on the same hand for 30 seconds. The user
needs to repeat the test for both hands and the final score
is computed as the average number of buttons pressed be-
tween two hands. Despite its simplicity, AFT has been widely
used to quantify upper limbs dexterity for PD evaluation [41].
Therefore, it can also serve as a clinical reference in the study.
In addition to the AFT test, we also include onscreen Qw-
erty typing-based approach as another external reference,
followed the implementation of a recently published work
by Iakovakis et al. [24].

Features
Weexplore four categories of features and investigatewhether
and to what extent they can capture the characteristic pat-
terns caused by PD motor symptoms. Table 1 shows a com-
plete listing of each feature. We cite the related literature
that informed the calculations of certain features in this
study, and describe how these features are adapted for use in
our scenario. Although some of the features were originally
proposed by prior researchers in other tasks, we focus on
analyzing their discriminative power in differentiating early
PD and normal subjects in this study.

1https://play.google.com/store/apps/details?id=com.google.android.apps.
handwriting.ime&hl=en_US
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Table 1: Features explored in this study.

Features Descriptions
Path-based Features
Ideal Path Crossing The number of times that the actual path crosses the ideal path [32].
Path Direction Change The number of times that the finger changes direction relatively to the ideal path [32].
Path Deviation Variability The std of the distances between points on actual path and ideal path [32].
Path Error The mean absolute deviation of the points on the actual path from the ideal path [32].
Path Offset The mean deviation of the points on the actual path from the ideal path [32].
Curvature The mean directional change in degrees of each point on the actual path [38].
Time-based Features
Speed
(min/max/mean/median/std) The min/max/mean/median/std of swiping speed in pixels/s [33].

Acceleration
(min/max/mean/median/std) The min/max/mean/median/std of swiping acceleration in pixels/s^2 [33].

Speed Jerk
(min/max/mean/median/std) The min/max/mean/median/std of swiping jerk in pixels/s^3 [33].

Pressure-based Features
Pressure
(min/max/mean/median/std) The min/max/mean/median/std of pressure values [15].

Pressure Change
(min/max/mean/median/std) The min/max/mean/median/std of first derivative of pressure values.

Pressure Jerk
(min/max/mean/median/std) The min/max/mean/median/std of second derivative of pressure values.

IMU-based Features
Amplitude The root mean square of all the input-squared values [47].
Voluntary Movements Power The relative power of voluntary movements frequencies (1-3.5Hz) [20].
Pathological Tremor Power The relative power of pathological tremor frequencies (3.5-7.5Hz) [20].
Physiological Tremor Power The relative power of physiological tremor frequencies (7.5-15Hz) [20].
Mean Frequency The mean frequency of the power spectrum [47].
Median Frequency The particular frequency that divides the spectrum into two parts of equal area [47].
Additional Features for Handwriting Gestures
Finger Stroke Interval The mean interval between two consecutive finger strokes.
Interval Variability The std of intervals between two consecutive finger strokes.
Additional Features for Pinch Gestures
Speed Ratio The mean speed ratio of the two moving fingers.
Pressure Ratio The mean pressure ratio of the two moving fingers.

Path-based features. Here we hypothesize that motor
impairments in PD can affect the efficiency in term of finger
trajectories (e.g., zigzag path vs. smooth path). To measure
the path efficiency, we need to know the ideal path first.
For flick, drag and pinch gestures, the most efficient path
is the straight lines connecting the starting point, the end
point, and the crossing goals in between (if existed). For
handwriting paths, we applied a mean filter with an aver-
aging window length of 5 to generate a smoothed path as
the ideal path [51]. Figure 2 shows the ideal paths and an
user’s actual paths. Then we applied the path accuracy fea-
tures introduced by Mackenzie et al. [32], which evaluates
how a trajectory deviates from the ideal path between them.

For instance, "path error" measures the absolute orthogonal
distance between user’s trajectory and the most efficient
path. Since the stroke lengths vary even when the same user
performs the same gesture twice, we normalize the feature
values based on stroke length. In addition to path accuracy
features, we also included path smoothness metrics (e.g., cur-
vature), inspired by prior research which demonstrated that
PD symptoms can affect the smoothness of patients’ eye and
head movements [59].

Time-based features. Since bradykinesia (i.e. slowness)
is one of the dominant manifestations of PD, time-based
information has been widely adopted by prior research for
PD quantification. For example, Arroyo-Gallego et al. [3]
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discriminated PD and control subjects via analyzing their
typing behaviors based on timing features such as holding
time and flight time. In addition to PD assessment, Mari-
akakis et al. [33] used finger velocity, acceleration, and other
time-based measurements in estimating the blood alcohol
level. Informed by prior research, we include a set of time-
based features, including finger movement speed, acceler-
ation, jerk, as well as the summary statistics such as their
min, max, mean, median, and standard deviation values.

Pressure-based features. Touch pressure-based features
were found to be informative by prior studies for estimating
situational motor impairments introduced by inebriation
[33], and for discriminating emotions [15]. The most related
finding is presented by Iakovakis et al. [24], which showed
that pressure features can facilitate the discrimination of
PD and control subjects during typing activities. Informed
by these findings, we calculate a set of features based on
the pressure sequence captured by the touchscreen, such as
the summary statistics of the normalized pressure values
(i.e. 0-1), and statistics that can describe the smoothness of
pressure change in temporal domain.

IMU-based features. In addition to touchscreen, we also
include the embedded IMU as another source to collect data.
Relying on IMU for PD quantification has been a long tra-
dition of PD research [1, 2, 16, 20, 49]. However, as far as
we know, there is no work on analyzing IMU data collected
during touch gestural interactions. We include both generic
features (e.g., amplitude) and features that can reflect tremor
symptoms (e.g., power of tremor frequencies).

We calculate all four categories of features discussed above
for each type of gestures. In addition, we also include some
unique features for handwriting and pinch gestures. For
handwriting, we include features that can reflect the finger
stroke dynamics (e.g., mean/std of the time interval between
two consecutive finger strokes), informed by previous clini-
cal findings that PD patients lack on rhythm stability of their
finger movements [26, 35]. For pinch gestures, we include
features that can reflect the coordination of the two moving
fingers, such as the ratio of speeds as well as the ratio of
pressures of the two fingers.

Participants
We recruited two groups of participants. The early PD sub-
jects group consisted of 35 subjects. All of them were at
early stages (Hoehn-Yahr stages I or II2, mean UPDRS Part
III score/std 8.4/3.7) and recently diagnosed (mean disease
onset years/std 2.3/1.9). The diagnosis was confirmed by at
least two expert physicians before the study. For reference,

2The Hoehn-Yahr scale is a commonly used system for describing how PD
symptoms progress, ranging from 1 to 5. While control subjects did not
exhibit any PD sign or motor abnormalities, they were rated as stage 0.

Table 2: Summary of the demographic and clinical informa-
tion of the 102 participants in this study.

Early PDs Controls Sig
n (total n = 102) 35 67 n/a
Demographics
Women #(%) 22(63%) 40(59.7%) n/a
Men #(%) 13(37%) 27(40.3%) n/a
Age yrs(std) 64.8(11.1) 62.7(10.0) p=0.30
Education yrs(std) 9.3(3.3) 9.0(3.9) p=0.44
Smartphone yrs(std) 3.4(1.6) 2.8(2.6) p=0.15
Clinical Characteristics
Disease Onset yrs(std) 2.3(1.9) 0(0) p<0.001
UPDRS Part III avg(std) 8.4(3.7) 0(0) p<0.001
Hoehn-Yahr avg(std) 1.3(0.8) 0(0) p<0.001
The two groups are reasonable matched in terms of demographics as no
significant differences are observed (two-sided Mann-Whitney U test).

the mean UPDRS Part III scores of PD subjects in two re-
cent studies which focused on early PD detection were 16.9
[24] and 20.5 [4], respectively. A score of 8.4 is typical of
patients with very mild disease severity. The control group
included 67 healthy subjects without any sign of PD. The
two groups were matched in terms of gender, age, education
level, and years of experience with smartphones. All sub-
jects were native Chinese speakers, 45 years or older. Table
2 summarizes the demographic and clinical information of
the participants. We only included subjects who reported
that they had used a touchscreen-equipped smartphone for
more than one year, which can avoid or greatly reduce the
confounding effect introduced by the variance in familiarity
with common touch gestures. PD patients with cognitive
impairment were excluded for the study.
The PD subjects were recruited from the PD clinic at

Peking Union Medical College Hospital (Beijing). The study
protocol (including both clinical evaluations and performing
touch gestural interactions with a smartphone) was con-
ducted during a single morning visit of each subject. All
PD subjects were tested during the "ON" state3 after their
morning dose of the symptomatic relief medication.
Both the recruitment and the experimental procedures

were approved by the Institutional Review Board of the hos-
pital where the study was conducted. Subjects gave informed
consent before their participation. They were told that they
can quit the study at any time without providing any justifi-
cation. The study was carried out according to institutional
guidelines on research involving adult human beings. Figure
3 shows some sample pictures taken during the study.
3The effectiveness of PD medication (e.g., levodopa) may fluctuate over
time, a person can cycle through phases with good response to medication
and reduced PD symptoms ("ON" state), and phases with poor response to
medication and significant PD symptoms ("OFF" state).

CHI 2019 Paper  CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 83 Page 7



Figure 3: Sample pictures of subjects in this study.

Procedure
Participants used our custom Android app on a Huawei
P9 Plus smartphone running Android 7.0 for data collec-
tion. It has a 5.5 inch, 1080*1920 pixels, and pressure sensor-
equipped touchscreen. The app has five major interfaces:
a photo gallery interface to collect flick and pinch data, a
pattern password interface to collect drag data, a Chinese
handwriting input interface to collect handwriting data, an
onscreen Qwerty-keyboard typing interface to collect typing
data, and a classic AFT interface [6]. Navigation between the
interfaces happened automatically.
At the beginning, a research staff member explained the

whole procedure as well as each interface in the data collec-
tion app, and answered participants’ questions. Participants
were allowed to explore the app freely until they stated explic-
itly that they were ready to start the data collection process.
Data acquired during this session was not included in the
analysis.

Following this, the participant started with browsing pic-
tures with a photo gallery interface by performing flick ges-
tures. She/he performed left flicks for ten times to browse all
pictures, and performed right flicks for another ten times to
get back to the first picture. We did not put any constraint
on participants and asked them to mimic their daily usage
patterns as much as they could. Then the app automatically
navigated to the pinch interface where the participant was
asked to perform pinch gestures to zoom in the pictures for
ten times, and to perform spread gestures to zoom out the
pictures for another ten times. Then the app navigated to
the pattern password interface which mimics the 3x3 lock
screen of many Android devices. Each cell had a moderate
diameter, and a digit was only triggered if the user’s finger
passed over the region of that cell. For each trial, the pass-
word was randomly generated with varying complexity (e.g.,

the number of finger direction change ranging from 1 to 4).
We included such variety to guarantee that the detection
was robust against pattern shapes and levels of complexity.
The participant could see the correct pattern at the top of
the screen and performed this task for ten times. Then the
app repeated the above process for another two rounds. In
total, we collected 60 flick samples (3 rounds x 2 types x 10
trials), 60 pinch samples (3 rounds x 2 types x 10 trials), and
30 drag samples (3 rounds x 10 trials) from each participant.
Then the participant used a custom Chinese handwrit-

ing input interface to input short Chinese excerpts for five
minutes. After that, the participant typed with the Qwerty
touch keyboard for another five minutes. The excerpts were
selected from a Chinese short-text conversation corpus [55]
based on the decreasing frequency order. Lastly, the partici-
pant performed the AFT test and completed the UPDRS Part
III evaluations with a specialized neurologist. On average, it
took 1.5 hours for each participant to complete the study.
To reduce the confounding effect of fatigue, the data col-

lection app paused automatically when navigating between
different interfaces to allow subjects to have a rest. In addi-
tion, they can pause at any time during the study as often
as they like. Participants were instructed to sit comfortably
and to operate the smartphone with their own styles. The ex-
perimenter explained the interfaces but did not mention the
specific metrics that were being recorded. The goal was to
simulate real-life and natural interactions with smartphones.
Our app recorded the precise touch positions, the sequence
of pressure values, the raw IMU outputs, and their corre-
sponding times stamps of each touch gesture performed.

4 RESULTS
First, we investigate the discriminative power of the pro-
posed features. Next, we assess the classification perfor-
mance of using different categories of features (e.g., indi-
vidual category or combined). We also compare the classifi-
cation results between the proposed approach with external
reference methods (i.e. the AFT test and the typing-based
method).

Feature Exploration
Figure 4 presents the results of group-level (early PD pa-
tients vs. controls) statistical comparisons (two-sided Mann-
Whitney U test) with respect to each individual feature,
where we highlight the p-values of the null hypothesis tests
that PD and control subjects come from the same population.
It is evident that certain features differ significantly between
groups. Specifically, 40 out of 46 features exhibit significant
differences on at least one type of touch gestures.

To further investigate their discriminative power, we em-
ployed a feature selection approach suggested by Chen et
al. [10], where we calculated the f-score for each feature.
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Figure 4: Results of statistical comparisons of each feature between early PD and control subjects. Significance is computed
using the non-parametric two-sided Mann-Whitney U test and noted as: p<0.001(***), p<0.01(**), p<0.05(*), and p>0.05(o).

F-score can measure the discrimination of two sets of data
samples. The f-score of the ith feature is calculated as:

f (i) =
(x̄ (+)i − x̄i )

2 + (x̄ (−)i − x̄i )
2

1
n+−1

∑
(x (+)k,i − x̄ (+)i )

2
+ 1

n−−1
∑
(x (−)k,i − x̄ (−)i )

2 (1)

where x̄i is the average of the ith feature among all samples,
x̄ (+)i and x̄ (−)i are the average values of the positive and neg-
ative samples, respectively. x (+)k,i is the i

th feature value of
the kth positive sample while x (−)k,i is the i

th feature value of
the kth negative sample. n+ and n− denote the number of
positive and negative samples. The numerator indicates the
discrimination between positive and negative sets, whereas
the denominator indicates the discrimination within these
sets. A higher f-score means that the feature is more likely
to be discriminative when being used for classification. We
calculated the f-score of each feature on each gesture type
individually and ranked them based on the averaged value in
decreasing order. Figure 5 shows the distributions of the most
discriminant features in each category via box plots, which
showed the upper and lower quartiles, as well as the median
values. In general, as compared to healthy controls, PD pa-
tients exhibited less-efficient finger trajectories, milder and
less stable speed and pressure, higher pathological tremor
power, and lower voluntary movement power.
Two path-based features (curvature and path direction

change) exhibited significant differences on all types of touch
gestures, thereby their discriminative power was highlighted.
PD patients exhibited on average larger numbers of move-
ment direction change (normalized based on stroke length,
flick: 0.10 vs. 0.02, p<0.001; drag: 0.18 vs. 0.10, p<0.001; hand-
writing: 0.35 vs. 0.21, p<0.001; pinch: 0.27 vs. 0.16, p<0.001)
and higher curvature values (flick: 0.18 vs. 0.08, p<0.001; drag:
0.37 vs. 0.29, p<0.001; handwriting: 0.74 vs. 0.68, p=0.003;

pinch: 0.41 vs. 0.26, p<0.001). These features can reflect the
directness of finger trajectories, which may further indicate
the efficiency when making fine finger movements. The re-
sults confirmed our hypothesis that motor impairments in
PD can affect the efficiency in term of finger trajectories.

As derived from the distributions of the most discrimina-
tive time-based features, PD patients exhibited on average
lower values of maximum finger velocities when perform-
ing all the four gestures, although statistical significances
were achieved only on drag (0.18 vs. 0.26, p=0.018) and pinch
gestures (0.09 vs. 0.18, p=0.027). We attribute such results
to the effects of motor symptoms, especially bradykinesia
(slowness of movement), which may low down finger re-
flexes causing PD patients to make relatively slower finger
movements. These results were also consistent with prior
findings the PD patients had longer key holding time (HT)
during typing activities [3, 24]. At the same time, we also
found that PD patients had higher absolute acceleration val-
ues when performing flick (0.60 vs. 0.46, p<0.001) and drag
(0.47 vs. 0.42, p<0.002) gestures, which indicated unstable
swiping speed when interacting with touchscreens. This may
be caused by the rigidity (muscle stiffness) of PD patients
which can disturb the intended operating behaviors.

In our experiment, early PD subjects and controls also
exhibited significant differences in terms of pressure applied
to perform certain touchscreen gestures. Specifically, PD sub-
jects produced significantly lower values in median pressure
than control subjects when performing flick (0.90 vs. 0.95,
p=0.014) and handwriting (0.88 vs. 0.92, p=0.004) gestures.
At the same time, PD patients exhibited significantly higher
values in pressure change when performing flick (0.15 vs.
0.09, p=0.006), drag (0.18 vs. 0.11, p<0.001), and handwriting
(0.16 vs. 0.07, p<0.001) gestures. The former could be attrib-
uted to inadequately-scaled movements in term of amplitude
that constitute manifestations of hypokinesia that is present
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Figure 5: Group-wise comparisons on themost discriminative features of each feature category. Boxplots represent the feature
distributions of 35 PD and 67 control subjects. Statistical significance is noted as: p<0.001(***), p<0.01(**), and p<0.05(*).

in PD, which has been reported by related prior research
[24]. The latter confirmed a recent clinical finding that the
variance of contact pressure increases as the severity of the
associated motor symptom increases [50].
Besides, PD subjects exhibited significantly lower volun-

tary movement power (spectrum power on frequency band
of 1-3.5 Hz [20] when performing all four gestures, which can
result from the slowness of intentional movements. At the
same time, PD subjects produced significantly higher patho-
logical tremor power (spectrum power on frequency band
of 3.5-7.5 Hz) when performing drag (0.45 vs. 0.34, p=0.005),
handwriting (0.41 vs. 0.31, p=0.008), and pinch (0.39 vs. 0.29,
p=0.017) gestures. Although consistent results were achieved
on flick gestures (0.39 vs. 0.33, p=0.278), the difference was
not statistically significant. These results were consistent
with findings in prior studies investigating the action or pos-
tural tremor of PD [7, 18, 20, 47], which confirmed that the
IMU data collected during touchscreen gestural interactions
can also be informative and useful for PD assessment.

Classification Results
We explored a set of common classification methods includ-
ing logistic regression, support vector machine (SVM), ran-
dom forest, and AdaBoost in our preliminary studies, and
achieved best results with linear kernel SVMs (implemented
by the LIBSVM toolkit [9]). Therefore, we only report the

SVM results in the rest of paper due to space limit. We em-
ployed multiple tests and metrics to measure the classifica-
tion performance, including the Receiver Operating Char-
acteristic (ROC) analysis, sensitivity (i.e. true positive rate,
the percentage of PD patients who are correctly identified
as having PD), specificity (i.e. true negative rate, the per-
centage of healthy subjects who are correctly identified as
being healthy), and the F1 score (i.e. the harmonic mean of
precision and sensitivity). All these metrics allow a reliable
comparison of classification performance, even when the
class size is not fully balanced, as it is the case of our dataset
(35 PD, 67 controls).

The ROC curve is created by plotting true positive rate
(sensitivity) against false positive rate (1-specificity) at vari-
ous threshold settings[13]. The area under the curve (AUC)
can be interpreted as the probability that the classifier will
rank a randomly chosen positive instance higher than a ran-
domly chosen negative one (assuming ’positive’ ranks higher
than ’negative’). A test with no better accuracy than chance
has an AUC of 0.5 while a test with perfect accuracy has
an AUC of 1. A sampling with replacement method (1000
bootstraps) defines a ROC distribution from which we com-
pute the average and confidence intervals of the AUC values.
Moreover, we estimated the sensitivity and specificity values
in our study via the closest-to-(0,1) criterion when defining
the cut-off point [46]. We leveraged leave-one-subject-out-
cross-validation. Specifically, for each pass, the data of 1
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Table 3: Classification results of using different feature com-
binations.

Feature Set AUC [5% 95%] Sens Spec F1
A 0.90 [0.83 0.95] 0.83 0.82 0.76
B 0.88 [0.79 0.94] 0.80 0.84 0.76
C 0.86 [0.77 0.92] 0.80 0.78 0.72
D 0.89 [0.82 0.94] 0.80 0.85 0.77

A+B 0.91 [0.83 0.95] 0.83 0.85 0.78
A+C 0.92 [0.85 0.96] 0.80 0.87 0.78
A+D 0.91 [0.84 0.96] 0.83 0.85 0.78
B+C 0.92 [0.84 0.96] 0.83 0.81 0.75
B+D 0.93 [0.87 0.97] 0.86 0.85 0.80
C+D 0.93 [0.86 0.96] 0.77 0.87 0.76

A+B+C 0.92 [0.84 0.96] 0.86 0.82 0.78
A+B+D 0.93 [0.87 0.97] 0.80 0.91 0.81
A+C+D 0.94 [0.89 0.97] 0.83 0.88 0.81
B+C+D 0.93 [0.87 0.97] 0.89 0.88 0.84

A+B+C+D 0.95 [0.90 0.98] 0.89 0.88 0.84
A : Path-based Features, B : Time-based Features,

C : Pressure-based Features, D : IMU-based Features.

participant was used as the test set and the data of the re-
maining 101 subjects was used as the training set. Therefore,
the results reported follow were user-independent.

We first investigated the classification performance of us-
ing each individual category of features, as well as using all
possible combinations of feature categories. Such analysis
can provide insights on how well PD and control subjects
can be discriminated by each category of features, and how
different categories of features can complement one another.
Table 3 summarized the results achieved on the whole dataset
including all four types of touch gestures. We report average
AUC for the bootstrapped ROC distribution, AUC confidence
interval computed as the [5%, 95%] percentitles on the result-
ing AUC values, sensitivity, specificity, and F1 scores. We
achieved promising results even with only one category of
features. Specifically, we achieved an AUC of 0.90 [0.83 0.95]
with path-based features, 0.88 [0.79 0.94] with time-based
features, 0.86 [0.77 0.92] with pressure-based features, and
0.89 [0.82 0.94] with IMU-based features, which highlighted
their discriminatory power. Not surprisingly, the classifica-
tion performances increased when using multiple categories
of features, though some combinations led to more improve-
ments than others. Using all of the features together led to
the highest AUC of 0.95 [0.90 0.98] with the 0.89/0.88 sensi-
tivity/specificity.
We also compared the classification results of employ-

ing each touch gesture solely, using the combination of all
gestures, with external baseline methods including the AFT
test and the typing-based method proposed by Iakovakis

Table 4: Classification results of using different gestures,
compared with external reference methods.

Tasks AUC [5% 95%] Sens Spec F1
Flick(F) 0.88 [0.80 0.94] 0.77 0.75 0.68
Drag(D) 0.92 [0.84 0.96] 0.86 0.88 0.82

Handwriting(H) 0.89 [0.82 0.94] 0.71 0.85 0.71
Pinch(P) 0.92 [0.85 0.96] 0.80 0.82 0.75

Gestures(F+D+H+P) 0.95 [0.90 0.98] 0.89 0.88 0.84
Typing 0.88 [0.80 0.93] 0.74 0.85 0.73

Typing+Gestures 0.97 [0.92 0.99] 0.89 0.90 0.85
AFT 0.83 [0.75 0.90] 0.86 0.69 0.70

Figure 6: ROC curves demonstrating the classification per-
formance of the proposed approach and exiting methods.

et al. [24]. We replicate the evaluation framework used in
our methods to test the classification performance of these
two reference metrics in our cohort. Table 4 summarizes the
results. The AFT test achieved an AUC of 0.83 [0.75 0.90] and
the typing-based method achieved an AUC of 0.88 [0.80 0.93].
These results were very close to what prior studies reported
(e.g., AFT achieved an AUC of 0.85 in [3], typing achieved
an AUC of 0.88 in [3] and 0.92 in [24]). For touch gestures,
we found that each gesture performed well on its own. Each
gesture solely can achieve comparable performance with
the typing-based method, and can outperform the AFT test.
When combined, touch gestures achieved an AUC of 0.95
[0.90 0.98], which outperformed the typing-based method
which presented an AUC of 0.88 [0.80 0.93] in our dataset.
At the same time, we also found that the combination of
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touch gestures and typing led to better performance (AUC
of 0.97 [0.92 0.99]) than leveraging either class solely, which
indicated that they can complement well one the other well.
Figure 6 shows the comparison of ROC curves achieved by
different methods. The improvement achieved in the classifi-
cation result, compared to the AFT test which is a commonly
used clinical method to quantify upper limbs dexterity, may
due to the fact that our features have been carefully defined
to capture the motor abnormalities that are a direct represen-
tation of PD signs, including tremor, slowness, and rigidity.

5 DISCUSSION
This work explored detecting motor impairment in early PD
from common touch gestural interactions. We contribute
a set of useful empirical findings for both researchers and
clinical practitioners. In general, compared to healthy con-
trols, our results indicated that early PD subjects exhibited
less-efficient finger trajectories (e.g., significantly higher val-
ues in path curvature and direction change), milder and less
stable speed and pressure, higher tremor power, and lower
voluntary movement power when they performed touch ges-
tures on smartphones. This confirmed our hypothesis that
by analyzing data from rich sensors such as IMUs, pressure
sensors and touchscreens, we can detect the abnormalities in
touch interaction kinetics caused by PD signs such as tremor,
bradykinesia, and rigidity. As expected, the best classification
performance (0.95 AUC with 0.89/0.88 sensitivity/specificity)
was achieved by using all categories of features together,
which indicated they can complement each other to improve
the detection performance.

Our results also demonstrated that each of four common
touch gestures on its own can outperformed the clinical AFT
test. We attribute the improvement to the larger variety of
features that can better reflect PD signs. In comparison, the
AFT test relied on time-based metrics solely. We also found
touch gestures and typing complemented each other and
improved classification performance when combined. When
comparing between single touch gestures, we found that
drag gestures (0.92 AUCwith 0.86/0.88 sensitivity/specificity)
outperformed others on almost all metrics. This may due to
the fact that users were more constrained when performing
drag gestures in the current experimental setting, where they
had specific paths to trace, which included explicit starting
point, end point, and the crossing goals in between. Such
constraints may limit the interfering effect of personal style
when users perform such gestures, especially compared with
performing more flexible gestures such as flicks.
Our study was conducted in a controlled environment.

Although participants were asked to perform these gestures
as they would normally do to mimic actual routine use of
smartphones, further longitudinal and large-scale deploy-
ment is necessary to discard the impact of controlled study

on participants’ interaction behaviors, where data will be
captured unobtrusively and implicitly from users’ natural-
istic and daily smartphone interactions. Furthermore, it is
worth exploration of developing a regression model based
on the current classification model, which could make it
possible to conduct fine-grained evaluation on the motor
function and the disease progression. Addition information
from user’s everyday smartphone interaction, such as voice
signal during phone calls, IMU data during idle periods, could
be used to complement our analysis.
Privacy issues should be considered since the proposed

approach relies on the data collected unobtrusively and im-
plicitly from routine smartphone interactions. Actually, this
approach is privacy-aware, as it is based on the low-level fea-
tures calculated from raw sensor outputs, without requiring
the actual content and high-level information. However, the
results of such approach indicate users’ health status which
belongs to the category of sensitive personal data. Future
applications should ensure that the users are aware of what
data would be collected and when it would be collected. They
should comply with ethical guidelines and data protection
regulations as well.

6 CONCLUSION
Our investigation over 102 subjects’ data showed that it
was practical and promising to detect motor impairment in
early PD via sensing and analyzing users’ common gestural
interactions on smartphones. Our machine learning based
approach achieved an AUC of 0.95 and 0.89/0.88 sensitiv-
ity/specificity in discriminating early PD subjects from age-
matched healthy controls. This approach also outperformed
the alternating finger tapping (AFT) test, a well-established
PD motor test in clinical settings. Our investigation also re-
vealed the discriminative power of both the features and the
gestures.

A large amount of data were acquired for this work. In or-
der for other researchers to replicate and advance our results,
we release our 102-subject (35 early PD, 67 healthy controls)
dataset under a BSD license (please contact the correspond-
ing author to make a request). It can serve as a common
ground for future research and performance comparison of
different approaches.
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