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Safe Exit Controllers Synthesis for Continuous-time Stochastic Systems

Bai Xue

Abstract— This paper tackles the problem of generating
safe exit controllers for continuous-time systems described by
stochastic differential equations (SDEs). The primary aim is
to develop controllers that maximize the lower bounds of
the exit probability that the system escapes from a safe but
uncomfortable set within a specified time frame and guide it
towards a comfortable set. The paper considers two distinct
cases: one in which the boundary of the safe set is a subset of
the boundary of the uncomfortable set, and the other where the
boundaries of the two sets do not intersect. To begin, we present
a sufficient condition for establishing lower bounds on the exit
probability in the first case. This condition serves as a guideline
for constructing an online linear programming problem. The
linear programming problem is designed to implicitly synthesize
an optimal exit controller that maximizes the lower bounds of
the exit probability. The method employed in the first case is
then extended to the second one. Finally, we demonstrate the
effectiveness of the proposed approaches on one example.

I. INTRODUCTION

Stochastic systems are highly significant in various fields

such as robotics, finance, and biology due to their ability

to model uncertain factors that can greatly influence system

behavior. Stochastic differential equations (SDEs) provide a

powerful modeling approach for such systems as they allow

for the incorporation of inherent uncertainties in system

dynamics [6]. This enables the analysis of system behavior,

as well as the verification of properties related to safety,

reliability, and performance.

In recent years, there has witnessed an increased fo-

cus on safety properties [4], [13], [1], particularly in the

context of safety-critical systems. Safety verification via

barrier certificates for stochastic systems with infinite time

horizons was introduced in [10] alongside the determin-

istic counterpart. This framework builds upon the known

Doob’s nonnegative supermartingale inequality (or, Ville’s

inequality [14]) and enables bounding the exit probability

from above, indicating the likelihood of a system leaving

a safe region. However, this approach has a limitation as

it requires the infinitesimal generator, responsible for the

expected value evolution of a stochastic process, to be non-

positive. Consequently, the barrier function is restricted to be

a supermartingale. To overcome this restriction, [12] relaxed

the condition by introducing barrier certificates based on c-

martingales. A c-martingale allows the expected value of the

barrier function to increase over time while providing an

upper bound on the infinitesimal generator. This approach

provides upper bounds of the exit probability for systems

with finite time horizons. Afterwards, inspired by studies in
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[8], [11] enhanced the c-martingales and proposed a barrier

certificate constraint that imposes a state-dependent bound

on the infinitesimal generator for upper-bounding the exit

probability with finite time horizons. Moreover, a sum-of-

squares optimization based method was proposed in [11] to

synthesizing polynomial state feedback controllers. Further

contributions to the computation of upper bounds of the

exit probability include [9], which presented a comparison

theorem for one-dimensional SDEs and applied it to upper-

bound exit probabilities for multi-dimensional SDEs in terms

of an exit probability of a one-dimensional process. Recently,

based on online convex quadratic programs that synthesize

controllers implicitly [5], [2], [15] introduced stochastic

control barrier functions as a framework for synthesizing

controllers that enforce upper bounds on exit probabilities

over both infinite and finite time horizons. The conditions

for upper-bounding exit probabilities in the aforementioned

works, except [9], are constructed or derived from the Doob’s

nonnegative supermartingale inequality.

On the other hand, in [18], a novel approach was pro-

posed for characterizing the exact reachability probability of

discrete-time stochastic systems. This probability measures

the likelihood of a system starting from an initial set and

eventually entering target sets, while staying within safe sets

before the first target hitting time. Unlike previous methods

that rely on Doob’s nonnegative supermartingale inequality,

this approach derives an equation that provides an exact

estimation of the reachability probability [17]. By relaxing

this equation, barrier-like conditions can be obtained to both

lower-bound and upper-bound the reachability probability.

Additionally, the method has been extended in [20] to

compute lower and upper bounds of the exit probability over

an infinite time horizon for discrete-time stochastic systems.

Furthermore, the equation and its relaxations have been

further extended in [19] to perform reach-avoid analysis over

infinite-time horizons for systems modeled by SDEs. The use

of sum-of-squares optimization techniques has enabled the

application of these barrier-like conditions in the synthesis

of controllers for safety-critical systems, as in [16].

In safety-focused applications, it is common to prioritize

the computation of upper bounds for the exit probability from

a safe set. However, there is a significant lack of methods

specifically focused on computing lower bounds, despite

their significance in certain practical scenarios. Consider

a situation where a system operates within a safe set but

experiences discomfort, such as a robotic system navigating

around the boundary of the safe set. Although the system

is safe, it may encounter discomfort due to the fragility of

safety violations. In this situation, the system would prefer
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to leave this typical safe set to alleviate the discomfort. By

maximizing lower bounds of the exit probability, we can

ensure that the system has a higher probability of safely

leaving this uncomfortable set and reaching a safe set that

provides more comfort. It not only ensures safety but also

considers comfort, resulting in a more holistic solution for

safety-focused applications. This aspect becomes increas-

ingly important for systems like autonomous vehicles, where

comfort plays a substantial role once safety requirements are

met. Additionally, considering lower bounds can complement

existing methods that focus on computing upper bounds

of the exit probability, and thus can provide us a more

comprehensive analysis of the system’s behavior.

In this paper, we investigate the problem of generating safe

controllers that optimize the lower bounds of exit probabil-

ities for continuous-time systems represented by SDEs. The

exit probability refers to the likelihood of a system, starting

from an open, safe but uncomfortable set (which is a subset

of the safe set), exiting that set within a specified time frame

and entering a comfortable set. This time frame can either

be finite or infinite. We analyze two different cases in this

study. In the first case, the boundary of the safe set is a

subset of the boundary of the uncomfortable set. We begin

by establishing a sufficient condition for lower-bounding

the exit probability in this case, extending the condition

presented in [16]. Based on the proposed sufficient condition,

we formulate an online linear programming problem to

synthesize an optimal controller implicitly that maximizes

lower bounds of the exit probability. Then we extend the

sufficient condition and linear programming method in the

first case to the second one, in which the boundary of the safe

set does not intersect with the boundary of the uncomfortable

set. Finally, to illustrate the effectiveness of our proposed

methods, we provide an example application and demonstrate

their applicability.

The main contribution of our work is summarized as

follows: unlike previous studies that primarily focused on

synthesizing controllers to enforce upper bounds on the

exit probability for systems modeled by SDEs, the present

work introduces novel conditions for controller synthesis

that specifically provide lower bounds of the exit proba-

bility. These conditions are applicable to both finite and

infinite time horizons in exit analysis. One key aspect of

our contribution is that our proposed conditions not only

extend the existing condition presented in [16] to the finite-

time scenario but also encompass it as a special case within

our framework. This demonstrates the versatility of our

conditions in handling a wider range of scenarios compared

to the one in [16].

This paper is structured as follows. In Section II, we

introduce SDEs and the problems of synthesizing safe exit

controllers. In Section III, we present our sufficient condi-

tions for characterizing lower bounds of the exit probabilities

and our linear programming methods for synthesizing con-

trollers that maximize these lower bounds. In Section IV, we

demonstrate the effectiveness of our approach through one

example. Finally, in Section V, we conclude the paper and

discuss avenues for future research.

Some basic notions are used in this paper: R and R≥0

stand for the set of real numbers and non-negative real

numbers, respectively; Rn and R
n×m denote the space of all

n-dimensional vectors and n×m real matrices, respectively;

for a set A, A and ∂A denotes the closure and boundary of

the set A, respectively; ∧ denotes the logical operation of

conjunction.

II. PRELIMINARIES

This section introduces SDEs and the exit controllers

synthesis problem of interest.

Consider an affine stochastic control system,

dx(t,w) = (f1(x(t,w))+f2(x(t,w))u(x(t)))dt

+ σ(x(t,w))dW (t,w),
(1)

where f1(·) : Rn → R
n, f2(·) : Rn → R

n×m, and σ(·) :
R

n → R
n×k are locally Lipschitz continuous function; the

admissible input is defined by the function u(·) : Rn → U
with U being the admissible input set; W (t,w) : R× Ω →
R

k is an k-dimensional Wiener process (standard Brownian

motion), and Ω, equipped with the probability measure P, is

the sample space w belongs to. The expectation with respect

to P is denoted by E[·].
Given a locally Lipschitz controller u(x), for an initial

state x0, the SDE (1) has a unique (maximal local) strong

solution over a time interval [0, Tx0(w)), where Tx0(w) is

a positive real value or infinity. This solution is denoted as

φw

x0
(·) : [0, Tx0(w)) → R

n, which satisfies the stochastic

integral equation,

φw

x0
(t) =

∫ t

0

(f1(φ
w

x0
(τ)) + f2(φ

w

x0
(τ))u(φw

x0
(τ)))dτ

+

∫ t

0

σ(φw

x0
(τ))dW (τ,w) + x0.

The infinitesimal generator underlying system (1), which

represents the limit of the expected value of v(φw

x0
(t)) as t

approaches 0, is presented in Definition 1.

Definition 1: Given system (1) with a locally Lipschitz

controller u(x), the infinitesimal generator of a twice con-

tinuously differentiable function v(x) is defined by

Lv,u(x0) = lim
t→0

E[v(φw

x0
(t))]− v(x0)

t
=

[
∂v

∂x
(f1(x) + f2(x)u(x)) +

1

2
tr(σ(x)⊤

∂2v

∂x2
σ(x))] |x=x0 ,

where ∂v
∂x

represents the gradient of the function v(x) with

respect to x, and tr(·) denotes the trace of a matrix.

Given a safe set S ⊆ R
n and an uncomfortable set

C ⊆ S, a safe exit controller is a controller that maximizes

the exit probability of system (1), starting from C, entering

the comfortable set S \ C within a specified time horizon.

Additionally, it is required that the system remains inside C
before leaving it.

Definition 2 (Safe Exit Controllers): Given a time hori-

zon T, an initial state x0 ∈ C and a probability threshold



px0 ∈ [0, 1], an exit controller is a locally Lipschitz controller

u(·) : C → R
m satisfying the following condition:

P

({
w ∈ Ω |

∃t ∈ T.φw

x0
(t) ∈ S \ C

∧

∀τ ∈ [0, t).φw

x0
(τ) ∈ C

})
≥ px0 , (2)

where T = [0, T ] if T < ∞, and T = [0,∞) otherwise.

In Definition 2, the exit controller is related to a lower

bound of the exact exit probability. The safe exit controllers

synthesis problem of interest in this work is to synthesize an

exit controller maximizing the threshold px0 . The safe exit

controller synthesis problem in this paper is considered in

the following two distinct cases.

The first case we consider is that the boundary of the safe

set S is a subset of the one of the uncomfortable set C, i.e.,

∂S ⊆ ∂C. Specifically, we assume S = {x ∈ R
n | h(x) >

0} with ∂S = {x ∈ R
n | h(x) = 0} and C = {x ∈

R
n | 0 < h(x) < 1} with ∂C = {x ∈ R

n | h(x) = 0 ∨
h(x) = 1}. This assumption is made based on the practical

consideration that a system operating close to the boundary

of a safe set is at a higher risk of safety hazards, thereby

making the system operation in this set uncomfortable. In

this case, system (1) should be enforced to exit the set C
through states satisfying h(x) = 1 rather than h(x) = 0.

Thus, that ∃t ∈ T.φw

x0
(t) ∈ S\C∧∀τ ∈ [0, t).φw

x0
(τ) ∈ C is

equivalent to ∃t ∈ T.h(φw

x0
(t)) = 1 ∧ ∀τ ∈ [0, t).φw

x0
(τ) ∈

C. The corresponding exit controllers synthesis problem is

formulated in Definition 3.

Definition 3 (Safe Exit Controllers Synthesis Problem I):

Assume the safe set is S = {x ∈ R
n | h(x) > 0}

with ∂S = {x ∈ R
n | h(x) = 0} and the

uncomfortable set C = {x ∈ R
n | 0 < h(x) < 1}

with ∂C = {x ∈ R
n | h(x) = 0 ∨ h(x) = 1}, where

h(·) : R
n → R is a twice continuously differentiable

function. Given a time horizon T, the safe exit controllers

synthesis problem is to synthesize a locally Lipschitz

controller u(·) : C → R
m of maximizing lower bounds of

the exit probability for system (1) leaving the set C through

states in {x ∈ R
n | h(x) = 1}, i.e., solving the following

optimization problem:

max
u

px0

s.t. P

({
w ∈ Ω |

∃t ∈ T.h(φw

x0
(t)) = 1

∧

∀τ ∈ [0, t).φw

x0
(τ) ∈ C

})
≥ px0 ,

(3)

where T = [0, T ] if T < ∞, and T = [0,∞) otherwise.

The second case we consider is that the boundary of the

uncomfortable set C does not intersect the boundary of the

safe set S, i.e., ∂S ∩ ∂C = ∅. In this case, we assume S =
{x ∈ R

n | h(x) > 0} with ∂S = {x ∈ R
n | h(x) = 0} and

C = {x ∈ R
n | g(x) < 1} with ∂C = {x ∈ R

n | g(x) =
1}. In this case, that ∃t ∈ [0, T ].φw

x0
(t) ∈ S \ C ∧ ∀τ ∈

[0, t).φw

x0
(τ) ∈ C is equivalent to ∃t ∈ [0, T ].φw

x0
(t) ∈ ∂C ∧

∀τ ∈ [0, t).φw

x0
(τ) ∈ C. Thus, the corresponding safe exit

controllers synthesis problem is formulated in Definition 4.

Definition 4 (Safe Exit Controllers Synthesis Problem II):

Assume the uncomfortable set is C = {x ∈ R
n | g(x) < 1}

with ∂C = {x ∈ R
n | g(x) = 1} and ∂S ∩ ∂C = ∅,

where g(·) : Rn → R is a twice continuously differentiable

function. Given a time horizon T, the safe exit controllers

synthesis problem is to synthesize a locally Lipschitz

controller u(·) : C → R
m of maximizing lower bounds of

the exit probability, i.e., solving the following optimization

problem:

max
u

px0

s.t. P

({
w ∈ Ω |

∃t ∈ T.g(φw

x0
(t)) = 1∧

∀τ ∈ [0, t).φw

x0
(τ) ∈ C

})
≥ px0 ,

(4)

where T = [0, T ] if T < ∞, and T = [0,∞) otherwise.

III. EXIT CONTROLLERS SYNTHESIS

In this section, we describe our approach to solving the

safe exit controllers synthesis problems I and II. We first

focus on Problem I in Subsection III-A, where we present a

condition that exit controllers satisfy in order to derive lower

bounds on the exit probabilities for both infinite and finite

time horizons. This condition involves two free parameters

that need to be optimized. Then, we extend this condition

to Problem II in Subsection III-B. Finally, in Subsection

III-C, we construct linear programs to synthesize optimal exit

controllers implicitly. By optimizing the two free parameters

from the conditions, we can design exit controllers that

maximize the lower bounds on the exit probabilities. These

linear programs enable us to perform online synthesis of the

optimal exit controllers for both Problems I and II.

A. Safe Exit Controllers Synthesis Conditions for Problem I

This subsection introduces a condition that exit controllers

satisfy in order to derive lower bounds on the exit probabil-

ities in Problem I for both infinite and finite time horizons.

The construction of the condition lies on an auxiliary

stochastic process {φ̃w

x0
(t), t ∈ R≥0} for x0 ∈ C that is a

stopped process corresponding to {φw

x0
(t), t ∈ [0, Tx0(w))}

and the set C, i.e.,

φ̃w

x0
(t) =

{
φw

x0
(t), if t < τx0(w),

φw

x0
(τx0 (w)), if t ≥ τx0(w),

(5)

where

τx0(w) = inf{t | φw

x0
(t) ∈ ∂C}

is the first time of exit of φw

x0
(t) from the open set C. It

is worth remarking here that if the path φw

x0
(t) escapes to

infinity in finite time, it must touch the boundary of the set

C and thus τx0(w) ≤ Tx0(w). The stopped process φ̂w

x0
(t)

inherits the right continuity and strong Markovian property of

φw

x0
(t). Moreover, the infinitesimal generator corresponding

to φ̂w

x0
(t) is identical to the one corresponding to φw

x0
(t) over

X , and is equal to zero on the boundary ∂C [7]. That is, for

v(x) being a twice continuously differentiable function,

L̃v,u(x) = Lv,u(x) =
∂v

∂x
(f1(x) + f2(x)u(x))

+
1

2
tr(σ(x)⊤

∂2v

∂x2
σ(x))



for x ∈ C and L̃v,u(x) = 0 for x ∈ ∂C.

The probability of reaching the set C1 within the time

horizon T = [0, T ] for system (1) while staying inside the set

C before the first time of hitting C1, is equal to the probability

of reaching the set C1 at the time instant T for the auxiliary

stochastic process, where C1 = {x ∈ R
n | h(x) = 1}.

Lemma 1: Given a time instant T > 0 and x0 ∈ C,

P(∃t ∈ [0, T ].φw

x0
(t) ∈ C1 ∧ ∀τ ∈ [0, t).φw

x0
(τ) ∈ C)

= P(φ̃w

x0
(T ) ∈ C1) = E[1C1(φ̃

w

x0
(T ))].

Moreover, for any 0 < T1 ≤ T2,

P(φ̃w

x0
(T1) ∈ C1) ≤ P(φ̃w

x0
(T2) ∈ C1),

where C1 = {x ∈ R
n | h(x) = 1}.

Proof: It is easy to observe that {w ∈ Ω | ∃t ∈
[0, T ].φw

x0
(t) ∈ C1 ∧ ∀τ ∈ [0, t).φw

x0
(τ) ∈ C} = {w ∈

Ω | φ̃w

x0
(T ) ∈ C1}. Therefore, the conclusion holds.

In addition, we observe that for T1 ≤ T2,

{w ∈ Ω | φ̃w

x0
(T1) ∈ C1} ⊆ {w ∈ Ω | φ̃w

x0
(T2) ∈ C1}.

Consequently,

P(φ̃w

x0
(T1) ∈ C1) ≤ P(φ̃w

x0
(T2) ∈ C1)

holds for T1 ≤ T2.

Remark 1: The conclusion that

P(∃t ∈ [0,∞).φw

x0
(t) ∈ C1 ∧ ∀τ ∈ [0, t).φw

x0
(τ) ∈ C)

= lim
t→∞

P(φ̃w

x0
(t) ∈ C1)

is shown in [19], where x0 ∈ C.

Based on the auxiliary stochastic process defined above, a

condition can be straightforwardly obtained from Proposition

3 in [16] to lower-bound the exit probability over the infinite

time horizon.

Lemma 2: If there exists a locally Lipschitz controller

u(·) : C → U satisfying the following condition:

Lh,u(x) ≥ ah(x), ∀x ∈ C, (6)

where a > 0, then

P(∃t ≥ 0.h(φw

x0
(t)) = 1∧∀τ ∈ [0, t).φw

x0
(τ) ∈ C) ≥ h(x0).

Lemma 2 introduces a useful condition that includes a free

parameter a. This condition is designed to establish a lower

bound on the exit probability for Problem I over an infinite

time horizon. However, the lower bound provided by Lemma

2 is solely determined by the initial state of the system

described in Equation (1), and it does not rely on the value

of a. Therefore, optimizing the value of a does not impact

the lower bound on the exit probability for Problem I over

the infinite time horizon. Moreover, condition (6) may be

overly stringent, significantly constraining the feasible space

for the controller u(·) : C → U . Below, we will introduce an

additional parameter b into condition (6) to establish a more

general and less restrictive condition that can provide lower

bounds on exit probabilities for both finite and infinite time

horizons in Problem I.

Theorem 1: If there exists a locally Lipschitz controller

u(·) : C → U satisfying the following condition:
{

Lh,u(x) ≥ ah(x)− b, ∀x ∈ C,

a > b ≥ 0,
(7)

then

PT ≥ max{0,
eaT (h(x0)−

b
a
) + b

a
− 1

(1 − b
a
)(eaT − 1)

}

and

P∞ ≥ max{0,
h(x0)−

b
a

1− b
a

},

where PT = P(∃t ∈ [0, T ].h(φw

x0
(t)) = 1 ∧ ∀τ ∈

[0, t).φw

x0
(τ) ∈ C) and P∞ = P(∃t ≥ 0.h(φw

x0
(t)) =

1 ∧ ∀τ ∈ [0, t).φw

x0
(τ) ∈ C).

Proof: According to (7), we have
{

L̃h,u(x) + (a− b)1C1(x) ≥ ah(x)− b, ∀x ∈ C,

a > b ≥ 0,
(8)

where C1 = {x ∈ R
n | h(x) = 1} and

L̃h,u(x) =

{
Lv,u(x), if x ∈ C,

0, if x ∈ ∂C.

Consequently,

E[h(φ̃w

x0
(T ))] ≥

∫ T

0

aE[h(φ̃w

x0
(t))]dt + h(x0)

−

∫ T

0

bdt−

∫ T

0

(a− b)E[1C1(φ̃
w

x0
(t))]dt, ∀x0 ∈ C.

Taking h(x) = −h(x) over x ∈ C, we have

E[h(φ̃w

x0
(T ))] ≤

∫ T

0

aE[h(φ̃w

x0
(t))]dt + h(x0)

+

∫ T

0

bdt+

∫ T

0

(a− b)E[1C1(φ̃
w

x0
(t))]dt.

According to Grönwall inequality in the integral form, we

further have

E[h(φ̃w

x0
(T ))] ≤ α(T ) +

∫ T

0

α(s)aea(T−s)ds

= h(x0) +

∫ T

0

h(x0)ae
a(T−s)ds+ bT +

∫ T

0

bsaea(T−s)ds

+ (a− b)

∫ T

0

E[1C1(φ̃
w

x0
(s))]ds

+ a(a− b)

∫ T

0

∫ s

0

E[1C1(φ̃
w

x0
(t))]dtea(T−s)ds

≤ h(x0)e
aT −

b

a
+

b

a
eaT

+ (a− b)eaTP(φ̃w

x0
(T ) ∈ C1)(−

1

a
e−aT +

1

a
)

where α(s) = h(x0) +
∫ s

0
(a− b)E[1C1(φ̃

w

x0
(t))]dt+

∫ s

0
bdt.

The last inequality is obtained according to Lemma 1.



Thus,

− 1 ≤ E[h(φ̂w

x0
(T ))] ≤ h(x0)e

aT −
b

a
+

b

a
eaT

+ (a− b)eaTP(φ̃w

x0
(T ) ∈ C1)(−

1

a
e−aT +

1

a
)

After rearrangement, we have the conclusion that

P(φ̃w

x0
(T ) ∈ C1) ≥ max{0,

eaT (h(x0)−
b

a
)+ b

a
−1

(1− b

a
)(eaT −1)

}.

Furthermore, according to Lemma 1, PT ≥

max{0,
eaT (h(x0)−

b

a
)+ b

a
−1

(1− b

a
)(eaT −1)

}.

The conclusion that P∞ ≥ max{0,
h(x0)−

b

a

1− b

a

} can be ob-

tained via letting T approach infinity in
eaT (h(x0)−

b

a
)+ b

a
−1

(1− b

a
)(eaT−1)

.

The reason that b is not allowed to be less than zero in

Theorem 1 lies in (8), since the contradiction that 0 ≥ −b
will be obtained over {x ∈ R

n | h(x) = 0} if b ≤ 0.

B. Safe Exit Controllers Synthesis Conditions for Problem II

This subsection introduces the condition to derive lower

bounds on the exit probabilities in Problem II for both infinite

and finite time horizons.

The condition introduced is an extension of the one (7)

in Theorem 1. Furthermore, in Problem I, leaving the set C
for system (1) is guaranteed when it hits certain part of its

boundary, i.e., C1. However, in the extended condition, hitting

any state in the boundary of the set C implies that system

(1) will leave the set C. To accommodate this situation, the

free parameter b in the extended condition is allowed to be

smaller than zero. This flexibility allows for a wider range

of scenarios to be considered, expanding the feasibility of

the condition and providing more general lower bounds on

exit probabilities.

Theorem 2: Given a safe but uncomfortable set C defined

in Section II, if there exists a locally Lipschitz controller

u(·) : C → U satisfying the following condition:
{

Lg,u(x) ≥ ag(x)− b, ∀x ∈ C,

a > b,
(9)

then for x0 ∈ C,

1) when a > 0,

P(∃t ∈ [0, T ].φw

x0
(t) ∈ ∂C)

≥ max{0,
eaT (g(x0)−

b
a
) + b

a
− 1

(1− b
a
)(eaT − 1)

}

and

P(∃t ∈ [0,∞).φw

x0
(t) ∈ ∂C) ≥ max{0,

g(x0)−
b
a

1− b
a

}.

2) when a ≤ 0,

P(∃t ∈ [0, T ].φw

x0
(t) ∈ ∂C) ≥ max{0, 1−

g(x0)− 1

(b− a)T
}

and P(∃t ∈ [0,∞).φw

x0
(t) ∈ ∂C) = 1.

Proof: 1). The conclusion for a > 0 can be obtained

by following the proof in Theorem 1, with C1 being replaced

by ∂C.

2). Since g(x) satisfies g(x) ≤ 1 over C, we have ag(x)−
b ≥ (a− b) > 0. Therefore,

L̃g,u(x) + (a− b)1∂C(x) ≥ a− b ≥ 0, ∀x ∈ C.

Further, we conclude that

E[g(φ̃w

x0
(t))] ≥ g(x0), ∀t ∈ [0, T ]

and

E[g(φ̃w

x0
(T ))]− g(x0)

+ (a− b)

∫ T

0

E[1∂C(φ̃
w

x0
(t))]dt ≥ (a− b)T.

According to Lemma 1, we further have

(a−b)TP(∃t ∈ [0, T ].φ̃w

x0
(t) ∈ ∂C) ≥ (a−b)T +g(x0)−1,

which implies P(∃t ∈ [0, T ].φw

x0
(t) ∈ ∂C) ≥ 1 − g(x0)−1

(b−a)T .

Thus, we have P(∃t ∈ [0, T ].φw

x0
(t) ∈ ∂C) ≥ max{0, 1 −

g(x0)−1
(b−a)T }. Via letting T approach infinity, we further have

P(∃t ∈ [0,∞).φw

x0
(t) ∈ ∂C) = 1.

C. Linear-Program-Based Controllers

In this subsection, we introduce our online linear program-

ming based method for implicitly synthesizing optimal exit

controllers that maximizes lower bounds of exit probabilities

for both Problems I and II.

Except for the controller u, both conditions (7) and (9)

involve two additional free parameters, a and b, that need to

be determined in order to optimize the lower bound stated in

Theorem 1 and 2. These conditions have a linear dependency

on these parameters. However, the lower bounds exhibit

nonlinearity with respect to a and b, except when a ≤ 0
and T → ∞ in Theorem 2. Hence, it is not advisable to

solve a maximization problem with condition (7) (or (9)) and

the lower bounds from Theorem 1 (or 2) as the objective

function, especially for online optimization which which

demands high efficiency.

On the other hand, it is observed that both the lower

bounds
eaT (h(x0)−

b

a
)+ b

a
−1

(1− b

a
)(eaT −1)

and
h(x0)−

b

a

1− b

a

in Theorem 1

are monotonically increasing with a and decreasing with

b. Similar to Theorem 1, all the lower bounds, i.e.,
eaT (g(x0)−

b

a
)+ b

a
−1

(1− b

a
)(eaT−1)

,
g(x0)−

b

a

1− b

a

, 1 − g(x0)−1
(b−a)T , and 1, in The-

orem 1 are monotonically increasing with respect to a and

decreasing with respect to b. Moreover, it is observed that as

the value of a tends towards zero from the right, the lower

bound
eaT (g(x0)−

b

a
)+ b

a
−1

(1− b

a
)(eaT−1)

in Theorem 2 tends to approach

1− g(x0)−1
bT

, i.e., lima→0+
eaT (g(x0)−

b

a
)+ b

a
−1

(1− b

a
)(eaT −1)

= 1− g(x0)−1
bT

,

which is equal to the lower bound in the case of a ≤ 0
with a = 0. Thus, the objective function max(a − wb) is

a suitable candidate, where w denotes a specified weighting

factor. This factor allows for the adjustment of the relative

importance of b compared to a according to the specific

requirements of the problem. Additionally, in order to ensure

boundedness of a−wb, we impose a bound constraint on a
and b. Consequently, an online linear program for implicitly
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Fig. 1: a-1 and b-1: red line – C1 = {(x1, x3)
⊤ | x3−1.8x1

4 = 1}, blue line – {(x1, x3)
⊤ | x3−1.8x1

4 = 0}, magenta curve –

trajectory driven by the controller computed via solving (10); a-2 and b-2: red curve – lower bound of the exit probability

when T = [0, 2] with respect to time, i.e.,
ea(T−t)(h(x(t))− b

a
)+ b

a
−1

(1− b

a
)(ea(T−t)−1)

, blue curve – lower bound of the exit probability when

T = [0,∞) with respect to time (blue and red curves collide in b-2), i.e.,
h(x(t))− b

a

1− b

a

; a-3 and b-3: x1(t); a-4 and b-4: x3(t).

synthesizing exit controllers of maximizing lower bounds of

the exit probabilities for Problem I is formulated below.

max
u(x)∈U ,a,b

a− wb

s.t. Lh,u(x) ≥ ah(x)− b,

a > b ≥ 0,

a ≤ δ,

(10)

where Lh,u(x) = ∂h
∂x

(f1(x) + f2(x)u(x)) +
1
2 tr(σ(x)⊤ ∂2h

∂x2σ(x)) and δ > 0 is a specified bound.

Correspondingly, an online linear program for implicitly

synthesizing exit controllers of maximizing lower bounds of

the exit probabilities for Problem II is formulated below.

max
u(x)∈U ,a,b

a− wb

s.t. Lg,u(x) ≥ ag(x)− b,

a > b,

a, b ∈ [−δ, δ],

(11)

where Lg,u(x) = ∂g
∂x

(f1(x) + f2(x)u(x)) +
1
2 tr(σ(x)⊤ ∂2g

∂x2σ(x)) and δ > 0 is a specified bound.

It is noteworthy that since a constraint on the control input,

specifically u ∈ U , is imposed, the existence of a solution

for either of the optimization problems (10) and (11) is not

guaranteed. This is true even if the boundedness requirements

on a and b are removed.

IV. EXAMPLES

In this section we demonstrate our linear-programming

based exit controllers synthesis method on one example

involving three scenarios.

Consider a system with three states (x1, x2, x3)
⊤[15], [3],

where x1 denotes the velocity of the following vehicle, x2

denotes the velocity of the leading vehicle, and x3 denotes

the distance between the vehicles. The velocity of the leading

vehicle was chosen as a constant. The input is the force

applied to the following vehicle, leading to dynamics

d




x1

x2

x3


 =




−Fr(x)/M

0

x2 − x1


+




1/M

0

0


u+

∑
dW,

where Fr = f0 + f1x1 + f2x
2
1 is the aerodynamic drag with

constants f0 = 0.1, f1 = 5, and f1 = 0.25. The mass M =

1650,
∑

=




1 0 0

0 0 0

0 0 1


, and u ∈ [−1, 1]. The initial state

for x2 was chosen as x2(0) = 0.5. Since the velocity of

the leading vehicle was chosen as a constant, the system is

equivalently reduced to

d

(
x1

x3

)
=

(
−Fr(x)/M

0.5− x1

)
+

(
1/M

0

)
u+

(
1 0

0 1

)
dW.

We consider three scenarios with both the finite time

horizon of T = [0, 2] and the infinite time horizon of T =
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Fig. 2: a-1 and b-1: red line – C1 = {(x1, x3)
⊤ | x2

1+x2
3−1

8 = 1}, blue line – {(x1, x3)
⊤ | x2

1+x2
3−1

8 = 0}, magenta curve –

trajectory driven by the controller computed via solving (10); a-2 and b-2: red curve – lower bound of the exit probability

when T = [0, 2] with respect to time, i.e.,
ea(T−t)(h(x(t))− b

a
)+ b

a
−1

(1− b

a
)(ea(T−t)−1)

, blue curve – lower bound of the exit probability when

T = [0,∞) with respect to time (blue and red curves collide in b-2), i.e.,
h(x(t))− b

a

1− b

a

; a-3 and b-3: x1(t); a-4 and b-4: x3(t).

[0,∞). Moreover, the weighting factor w in the optimization

problems (10) and (11) is chosen to be 1012 and 1. The first

two scenarios correspond to Problem I. The first scenario

features an unbounded safe set S and uncomfortable set C,

while the second one features an unbounded safe set S but a

bounded uncomfortable set C. The third scenario corresponds

to Problem II, which includes a bounded uncomfortable set

C. Detailed configuration information and some computation

results are presented below.

1) The safe set is S = {(x1, x3)
⊤ | x3 − 1.8x1 > 0},

the safe but uncomfortable set is defined as C =
{(x1, x3)

⊤ | 0 < x3−1.8x1

4 < 1}, and the initial

state is set to (−0.5, 1.5)⊤. The simulation trajectories

and lower bounds of exit probabilities, computed by

solving the linear optimization (10) with δ = 10, are

presented in Fig. 1.

2) The safe set is S = {(x1, x3)
⊤ | x2

1+x2
3−1 > 0}, the

safe but uncomfortable set is C = {(x1, x3)
⊤ | 0 <

x2
1+x2

3−1
8 < 1}, and the initial state is (−0.5, 1.5)⊤.

The simulation trajectories and lower bounds of exit

probabilities, computed by solving the linear optimiza-

tion (10) with δ = 10, are presented in Fig. 2.

3) The safe set is S = {(x1, x3)
⊤ | x2

1 + x2
3 >

1}, the uncomfortable set is C = {(x1, x3)
⊤ |

(x1−10)2+(x3−10)2

64 < 1}, and the initial state is

(10, 10)⊤. The simulation trajectories and lower

bounds of exit probabilities, computed by solving

optimization (11) with δ = 10, are presented in Fig. 3.

The results presented in Figures 1, 2, and 3 demonstrate

the significant impact of the weighting factor w on the

performance of the synthesized controllers. Notably, in the

first two scenarios, the controllers computed with w = 1012

show superior performance in safely guiding the system out

of the uncomfortable set C with high probabilities, compared

to those obtained with w = 1, especially during the initial

phase. In the third scenario, where ∂C ∩ ∂S = ∅, the

controller synthesized with w = 1012 exhibits superior

performance in terms of achieving high probabilities for

safely driving the system out of the uncomfortable set C,

when an infinite time horizon T = [0,∞) is considered.

However, the performance during the initial phase is inferior

when the time horizon is limited to T = [0, 2], compared to

that obtained with w = 1.

V. CONCLUSION

This paper focused on the synthesis of safe exit controllers

for continuous-time systems described by SDEs. The main

objective is to design controllers that maximize the lower

bounds of the exit probability that the system escapes from

a safe but uncomfortable set within a specific time horizon

and enters a comfortable set. The paper discussed two cases:

the first case involves the scenario where the boundary of

the safe set is a subset of the boundary of the safe but

uncomfortable set, and the second case deals with situations

where the boundaries do not intersect. In the first case, the

paper presented a sufficient condition for lower-bounding
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Fig. 3: a-1 and b-1: blue curve – {(x1, x3)
⊤ | (x1−1))2+(x3−10)2

64 = 1}, magenta curve – trajectory driven by the controller

computed via solving (11); a-2 and b-2: red curve – lower bound of the exit probability when T = [0, 2] with respect to

time, i.e.,
ea(T−t)(g(x(t))− b

a
)+ b

a
−1

(1− b

a
)(ea(T−t)−1)

if a > 0 and 1 − g(x(t))−1
(b−a)(T−t) if a ≤ 0, blue curve – lower bound of the exit probability

when T = [0,∞) with respect to time (blue and red curves collide in b-2), i.e.,
h(x(t))− b

a

1− b

a

if a > 0 and 1 if a ≤ 0; a-3 and

b-3: x1(t); a-4 and b-4: x3(t).

the exit probability. This condition provides a guideline for

constructing online linear programming problems, which in

turn facilitate synthesizing optimal exit controllers implicitly.

These controllers are designed to maximize the lower bounds

of the exit probabilities. Then, this sufficient condition was

extended to the second case, where the boundaries of the

safe set and the uncomfortable set do not intersect. Finally,

an example was presented to validate the proposed method.

The first case discussed in this paper involves a scenario

where the boundary of the safe set intersects with that of

the uncomfortable set. However, it is limited to the typical

case where the boundary of the safe set is a subset of the

boundary of the uncomfortable set. In future studies, we will

explore more general cases where only a subset of the safe

set’s boundary intersects that of the uncomfortable set.

REFERENCES

[1] A. Abate, J.-P. Katoen, J. Lygeros, and M. Prandini. Approximate
model checking of stochastic hybrid systems. European Journal of

Control, 16(6):624–641, 2010.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada. Control barrier
function based quadratic programs for safety critical systems. IEEE
Transactions on Automatic Control, 62(8):3861–3876, 2016.

[3] A. Clark. Control barrier functions for complete and incomplete
information stochastic systems. In 2019 American Control Conference

(ACC), pages 2928–2935. IEEE, 2019.

[4] M. Fränzle, E. M. Hahn, H. Hermanns, N. Wolovick, and L. Zhang.
Measurability and safety verification for stochastic hybrid systems. In
Proceedings of the 14th international conference on Hybrid systems:
computation and control, pages 43–52, 2011.

[5] R. A. Freeman and P. V. Kokotovic. Inverse optimality in robust
stabilization. SIAM journal on control and optimization, 34(4):1365–
1391, 1996.

[6] P. E. Kloeden, E. Platen, P. E. Kloeden, and E. Platen. Stochastic

differential equations. Springer, 1992.
[7] H. J. Kushner. Stochastic stability and control. New York: Academic,

1967.
[8] H. J. Kushner and Kushner. Stochastic stability and control, vol-

ume 33. Academic press New York, 1967.
[9] P. Nilsson and A. D. Ames. Lyapunov-like conditions for tight exit

probability bounds through comparison theorems for sdes. In 2020

American Control Conference (ACC), pages 5175–5181. IEEE, 2020.
[10] S. Prajna, A. Jadbabaie, and G. J. Pappas. A framework for worst-

case and stochastic safety verification using barrier certificates. IEEE

Transactions on Automatic Control, 52(8):1415–1428, 2007.
[11] C. Santoyo, M. Dutreix, and S. Coogan. A barrier function approach

to finite-time stochastic system verification and control. Automatica,
125:109439, 2021.

[12] J. Steinhardt and R. Tedrake. Finite-time regional verification of
stochastic non-linear systems. The International Journal of Robotics
Research, 31(7):901–923, 2012.

[13] C. J. Tomlin, I. Mitchell, A. M. Bayen, and M. Oishi. Computational
techniques for the verification of hybrid systems. Proceedings of the

IEEE, 91(7):986–1001, 2003.
[14] J. Ville. Etude critique de la notion de collectif. 1939.
[15] C. Wang, Y. Meng, S. L. Smith, and J. Liu. Safety-critical control

of stochastic systems using stochastic control barrier functions. In
2021 60th IEEE Conference on Decision and Control (CDC), pages
5924–5931. IEEE, 2021.

[16] B. Xue. Reach-avoid controllers synthesis for safety critical systems.
arXiv preprint arXiv:2302.14565, 2023.

[17] B. Xue. Reachability verification for stochastic discrete-time dynam-
ical systems. arXiv preprint arXiv:2302.09843, 2023.

[18] B. Xue, R. Li, N. Zhan, and M. Fränzle. Reach-avoid analysis
for stochastic discrete-time systems. In 2021 American Control
Conference (ACC), pages 4879–4885. IEEE, 2021.

[19] B. Xue, N. Zhan, and M. Fränzle. Reach-avoid analysis for stochastic
differential equations. arXiv preprint arXiv:2208.10752, 2022.

[20] Y. Yu, T. Wu, B. Xia, J. Wang, and B. Xue. Safe probabilistic
invariance verification for stochastic discrete-time dynamical systems.
In 2023 62nd IEEE Conference on Decision and Control (CDC), pages
5175–5181. IEEE, 2023.


	Introduction
	Preliminaries
	Exit Controllers Synthesis
	Safe Exit Controllers Synthesis Conditions for Problem I
	Safe Exit Controllers Synthesis Conditions for Problem II
	Linear-Program-Based Controllers

	Examples
	Conclusion
	References

