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tic discrete-time dynamical systems. The aim is to ascertain lower and upper
bounds of the probability that, within a predefined finite-time horizon, a sys-
tem starting from an initial state in a safe set will either exit the safe set
(safety verification) or reach a target set while remaining within the safe set
until the first encounter with the target (reach-avoid verification). We intro-
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bounding probabilities in finite-time safety verification eliminate the
need for the strong invariance assumption. Additionally, this work
extends these barrier-like conditions to finite-time reach-avoid verifica-
tion, providing both lower and upper probability bounds.
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1. Introduction

Temporal verification plays a pivotal role in modern systems analysis,
especially in the realm of complex systems where temporal behavior holds
utmost significance [25]. It entails a rigorous scrutiny of a system’s compli-
ance with temporal properties, including safety and reach-avoid guarantees,
to ensure desired outcomes while circumventing undesirable events. Formal
methods such as model checking [10] 3] and theorem proving [19] serve as
indispensable tools in this endeavor, enabling precise and thorough analysis
of temporal specifications.
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Barrier certificates were initially proposed for deterministic systems as a
popular formal approach to temporal verification in [23]. They offer Lyapunov-
like assurances regarding system behavior, with the mere existence of a bar-
rier function being sufficient to establish the satisfiability of safety and/or
reachability specifications in [25]. Subsequent efforts have focused on adapt-
ing and enhancing deterministic barrier functions, as well as broadening their
applications [4, 29, 35]. However, many real-world applications are suscep-
tible to stochastic disturbances and are thus modeled as stochastic systems.
In the stochastic setting, safety verification over the infinite time horizon
via barrier certificates was introduced alongside its deterministic counter-
part in [24]. Utilizing Ville’s Inequality [30], [24] constructed a non-negative
barrier function and provided a sufficient condition for upper bounding the
probability of eventually entering an unsafe region from a given initial state
while remaining within a state constraint set. More recently, a new barrier
function, constructed by relaxing a set of equations, was proposed for lower
bounding the probability of eventually entering an unsafe or desired region
from an initial state while adhering to state constraints in [34, 36]. These
barrier functions were further extended to determine the lower and upper
bounds of the safety probability over the infinite time horizon for a specified
safe set and set of initial states in [37]. Furthermore, by formulating barrier
certificates via a relaxation of Bellman equations, [33] established necessary
and sufficient conditions for lower and upper bounds the safety and reach-
avoid probabilities of stochastic discrete-time systems over the infinite time
horizon. In addition, under the assumption that a robust invariant set ex-
ists and the system evolves within this robust invariant set, [39] proposed
a new barrier certificate, termed reach-avoid supermartingale, to guarantee
satisfaction of reach-avoid specifications as well as facilitate reach-avoid con-
trollers. Barrier certificates have also been extended to infinite-time horizon
probabilistic program analysis, where they verify properties such as (positive)
almost-sure termination, probabilistic termination, assertion violations, and
reachability (e.g., [6, 21, 22, 15, @, [7, 18, B2, 28]). Specially, the probabilistic
termination analysis discussed in [9, [7, [I8] exhibits interesting connections
with classical analysis for stochastic discrete-time systems. When seeking a
lower bound for termination probability, this analysis shares conceptual simi-
larities with classical reach-avoid analysis. This connection arises because the
termination probability essentially measures the likelihood that a program,
beginning from a specific initial state, will eventually reach terminal states
while preserving a stochastic invariant set throughout its execution prior to



termination. Conversely, the probabilistic termination analysis presented in
[18], which focuses on establishing upper bounds for termination probabil-
ity, parallels classical safety analysis in stochastic discrete-time systems. In
this case, the termination probability represents the chance that a program
will eventually violate (escape from) a stochastic invariant set (which ex-
cludes the terminal state) when starting from a given initial state. Moreover,
the application of barrier certificates has been expanded to encompass both
qualitative and quantitative analysis of w-regular properties 111, [1} 2], 12].
On the other hand, finite-time temporal verification holds greater practi-
cal significance as most real-world systems operate within well-defined time
constraints. Drawing inspiration from [17], the concept of a c-martingale
was introduced in [27] for stochastic continuous-time systems modelled by
stochastic differential equations, enabling a controlled increase in the ex-
pected certificate value at each time step and offering an upper bound on
the exit probability of leaving safe sets within bounded time horizons. Af-
terwards, [20] proposed a computational method to find a c-martingale ex-
pressed by neural networks for finite-time safety verification of stochastic
discrete-time systems. The c-martingales in [20] are a typical case of the pro-
posed barrier function in the present work. Under the assumption that the
system evolves within a robust invariant set, [I3] extended the c-martingale
framework to address temporal logic verification for discrete-time systems,
and later, [14] synthesized control policies for discrete-time stochastic con-
trol systems together with a lower bound on the probability that the systems
satisfy complex temporal properties. [26] utilized barrier-like results intro-
duced in [I7] to address the challenges of finite-time safety verification and
the synthesis of safe controllers for stochastic discrete-time systems, employ-
ing semi-definite programming techniques. The detailed description of the
verification problem in [26] and its relationship with the verification problem
are illustrated in Remark[3] On the other hand, the aforementioned works on
finite-time temporal verification offer only upper bounds of the probability
of reaching undesirable sets (equivalently, lower bounds of the probability of
staying within desirable sets). Such works do not provide the lower bounds.
This work will offer both types of bounds. Recent work by [38] introduced
barrier functions for bounding probabilistic safety (lower and upper bounds)
across infinite and finite time horizons. Its analysis, similar to [13] [I4], relies
on the assumption that system evolution remains within a robust invariant
set. However, as critically examined in [37], this strong invariance require-
ment constitutes a significant limitation. In contrast, the current work de-



velops new barrier functions that eliminate the need for such a restrictive
assumption. Similar to the infinite-time case, barrier certificates have also
been extended to the analysis of probabilistic programs within bounded time
horizons (e.g., [9, 16, §]). [9] (e.g., Lemma 3) presented a sufficient condi-
tion based on an e-repulsing supermartingale supported by a pure invariant,
utilizing Azuma’s and Hoeffding’s inequalities to derive an upper bound for
programs that reach a specified set exactly at a given step. Afterward, in
the context where programs terminate almost surely, [16] proposed a suffi-
cient condition for establishing lower bounds on program termination within
bounded time horizons; [31] developed lower and upper bounds for the tail
bound problem which can also be employed to bound the probability that
programs terminate within bounded time horizons. Recently, in conjunction
with stochastic invariants [9], [8] investigated the tail bound problem for pro-
grams that do not necessarily terminate almost surely. This approach can
also be employed to establish lower bounds on the probability that programs
terminate within bounded time horizons.

This paper investigates the finite-time safety and reach-avoid verification
of stochastic discrete-time systems. The finite-time safety verification prob-
lem aims to compute both lower and upper bounds of the probability that
a system, starting from an initial state in a safe set, will exit the safe set
throughout a given bounded time interval. From a reachability perspective,
it involves computing lower and upper bounds on the probability of reaching
the complement of the safe set within the specified bounded time interval.
Thus, it exclusively addresses safety or reachability concerns. In contrast,
finite-time reach-avoid verification integrates guarantees of safety and reach-
ability. It seeks to establish lower and upper bounds on the probability that
a system, starting from an initial state in a safe set, will reach a target set
within a designated bounded time interval while ensuring it remains within
the safe set before reaching the target set. Although these two problems are
interconnected, they differ fundamentally in essence, as we will elaborate on
in the preliminaries section. We propose novel barrier-like conditions to ad-
dress these two problems. These conditions either complement existing ones
or fill gaps, facilitating the attainment of tight probability bounds for some
systems. Finally, we demonstrate the effectiveness of the proposed conditions
on two numerical examples, utilizing semi-definite programming tools.

The main contributions of this work are summarized below.

1. This work studies the finite-time safety and reach-avoid verification



of stochastic discrete-time systems. Compared with existing works
[26, 20}, [17], which merely offered upper bounds on the relevant prob-
abilities, our contribution goes beyond by providing both lower and
upper bounds. These bounds deepen our understanding of the sys-
tem’s characteristics and yield a more accurate estimation of the true
probability, thus enhancing the overall rigour and precision of the finite-
time safety and reach-avoid analysis. In addition, obtaining both lower
and upper bounds also facilitates evaluating their mutual tightness in
practice.

2. The proposed barrier-like conditions for upper bounding the probabili-
ties complement existing ones in [20, [17], facilitating the gain of sharper
upper bounds for some systems.

3. Unlike the approach in [38], our proposed barrier-like conditions for
bounding probabilities in finite-time safety verification eliminate the
need for the strong invariance assumption. Additionally, this work
extends these barrier-like conditions to finite-time reach-avoid verifica-
tion, providing both lower and upper probability bounds.

This paper is structured as follows: in Section 2], we formulate the finite-
time safety and reach-avoid verification problems. In Sections [3] and [ we
introduce our barrier-like conditions for addressing these two problems, re-
spectively. After demonstrating the performance of proposed conditions on
two examples in Section [0}, we conclude this paper in Section [6]

2. Preliminaries

We start the exposition by a formal introduction of discrete-time sys-
tems subject to stochastic disturbances and finite-time safety/reach-avoid
verification problems of interest. Before posing the problem studied, let me
introduce some basic notions used throughout this paper: R denotes the set
of real values; N denotes the set of nonnegative integers; Ny, is the set of non-
negative integers being less than or equal to k; for sets Ay and Ag, A\ Ay
denotes the difference of sets A; and As, which is the set of all elements in
A; that are not in Ay; 14(x) denotes the indicator function in the set A,
where, if x € A, then 14(z) =1and if x ¢ A, 14(x) =0.

This paper considers stochastic discrete-time systems that are modeled
by stochastic difference equations of the following form:

x(l+1) = f(z(),0(1),V] € N, (1)



where (l) € R" is the state at time [ and () € © with © C R™ is the
stochastic disturbance at time [. In addition, let (0),0(1),... be i.i.d. (in-
dependent and identically distributed) random vectors on a probability space
(0, F,P), and take values in © with the following probability distribution:
for any measurable set B C O,

Prob(8(1) € B) = P(B), Ve N.

The expectation E[-] is defined with respect to the probability measure P.
Before defining trajectories of system , we define a disturbance signal.

Definition 1. A disturbance signal w is a sample path of the stochastic pro-
cess {0(i): © — ©,i € N}, which is defined on the canonical sample space
O, endowed with its product topology B(©>), with the probability measure
P>, The expectation associated with the probability measure P is denoted
by E>[].

A disturbance signal 7 together with an initial state &y € R™ induces a
unique discrete-time trajectory as follows.

Definition 2. Given a disturbance signal 7™ and an initial state o € R”,
a trajectory of system is denoted as ¢*°(-): N — R"™ with ¢Z°(0) = x,
ie, o7 (L+1) = f(¢7°(1),0(1)), vl € N.

In this study, we address two verification problems for the system gov-
erned by (1]) with a finite time horizon [0, N|, where N € N. The first problem
pertains to a finite-time safety verification problem, examining the likelihood
of the system exiting the safe set X’ throughout its evolution over [0, N], start-
ing from &y € X. The second one involves a finite-time reach-avoid task,
focusing on the probability that the system enters the target set X, C X
safely within the time horizon [0, N], given an initial state oy € X'\ A;.

Problem 1 (Finite-time Safety Verification). Given a finite time interval
[0, N] with N € N, a safe set X, and an initial state xy € X, the finite-time
safety verification problem is to compute €; € [0,1] and €5 € [0, 1] which are
respectively the lower and upper bounds of the exit probability, with which
system starting from xo will exit the safe set X within [0, N], i.e.,

e1 <P>(3k € Ney.@2(k) ¢ X|zg € X) < 6.



Problem 2 (Finite-time Reach-avoid Verification). Given a finite time in-
terval [0, N] with N € N, a safe set X, a target set X, C X, and an initial
state g € X \ X, the finite-time reach-avoid verification problem is to com-
pute ¢ € [0,1] and e € [0,1] which are respectively the lower and upper
bounds of the reach-avoid probability, with which system starting from xq
will enter the target set X, within [0, N| while staying inside the set X before
the first target hitting time, i.e.,

dk € Ney.@2° (k) € &,
€1 S P
AVl € Nep.p2(l) € X

CB()EX\XT) < 6.

Like stochastic barrier functions based methods, which formulate suffi-
cient conditions for mainly computing upper bounds of the probability of
reaching unsafe sets eventually, we in this paper will propose barrier-like
conditions for addressing Problem (1| and

It is noteworthy to mention that by treating system within an ex-
tended domain X' , which includes the safe set X and all one-step reachable
states from X, and interpreting X \ X as a target region as shown in the
sequel, the conditions derived for Problem [2| can be adapted to tackle Prob-
lem [1] since P>*(3k € Ney.¢?(k) ¢ X | @y € X) = P>(Ik € Ney.¢p (k) €
X \ X AVl € Ney.@p20(l) € X | &y € X). However, Problemandare dif-
ferent. From a reachability perspective, the discrepancy arises from whether
the target set is contained within the safe set X or not. When the target
set is outside the safe set, as in the safety verification problem in Problem 1]
reaching the target set X'\ X is equivalent to exiting the safe set X'. However,
this does not hold for the reach-avoid problem in Problem [2 Consequently,
the conditions derived for Problem [2] should be refined to address Problem [l
Thus, to underscore the improvements and maintain clarity, we treat these
problems as separate entities in this paper.

3. Finite-time Safety Verification

In this section, we present our sufficient conditions for characterizing up-
per and lower bounds on the probability in Problem [I} The sufficient condi-
tion for lower bounds is formulated in Subsection [3.1] and the one for upper
bounds is introduced in Subsection 3.2l

In accordance with the methodology in [37], we define a switched system
that is constructed by freezing the dynamics of system upon exiting the
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safe set X'. This switched system will facilitate the construction of sufficient
conditions for lower and upper bounding the exit probability in the sequel.

Definition 3. The switched stochastic discrete-time system, which is bualt
upon system , is a quadruple (L, X, xq, f) with the following components:
- L =1{1,2} is a set of two locations;
- X C R"™ 1s the state constraint set;
- Xy € X is the initial state;
- f(,): R" x © = R", where
2

fl@.0)=) 13 (@)fi(x.6)
i=1
with fi(x,0) = f(x,0) and fa(x,0) = x, and 15 () is the indicator
function of the set X, i.e., lz(z)=1ifz e X;; otherwise, 13 (x) =0,
where

1. X is a set satisfying QcC /?, where Q is the union of X and all reachable
states starting from X in one step, i.e.,

Q={z' eR" |2’ = f(z,0),zc X,0 c OYUX;
2 %=X,
3. Xy =X\ X.
The evolution of the state of this system is governed by the iterative map
x(l+1) = f(z(1),0(1),Vl € N,

The trajectory of system , induced by initial state xq € X and distur-
bance policy , is denoted by ¢*°(-): N — R™.

It is observed that if system starting from xy € X enters the set X \ X
initially at time ¢« € N, system starting from xy € X will also enter it for
the first time at this time instant, and vice versa. Furthermore, when system
transitions into the set X'\ X, it remains there indefinitely. Thus, the set
X is a robust invariant for system [37], that is, trajectories of system
originating from the set 3? will never leave it. Consequently, the probability
of system entering X \ X' at time ¢ = i is equal to the probability of
system entering this set up to time ¢t = 1.
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Lemma 1. For i € N, P°(3k € Ng;.¢™(k) € X\ X | ¢y € X)
P(¢20(i) € X\ X | my € X). Thus, PX(¢%(i) € X\ X | zg € X)
Po(=0(5) € X\ X | @ € X) if i < j.

IA

3.1. Sufficient Conditions for Upper Bounds

In this subsection, we present our sufficient condition for upper bound-
ing the probability of exiting the safe set X over the time horizon [0, N] in
Problem [1I

The sufficient condition requires the existence of a non-negative function

v(z) : X — R defined on the set X that satisfies two key properties: (1) it
must be greater than or equal to one on the subset X'\ X, and (2) its a-scaled
expected value at the next step along the system dynamics described in ([1)
should not increase by more than «af relative to its current value for € X,
where a € (0, 1] and 8 € (—o0, 1]. The upper bounds derivation proceeds as
follows: Lemmaestablishes that the probability of system (2|) entering X \X
at time t = N is equal to the probability of system entering this set up
to time ¢t = N. Then, we derive upper bounds using system by analyzing
a and (. Relying on the fact that the system in (2)) remains stationary when
starting from X \ X', which implies E®[v(¢%(1))] = v(z) for & € X \ X, we
reformulate the constraint over the function v(x) : X >R using system (2)),
requiring that the a-scaled expected value of v(x) at the next step along the
system grows by at most af relative to its current value v(x) over the
whole set X when a € (0,1] and o — (o — 1) € [0,1]. Upper bounds follow
from recursive application of this reformulated constraint; when a € (0, 1]
and Sa — (o — 1) € (—00,0), the constraint is modified to require that the
expected value of v(x) at the next step along the system (2)) grows by at most
B, relative to the (1—/)-weighted current value v(x). The upper bound again
emerges through recursive application of this reformulated constraint.

Theorem 1. If there exist a function v(z): X — R, and o € (0, 1] and
B € (—oo, 1] such that

Ex[o(¢2(1)] < U2 4+ 8, Vo e,
v(x) > 1, Ve e X\ X, (3)
v(x) >0, Ve e X,

then P> (3k € Nen.@p® (k) € X\ X | 29 € X) = P> (¢2(N) € X\ X |z €



o(o) + BN, Fa=1nve1],
v(xg)a™ + %, if « € (0,1) Ay € [0,1],

L= (1= v(m)) (1= PN, ifae(0,1]Ay € (—00,0),
where v = fa — (o — 1).

Proof. 1) We first prove the case of a € (0,1) Ay € [0,1].
Since E*[v(¢p%(1))] = v(x) for & € X \ X, we can obtain

EX(@E(1))] — (@) = (1~ 2)ofe), Vo € T\ X.

Therefore,
E¥[u(@2(1)] - (@) < Vo € B\ X,

which can be justified based on the facts that v(z) > 1 for ¢ € X \ X,
a € (0,1) and v € [0, 1]. Therefore, if v(z) satisfies (3)), it will satisfy

{EW[U(N?G))] <8 YeelX, (4)

v(@) > 1 (@), Vo e X.
According to (4)), we have

v(wo) = 15 1 (o),
o™ (@) + B > EX[0(¢2(1))] > EX[1p 4 (62°(1))],

N-1

a No(zo) + 8 a”t = E®[p(¢E(N))] = EX[1g (95 (N))].

=0

Therefore, P> (2 (N) € X\X | @y € X) = E¥[15, (62 (V)] < o No(ao)+

af % According to Lemma we have the conclusion.

2) The conclusion for the case of @« = 1 Ay € [0, 1] can be justified via
following the proof of the above one.

3) We will show the case of & € (0,1] Ay € (—00,0).
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Since f < 1 — é, thus é < 1 — . Consequently, 1 — 3 > 0. Thus, we
conclude that if v(z) satisfies (3)), it will satisfy

E*v(gz(1)] <v(x)(1—5)+ 8, Voed,
U(m)ZL VLUG.)’C'V\X,
v(x) >0, Ve e X,

and thus it satisfies

EX[0($2(1)] < (1- Ao(@) + 5. Vo e 2,
v(x) > 1/,9\/,\((33), Ve € X.

Therefore, following the proof for the case a € (0, 1] Ay € [0, 1], we will have
the conclusion.
The proof is completed. O

In Theorem (1}, the parameter [ is practically constrained to be less than
or equal to one. This restriction is necessary to ensure the practical utility of
the upper bounds v(xy) + BN and v(xy)a™ + % Assigning a value
greater than one to § would lead to these two bounds exceeding unity when
N > 1, rendering them ineffective.

If @« =1 and f = 0, Theorem (1] is equivalent to Proposition 3 in [37],
which formulates a sufficient condition for determining an upper bound of

the probability of exiting the safe set X eventually (i.e., P*(3k € N.¢p* (k) €
X\ X | € X)). The upper bound is v(x), which is also an upper bound
of the exit probability P> (3k € Noy.¢%(k) € X\ X |z € X). On the
other hand, when a € (0,1) and v € (—00,0), if v(xy) < 1, limy 101 —
(1 — v(@p))(1 — B)¥ = —o0 holds, implying P> (Ik € N.gp2o(k) € X \ X |
xo € X) =0 and P*(Ik € Ney.¢p™(k) € X\ X |y € X) = 0.

Theorem |1| extends the conclusion drawn in [I7], as it allows for a value
of o within the interval (0, 1), in contrast to the requirement of o > 1 in the
cited work. For convenience of reference, we present the related result in [17]
here, which corresponds to Theorem 3 in Chapter 3 in [17].

Proposition 1. If there exists a continuous nonnegative function v(-) : X —

11



R satisfying

v(@o) < 1,

EX[u(2())] < U2 1 B, Vi X, 5
v(x) > 1, Ve e X\ X,

v(x) >0, Ve € X,

where a > 1 and > 0, then P> (Vk € Ney.¢p™ (k) € X\ X | e X) <

1—(1—v(x))(1=B)N, ifa>1Ay € (—o0,0],
v(xo)a™N + %, if a>1Av € (0,00),
o(wo) + BN, fa=1n7 € (0,00,

where v = aff — (a — 1).

Since g € {x € X | v(®) <1} and X\ X C {x € X | v(z) > 1},
according to Theorem 3 in Chapter 3 in [I7], the above statement holds.
Similarly, the parameter 3 in (5] should be less than or equal to one. When
y<Oanda>1 <1-— é holds and thus # < 1 holds. For the case with
v>0,when 3 >1land N > 1, v(mo)a*N%—% > land v(zg)+L4N > 1
hold, which are ineffective upper bounds.

When comparing constraints and , it becomes apparent that if
there exists a function v(x) along with o > 1 and 8 € [0,1] satisfying (),
the same function v(x) with L and § € [0, 1] will satisfy (3). In addition, it
is observed that the barrier function in [20], referred to as c-martingales, is
just a function that satisfies constraint with « =1 and 3 > 0.

3.2. Sufficient Conditions for Lower Bounds

In this subsection, we present our sufficient condition for lower bounding
the probability of exiting the safe set over the time horizon [0, N] in Problem
[1] which is inspired by [34] [36].

The sufficient condition requires the existence of a function v(x) defined
on the set X that satisfies three key properties: (1) it admits a finite upper
bound over X, (2) it is less than or equal to one on the subset X \ X, and
(3) its expected value at the next step along the system dynamics described
in increases over its a-scaled current value by more than g for x € X,
where a € [1,00), and § € (1 —a, 00). The lower bounds derivation proceeds
as follows: Lemma |1| establishes that the probability of system entering

12



X \ X at time ¢ = N is equal to the probability of system entering
this set up to time t = N. Then, we derive the lower bounds using system
. by analyzing «. Relying on the fact that the system in remains
stationary when starting from X \ X, which implies E*[v (qb‘”( )] = v(x)
for ¢ € X\ X, and noting that v(x) is less than or equal to one on this
subset, we reformulate the constraint on v(x). Specifically, using system ,
we require that the expected value of v(x) at the next step grows at least by
B = (a =1+ B)lz (@) over its a-scaled current value v(x), for all @ € X.
For a > 1 and a = 1, the lower bounds are subsequently obtained through
recursive application of the reformulated constraint, in conjunction with the
upper bound on the function v(x) : X — R.

Theorem 2. If there exist a function v(x): X — R with sup, .y v(x) < M,
€ [1,00), and B € (1 — a,00) such that

{5+MW@§EWW@ﬂUﬂuvw€X’ (6)

v(z) <1, Vo e X\ X,

then P> (3k € Ney. ¢ (k) € X\ X | zg € X) = P> (¢2(N) € X\ X |z €
X) >

(@+B-1)(@ +1-1) )

v(wo)—M o
1+ BINTT) if a=1.

{(W+1u(wo)M)(a1>+ﬁ(aN“1) if > 1,

Proof. 1) We ﬁrs~t prove the case of a > 1.
Since E®[v(¢%(1))] = v(x) for & € X \ X, we conclude that if v(x)
satisfies @, it will satisfy

(0= 1+ B)Lg (@) + E=[0($2(1)] > av(a) + 6, Vo € X,
Consequently, for g € X', we have
E[u(=(1))] — av(zo) > B+ (1 — o — B) Lz, x(0),
E*[u(¢2(2))] — aB*[w(2°(1)] > B+ (1 — a = B)E®[15 4 (¢2°(1))],

. ey

E*[0(¢5° (N + 1))] — aB*[u($2* (N))] = 8 + (1 — a = B)EX[1z (2 (N))].

13



Thus, we obtain

E*[0(¢5°(N + 1))] — oo ()

N N
>BY al+(1—a—8)Y oV TEX[1g (67 (i)]

=0 =0
;yf}ffﬂ+ﬂ—a—@£€%§xpmﬁﬁﬁwef\XMmeX)

The last inequality is obtained according to Lemma , which states P> (q§7“r’° (N) €
X\ X |z € X) ZP“(%?(Z’) EX\X |z e X) for i < N, and the fact
that 1 —a— 3 < 0.

Consequently,

(0¥ tu(@y) = M)(a = 1) + B+ — 1)

Pe($70(N) € T\ X |2 € X) 2 (a+ B - D@1 —1)

2) The conclusion for the case of & = 1 can be justified via following the
proof of the above one.
The proof is completed. O

It is worth noting here that if there exists a bounded function v(x): X —
R satisfying @ with a = 1, then system , starting from xy, € X, will
exit the safe set A eventually with the probability of one, since limy_,;, 1+
v@o)=M g Therefore, if system does not feature this property, a = 1

B(N+1) /
cannot be used to perform computations.

Remark 1. When o = 1, the constraint v(z) < 1Yo € X \ X in (©) s
redundant and can be removed.

Remark 2. One may wonder whether a sufficient condition for lower bound-
ing the probability of exiting the safe set X over the time horizon [0, N] in
Problem |1} can be constructed by directly reversing the sign in constraint
in Theorem [l We will give a brief explanation here that the condition con-
structed in this manner will consistently yield zero as lower bounds.

If there exists a function v(x): X — R such that

E*[u(¢2(1))] > U2 + 8, Va € X,
v(x) < 1, Vo e X\ X, (7)
v(x) <0, Ve € X,
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then P> (3k € Ney .20 (k) € X\ X | 2p € X) = P=(¢™(N) € X\ X | €
X) >

v(xo) + BN, if a =1N7y € (—00,0),

v(@o)a™ + U=22% ifa € (0,1) Ay € (—00,0),

1—(1—v(xy))a™, if o € (0,1] Ay € [0, 00),

where v = fa — (o — 1). This conclusion can be justified by following the
proof of Theorem [l However, via v = Ba — (o — 1) < 0 and a € (0,1],
we have < 0. Also, since v(x) < 0 for x € X, v(xg) < 0 holds. Thus,
v(xg) + BN <0, v(xg)a™ + M <0, and 1 — (1 —v(xg))a™ <0
hold.

4. Finite-time Reach-avoid Verification

In this section, we present our sufficient conditions for characterizing up-
per and lower bounds of the reach-avoid probability in Problem [2 I The
sufficient condition for upper bounds is formulated in Subsection 4.1] and the
one for lower bounds is introduced in Subsection [£.21

Similar to [34], we define a switched system, which facilitates the trans-
formation of the reach-avoid problem in Problem [2| to a mere reachability
problem. The switched system is constructed by freezing the dynamics of
system upon either exiting the safe set X or reaching the target set X.

Definition 4. The switched stochastic discrete-time system, which is built
upon system . 1S a quadruple (L’ X , o, f) with the following components:

L= {1,2,3} is a set of three locations;
Y C R"™ 1s the state constraint set;

- xy € X is the initial state;

- f(, ): R" x © — R™, where

3

Fl@,0) =15 (@)fi(x,0)

i=1

with fi(z,0) = f(z,0), fo(x,0) = = and f3(z,0) = x, and 13 ()
is the indicator function of the set /E-, e, lz(x) =1 ifxz € ./'/V\i;
otherwise, 15 () = 0,

15



where

1. X is a set satisfying QC /?, where

Q={a' eR" |2’ = f(z,0),z € X,0 € OUX;

2. X =X\ X,
3. .5(‘\2:.)(‘7,,'
4. X=X\ X.

The evolution of the state of this switched system is governed by the iterative
map

z(l+1) = f(=(1),0(1),Vl € N, n
T (0) =X € )? .

The trajectory of system , induced by initial state g € X and distur-
bance policy , is denoted by ¢*°(-): N — R".

When system , initialized at &y € X'\ X}, enters the region X, for the
first time at time ¢ € N without leaving the safe set X beforehand, system
starting from xy € X' \ X, also experiences its initial entry at this time,
and vice versa. Further, when entering &, and X \ X, system will remain
confined indefinitely. Thus, the set X is a robust invariant for system
[34], that is, trajectories of system originating from the set X will never
leave it. Consequently, the probability of system (§|) entering &, at time ¢t = ¢
aligns with the cumulative probability of system entering this target set
up to time ¢ without exiting X until the target hitting event occurs.

Lemma 2. Fori € N, P*(3k € Ng;.¢?°(k) € X, AVI € Nep.@pZ0(l) € X' |
T € X\ X)) =P=(¢7°(i) € X | mo € X\ X,). Thus, P*(¢7°(i) € X, |
g e X\ A,) <Po(@p2(j) e Xy | o e X\ X)) ifi < j.

4.1. Sufficient Conditions for Upper Bounds

In this subsection, we introduce our sufficient condition for upper bound-
ing the probability in Problem [2|

The sufficient condition requires the existence of a non-negative function
v(x) defined on the set X’ that satisfies two key properties: (1) it must be
greater than or equal to one on the target set X, and (2) its a-scaled ex-
pected value at the next step under the dynamics in should increase by
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at most o relative to its current value for € X'\ &, where a € (0, 1], and
B € [0,1]. Upper bounds are derived as follows. Lemma 2 equates the prob-
ability of system entering X, at ¢ = N with the cumulative probability
of system (/1) reaching X, by time N without leaving X before hitting the
target. Then, we derive upper bounds using system Q by analyzing a.. Since
System remains stationary when starting from X \ X and X, implying

E>[v ((]5””( )] = v(x) for x € (X \ X) U X, we reformulate the constraint
on v(x) using system (§] . its a-scaled expected value at the next step along
grows by at most a3 relative to its current value across the entire set X.
For a € (0,1) and aw = 1, the upper bounds follow from recursively applying
this reformulated constraint.

Theorem 3. If there exist a function v(x): X SR ac (0,1], and 3 € [0,1]
such that
E=[v(¢2(1))] < *® 18, VzeX\4X,
v(x) > 1, Vo € X, (9)
v(x) =0, Vo e X\ X,

then POO(EUC € NSN.(ﬁﬁO(/{) € XT/\VZ € N§k¢7mr0(l) e X ’ xg € X \ Xr) =
P (¢pZ0(N) € X, | @€ X\ X,) <

U(w0)+ﬁN7 ’Zfazl/\BE[O,l],
v(mo)a N + U=aal e e (0,1) A B € [0, 1]

a—1
Proof. 1) We first justify the case of a € (0,1) A 8 € [0, 1].
Since Em[v(qgf(l))] = v(x) for ¢ € (X' \ X) U X,, we can obtain
E[0(@2(1)] — ~o(@) = (1 - Jole), v € (\ X) U,

« 0%

Therefore,
EX[(@ ()] - —v(@) <0< Ve e (R\X)UX,

which can be justified based on the facts that v(x) > 0 for ¢ € X ac (0,1)
and J € [0,1]. Therefore, if v(z) satisfies (9)), it will satisfy

E*[u(¢%(1))] < U2 + 8, Va e X,
()21 (), Vo € X.

(10)



According to ((10)), we have

U<x0) > lx, (:DO), R R
oflv(zco) -+ ﬂ 2 E%[U((ﬁ:o(l))] Z ]Eoo[er (¢:0(1))]7

ey

N-1

a™No(@o) + 8 a2 EX[0(¢E(N))] = E™[Lx, (65 (N))].

=0

Thus,

P> (2 (N) € X, | g € X\ X,) = E®[Ly, (62°(N))]
(1—a™)

< a Nu(zg) + ap o

According to Lemma 2] we have the conclusion.

2) The conclusion on the case of @ = 1 A § € [0,1] can be justified by
following the proof for the above one.

The proof is completed. n

Similar to the analysis for the parameter S in Theorem [l the parameter
[ in Theorem [3|is also required to be less than or equal to 1, which is subject
to a practical restriction. Assigning a value greater than one to 5 would
result in bounds exceeding unity when N > 1, rendering them ineffective.

On the other hand, the analysis for the upper bounds in Theorem [3| is
similar to the one in Theorem[I] When ov = 1 and 3 = 0, the upper bound is
v(®o). It is an upper bound of the probability P> (3k € N.¢p* (k) € X, AVl €
Ney.@® (k) € X | &y € X\X,), which is the probability of reaching the target
set X, eventually while staying within the safe set X before the first target
hitting time.

Remark 3. In Theorem@ « is limited to be in (0,1]. We can obtain upper
bounds for the case with o > 1 according to Theorem 3 in Chapter 3 in [177]
or Proposition [1] in Section[3, as shown in Corollary[1].

Corollary 1. If there exist a continuous non-negative function v(x): X —
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R, a € [1,00), and 5 € [0,1] such that

(v(z) < 1,

Eu(¢2(1))] < "2 + 5, Vo e X\ A,

(1 - Ly(z) - B <0, Vo e X\ X, (11)
v(x) > 1, Ve € X,
Lv(x) >0, Ve € X,

then P> (Hk’ S NSN.¢?O(I€) e X, /\Vl S N§k¢?0(l) eX | xye X \ XT) <

v(xy) + BN, if =1,
v(xo)a™N + (l_i{#, if > 1A % > 1, (12)
1—(1—v(m))(1=B)N, ifa>1AL2% <1,

Proof. Like in [26], consider the stopped version of the stochastic process
satisfying , which ceases evolving upon exiting the set X'. Given a dis-
turbance signal 7, the trajectory of the stopped process, starting from x, is
denoted by {@()};cn, which satisfies

{¢»:o<z' +1) = 1\ (@70 (i) + La (¢ (i) F (&2 (i), 8(3)),
%°(0) = xo.

It is easy to conclude that any sample trajectory for the stopped process start-
ing from any state in X' cannot leave the set X', and {7 | Ik € Ncy.¢2° (k) €
X} ={m | Ik € Ney.¢™ (k) € X, AVl € Ney.p™ () € X} for g € X\ X.
Therefore, the probability IP"’O(EIk‘ € Ney.@d®(k) € X, | g € X\ XT) of
reaching X, for the stopped process is equivalent to the reach-avoid proba-
bility P> (3k € Ney.¢? (k) € X, AVl € Nej.@p® (1) € X | @o € X\ X,).

According to Theorem 3 in Chapter 3 in [I7] (or, Proposition 1|in Section
, we have that if there exist a continuous non-negative function v(x): X =
R, a € [1,00), and 8 € [0, 1] such that

v(@o) < 1,

E*[o(¢3(1)] < "2 15, Vo e X\ A, 13)
v(x) > 1, Ve € X,

v(z) >0, Vo € X,
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then P>*(3k € Noy.¢¥(k) € X,) has upper bounds in (12), and thus
P>(3k € Ney.¢?(k) € X, AVl € Ngp.¢?(l) € X | @y € X\ X,) has
upper bounds in (12)).

On the other hand, since ¢%(1) = x, Vo € X\ X, Vr, and ¢=(1) = ¢=(1),
Ve € X, V7, we obtain that constraint is equivalent to . Thus, the

conclusion holds and the proof is completed. O

Following the comparison between constraints and , we conclude
that if there exist a function v(x), a > 1, and B € [0, 1] satisfying (L1)), then
the same function v(x) with £ and B € [0,1] will satisfy (9). Additionally,
it is noted that a similar constraint, associated with the same upper bounds
m , has been presented in Proposition 2 of [26], which is also derived
from Theorem 3 in Chapter 3 of [I7] (or, Proposition[1)). [26] utilized this
constraint to determine upper bounds of the probability of reaching the set X,
for stopped processes that cease evolving upon exiting the interior of the set
X. The stopped process is the same as the one in the proof of Corollary
when the set X is open. As shown in the proof of Corollary[l], the probability
of reaching X, for the stopped process in [20] is equivalent to the reach-avoid
probability P> (Elk‘ € Ney.@Z0(k) € X, AVl € Nep.@p®(l) € X | xg € X\Xr)
when the set X s open. This indicates that the safety verification problem
in [26] for stopped processes is actually a reach-avoid verification problem
for the original process in the present work. Although the constraint in [26]
and the one are constructed based on the same stopped process (when
the set X is open) and Theorem 3 in Chapter 3 of [17], constraint
is more stringent than the one in [20], including additional conditions of
(1—L(x) -8 <0,V € ./'?\X and v(x) > 0,Vx € ./'?\X To the best
of my knowledge, I believe that these additional constraints are necessary
and cannot be omitted according to Theorem 3 in Chapter 3 of [17] (o,
Proposition .

Remark 4. Under the assumption that f(-,-): X x © — X (i.e., X is a
robust invariant setﬂfor system ), the c-martingale was employed in [15]
to certify upper bounds of the probability with which system starting from
xy € X\ X, will reach the set X, within a specified bounded time horizon.
Under this strong assumption, c-martingale satisfies @ in Theorem @ with

!Generally, a robust invariant set is fundamentally challenging, even impossible to
compute even if it exists.
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a = 1. This assumption is also imposed in [38]. It is worth noting that X in
our conditions is not needed if f(-,-): X x © — X holds.

4.2. Sufficient Conditions for Lower Bounds

In this subsection, we introduce our sufficient condition for lower bound-
ing the probability in Definition [2] N

The sufficient condition requires a function v(x) : X — R satisfying four
key properties: (1) its admits a finite upper bound over X , (2) it is less
than or equal to one on the target set X, (3) its expected value at the next
step under the dynamics in (1)) exceeds its a-scaled value by at least § for
x € X\ A&, and (4) it is less than or equal to —% over the set X' \ X,
where « € (1,00) and 8 € (1 — a, 00). Lower bounds are derived as follows.
Lemma 2 equates the probability of system entering &, at t = N with
the cumulative probability of system reaching &, by time N without
leaving X' before hitting the target. Then, we derive a lower bound using
system (8). System (8)) remains stationary for initial states in (X \ X)U X,
implying E*[v(¢2(1))] = v(z) for z € (X \ X) U X,. Given that v(z) < 1
on X, and v(x) < —a’%l over X \ &, we reformulate the constraint over v(x)
using system : its expected value at the next step should grow by at least
B—(a—1+B)15 »(x) relative to its a-scaled current value v(x) for x € X.
Recursively applying this reformulated constraint, together with the upper
bound on v, yields a lower bound.

Theorem 4. If there exist a function v(z): X — R with sup,,. 3 v(x) < M,
a € (1,00), and B € (1 — o, 00) such that

B+ av(x) < E®v(¢x(1))], Vee X\X,

v(x) <1, Ve € &, (14)

(a — 1)v(x) < -4, Vo e X\ X,
then POO(E”{? S NSN.¢$O(IC) € XT/\VZ € N§k¢:0(l) e X | xg € X \ Xr) =
P*(¢p=(N) € X, |@o € X\ X,) >

(@™ o(@g) — M)(a — 1) + B(a™ — 1)

(a+p =1 -1) '

Proof. Since ]Eoo[v(g/b\ﬁ(l))] = v(x) for & € (X \ X)UX,, we can obtain that
if v(x) satisfies (14), it will satisfy

(@ =1+ B)ly, (2) + EX[u(¢2(1))] > av(z) + B, Va € X.
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Thus, for ¢y € X \ A, we have

")) = av(we) = S+ (1 —a = )l (),

E*[v(¢
60 (2))] — aB®[u(¢ (1))] > 5+ (1 — o — B)E®[Lw, ($%(1))],

E*[v(¢

ey

o~ o~

E*[o(¢2 (N + 1))] — aE®[o(¢Z(N))] > B+ (1 — a — B)E[Ly, (¢2°(N))].
Thus, we can obtain

E*[0(¢%° (N +1))] — ™ o()

N N
>BY a4 (1—a—B)Y oV TE[1y ()]

=0 =0

_ A N+1 _ N+1 .
Zﬁ%jt(l—a—ﬁ)%XP“(cpfO(N)eXr\woeX\Xr)

The last inequality is obtained via Lemma , which states P> ($ﬁ0 (N) e X, |
xo € X\ X,) > P> (@fo(z) €X, | xy€ X\ X,) for i <N, and the fact that
l—a—-p<0.

Consequently,

(@Y o) = M)(a = 1) + Fla™H — 1)

P (@7 (N) € X | zg € X\ &) > (a+B—1)(aV—1)

According to Lemma [2, we have the conclusion. The proof is completed. [

Remark 5. Comparing Theorem |9 and[4), we observe that o cannot be equal
to one in Theorem . Since if « = 1, we have B > 0 from § € (1 — a,00).
However, we have 8 < 0 from (o — Nv(x) < —8,Y& € X \ X. This is a
contradiction.

5. Examples

In this section, we demonstrate the performance of the proposed condi-
tions for safety and reach-avoid verification on two numerical examples, using
the semi-definite programming tool Mosek [5].
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Example 1. Consider the following one-dimensional discrete-time system:
x(l+1) ==z() + d(),

where d(-): N — © = [-0.1,0.1], X = {z | h(z) <0} with h(z) = 2* — 1,
o =02, X, ={x| (r—-09)2—-10* <0}, and N = 30. Besides, we
assume that the probability distribution on © is the uniform distribution. The
probabilities in Problem [1] and [4 obtained via Monte Carlo methods, which
used 10* sample paths, are around 0.0085 and 0.0128, respectively.

Given the small exact probabilities in Problems[]] cknd@ we only estimate
their upper bounds in this example. The set X = X = {z | 2* — 2 < 0}
15 employed in solving , , @D, and . To address these constraints,
we encode them into semi-definite programs with sum of squares decomposi-
tion techniques for multivariate polynomials. Utilizing polynomials v(x) of
varying degrees, the computed upper bounds are summarized in Tables |1 and
@. Table |1} illustrates that the constraint with o = ﬁ can yield tighter
upper bounds for the probability in Problem compared to with o =1 (it
also corresponds to the c—martingale in [20]) and with « = 1.1. Simi-
larly, Table ows that the constraint @D with o = ﬁ outperforms @ with
a =1 and (1) with o = 1.1 in providing tighter bounds for the probability
in Problem [4 It is observed that employing higher-degree polynomials for
computations facilitates the gain of tighter upper bounds of the probabilities
in Problem [ and[2.

with @ = 1.1
d| 2 4 6 8 10 12 14 16 18 20

€ | 0.9795 | 0.9435 | 0.9427 | 0.9427 | 0.9427 | 0.9427 | 0.9427 | 0.9427 | 0.9427 | 0.9427
Witha:ﬁ

d 2 4 6 8 10 12 14 16 18 20
€2 | 0.8166 | 0.1564 | 0.0650 | 0.0447 | 0.0404 | 0.0398 | 0.0398 | 0.0398 | 0.0398 | 0.0398
(3) with a =1

d 2 4 6 8 10 12 14 16 18 20

€2 | 0.1351 | 0.1351 | 0.1351 | 0.1351 | 0.1351 | 0.1351 | 0.1351 | 0.1351 | 0.1351 | 0.1351

Table 1: Computed upper bounds of the probability in Problem [1| in Example
(d denotes the degree of the polynomial v(x))

23



with o = 1.1
d 2 4 6 8 10 12 14 16 18 20

€2 | 0.9943 | 0.9553 | 0.9428 | 0.9427 | 0.9427 | 0.9427 | 0.9427 | 0.9427 | 0.9427 | 0.9427
Witha:f—1

d 2 4 6 8 10 12 14 16 18 20
€2 1 0.2530 | 0.1260 | 0.0970 | 0.0906 | 0.0898 | 0.0897 | 0.0897 | 0.0897 | 0.0897
@ with a =1

d 2 4 6 8 10 12 14 16 18 20

€2 | 0.1736 | 0.1736 | 0.1736 | 0.1736 | 0.1736 | 0.1736 | 0.1736 | 0.1736 | 0.1736 | 0.1736

Table 2: Computed upper bounds of the probability in Problem |2[in Example
(d denotes the degree of the polynomial v(x))

() with o = 1.01
d 2 4 6 8 10 12 14 16 18 20
€ 0.8798 0.7694 | 0.7423 | 0.7302 | 0.6923 | 0.6663 | 0.6130 | 0.6127 | 0.5837 | 0.5830
with a = 1.001
d 2 4 6 8 10 12 14 16 18 20
€ 0.8169 0.6612 | 0.6041 | 0.5845 | 0.5316 | 0.4942 | 0.4131 | 0.4098 | 0.3615 | 0.3605
With()(:%m
d 2 4 6 8 10 12 14 16 18 20
€ 1.0000 1.0000 | 0.9625 | 0.9235 | 0.8352 | 0.7731 | 0.6342 | 0.6236 | 0.5424 | 0.5397
Withazﬁl01
d 2 4 6 8 10 12 14 16 18 20
€ 0.8515 0.6877 | 0.6179 | 0.5929 | 0.5381 | 0.4983 | 0.4097 | 0.4027 | 0.3505 | 0.3488
(@) with a =1
d 2 4 6 8 10 12 14 16 18 20
€ 0.8100 0.6542 | 0.5880 | 0.5643 | 0.5123 | 0.4745 | 0.3902 | 0.3835 | 0.3345 | 0.3322
([6) with a =1.1and 3 =0
d 2 4 6 8 10 12 14 16 18 20
€1 | 2.5096 x 107 | 0.0279 | 0.0490 | 0.0502 | 0.0711 | 0.0735 | 0.0990 | 0.1064 | 0.1245 | 0.1289

Table 3: Computed lower and upper bounds of the probability in Problem [1{in Example
(d denotes the degree of the polynomial v(x))

Example 2. Consider the following one-dimensional discrete-time system
from [37]:
z(l+1) = (-0.54+d(1))x(1),
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with o = 1.001

d 2 4 6 8 10 12 14 16 18 20
€9 1 0.9485 | 0.9388 | 0.9264 | 0.9117 | 0.8988 | 0.8832 | 0.8682 | 0.8579 | 0.8513
(11) with o = 1.0001

d 2 4 6 8 10 12 14 16 18 20
€ 1 0.9463 | 0.9360 | 0.9263 | 0.9077 | 0.8941 | 0.8780 | 0.8623 | 0.8515 | 0.8446
(11) with a =1

d 2 4 6 8 10 12 14 16 18 20

€2 | 1.0000 | 0.9460 | 0.9357 | 0.9259 | 0.9073 | 0.8936 | 0.8774 | 0.8617 | 0.8508 | 0.8439
(©) with @ = 1557

d 2 4 6 8 10 12 14 16 18 20

€5 | 1.0000 | 0.9929 | 0.9827 | 0.9717 | 0.9524 | 0.9380 | 0.9208 | 0.9043 | 0.8932 | 0.8858
@ with o = ﬁ

d 2 4 6 8 10 12 14 16 18 20

€2 | 1.0000 | 0.9506 | 0.9403 | 0.9304 | 0.9117 | 0.8979 | 0.8816 | 0.8658 | 0.8550 | 0.8480

@ with a =1
d 2 4 6 8 10 12 14 16 18 20
€2 | 1.0000 | 0.9460 | 0.9357 | 0.9259 | 0.9073 | 0.8936 | 0.8774 | 0.8617 | 0.8508 | 0.8439
(14) with o = 1.06 and 8 =0
d 2 4 6 8 10 12 14 16 18 20
€1 | 0.1591 | 0.2824 | 0.3453 | 0.3669 | 0.4606 | 0.5218 | 0.5732 | 0.5778 | 0.6119 | 0.6128

Table 4: Computed lower and upper bounds of the probability in Problem [2[in Example
(d denotes the degree of the polynomial v(x))

where d(-): N — © = [-1,1], X = {x | h(z) < 0} with h(x) = 2% — 1,
xo=—-09, X ={x|22-0.36 <0}, and N = 50. Besides, we assume that
the probability distribution on © is the uniform distribution. The probabilities
in Problem|[1] and[d obtained via Monte Carlo methods, which used 10* sample
paths, are around 0.2521 and 0.7708, respectively.

The set X = X = {x | 2* — 225 < 0} is used in solving (3)), (5),
©), (@, (11), and ([14). These constraints are addressed via encoding them
into semi-definite programs with sum of squares decomposition techniques
for multivariate polynomials. Utilizing polynomials v(x) of varying degrees,
the computed lower and upper bounds are summarized in Tables [3 and [}
It is evident from the results that employing higher-degree polynomials for
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computations leads to tighter lower and upper bounds of the probabilities in
Problems |1 and @ and the constraints (3) and can complement each
other in providing upper bounds of the probability in Problem [1 However,
the performance of the constraint , with o = ﬁ, o= ﬁ, marginally
surpasses that of @, with o = 1.001, o = 1.0001, wn yielding tighter upper

bounds for the probability in Problem [2

In Example [I] and [2] we initially determine upper bounds by assigning
pre-defined values to the parameter « in constraints , , @ and , and
lower bounds by assigning pre-defined values to the parameters o and g in
and , and employing convex optimization to solve them. This might yield
conservative bounds. However, the automatic optimization of the function
v(x), a, and  to enhance these bounds constitutes a non-convex problem,
which poses a significant challenge. Future work will address this issue, as
it is beyond the scope of the current study. Furthermore, this work does
not concentrate on the design of efficient algorithms to solve the associated
constraints. Instead, it leverages existing semi-definite programming tools to
tackle these issues. Future work will address this gap by proposing efficient
algorithms to effectively address these constraints.

6. Conclusion

In this paper, we introduced novel sufficient conditions for the finite-time
safety and reach-avoid verification of stochastic discrete-time dynamical sys-
tems. These conditions provide the lower and upper bounds of the probability
that, within a predefined finite-time horizon, a system starting from an initial
state in a safe set will either exit the safe set (safety verification) or reach a
target set while remaining within the safe set until the first encounter with
the target (reach-avoid verification). They complement existing criteria or
bridge existing gaps in the literature. Finally, we demonstrated their per-
formance in finite-time safety and reach-avoid verification on two numerical
examples, utilizing semi-definite programming tools.

In the future, I would like to rigorously assess the conservativeness of
the derived bounds through a necessity analysis of the proposed barrier-like
conditions, extending the infinite-time framework developed in [33]. Fur-
thermore, I would develop analysis methods for probabilistic programs by
integrating these barrier-like conditions. For example, I intend to investigate
termination analysis of probabilistic programs within bounded time horizons
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and compare the results with state-of-the-art approaches, such as those pre-
sented in [§].
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