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ABSTRACT
Delays are ubiquitous in modern hybrid systems, which exhibit
both continuous and discrete dynamical behaviors. Induced by
signal transmission, conversion, the nature of plants, and so on,
delays may appear either in the continuous evolution of a hybrid
system such that the evolution depends not only on the present
state but also on its execution history, or in the discrete switching
between its different control modes. In this paper we come up
with a new model of hybrid systems, called delay hybrid automata,
to capture the dynamics of systems with the aforementioned
two kinds of delays. Furthermore, based upon this model we
study the robust switching controller synthesis problem such
that the controlled delay system is able to satisfy the specified
safety properties regardless of perturbations. To the end, a novel
method is proposed to synthesize switching controllers based on
the computation of differential invariants for continuous evolution
and backward reachable sets of discrete jumps with delays. Finally,
we implement a prototypical tool of our approach and demonstrate
it on some case studies.

CCS CONCEPTS
• Security and privacy→ Formal security models; Logic and
verification.

KEYWORDS
Delay hybrid systems, delay differential equations, differential
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1 INTRODUCTION
With the broad applications of cyber-physical systems (CPS) in our
daily life, the correct design of reliable CPS is getting increasingly
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important, especially in safety-critical domains such as automo-
tive, medicine, etc. Due to the bidirectional conversion between
analog and digital signals, the periodicity of collecting data by
sensors, and executing the commands by actuators, and the data
transmission through networks with different bandwidths, etc.,
time delay is becoming ubiquitous and inevitable in CPS, giving
rise to the difficulty of CPS design, as delays may invalidate the
certificates of stability and safety obtained with abstracting them
away, even well annihilate control performance.

Generally, two kinds of delays appear commonly in CPS. One is
in continuous evolution of systems, resulting in that the evolution
not only depends on the current state, but also on the historical
states. As an appropriate generalization of ordinary differential
equations (ODEs), delay differential equations (DDEs) are widely
used to capture time-delay continuous dynamical systems. The
other one occurs at discrete jumps between different control
modes of the underlying systems.

In this paper, we propose a new model of hybrid systems, called
delay hybrid automata (dHA), which is an extension of classical
hybrid automata (HA) [14], in order to capture the dynamics
of systems involving the aforementioned two kinds of delays.
Based on the proposed dHA, we investigate the safe switching
controller synthesis problem for delay hybrid systems, i.e., given
a dHA H and a safety property S, to synthesize a refined dHA
H∗ by strengthening the invariant in each mode and the guard
condition for each discrete jump such thatH∗ satisfies S robustly,
with additional condition that H∗ is non-blocking if H is non-
blocking. Our approach is invariant-based, which is a classical
approach to synthesizing safe switching controllers for HA [3, 35].
However, the computation of differential invariants (the definition
will be given in Section 3) for the DDE in each mode as well
as a global invariant (the definition will be given in Section 4.2)
among these modes is much involved than the counterparts in
HA when the two kinds of delays are considered. To compute
differential invariants for DDEs, we propose a two-step approach:
the first step is to reduce differential invariant generation problem
to 𝑇 -differential invariant generation problem using global ball-
convergence condition derived in terms of Metzler matrix for a
class of linear DDEs, where 𝑇 is a bounded time horizon; the
second step is to obtain an over-approximation of the 𝑇 -bounded
reachable set based on the growth bound adapted from [29]. Non-
linear DDEs can be reduced to the linear case by means of the
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linearization technique, in case that global ball-convergence is
replaced by local ball-convergence. A global invariant is generated
based on fixed point iteration, and the computation of differential
invariants for continuous evolution in each mode and backward
reachable sets for discrete jumps by taking delays into account,
which is similar to compute reachable sets of HA, e.g., with dReach
[19]. Our approach is finally illustrated on some interesting case
studies.

The main contributions of this work are summarized below:

(1) a newmodel language, called dHA, is proposed to model de-
lay hybrid systems, which exhibit delays in both continuous-
and discrete-time dynamics.

(2) in this new model dHA, a novel approach based on the com-
putation of differential invariants is proposed to address
the switching controller synthesis problem for delay hybrid
systems, such that the controlled delay hybrid system is able
to satisfy the specified safety property.

1.1 Related Work
Controller synthesis through correct-by-construction manner pro-
vides mathematical guarantees to the correctness and reliablity of
(hybrid) systems. In the literature, this problem has been exten-
sively studied and various approaches have been proposed, which
can be categorized into abstraction based, e.g., [5, 12, 16, 24, 28, 29],
and constraint solving based, e.g., [31, 35]. The basic idea of
abstraction based approaches is to abstract the original system
under consideration to a finite-state two-players game, and then
solve reactive synthesis using automata-theoretic algorithms with
respect to temporal control objectives. In contrast, the basic idea
of constrains solving based approaches is to reduce the synthesis
problem to an invariant generation problem, which can be further
reduced to a constraint solving problem. As a generalization of
[31], an optimal switching controller synthesis is investigated in
[18] by solving an unconstrained numerical optimization problem.
Based on reachable set computation and fixed point iteration, a
general framework of controller synthesis for HA is proposed in
[3, 32]. However, all these existing works focus on ODEs, therefore
cannot be applied to DDEs, let alone delay hybrid systems directly.
This is becauseODEs areMarkovian, but DDEs are non-Markovian,
whose states are functionals with infinite dimension. In [7, 9],
a controller synthesis problem for time-delay discrete dynamical
systems was first investigated by reduction to solving imperfect
two-player safety game, but it is unclear whether their approach
can be extended to time-delay continuous dynamical systems and
delay hybrid systems.

Recently, verification and synthesis for time-delay systems at-
tract increasing attention, we just name a few below. Prajna
and Jadbabaie extended the notion of barrier certificate to time-
delay systems [27]. In [36], Zou et al. first proposed interval
Taylor model for DDEs, and then discussed automatic stability
analysis and safety verification based on interval Taylor model
and stability analysis of discrete dynamical systems. However,
their approach can only be applied to specific DDEs, whose right
sides are independent of current states. Following this line, more
efficient algorithms for analyzing Taylor models to inner and outer
approximate reachable sets of more general DDEs in finite time
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Figure 1: A heating system

horizon were given [13]. In [10], Feng et al. further considered
how to utilize stability analysis of linear delay dynamical systems
and linearization to reduce the unbounded verification to the
bounded verification for a class of general DDEs. Based on [10],
[4] investigated switching controller synthesis problem of delay
hybrid systems, in which time-delay in discrete jumps is not
taken into account. In contrast, the approach proposed in this
paper can compute differential invariants for DDEs using ball-
convergence based on Metzler matrix analysis, growth bound and
linearization, it could be more powerful and applied to verify
more DDEs (see Example 3). In [8], a simulation-based approach
to approximate reachable sets of ODEs was extended to DDEs.
Meanwhile, a topological homeomorphism-based approach was
proposed to over- and under-approximate reachable sets of a
class of DDEs [33]. Later, this approach was further extended to
deal with perturbed DDEs in [34]. Like [13], these approaches
can only be applied to compute reachable sets in finite time
horizon. In addition, in [25, 26], Pola et al. proposed approaches
how to construct symbolic abstractions for time-invariant and
time-varying delay systems by approximating functional space
using spline analysis. In [17], Huang et al. proposed a bounded
verification method for nonlinear networks with discrete delays.
Nonetheless, the dynamics of each subsystem modelled by ODEs
and the analysis is done over a finite time horizon. Evidently, only
one kind of delays is considered in all these existing works, either
continuous or discrete.There is indeed a lack of appropriate formal
models to handle both situations uniformly.

1.2 A Motivating Example
To illustrate the main idea of our approach, we use a heating
system as a motivating example, as depicted in Fig. 1, consisting
of the following four components:

(1) a water tank with water,
(2) a heater with on and off two states,
(3) a thermometer monitoring the temperature of the water in

the tank, and echoing warning signals whenever the tem-
perature of the water is above or below certain thresholds,

(4) pipes connecting the heater and the tank.
Additionally, we add a controller that observes the signals pro-
duced in the thermometer, and computes a command to the heater
in order to maintain the temperature of the water within a given
range. The temperature of water in the tank is desired to stay
between 20 and 90 degrees through switching the heating on
and off. The behavior of the temperature of water in the tank is
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mixed continuous evolution with discrete switches, which can be
modelled by a hybrid automaton [2]. However, the delay impact
of pipes and thermometer monitoring are both neglected in these
models. In [30], it was pointed out that energy efficiency can be
increased by 5 − 10% if the delay impact of pipes is considered.
Moreover, due to the delay possibly caused by measuring the ther-
mometer, sending the signals, executing the control commands
and so on, the temperature of water in the tank could be beyond the
thresholds, which is definitely unsafe.Therefore, the delay impacts
of the pipes and the thermometer have to be taken into account
when we model the temperature of water in the tank.

1.3 Basic Notations and Definitions
Notations. Let N, R and C be the set of natural, real and complex
numbers, R+ be the set of positive real numbers. For 𝑧 = 𝑎 + 𝑖𝑏 ∈
C with 𝑎,𝑏 ∈ R, <(𝑧) = 𝑎 and =(𝑧) = 𝑏, respectively, denote
the real and imaginary parts of 𝑧. R𝑛 is the set of 𝑛-dimensional
real vectors, denoted by boldface letters. Given a vector x ∈ R𝑛 ,
𝑥𝑖 denotes the 𝑖-th coordinate of x for 𝑖 ∈ {1, 2, . . . , 𝑛}, and its
maximal norm is ‖x‖∞ = max1≤𝑖≤𝑛 |𝑥𝑖 |. For a vector y ∈ R𝑛+, let
(y)min = min1≤𝑖≤𝑛 𝑦𝑖 . Given two vectors x, y ∈ R𝑛 , we define
x ≥ y iff 𝑥𝑖 ≥ 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑛, and x > y iff 𝑥𝑖 > 𝑦𝑖 for all
1 ≤ 𝑖 ≤ 𝑛. Given 𝜖 > 0, we define 𝔅(𝜖) = {x ∈ R𝑛 | ‖x‖∞ ≤ 𝜖}
as the 𝜖-closed ball around 0. Let R𝑛×𝑚 be the set of real 𝑛 ×𝑚
matrices. The entry in the 𝑖-th row and 𝑗-th column of a matrix
𝑀 ∈ R𝑛×𝑚 is denoted as𝑚𝑖 𝑗 with 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. For
𝑡1 < 𝑡2, C{[𝑡1, 𝑡2],R𝑛} is the space of continuous functions from
[𝑡1, 𝑡2] to R𝑛 . For a set A ⊆ R𝑛+, a = supA iff for all x ∈ A, x ≤ a,
and for any upper bound y ∈ R𝑛+, then y ≥ a. Finally, we denote
(𝑥)+ = max(0, 𝑥) for any real number 𝑥 ∈ R.

In this paper, we consider a class of time-delay systems under
perturbations described as follows:{
¤x(𝑡) = 𝒇 (x(𝑡), x(𝑡 − 𝑟1), . . . , x(𝑡 − 𝑟𝑘 ),w(𝑡)), 𝑡 ∈ [0,∞)
x(𝑡) = 𝝓 (𝑡), 𝑡 ∈ [−𝑟𝑘 , 0]

(1)

where x ∈ R𝑛 is the state vector, 𝑡 ∈ R models time, The discrete
delays are assumed to satisfy 0 < 𝑟1 < 𝑟2 < · · · < 𝑟𝑘 . w(·) :
[0,∞) ↦→ R𝑚 is external disturbance vector, which is unknown but
assumed to be bounded by a given constant𝑤𝑚𝑎𝑥 , i.e., ‖w(𝑡)‖∞ ≤
𝑤𝑚𝑎𝑥 for all 𝑡 ≥ 0. 𝝓 (·) ∈ C{[−𝑟𝑘 , 0],R𝑛} is the initial condition.
Suppose that 𝒇 is continuous and satisfies the Lipschitz condition,
then from a given initial condition 𝝓 andw(𝑡), there exists a unique
solution 𝝃w𝝓 (·) : [−𝑟𝑘 ,∞) ↦→ R

𝑛 .

Definition 1 (Metzler matrix[6]). A matrix 𝑀 ∈ R𝑛×𝑛 is
called a Metzler matrix if all off-diagonal elements of 𝑀 are non-
negative, i.e.,𝑚𝑖 𝑗 ≥ 0 whenever 𝑖 ≠ 𝑗 .

Regarding Metzler matrices, the following proposition holds,
please refer to [6] for the detail.

Proposition 1 ([6]). For any Metzler matrix 𝑀 , the following
two properties are equivalent

1. 𝜇 (𝑀) < 0, where 𝜇 (𝑀) = max{<(𝛼) | 𝛼 ∈ C : det(𝛼I −
𝑀) = 0)}, I is the 𝑛 × 𝑛 identity matrix.

2. there exists 𝜻 ∈ R𝑛 and 𝜻 > 0 such that𝑀𝜻 < 0.

The structure of this paper is organized as: the notion of de-
lay hybrid automata and the safe switching controller synthesis

problem of interest are defined in Section 2. After presenting
an approach for invariant generation of delay hybrid systems
in Section 3, Section 4 concentrates on the controller synthesis
framework based on the global invariants generation for delay
hybrid systems. We demonstrate our approach with two examples
in Section 5. Finally Section 6 concludes this paper.

2 DELAY HYBRID AUTOMATA AND
PROBLEM STATEMENT

Hybrid automata (HA) [14] are popular models for dynamical
systems with complex mixed continuous-discrete behaviors. In
order to characterize behaviors of hybrid systems with the two
type of time delays aforementioned, we introduce an extension
of HA, called delay hybrid automata (dHA), formally defined as
follows:

Definition 2 (Delay hybrid automaton, dHA). A dHA is a
tupleH = (𝑄,𝑋,𝑈 , 𝐼,Ξ, 𝐹 , 𝐸, 𝐷,𝐺, 𝑅), where,
• 𝑄 = {𝑞1, . . . , 𝑞𝑚} is a finite set of modes;
• 𝑋 is a set of state variables;
• 𝑈 ⊆ C{[𝑡1, 𝑡2],R𝑛}, where 𝑡1 < 𝑡2, is a set of continuous

functionals;
• 𝐼 : 𝑄 ↦→ 2R

𝑛
gives each mode 𝑞 ∈ 𝑄 an invariant 𝐼 (𝑞) ⊆ R𝑛 ;

• Ξ : 𝑄 ↦→ 2𝑈 gives each mode 𝑞 ∈ 𝑄 its initial states set
Ξ(𝑞) ⊆ 𝑈 ;
• 𝐹 = {𝒇𝑞1 , . . . ,𝒇𝑞𝑚 } is the set of vector fields, each mode 𝑞 ∈ 𝑄

has unique vector field 𝒇𝑞 , which is used to form a delayed
differential equation (1) to model the continuous evolution, i.e.,

¤x(𝑡) = 𝒇𝑞 (x(𝑡), x(𝑡 − 𝑟𝑞1 ), . . . , x(𝑡 − 𝑟
𝑞
𝑘
),w(𝑡));

• 𝐸 ⊆ 𝑄 × 𝑄 is the set of discrete transition relations between
modes;
• 𝐷 : 𝐸 ↦→ R+ gives each discrete transition 𝑒 ∈ 𝐸 a delay time
𝐷 (𝑒) ∈ R+;
• 𝐺 : 𝐸 ↦→ 2R

𝑛
denotes guard conditions;

• 𝑅 : 𝐸 × 𝑋𝐷 ↦→ 𝑈 denotes reset functions.

Compared with the definition of HA, there are several notable
changes in Definition 2: a new item 𝑈 ⊆ C{[−𝑟𝑞

𝑘
, 0],R𝑛} is

introduced to represent the set of all possible initial states. Note
that the solution to a DDE is a functional, and correspondingly
a state is a function standing the execution history up to the
considered instant starting from the given initial state, rather than
a point inR𝑛 as for ODE. Additionally, another new item𝐷 is used
to specify the delays in discrete transitions: for each 𝑒 = (𝑞, 𝑞′) ∈ 𝐸,
the delay is denoted by 𝐷 (𝑒) ∈ R+. Moreover, the reset function
𝑅 is changed to 𝐸 × 𝑋𝐷 ↦→ 𝑈 accordingly, where 𝑋𝐷 is the set
of reachable states satisfying the corresponding guard condition.
Intuitively, when a mode switching happens, e.g., a transition from
𝑞 to 𝑞′ at time 𝑡 , there exists time 𝜃 ∈ [−𝑟𝑞

𝑘
, 0], the system has to

satisfy: x𝝓𝑡 (𝜃 ) ∈ 𝐺 (𝑒), and the update state is 𝝓 ′ = 𝑅(𝑒, x
𝝓
𝑡+𝐷 (𝑒) (·)).

Example 1. For the heating system shown in the motivating
example, it is straightforward to present its dHA textually as follows:
• 𝑄 = {𝑞1, 𝑞2}; (two modes of discrete states, heater on and off);
• 𝑋 = {𝑥}; (the temperature of water in the tank);
• 𝑈 = C; (all continuous functionals);
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¤𝑥 = 𝑓𝑞1

𝑥 ≤ 90
start ¤𝑥 = 𝑓𝑞2

𝑥 ≥ 20

off

𝐷 (𝑒1) = 2

on
𝐷 (𝑒2) = 2

Figure 2: The dHA for the heating system

• 𝐼 (𝑞1) = {𝑥 ∈ R | 20 ≤ 𝑥 ≤ 90} and 𝐼 (𝑞2) = {𝑥 ∈ R | 20 ≤
𝑥 ≤ 90};
• Ξ(𝑞1) = {𝑥 (𝑡) | 𝑥 (𝑡) = 50 − 10 sin 𝑡, 𝑡 ∈ [−1, 0]} and
Ξ(𝑞2) = {𝑥 (𝑡) | 𝑥 (𝑡) = 85 − 5 sin 𝑡, 𝑡 ∈ [−1, 0]};
• 𝐹 = {𝑓𝑞1 , 𝑓𝑞2 }, where 𝑓𝑞1 = 𝐾1 (ℎ − 𝑥 (𝑡)) + 𝐾2𝑥 (𝑡 − 1) +𝑤1

and 𝑓𝑞2 = −𝐾1𝑥 (𝑡) +𝐾2𝑥 (𝑡 − 1) +𝑤2, 𝐾1, 𝐾2, ℎ,𝑤1 and𝑤2

are real constants. That is, the temperature rises and decreases
following the respective DDE in 𝑞1 and 𝑞2, respectively;
• 𝐸 = {𝑒1 = (𝑞1, 𝑞2), 𝑒2 = (𝑞2, 𝑞1)};
• 𝐷 (𝑒1) = 2 and 𝐷 (𝑒2) = 2;
• 𝐺 (𝑒1) = R and 𝐺 (𝑒2) = R;
• 𝑅(𝑒1, 𝑥𝑡+𝐷 (𝑒1) (·)) = 𝑥 (𝜃 ), 𝜃 ∈ [𝑡 +𝐷 (𝑒1) −1, 𝑡 +𝐷 (𝑒1)] with
𝑥 (𝑡) ∈ 𝐺 (𝑒1) and 𝑅(𝑒2, 𝑥𝑡+𝐷 (𝑒1) (·)) = 𝑥 (𝜃 ), 𝜃 ∈ [𝑡 +𝐷 (𝑒2)−
1, 𝑡 + 𝐷 (𝑒2)] with 𝑥 (𝑡) ∈ 𝐺 (𝑒2).

Pictorially, the dHA is shown in Fig. 2.

Definition 3 (Hybrid execution). For a dHA H , given an
initial hybrid state (𝑞0, 𝝃w𝝓0

(0)) and w(·) : [0,∞) ↦→ R𝑚 , an
execution 𝜋 of the delay hybrid automaton H is a sequence of
〈𝑡𝑖 , 𝑞𝑖 , 𝝃w𝝓𝑖

(𝑡𝑖 )〉, for 𝑖 ∈ N and 𝑞𝑖 ∈ 𝑄 , satisfying that any transition
〈𝑡𝑖 , 𝑞𝑖 , 𝝃w𝝓𝑖

(𝑡𝑖 )〉 ↦→ 〈𝑡𝑖+1, 𝑞𝑖+1, 𝝃w𝝓𝑖+1
(𝑡𝑖+1)〉 is either :

• the continuous evolution:𝑞𝑖 = 𝑞𝑖+1, 𝝓𝑖 = 𝝓𝑖+1, 𝑡𝑖 < 𝑡𝑖+1, and
for all 𝑡 ∈ [𝑡𝑖 , 𝑡𝑖+1], the solution of DDE ¤x = 𝒇𝑞𝑖 is 𝝃w𝝓𝑖

(·) :
[𝑡𝑖 , 𝑡𝑖+1] ↦→ R𝑛 , and 𝝃w𝝓𝑖

(𝑡) ∈ 𝐼 (𝑞𝑖 );
• the discrete transition: 𝑒 = (𝑞𝑖 , 𝑞𝑖+1) ∈ 𝐸, 𝑡𝑖 = 𝑡𝑖+1, and

there exists 𝑡 such that 𝑡𝑖+1 = 𝑡 +𝐷 (𝑒) and 𝝃w𝝓𝑖
(𝑡) ∈ 𝐺 (𝑒) and

𝝓𝑖+1 = 𝑅(𝑒, x𝝓𝑖

𝑡+𝐷 (𝑒) (·)).

An execution 𝜋 is called finite if it is a finite sequence ending
with a closed time interval. Otherwise, the execution 𝜋 is called
infinite if it is an infinite sequence or if

∑𝑁
𝑖=0 (𝑡𝑖+1 − 𝑡𝑖 ) = ∞, where

𝑁 ∈ N. A dHAH is called non-blocking if there exists at least one
infinite execution starting from any initial state.

Definition 4 (Reachable set). Given a dHAH , the reachable
set RH (𝑡) for the delay hybrid system within [−𝑟𝑞0

𝑘
, 𝑡] is

RH (𝑡) =
x(𝑡)

�������
∀𝑞0 ∈ 𝑄, ∀ 𝝃w𝝓0

(0) ∈ Ξ(𝑞0),
∃ 𝜋 = 〈𝑡0, 𝑞0, 𝝃w𝝓0

(0)〉, · · · , 〈𝑡, 𝑞𝑖 , 𝝃w𝝓𝑖
(𝑡)〉

𝑠 .𝑡 . x(𝑡) = 𝝃w𝝓𝑖
(𝑡)

 .
Example 2. An execution for the heating system in themotivating

example is given below.
From the initial state (𝑞1, 𝑥 = 50.00), the system reaches the state

(𝑞1, 𝑥 = 68.86) in green after 10𝑠 , which is indicated by transition
(1). Assume that the state (𝑞1, 𝑥 = 68.86) in green satisfies the
guard condition, the system chooses to jump from mode 𝑞1 to mode

〈0, 𝑞1, 𝑥 = 50.00〉

〈10, 𝑞1, 𝑥 = 68.86〉

〈12, 𝑞1, 𝑥 = 71.12〉 〈12, 𝑞2, 𝑥 = 71.12〉

〈17, 𝑞2, 𝑥 = 45.37〉

〈19, 𝑞2, 𝑥 = 43.59〉 〈19, 𝑞1, 𝑥 = 43.59〉

〈23, 𝑞1, 𝑥 = 54.82〉

· · ·

(1)

(2) 𝐷 (𝑒1) = 2
(3)

(4)

(5) 𝐷 (𝑒2) = 2

(6)

(7)

𝑞2. However, there is a delay 𝐷 (𝑒1) = 2 incurred by the edge 𝑒1.
The system keeps evolving in mode 𝑞1 until hitting the state (𝑞1, 𝑥 =
71.12) revealed by transition (2), and completes the switching by
reaching the state (𝑞2, 𝑥 = 71.12) displayed by transition (3) in
blue. Continue this execution as above.

Definition 5 (Safety). Given a dHA H with a safe set S =
∪𝑞∈𝑄S𝑞 , where S𝑞 ⊆ R𝑛 , the automaton H is 𝑇 -safe with respect
to S in time 𝑇 , if for any time 𝑡 ∈ [−𝑟𝑞

𝑘
,𝑇 ], all reachable states

RH (𝑡) of the system starting from any initial states are contained in
S, i.e.,

RH (𝑡) ⊆ S,∀𝑡 ∈ [−𝑟
𝑞
𝑘
,𝑇 ] .

If 𝑇 is infinite, then the dHA is safe over the infinite-time horizon.

Now, the problem of interest can be formally formulated as
follows:

Problem 1 (Safe SwitchingController Synthesis Prob-
lem). Given a dHA H = (𝑄,𝑋,𝑈 , 𝐼,Ξ, 𝐹 , 𝐸, 𝐷,𝐺, 𝑅) and a safety
property S, the switching controller problem is to synthesize a new
dHAH∗ = (𝑄,𝑋,𝑈 ∗, 𝐼∗,Ξ∗, 𝐹 , 𝐸, 𝐷,𝐺∗, 𝑅) such thatH∗ satisfies:
(r1) H∗ is safe, i.e. in [−𝑟𝑞

𝑘
,∞), the reachable set RH∗ ⊆ S.

(r2) H∗ is a refinement of H , i.e., it holds: Ξ∗ ⊆ Ξ ∩ S, 𝐼∗ ⊆ 𝐼 ,
𝑈 ∗ ⊆ 𝑈 , and for any 𝑒 ∈ 𝐸, it holds: ∀x(𝑡) ∈ 𝐺∗ (𝑒), x(𝑡 +
𝐷 (𝑒)) ∈ 𝐺 (𝑒) ∩ 𝐼∗ (𝑞).

(r3) if H is non-blocking in the safe set S, then H∗ is non-
blocking.

𝑆𝐶 = {𝐺∗ (𝑒) ⊆ R𝑛 | 𝑒 ∈ 𝐸} is called a safe switching controller of
H , if H∗ satisfies above three requirements. We call 𝑆𝐶 is a trivial
switching controller ofH , if there exists one mode 𝑞 ∈ 𝑄 or one edge
𝑒 ∈ 𝐸 with 𝐼∗ (𝑞) = ∅ or 𝐺∗ (𝑒) = ∅.

3 DIFFERENTIAL INVARIANT GENERATION
Differential invariant generation plays a central role in our frame-
work to synthesize switching controllers for delay hybrid systems
with perturbations. In this section, inspired by the work in [10], we
present a two-step procedure to synthesize differential invariants
for a delay dynamical system. The first step is to calculate a
bounded horizon𝑇 using ball convergence analysis, which reduces
the differential invariant generation problem to the 𝑇 -differential
invariant generation problem. The second step is to compute an
over-approximation of the reachable set in time 𝑇 , which is a 𝑇 -
differential invariant.

We first develop the aforementioned two-step method for linear
delay dynamical systems, and then generalize it to nonlinear delay
dynamical systems.

Definition 6 (Differential invariant). Given a mode 𝑞 ∈
𝑄 of a delay hybrid automaton H : (Ξ(𝑞),𝒇𝑞, 𝐼 (𝑞)) and time 𝑇 , a
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set 𝐼∗ (𝑞) is called a 𝑇 - invariant if for any trajectory starting from
a given initial function 𝝓 (𝑡) ∈ Ξ(𝑞), 𝑡 ∈ [−𝑟𝑞

𝑘
, 0], the following

condition holds for w(·) : [−𝑟𝑞
𝑘
,𝑇 ] ↦→ R𝑚 :

∀𝑡 ∈ [−𝑟𝑞
𝑘
,𝑇 ], 𝝃w𝝓 (𝑡) ∈ 𝐼 (𝑞) =⇒ ∀𝑡 ∈ [−𝑟𝑞

𝑘
,𝑇 ], 𝝃w𝝓 (𝑡) ∈ 𝐼

∗ (𝑞) .

If 𝑇 is infinite, then 𝐼∗ (𝑞) is a differential invariant of mode 𝑞.

𝑇 - invariant 𝐼∗ (𝑞) requires that every trajectory starting from
initial set Ξ(𝑞) in time 𝑇 remains inside the differential invariant
𝐼∗ (𝑞) if it remains in the domain 𝐼 (𝑞). A safe differential invariant
requires 𝐼∗ (𝑞) ⊆ S𝑞 .

3.1 Linear Systems
We consider linear DDEs with the form (1) first, i.e.,{

¤x(𝑡) = 𝐴x(𝑡) + 𝐵x(𝑡 − 𝑟 ) +𝐶w(𝑡), 𝑡 ∈ [0,∞)
x(𝑡) = 𝝓 (𝑡), 𝑡 ∈ [−𝑟, 0] , (2)

where 𝐴, 𝐵 ∈ R𝑛×𝑛 and 𝐶 ∈ R𝑛×𝑚 are real matrices with
appropriate dimensions.

Definition 7 (Global ball-convergence). Given a 𝔯 > 0, (2)
is called globally exponentially convergent within the ball 𝔅(𝔯), if
there exist a constant 𝛾 > 0 and a non-decreasing function 𝜅 (·) such
that

‖𝝃w𝝓 (𝑡)‖∞ ≤ 𝔯 + 𝜅 (‖𝝓‖∞)e−𝛾𝑡 , ∀𝑡 ≥ 0

holds for all 𝝓 ∈ C{[−𝑟, 0],R𝑛} and ‖w(𝑡)‖∞ ≤ 𝑤𝑚𝑎𝑥 ,∀𝑡 ≥ 0.

In Definition 7, 𝛾 represents the rate of decay, i.e., an estimate
of how quickly the solution of (2) converges to the ball 𝔅(𝔯). Es-
pecially, when the radius 𝔯 = 0, the definition of ball convergence
is consistent with Lyapunov exponential stability [22]. Moreover,
in [15], it was proved that

Theorem 1 ([15]). Suppose in (2) 𝑀 = 𝐴 + 𝐵 is a Metzler matrix
satisfying one of the properties in Proposition 1. Then, there exist
positive constants 𝛽 , 𝛾 , 𝛿 , 𝜂 such that for all initial functions 𝝓 and
‖w(𝑡)‖∞ ≤ 𝑤𝑚𝑎𝑥 ,∀𝑡 ≥ 0

‖𝝃w𝝓 (𝑡)‖∞ ≤
𝐶𝑚𝑎𝑥𝑤𝑚𝑎𝑥

𝜂
+ 𝛽 (‖𝝓‖∞ −

𝐶𝑚𝑎𝑥𝑤𝑚𝑎𝑥

𝛿
)+e−𝛾𝑡 , ∀𝑡 ≥ 0

holds, where 𝐶𝑚𝑎𝑥 = max𝑖∈𝑛
∑𝑚

𝑗=1𝐶𝑖 𝑗 .

In Theorem 1, based on the notion of Metzler matrix, (2) is
globally exponentially convergent to the ball𝔅(𝐶𝑚𝑎𝑥𝑤𝑚𝑎𝑥

𝜂 ) for all
perturbations ‖w(𝑡)‖∞ ≤ 𝑤𝑚𝑎𝑥 ,∀𝑡 ≥ 0. Moreover, the size of
the ball increases as the perturbation bound increases. Particularly,
without perturbation by letting w(𝑡) = 0 for all 𝑡 ∈ [−𝑟,∞), the
equilibrium 0 is exponentially stable. [15] also provides the way to
obtain the constants 𝛽,𝛾, 𝛿, 𝜂 in Theorem 1, which can be sketched
as: let 𝜻 > 0 with ‖𝜻 ‖∞ = 1 and 𝑀𝜻 < 0, then 𝛽 = (𝜻 )−1𝑚𝑖𝑛 ,
𝜂 = (−𝑀𝜻 )𝑚𝑖𝑛 , 𝛿 = 𝜂 (𝜻 )−1𝑚𝑖𝑛 , 𝛾 = min𝑖∈𝑛 𝛾𝑖 , where 𝛾𝑖 is the
solution of the equation

𝐻𝑖 (𝛾) = 𝛾𝜁𝑖 +
𝑛∑
𝑗=1

𝜁 𝑗𝐵𝑖 𝑗 (𝑒𝛾𝑟−1) − 𝜂 = 0.

Algorithm 1 Safe Differential Invariant Synthesis
1: procedure DInvariant( Ξ(𝑞), 𝒇𝑞 , 𝑇 ∗, 𝜏 , 𝝆, S𝑞 , 𝔯1, 𝜖)
2: 𝑃0 (𝑞) ← Ξ(𝑞) ∩ S𝑞 ; 𝑖 ← 0; 𝑡 ← 0
3: while 𝑡 ≤ 𝑇 ∗ do
4: R𝑃𝑖 (𝑞) ← ∅
5: 𝑃𝑖 (𝑞) ← select a 𝐶 ∈ C(𝑃𝑖 (𝑞), 𝝆)
6: for each x̂ ∈ 𝑃𝑖 (𝑞) do
7: Rx̂ ← SafeR(𝝆, 𝑥 , 𝜏 , S𝑞 )
8: if Rx̂ ≠ ∅ then
9: R𝑃𝑖 (𝑞) ← R𝑃𝑖 (𝑞) ∪Rx̂

10: end if
11: end for
12: if R𝑃𝑖 (𝑞) ≠ ∅ then
13: if R𝑃𝑖 (𝑞) ⊆ 𝑃𝑖 (𝑞) ∪𝔅(𝔯1 + 𝜖) then
14: return 𝑃𝑖 (𝑞) ∪ (𝔅(𝔯1 + 𝜖) ∩ S𝑞)
15: else
16: 𝑃𝑖+1 (𝑞) ← 𝑃𝑖 (𝑞) ∪R𝑃𝑖 (𝑞)
17: 𝑖 ← 𝑖 + 1; 𝑡 ← 𝑡 + 𝜏
18: end if
19: else
20: Break;
21: end if
22: end while
23: return 𝑃𝑖 (𝑞) ∪ (𝔅(𝔯1 + 𝜖) ∩ S𝑞)
24: end procedure
25: procedure SafeR(𝝆, 𝑥 , 𝜏 , S𝑞 )
26: compute Rx̂ over 𝑡 ∈ [0, 𝜏]
27: if Rx̂ ⊆ S𝑞 then
28: return Rx̂

29: else if Rx̂ ∩ S𝑞 ≠ ∅ ∧ 𝝆/2 ≥ 𝝆𝑡ℎ then
30: 𝑌 ← C(x̂, 𝝆/2)
31: Rx̂ ← ∅
32: for each 𝑦 ∈ 𝑌 do
33: 𝑅𝑦 ← SafeR(𝝆/2, 𝑦, 𝜏 , S𝑞 )
34: Rx̂ ← Rx̂ ∪ 𝑅𝑦
35: end for
36: else
37: return ∅
38: end if
39: return Rx̂

40: end procedure

Reducing to 𝑇 -differential invariant generation problem:
According to Theorem 2, the first step of differential invariant
generation can be achieved by the following theorem:

Theorem 2. Suppose 𝑀 = 𝐴 + 𝐵 is a Metzler matrix in (2)
satisfying one of the properties in Proposition 1. Given an initial
function 𝝓 and a disturbance w with ‖w(𝑡)‖∞ ≤ 𝑤𝑚𝑎𝑥 ,∀𝑡 ≥ 0,
let 𝔯1 = 𝐶𝑚𝑎𝑥𝑤𝑚𝑎𝑥

𝜂 and 𝔯2 = 𝛽 (‖𝝓‖∞ − 𝐶𝑚𝑎𝑥𝑤𝑚𝑎𝑥
𝛿 ), for any 𝜖 > 0,

let

𝑇 ∗ = max{0, inf{𝑇 | ∀𝑡 ≥ 𝑇 : 𝔯+2e
−𝛾𝑡 < 𝜖}} ,

then ‖𝝃w𝝓 (𝑇 )‖∞ − 𝔯1 < 𝜖 for any𝑇 ≥ 𝑇 ∗, where 𝛽 , 𝛾 , 𝛿 and 𝜂 satisfy
the condition in Theorem 1.
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Proof. The proof for the necessity part is straightforward. For
the sufficiency part, by Theorem 1, ‖𝝃w𝝓 (𝑡)‖∞ ≤ 𝔯1 + 𝔯+2e

−𝛾𝑡 for
any 𝑡 ≥ 0, 𝝓 and w(𝑡). Moreover, 𝔯+2e

−𝛾𝑡 is strictly monotonically
decreasing w.r.t 𝑡 , hence there exists an upper bound 𝑇 ∗ such that
for any 𝑡 ≥ 𝑇 ∗, 𝔯+2e

−𝛾𝑡 is exponentially close to the ball 𝔅(𝔯1)
within a prescribed precision 𝜖 . Therefore, for the given precision
𝜖 , for any 𝑡 ≥ 𝑇 ∗, all trajectories starting from 𝝓 are exponentially
convergent to the ball 𝔅(𝔯1). □

Lemma 3. Suppose in (2)𝑀 = 𝐴 + 𝐵 is a Metzler matrix with one
of the properties in Proposition 1. Given 𝜖 > 0, the ball 𝔅(𝔯1 + 𝜖) is
an attractor, i.e., any trajectory originating from a state in𝔅(𝔯1 +𝜖)
is guaranteed to evolve into 𝔅(𝔯1 + 𝜖).

Theorem 2 and Lemma 3 set up a sound guarantee that syn-
thesizing differential invariant problem can be reduced to syn-
thesizing 𝑇 -differential invariant problem. Now we are ready to
introduce the second step of synthesizing differential invariants.

Computing an over-approximation of reachable set within
𝑇 ∗: we adapt the method in [29] for ODEs to compute an over-
approximation of the reachable set for (2) with a growth bound
defined below.

Definition 8 (Growth bound). Given 𝑡 > 0, 𝝆 ∈ R𝑛+ and a
compact set 𝐾 ⊆ 𝐼 (𝑞), a growth bound is a map Λ : R𝑛+ × R+ ↦→ R𝑛+
satisfying the following conditions:
• Λ(𝝆, 𝑡) ≥ Λ(𝝆 ′, 𝑡) whenever 𝝆 ≥ 𝝆 ′,
• given 𝝓 (𝑡) ∈ C{[−𝑟, 0], 𝐾}, then

sup
𝜃1,𝜃2∈[−𝑟,0]

|x𝝓𝑡 (𝜃1)−x
𝝓
𝑡 (𝜃2) | ≤ Λ( sup

𝜃1,𝜃2∈[−𝑟,0]
|𝝓 (𝜃1)−𝝓 (𝜃2) |, 𝑡) ,

where | · | represents the element-wise absolute value.

Theorem 4 below tells how to construct a specific growth bound
Λ(·, ·).

Theorem 4. Given a 𝝆 ∈ R𝑛+, let 𝑡 > 0, the map Λ(𝝆, 𝑡), defined
by

Λ(𝝆, 𝑡) = e𝐿𝑡𝝆 +
∫ 𝑡

0
e𝐿 (𝑡−𝑠) |𝐵 |Λ(𝝆, 𝑠 − 𝑟 ) d𝑠 ,

is a growth bound of (2), where 𝐿 satisfies

𝐿𝑖 𝑗 ≥
{
𝐴𝑖 𝑗 , 𝑖 = 𝑗
|𝐴𝑖 𝑗 |, otherwise .

Proof. Given any states x(𝑡), y(𝑡) ∈ 𝐼 (𝑞), let z(𝑡) = y(𝑡) −x(𝑡).
From (2), ¤z(𝑡) = ¤y(𝑡) − ¤x(𝑡) = 𝐴z(𝑡) +𝐵z(𝑡 − 𝑟 ). Hence, by Lemma
6 in [29], we get

|z(𝑡) | ≤ e𝐿𝑡𝝆 +
∫ 𝑡

0
e𝐿 (𝑡−𝑠) |𝐵 |z(𝑠 − 𝑟 )d𝑠 .

□

A hyper-rectangle [[a, b]] with a, b ∈ (R ∪ {±∞})𝑛 defines the
set {𝑥 ∈ R𝑛 | 𝑎𝑖 ≤ 𝑥𝑖 ≤ 𝑏𝑖 for 𝑖 ∈ {1, . . . , 𝑛}}; it is non-empty if
a ≤ b (element-wise). For 𝝆 ∈ R𝑛+, we say that a hyper-rectangle
[[a, b]] has the diameter 𝝆 if |b−a |2 = 𝝆. Given a set 𝐾 ∈ R𝑛 , we
denote by C(𝐾, 𝝆) the set of covers of 𝐾 , each of which is a cover
of 𝐾 , and consists of a set of hyper-rectangles with diameter 𝝆.

Algorithm 1 summarizes the second step to construct a safe
differential invariant: it repeats to compute the reachable set over

time horizon [0,𝑇 ∗] in a forward way with step size 𝜏 (line 3-22);
in each iteration, it first finds a hyper-rectangle cover of the initial
set, and any element in the cover stands for an abstract state, that is
a hyper-rectangle with diameter 𝝆 (line 5). Then for each abstract
state, SafeR is invoked to compute the set of reachable states from
the abstract state within 𝜏 (line 6-11). If the reachable set is not
contained in the safe set, the abstract state will be refined, and
SafeR is recursively invoked until either the computed reachable
set is contained in the safe set or the diameter of the abstract
state is smaller than the given threshold 𝝆𝑡ℎ (line 25-40); this
procedure terminates whenever a fixed point is reached (line 13)
or the accumulated time is greater than 𝑇 ∗, and returns the union
of the computed reachable set before 𝑇 ∗ (i.e., 𝑃𝑖 (𝑞)) and the over-
approximation of the reachable set after 𝑇 ∗ (i.e., 𝔅(𝔯1 + 𝜖) ∩ S𝑞 ).

Theorem 5. Given a delay dynamical system (Ξ(𝑞),𝒇𝑞, 𝐼 (𝑞)) and
a safety requirement S𝑞 , where 𝒇𝑞 is with the form (2) such that
𝑀 = 𝐴 + 𝐵 is a Metzler matrix satisfying one of the properties in
Proposition 1. Let𝑇 ∗, 𝜖 and 𝔯1 be defined byTheorem 2, 𝝆 and 𝜏 be the
discretization parameter and step size, then Algorithm 1 terminates
and returns a differential invariant for (2).

Proof. Termination: Obviously.
Soundness: (i) If the algorithm returns the result at line 14, we

have R𝑃𝑖 (𝑞) ⊆ 𝑃𝑖 (𝑞) ∪𝔅(𝔯1 + 𝜖), then
𝑃𝑖+1 (𝑞) ∪𝔅(𝔯1 + 𝜖) = 𝑃𝑖 (𝑞) ∪R𝑃𝑖 (𝑞) ∪𝔅(𝔯1 + 𝜖)

⊆ 𝑃𝑖 (𝑞) ∪𝔅(𝔯1 + 𝜖) .
By recursion, 𝑃𝑖 (𝑞) ∪ 𝔅(𝔯1 + 𝜖) is an over-approximation of the
reachable set over the infinite time horizon from the initial set for
(2), i.e., 𝑃𝑖 (𝑞) ∪ (𝔅(𝔯1 + 𝜖) ∩ S𝑞) is a safe differential invariant of
(2). (ii) If the algorithm terminates at line 23, evidently 𝑃𝑖 (𝑞) is an
over-approximation of the reachable set over time [0,𝑇 ∗] from the
initial set of (2). ByTheorem 2 and Lemma 3, 𝑃𝑖 (𝑞)∪(𝔅(𝔯1+𝜖)∩S𝑞)
is a safe differential invariant for (2). □

3.2 Nonlinear Systems
In this subsection, we generalize the two-step method in Section
3.1 for nonlinear systems by means of linearization techniques.

For simplifying the presentation, we first consider the form of
DDE (1) with one single delay, i.e.,{ ¤x(𝑡) = 𝒇 (x(𝑡), x(𝑡 − 𝑟 ),w(𝑡)), 𝑡 ∈ [0,∞)

x(𝑡) = 𝝓 (𝑡), 𝑡 ∈ [−𝑟, 0] . (3)

Let
𝐴 =

𝜕𝒇

𝜕x(𝑡)

����
(0,0)

and 𝐵 =
𝜕𝒇

𝜕x(𝑡 − 𝑟 )

����
(0,0)

be the Jacobianmatrices of DDE (3)with respect to x(𝑡) and x(𝑡−𝑟 ),
evaluated at the origin (0, 0), respectively. Thus, we can linearize
DDE (3) as

¤x(𝑡) = 𝐴x(𝑡) + 𝐵x(𝑡 − 𝑟 ) +𝐶w(𝑡)
+g(x(𝑡), x(𝑡 − 𝑟 )), 𝑡 ∈ [0,∞)

x(𝑡) = 𝝓 (𝑡), 𝑡 ∈ [−𝑟, 0]
, (4)

where g(·, ·) is the higher-order term, which is very closed to zero
when x is sufficiently close to the equilibrium. By dropping the
higher-order term in (4), we can obtain the approximation of (3),
which is exactly the same linear system specified in (2).
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Definition 9 (Local ball-convergence). Given a 𝔯 > 0, (3)
is called locally exponentially convergent within the ball 𝔅(𝔯), if
there exist constant 𝛾 > 0, 𝜄 > 0 and a non-decreasing function 𝜅 (·)
such that for all ‖w(𝑡)‖∞ ≤ 𝑤𝑚𝑎𝑥

‖𝝓 (𝑡)‖∞ ≤ 𝜄 =⇒ ‖𝝃w𝝓 (𝑡)‖∞ ≤ 𝔯 + 𝜅 (‖𝝓‖∞)e−𝛾𝑡 , ∀𝑡 ≥ 0

holds.

Theorem 6. Suppose that 𝑀 = 𝐴 + 𝐵 is a Metzler matrix in
(4) satisfying one of two properties in Proposition 1, then there exist
positive constants 𝜄, 𝛽 , 𝛾 , 𝛿 and 𝜂 such that for all ‖w(𝑡)‖∞ ≤ 𝑤𝑚𝑎𝑥

‖𝝓 (𝑡)‖∞ ≤ 𝜄 =⇒ ‖𝝃w𝝓 (𝑡)‖∞ ≤
G
𝜂
+ 𝛽 (‖𝝓‖∞ −

G
𝛿
)+e−𝛾𝑡 , ∀𝑡 ≥ 0

holds, where 𝐶𝑚𝑎𝑥 = max𝑖∈𝑛{
∑𝑚

𝑗=1𝐶𝑖 𝑗 }.

Proof. Let G = 𝐶𝑚𝑎𝑥𝑤𝑚𝑎𝑥 + 𝑔𝑚𝑎𝑥 , where ‖g(x(𝑡), x(𝑡 −
𝑟 ))‖∞ ≤ 𝑔𝑚𝑎𝑥 , and 𝜄 ≤ G𝜂 + 𝛽 (‖𝝓‖∞ −

G
𝛿 )
+, then it can be proved

similar to that of Theorem 1. □

Similarly, Theorem 7 says that the differential invariant gener-
ation problem for nonlinear DDEs can be equivalently reduced to
to the 𝑇 -invariant generation problem.

Theorem 7. Given an initial function 𝝓 and a disturbancewwith
‖w(𝑡)‖∞ ≤ 𝑤𝑚𝑎𝑥 ,∀𝑡 ≥ 0, for (1), suppose that the positive constants
𝜄, 𝛽 , 𝛾 , 𝛿 , 𝜂 and 𝑔𝑚𝑎𝑥 satisfy the condition in Theorem 6, let 𝔯1 = G𝜂
and 𝔯2 = 𝛽 (‖𝝓‖∞ − G𝛿 ), and for any 𝜖 > 0, let𝑇 ∗ = max{0, inf{𝑇 |
∀𝑡 ≥ 𝑇 : 𝔯+2e

−𝛾𝑡 < 𝜖}}, then for any ‖𝝓 (𝑡)‖∞ ≤ 𝜄 and any 𝑇 ≥ 𝑇 ∗
it follows ‖𝝃w𝝓 (𝑇 )‖∞ − 𝔯1 < 𝜖 . That is, a differential invariant of (1)
exactly corresponds to one of its 𝑇 -differential invariant.

Proof. Similar to the proof of Theorem 2. □

Remark 1. The fact that Theorem 7 holds with the condition
‖𝝓 (𝑡)‖∞ ≤ 𝜄 implies the locality of linearization. Moreover, in order
to alleviate conservativeness of linearization, we need to compute a
tighter parameter 𝑔𝑚𝑎𝑥 , which is used to bound the high-order terms
discarded during linearization.

Note that the above discussion can be straightforwardly extended
to DDEs (1) with multiple delays by just letting𝑀 = 𝐴 +∑𝑘

1 𝐵𝑖 .

4 SWITCHING CONTROLLER SYNTHESIS
WITH DELAYS AND PERTURBATIONS

In this section we present our synthesis framework based on
invariant generation for delay hybrid systems with perturbations
modelled by dHA.

4.1 Computing Guards of Discrete Jumps
In this subsection, by computing a reachable set from the set of
states reachable to the edge without the jump delay backwards,
we focus on how to synthesize a new guard𝐺∗ (𝑒) of each discrete
jump 𝑒 in order to guarantee the safety when taking the jump delay
into consideration.

Definition 10 (Backward reachable set). For a mode𝑞 of the
dHA H : (Ξ(𝑞),𝒇𝑞, 𝐼∗ (𝑞)), given a target region 𝐺 (𝑒) and a finite

Algorithm 2 Backward Reachable Set Computation

1: procedure BackReach(𝐺 (𝑒), 𝐷 (𝑒), 𝐼∗ (𝑞), 𝝆, 𝜏)
2: 𝐺∗ (𝑒) ← ∅
3: 𝐼̂∗ (𝑞) ← C(𝐼∗ (𝑞), 𝝆)
4: d← | supx∈𝐼 ∗ (𝑞), ‖w(𝑡 ) ‖∞≤𝑤𝑚𝑎𝑥

𝒇 | · 𝐷 (𝑒)
5: for each x̂ ∈ 𝐺 (𝑒) ] d do
6: compute Rx̂ (𝑡) for 𝑡 ∈ [0, 𝐷 (𝑒)] with step size 𝜏
7: if Rx̂ (𝐷 (𝑒)) ⊆ 𝐺 (𝑒)

∧
Rx̂ (𝑡) ⊆ 𝐼∗ (𝑞),

∀𝑡 ∈ [0, 𝐷 (𝑒)] then
8: 𝐺∗ (𝑒) ← 𝐺∗ (𝑒) ∪ x̂
9: end if
10: if Rx̂ (𝐷 (𝑒)) ∩𝐺 (𝑒) ≠ ∅

∧
Rx̂ (𝑡) ⊆ 𝐼∗ (𝑞),

∀𝑡 ∈ [0, 𝐷 (𝑒)] then
11: refine x̂ with 𝝆 ′ ← 𝝆/2, (𝝆 ′ ≥ 𝝆𝑡ℎ)
12: end if
13: end for
14: return 𝐺∗ (𝑒)
15: end procedure

time 𝑡 = 𝐷 (𝑒), the reachable set 𝐺∗ (𝑒) from the target region 𝐺 (𝑒)
backwards after 𝑡 time units is defined as

𝐺∗ (𝑒) =
{
x0

���� ∀ 𝑡 ∈ [0, 𝐷 (𝑒)],∀ w(𝑡) .
𝝃wx0
(𝐷 (𝑒)) ∈ 𝐺 (𝑒) ∧ 𝝃wx0

(𝑡) ∈ 𝐼∗ (𝑞)

}
.

Now, we present an algorithm, which is presented in Algo-
rithm 2, to under-approximate the backward reachable set based
on discretization in a symbolic way. The basic idea is: Given a
discretization step size 𝝆 ∈ R𝑛+, let 𝐼̂∗ (𝑞) be in C(𝐼∗ (𝑞), 𝝆), and
d ∈ R𝑛 be | supx∈𝐼 ∗ (𝑞), ‖w(𝑡 ) ‖∞≤𝑤𝑚𝑎𝑥

𝒇 | · 𝐷 (𝑒), standing for the
maximal distance following the DDE from 𝐼∗ (𝑞) within the time
delay 𝐷 (𝑒) subject to any disturbance. So, a necessary condition
that an abstract state in 𝐼̂∗ (𝑞) can reach 𝐺 within 𝐷 (𝑒) is that the
distance from the state to 𝐺 is less than or equal to d, i.e., in the
following set

𝐺 (𝑒) ] d =

{
x̂ ∈ 𝐼̂∗ (𝑞)

���� x̂ ∈ 𝐺 (𝑒) ∨ ∃ x̂′ ∈ 𝐺 (𝑒) :
|𝑐𝑡𝑟 (x̂) − 𝑐𝑡𝑟 (x̂′) | ≤ d + 4𝝆

}
,

where 𝑐𝑡𝑟 (x̂) is the center of the abstract state x̂, standing for the
hyper-rectangle [[a, b]], i.e., the point ( 12 (𝑏1−𝑎1), . . . ,

1
2 (𝑏𝑛−𝑎𝑛)).

Obviously, all trajectories starting from the set 𝐼̂∗ (𝑞) \ (𝐺 (𝑒) ] d)
are impossible to reach to 𝐺 (𝑒) within 𝐷 (𝑒). Therefore, we only
need to consider the set 𝐺 (𝑒) ] d. For each abstract state x̂ ∈
𝐺 (𝑒) ] d, the over-approximation of the backward reachable set
Rx̂ is calculated by checking whether it keeps 𝐼∗ (𝑞) satisfied over
[0, 𝐷 (𝑒)] and all elements of Rx̂ (𝐷 (𝑒)) should satisfy 𝐺 (𝑒). If the
answer is yes, then it is done; otherwise, if some of reachable states
in Rx̂ (𝐷 (𝑒)) satisfy 𝐺 (𝑒), then refine the abstract state x̂ with
a smaller discretization parameter 𝝆 ′, say 𝝆 ′ = 𝝆/2. Repeat the
above procedure until all abstract states in the set 𝐺 (𝑒) ] d are
done.

4.2 Switching Controller Synthesis
To present our approach on switching controller synthesis, we
need to introduce the notion of global invariant, which can be
formally defined as follows.

7



Algorithm 3 Switching Controller Synthesis
Require: H = (𝑄,𝑋,𝑈 , 𝐼,Ξ, 𝐹 , 𝐸, 𝐷,𝐺, 𝑅), S, 𝝆, 𝜏 , {𝑇 ∗𝑞 | 𝑞 ∈ 𝑄},
{𝔯𝑞1 | 𝑞 ∈ 𝑄}, {𝜖𝑞 | 𝑞 ∈ 𝑄}

1: 𝐾0 ← Ξ; 𝐼0 ← ∅; flag← true; 𝐺0 ← ∅; 𝑛 ← 0
2: while flag do
3: 𝑛 ← 𝑛 + 1
4: for each 𝑞 ∈ 𝑄 do
5: 𝐾𝑛 (𝑞) ← 𝐾𝑛−1 (𝑞) ∪ {𝝓 | ∃𝑒 = (𝑞′, 𝑞) ∈ 𝐸, ∃𝑡 > 0,

∃𝜃 ∈ [−𝑟𝑞
𝑘
, 0] . 𝝓 = 𝑅(𝑒, x𝝓𝑡 (·)) ∧ x

𝝓
𝑡 (𝜃 ) ∈ 𝐺𝑛−1 (𝑒)}

6: 𝐼𝑛 (𝑞) ← DInvariant(𝐾𝑛 (𝑞),𝒇𝑞,𝑇 ∗𝑞 , 𝜏, 𝝆,S𝑞, 𝔯
𝑞
1 , 𝜖𝑞)

7: Ξ(𝑞) ← Ξ(𝑞) ∩ S𝑞
8: end for
9: for each 𝑒 = (𝑞, 𝑞′) ∈ 𝐸 do
10: 𝐺𝑛 (𝑒) ← 𝐺 (𝑒) ∩ 𝐼𝑛 (𝑞) ∩ {x𝝓𝑡 (𝜃 ) ∈ 𝐼𝑛 (𝑞) | ∃𝑡 > 0,

∀𝜃 ∈ [−𝑟𝑞
𝑘
, 0] . 𝑅(𝑒, x𝝓𝑡 (·)) ∈ 𝑈𝑞′}

11: 𝐺∗𝑛 (𝑒) ← BackReach(𝐺𝑛 (𝑒), 𝐷 (𝑒), 𝐼𝑛 (𝑞), 𝝆, 𝜏)
12: end for
13: if 𝐼𝑛 == 𝐼𝑛−1 then
14: flag← false
15: end if
16: end while
17: Ξ∗ ← {Ξ(𝑞) | 𝑞 ∈ 𝑄}
18: 𝐼∗ ← {𝐼𝑛 (𝑞) | 𝑞 ∈ 𝑄}
19: 𝑈 ∗ ← {x𝝓𝑡 (·) ∈ 𝑈 | ∃𝑞 ∈ 𝑄, x

𝝓
𝑡 (𝜃 ) ∈ 𝐼∗ (𝑞),∀𝜃 ∈ [−𝑟

𝑞
𝑘
, 0]}

20: 𝐺∗ ← {(𝑒,𝐺∗𝑛 (𝑒)) | 𝑒 ∈ 𝐸}
21: if ∀𝑒 ∈ 𝐸,𝐺∗ (𝑒) ≠ ∅ then
22: returnH∗ ← (𝑄,𝑋,𝑈 ∗, 𝐼∗,Ξ∗, 𝐹 , 𝐸, 𝐷,𝐺∗, 𝑅)
23: end if

Definition 11 (Global invariant). Given a dHA H , 𝐼∗ =
∪𝑞∈𝑄 𝐼∗ (𝑞) is global invariant of H , if 𝐼∗ satisfies the following
conditions:
(c1) for each 𝑞 ∈ 𝑄 , the set 𝐼∗ (𝑞) is a differential invariant of
(Ξ(𝑞),𝒇𝑞, 𝐼 (𝑞)),

(c2) for each 𝑒 = (𝑞, 𝑞′) ∈ 𝐸, if 𝝃w𝝓 (𝑡) ∈ 𝐺
∗ (𝑒), then

∀𝜃 ∈ [𝑡 ′ − 𝑟𝑞
′

𝑘
, 𝑡 ′], 𝝓 ′(𝜃 ) ∈ 𝐼∗ (𝑞′),

where 𝝓 ′(·) = 𝑅(𝑒, x𝝓𝑡 ′ (·)) and 𝑡
′ = 𝑡 + 𝐷 (𝑒).

Figure 3:Theover-approximate reachable sets for twomodes
of the heating system. Black dashed lines denote the safety
set.

Algorithm 3 presents a procedure to compute a global invariant
repeatedly until the safety requirement can be guaranteed by a

computed global invariant (when flag holds, line 2-16), then a
switching controller solving Problem 1 can be defined by the global
invariant (line 17-23). In each iteration, for each mode (line 4-
8), we compute a new mode invariant (line 5), a new differential
invariant that can guarantee the safety requirement (line 6) by
invokingAlgorithm 1 (line 6), and a new initial condition satisfying
the safety requirement (line 7); for each discrete transition (line
9-12), we compute a new guard condition without considering
the discrete delay (line 10), and then a new guard condition
considering the discrete delay by calling Algorithm 2 (line 11); then
we test whether a global invariant that can guarantee the safety
requirement is achieved (line 13-15).

The soundness of our approach is guaranteed by the following
theorem.

Theorem 8 (Soundness). Given a hybrid automaton H =
(𝑄,𝑋,𝑈 , 𝐼,Ξ, 𝐹 , 𝐸, 𝐷,𝐺, 𝑅) and its safety property S, a dHA H∗ =
(𝑄,𝑋,𝑈 ∗, 𝐼∗,Ξ∗, 𝐹 , 𝐸, 𝐷,𝐺∗, 𝑅) constructed by Algorithm 3 fulfills
the three requirements (r1)-r(3) in Problem 1.

Proof. We first prove that 𝐼∗ is a safe global invariant ofH∗ if
Algorithm 3 terminates and returns H∗ = (𝑄,𝑋,𝑈 ∗, 𝐼∗,Ξ∗, 𝐹 , 𝐸,
𝐷,𝐺∗, 𝑅), i.e., the conditions (c1) and (c2) in Definition 11 with
restriction of safety requirement S hold. From line 6 in Algorithm
3, Definition 6 and the soundness of Algorithm 1, we have 𝐼∗ (𝑞) is
a safe differential invariant of (Ξ∗ (𝑞), 𝑓𝑞, 𝐼 (𝑞), then (c1) holds. Let
𝑒 = (𝑞, 𝑞′) ∈ 𝐸, and 𝝃w𝝓 (𝑡) ∈ 𝐺

∗ (𝑒). From line 5, 6 in Algorithm 3,
we have{

𝝓

����� ∃𝑒 = (𝑞′, 𝑞) ∈ 𝐸, ∃𝑡 > 0, ∃𝜃 ∈ [−𝑟𝑞
𝑘
, 0] .

𝝓 = 𝑅(𝑒, x𝝓𝑡 (·)) ∧ x
𝝓
𝑡 (𝜃 ) ∈ 𝐺 (𝑒)

}
⊆ 𝐼∗ (𝑞) .

From line 11, it follows
𝐺∗𝑛 (𝑒) = BackReach(𝐺𝑛 (𝑒), 𝐷 (𝑒), 𝐼𝑛 (𝑞), 𝝆, 𝜏),

which implies (c2) holds. Now, we prove that (r1), (r2) and (r3) in
Problem 1 are satisfied. Since each 𝐼𝑛 (𝑞) is calculated by Algorithm
1, which can guarantee 𝐼𝑛 (𝑞) is safe, thusH∗ is safe, i.e., (r1) holds.
In Algorithm 3, line 7 makes Ξ∗ ⊆ Ξ∩S, line 6 makes 𝐼∗ ⊆ 𝐼 . From
line 19, and 𝐼∗ ⊆ 𝐼 , it follows𝑈 ∗ ⊆ 𝑈 . For any 𝑒 ∈ 𝐸, as there exists
𝜃 ∈ [−𝑟𝑞

𝑘
, 0] such that x𝝓𝑡 (𝜃 ) ∈ 𝐺∗ (𝑒), hence x

𝝓
𝑡+𝐷 (𝑒) (𝜃 ) ∈ 𝐺 (𝑒).

From line 10 and 11, it follows x𝝓
𝑡+𝐷 (𝑒) (𝜃 ) ∈ 𝐺 (𝑒) ∩ 𝐼

∗ (𝑞). Thus,
(r2) holds. Clearly, 𝐼∗ contains all safe trajectories ofH , so ifH is
non-blocking with respect to the safe requirement S, then H∗ is
also non-blocking, i.e., (r3) holds. □

Example 3. We continue to consider the heating system example.
Let 𝐾1 = 0.25, 𝐾2 = 0.15, ℎ = 32, 𝑤1 = 0.5, and 𝑤2 = 3 for
the dHA of the heating system in Example 1. For mode 𝑞1, 𝑀𝑞1 =
−0.1 is trivially a Metzler matrix. Applying Theorem 2, we have
𝑇 ∗𝑞1

= 56.567s. The same procedure applies to mode 𝑞2, we have
𝑇 ∗𝑞2

= 60.043s. By Algorithm 3, we obtain differential invariants
𝐼∗ (𝑞1) = {𝑥 | 30 ≤ 𝑥 ≤ 84.91} and 𝐼∗ (𝑞2) = {𝑥 | 30.2056 ≤
𝑥 ≤ 90}. Also, strengthened guarded conditions on 𝑒1 and 𝑒2 can
be easily computed as 𝐺∗ (𝑒1) = {𝑥 | 30 ≤ 𝑥 ≤ 84.30} and
𝐺∗ (𝑒2) = {𝑥 | 34.5 ≤ 𝑥 ≤ 90}. The over-approximation of the
reachable sets from the initial sets in the two modes respectively are
displayed in Figure 3.
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Mode 𝜖 𝜁 𝛽 𝜂 𝛾 𝛿

𝑞1 0.001
[
1
1

]
1 12.58 5.1642 12.58

𝑞2 0.001
[
1
1

]
1 24.66 4.2270 24.66

Table 1: The value of parameters in Section 5.1

Mode 𝜖 𝜁 𝛽 𝜂 𝛾 𝛿 𝑔𝑚𝑎𝑥 G 𝜄

𝑞1 10−4
[
1
1

]
1 0.8 0.626 0.8 0.008 0.078 0.2

𝑞2 10−4
[
1
1

]
1 1.85 0.88 1.85 0.0046 0.0746 0.2

Table 2: The value of parameters in Section 5.2

5 EXPERIMENTAL RESULTS
We implement our algorithms 1 in Matlab, based upon the interval
data-structure in CORA [1]. We adopt the discretization param-
eters from [1] and [11] for the two examples, respectively. All
experiments are performed on an Intel(R) Core(TM) i5-8265U CPU
(1.60GHz) with 8GB RAM.

5.1 Low-pass Filter System
Wefirst consider a low-pass filter systemwith delays, adapted from
CORA [1]. It includes two first order low-pass filters 𝑞1 and 𝑞2,
represented by

𝑞1 :


{
¤𝑥1 (𝑡) = −14.58𝑥1 (𝑡) + 2𝑥1 (𝑡 − 0.1) + 0.5 sin(𝑡)
¤𝑥2 (𝑡) = −20.05𝑥2 (𝑡) + 2𝑥2 (𝑡 − 0.1) + 0.5 sin(𝑡)

Ξ(𝑞1) = [−1, 1] × [−2, 2]
𝐼 (𝑞1) = R2,

𝑞2 :


{
¤𝑥1 (𝑡) = −32.66𝑥1 (𝑡) + 8𝑥1 (𝑡 − 0.1) + 0.5 sin(𝑡)
¤𝑥2 (𝑡) = −47.25𝑥2 (𝑡) + 8𝑥2 (𝑡 − 0.1) + 0.5 sin(𝑡)

Ξ(𝑞2) = [−2.25, 2.5] × [−2.5, 2.5]
𝐼 (𝑞2) = R2 .

There are two discrete transitions 𝑒1 = (𝑞1, 𝑞2) and 𝑒2 = (𝑞2, 𝑞1)
between 𝑞1 and 𝑞2, and the corresponding guard conditions are
𝐺 (𝑒1) = {(𝑥1, 𝑥2) ∈ R2 | 𝑥1 ≥ 0.7}, 𝐺 (𝑒2) = {(𝑥1, 𝑥2) ∈
R2 | 𝑥2 ≥ 0.6}. Reset functions are identity mappings. Moreover,
both discrete transitions are taken with delays 𝐷 (𝑒1) = 0.02
and 𝐷 (𝑒2) = 0.02, respectively. The safety requirement is S =
{(𝑥1, 𝑥2) ∈ R2 | −2.7 ≤ 𝑥1 ≤ 2.7 ∧ −2.6 ≤ 𝑥2 ≤ 2.6}.

For mode 𝑞1, 𝑀𝑞1 =

[
−12.58 0

0 −18.05

]
is obviously a Metzler

matrix satisfying the two properties listed in Proposition 1. By
Theorem 2, the differential invariant synthesis problem is reduced
to a 𝑇 ∗𝑞1

-differential invariant synthesis problem, where 𝑇 ∗𝑞1
=

0.5782𝑠 is computed with the parameters listed in Table 1. Sim-

ilarly, for mode 𝑞2, 𝑀𝑞2 =

[
−4.66 0
0 −39.25

]
is also a Metzler

matrix satisfying the two properties listed in Proposition 1. 𝑇 ∗𝑞2
=

0.7605𝑠 is computed with the parameters listed in Table 1. The
computed over-approximation of the reachable set within 𝑇 ∗𝑞1

for
mode 𝑞1 using our approach is given in Fig. 4(a) and 4(b). The
over-approximation of the reachable set in 𝑇 ∗𝑞2

for mode 𝑞2 is
shown in Figure 4(c) and 4(d) with our approach. Clearly, the
delay dynamical system in this mode satisfies the ball convergence
property.The guard conditions without discrete delays are𝐺 (𝑒1) =
{(𝑥1, 𝑥2) ∈ R2 | 0.7 ≤ 𝑥1 ≤ 1 ∧ −2 ≤ 𝑥2 ≤ 2} and
𝐺 (𝑒2) = {(𝑥1, 𝑥2) ∈ R2 | −1 ≤ 𝑥1 ≤ 1 ∧ 0.6 ≤ 𝑥2 ≤ 2}. Finally,
applying Algorithm 2, the strengthened guard conditions 𝐺∗ (𝑒1)
1Available at https://github.com/YunjunBai/Inv_DHA.

and𝐺∗ (𝑒2), that can guarantee the safety, are computed as showed
in Fig. 5.

5.2 Predator-prey Populations
We consider a nonlinear predator-prey population dynamics under
seasonal succession: a hybrid Lotka–Volterra competition model
with delays adapted from [21]. Two modes for two seasons are
modelled as follows:

𝑞1 :


{
¤𝑥1 (𝑡) = −𝑥1 (𝑡) (1 − 𝑥1 (𝑡 )

100 ) + 0.2𝑑1 +𝑤11 (𝑡)
¤𝑥2 (𝑡) = −1.5𝑥2 (𝑡)(1 − 𝑥2 (𝑡 )

100 ) + 0.1𝑑2 +𝑤12 (𝑡)
Ξ(𝑞1) = [−0.2, 0.2] × [−0.1, 0.1]
𝐼 (𝑞1) = R2 .

𝑞2 :


{
¤𝑥1 (𝑡) = −2.5𝑥1 (𝑡) + 0.2𝑥1 (𝑡 − 0.01)(1 + 𝑥2 (𝑡)) +𝑤21 (𝑡)
¤𝑥2 (𝑡) = −2𝑥2 (𝑡) + 0.15𝑥2 (𝑡 − 0.01) (1 + 𝑥2 (𝑡)) +𝑤22 (𝑡)

Ξ(𝑞2) = [−0.2, 0.2] × [−0.2, 0.2]
𝐼 (𝑞2) = R2 .

where 𝑞1 and 𝑞2 represent two seasons, 𝑑1 = 𝑥1 (𝑡−0.1) (1+𝑥1 (𝑡)),
𝑑2 = 𝑥2 (𝑡 − 0.1) (1 + 𝑥2 (𝑡)), 𝑥1 is the number of prey (for example,
rabbits), 𝑥2 is the number of some predator (for example, foxes),
𝑤𝑖 𝑗 (𝑡) = 0.07 cos 2𝑡 (𝑖, 𝑗 = 1, 2) denote the perturbations. The real
coefficients describe the interaction of the two species, the intrinsic
growth rate and the environment capacity of the population in
season 𝑖 , respectively. There are two discrete transitions 𝑒1 =
(𝑞1, 𝑞2) and 𝑒2 = (𝑞2, 𝑞1) betweenmode𝑞1 andmode𝑞2, and their
corresponding guard conditions initially are 𝐺 (𝑒1) = {(𝑥1, 𝑥2) ∈
R2 | −0.06 ≤ 𝑥1 ≤ 0.06 ∧ −0.06 ≤ 𝑥2 ≤ 0.07}, 𝐺 (𝑒2) =
{(𝑥1, 𝑥2) ∈ R2 | −0.05 ≤ 𝑥1 ≤ 0.05 ∧ −0.06 ≤ 𝑥2 ≤ 0.06}.
Reset functions are identity mappings. Moreover, both discrete
transitions are taken with delays 𝐷 (𝑒1) = 1 and 𝐷 (𝑒2) = 0.55,
respectively. The safety requirement is S = {(𝑥1, 𝑥2) ∈ R2 |
−0.20 ≤ 𝑥1 ≤ 0.21 ∧ −0.21 ≤ 𝑥2 ≤ 0.22}.

By linearizing mode 𝑞1, we have:{
¤𝑥1 (𝑡) = −𝑥1 (𝑡) + 0.2𝑥1 (𝑥 − 0.1) +𝑤11 (𝑡)
¤𝑥2 (𝑡) = −1.5𝑥2 (𝑡) + 0.1𝑥2 (𝑥 − 0.1) +𝑤12 (𝑡)

.

Clearly, 𝑀𝑞1 =

[
−0.8 0
0 −1.4

]
is a Metzler matrix satisfying the

two properties listed in Proposition 1. By Theorems 6 and 7, the
differential invariant synthesis problem for mode 𝑞1 is reduce to a
𝑇 ∗𝑞1

-differential invariant synthesis problem, where 𝑇 ∗𝑞1
= 4.6825s

is computed using our approachwith the parameters listed in Table
2.

Here it is noteworthy that 𝜄 = 0.2, covering the entire initial set.
Similarly, for mode 𝑞2, the linearization of its dynamics is :{

¤𝑥1 (𝑡) = −2.5𝑥1 (𝑡) + 0.2𝑥1 (𝑡 − 0.01) +𝑤21 (𝑡)
¤𝑥2 (𝑡) = −2𝑥2 (𝑡) + 0.15𝑥2 (𝑡 − 0.01) +𝑤22 (𝑡)

.
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(a) (b) (c) (d)

Figure 4: In the low-pass filter system, the over-approximation of the reachable set of mode 𝑞1 is shown in (a)&(b), and the one
of mode 𝑞2 is shown in (c)&(d). All trajectories, marked with blue for mode 𝑞1 (yellow for mode 𝑞2), starting from the states
contained in the first ball 𝔅(𝑤𝑚𝑎𝑥

𝛿
), are always enclosed in the second ball 𝔅(𝑤𝑚𝑎𝑥

𝜂
) denoted by two red dashed lines.
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Figure 5: The synthesized switching controller on the edge
𝑒1 and 𝑒2 of the low-pass filter system. 𝐺 is indicated by the
blue box, and 𝐺∗ is indicated by the red region. The green
box stands for the forward reachable set in 0.01s from𝐺∗ (𝑒1)
(0.02s from𝐺∗ (𝑒2)).

Clearly, 𝑀𝑞2 =

[
−2.3 0
0 −1.85

]
is also a Metzler matrix satisfying

the two properties listed in Proposition 1. With the parameters
listed in Table 2, a bounded time 𝑇 ∗𝑞2

= 3.3326s is computed. The
computed over-approximation of the reachable set within 𝑡 ≥ 𝑇 ∗𝑞1

for mode 𝑞1 is showed in Fig. 6(a)&6(b). And the computed over-
approximation of the reachable set within 𝑡 ≥ 𝑇 ∗𝑞2

for mode 𝑞2 are
shown in Fig. 6(c)&6(d) using our approach. The guard conditions
without discrete delays are computed as 𝐺 (𝑒1) = {(𝑥1, 𝑥2) ∈
R2 | −0.06 ≤ 𝑥1 ≤ 0.06 ∧ −0.06 ≤ 𝑥2 ≤ 0.07} and 𝐺 (𝑒2) =
{(𝑥1, 𝑥2) ∈ R2 | −0.05 ≤ 𝑥1 ≤ 0.05 ∧ −0.06 ≤ 𝑥2 ≤ 0.06}.
Finally, applying Algorithm 2, the strengthened guard conditions
𝐺∗ (𝑒1) and 𝐺∗ (𝑒2), which can guarantee the safety requirement,
are obtained as shown in Fig. 7.

6 CONCLUSION
We introduced the notion of delay hybrid automata (dHA) in order
to model continuous delays and discrete delays in cyber-physical
systems uniformly. Based on dHA, we proposed an approach
on how to automatically synthesize a switching controller for a
delay hybrid system with perturbations against a given safety

requirement. To the end, we presented a new approach for over-
approximating a nonlinear DDE with perturbation using ball-
convergence analysis based on Metzler matrix. Two case studies
were provided to indicate the effectiveness and efficiency of the
proposed approach.

For future work, it deserves to investigate how to synthesize
a switching controller for a dHA against much richer properties
defined e.g. by signal temporal logic [23] or metric temporal logic
[20]. In addition, it is interesting to consider our method to deal
with more general forms of DDEs. Besides, it is a challenge how
to guarantee the completeness of our approach, which essentially
corresponds to a long-standing problem on how to compute reach-
able sets of hybrid systems in the infinite time horizon.
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