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Abstract— In this paper we propose a semi-definite program-
ming method for computing outer-approximations (i.e., super-
sets) of controlled reach-avoid sets of discrete-time polynomial
systems subject to control inputs. The controlled reach-avoid set
is a set of all initial states that there exists at least one control
policy which steers the system starting from each of them to
enter a specified target set in finite time while avoiding a given
unsafe set till the target is hit. First, a Bellman type equation,
whose unique bounded solution can characterize the exact
controlled reach-avoid set, is derived. By relaxing this equation,
a set of quantified inequalities for outer-approximating the
controlled reach-avoid set is obtained. Via comparing to a set of
constraints in state-of-the-art methods on occupation measures,
we find that each has its own strengths and can complement
each other in outer-approximating controlled reach-avoid sets.
As a consequence, we integrate them and obtain a new set of
constraints, which is weaker and thus contributes to the gain of
tighter outer-approximations. The resulting set of constraints
can be encoded into a semi-definite program via the sum-of-
squares decomposition for multivariate variables, which can
be solved efficiently via interior point methods in polynomial
time. Finally, several examples demonstrate the benefits of our
method on gaining tighter outer-approximations of controlled
reach-avoid sets over existing methods.

I. INTRODUCTION

Computational reachability analysis, which involves the
computations of reachable states, is a popular tool for formal
design and verification of safety-critical systems ranging
from intelligent highway systems, to aircraft management
systems, to computer and communication networks, etc [20],
[3]. It has been widely studied over the last three decades
in several disciplines including control theory, computer
science and applied mathematics. Among the many possible
extensions beyond reachability analysis, reach-avoid analysis
is of fundamental importance in engineering. It can formal-
ize many important engineering problems such as collision
avoidance [15], path planning [4] and target surveillance [7],
[19]. The reach-avoid problem comes in the two variants of
computing a reach-avoid set and of verifying reach-avoid
properties for systems featuring a given initial state set [21].
In this paper, we focus our attention on computing a reach-
avoid set. A reach-avoid set is the set of all initial states
such that a system starting from them is guaranteed to
(eventually or within a given finite horizon) reach a specified
target set while avoiding a given unsafe set till hitting the
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target. In general, the exact computation of reach-avoid sets
is impossible for dynamical and hybrid systems. Their inner-
and outer-approximations are therefore studied in the existing
literature. An inner-approximation is a subset of the reach-
avoid set, starting from which the satisfaction of the reach-
avoid specification can be guaranteed. In contrast, an outer-
approximation is a super-set of the reach-avoid set, which
can be used to either synthesize reach-avoid controllers
(e.g.,[8]) or falsify the reach-avoid specification. If an outer-
approximation does not intersect the given initial set, the
system does not satisfy the reach-avoid property definitely.

In the last decades, reach-avoid problems have been widely
investigated for both continuous-time systems (modeled by
differential equations) and discrete-time systems (modeled
by difference equations). For continuous-time systems, they
have been studied in the Hamilton-Jacobi reachability frame-
work, e.g., [16], [2], [14], [5], [6], which links reach-
avoid sets with viscosity solutions to Hamilton-Jacobi equa-
tions and finally reduces the problem of computing reach-
avoid sets to the problem of addressing Hamilton-Jacobi
equations. However, traditional numerical methods for solv-
ing Hamilton-Jacobi equations require gridding the state
space, rendering these methods only scalable on systems
of special structures. Recently, via relaxing Hamilton-Jacobi
equations, a more scalable method exploiting semi-definite
programming for inner-approximating reach-avoid sets has
been suggested in [22]. On the other hand, moment-based
programming methods were proposed for outer- as well
as inner-approximating reach-avoid sets in [9], [10], [11],
[18], [13], [24]. In contrast, studies on reach-avoid analysis
for discrete-time systems are relatively rare compared to
those on continuous-time systems, although discrete-time
systems are important in practice and describe the evolution
of a vast class of systems such as robot, digital controllers
and physical systems simulated by digital computers [1].
A convex optimization method, which is derived from a
system of equations, was proposed in [23] to study inner-
approximate reachability analysis for discrete-time polyno-
mial systems free of control inputs. More recently, a moment-
based method was further extended to outer-approximate
controlled reach-avoid sets as well as synthesize reach-avoid
controllers for discrete-time polynomial systems subject to
control inputs in [8].

In this paper, we consider the computation of controlled
reach-avoid sets for discrete-time polynomial systems subject
to control inputs. Our method begins with the derivation of
a Bellman-type equation, whose unique bounded solution
is able to characterize the exact controlled reach-avoid set.
Due to the impossibility in solving the derived equation



generally, we further relax it and construct a set of quantified
inequalities whose solutions are able to characterize outer-
approximations of the controlled reach-avoid set. Comparing
with the set of constraints in [8] in terms of structures and
performances for computing outer-approximations, we find
that these two sets of inequality constraints have their own
strengths and can complement each other. Therefore, we
integrate them and obtain a new set of inequality constraints.
This new set of constraints combines the advantages of
these two sets of constraints and thus can provide less
conservative outer-approximations. We encode the new set
of constraints into a semi-definite program via the sum-of-
squares decomposition for multivariate variables, which falls
within the convex optimization framework and can be solved
efficiently in polynomial time via interior point methods.
Finally, several examples demonstrate the performance of
our proposed method and the results show that our method
indeed can provide tighter outer-approximations of the con-
trolled reach-avoid set over the method in [8]. The main
contributions of this paper are summarized as follows:

1) We derive a Bellman type equation for the first time,
the strict zero super-level set of whose unique bounded
solution is equal to the controlled reach-avoid set.

2) A novel set of quantified inequalities, which is built
upon the set of constraints from relaxing the aforemen-
tioned Bellman type equation and the set of constraints
in [8], is proposed for computing outer-approximations
of the controlled reach-avoid set. This set of inequal-
ities can be encoded into a semi-definite program.
The experimental results based on several examples
show that our method is able to compute tighter outer-
approximations, as opposed to the method in [8].

II. PRELIMINARIES

In this section we present discrete-time polynomial sys-
tems and controlled reach-avoid sets under consideration in
this paper. Before formulating the reach-avoid problem, let
us introduce some basic notions used throughout this paper:
N stands for the set of nonnegative integers and R for the
set of real numbers. [0, k) with k ∈ N is the family of
integers {0, . . . , k−1}. R[·] denotes the ring of polynomials
in variables given by the argument. Vectors are denoted by
boldface letters.

∑
[x] denotes the set of sum of squares

polynomials, i.e.,

∑
[x] =

p(x) ∈ R[x]

∣∣∣∣∣∣∣
p(x) =

k∑
i=1

q2i (x),

qi(x) ∈ R[x], i = 1, . . . , k

 .

Definition 1: A discrete-time polynomial system subject
to control inputs (abbr. DPSC in the sequel) is a system
being modeled by iterative nonlinear maps of the following
form:

x(l + 1) = f(x(l),u(l)),∀l ∈ N
x(0) = x0 ∈ Rn (1)

where x(·) : N → Rn are state vectors, u(·) : N → U
are control inputs with U = {u ∈ Rm | q(u) ≤ 0} being a

compact set in Rn with q(u) ∈ R[u], and f(·, ·) : Rn×U →
Rn with f(x,u) ∈ R[x,u].

The trajectory of DPSC is driven by a control signal,
which is defined as follows.

Definition 2: A control signal π for DPSC is a sequence
(u(l))l∈N, where u(·) : N → U . We define U as the set of
all control signals.

Given a control signal π ∈ U and an initial state x0 ∈ Rn,
we can obtain a trajectory of DPSC.

Definition 3: Given an initial state x0 ∈ Rn and a control
signal π = (u(l))l∈N, the trajectory of DPSC, induced by
x0 and π, is a sequence (ϕπ

x0
(l))l∈N satisfying ϕπ

x0
(0) = x0

and
ϕπ

x0
(l + 1) = f(ϕπ

x0
(l),u(l)),∀l ∈ N.

Given an open target set T and a compact safe set X ,
where T and X are defined by polynomial inequations as

T = {x ∈ Rn | g(x) < 0},
X = {x ∈ Rn | h0(x) ≤ 0}

(2)

with g(x), h0(x) ∈ R[x] and T ⊆ X , the controlled reach-
avoid set is defined as follows.

Definition 4: The controlled reach-avoid set R for DPSC
is the set of all initial states x0 ∈ X such that starting from
x0, there exists at least one control signal π ∈ U to ensure
that the resulting trajectory can hit the target set T in a finite
time k ∈ N while staying inside the safe set X before k, i.e.,

R =

x0 ∈ X

∣∣∣∣∣∣∣
∃π ∈ U .∃k ∈ N.

[ϕπ
x0

(k) ∈ T ∧
k∧

l=0

ϕπ
x0

(l) ∈ X ]

 .

An outer-approximation is a superset of the controlled
reach-avoid set R.

III. OUTER-APPROXIMATING CONTROLLED
REACH-AVOID SETS

In this section, we present our method to calculate outer-
approximations of the controlled reach-avoid set R. Our
method originates from a Bellman-type equation, the strict
zero super-level set of whose unique bounded solution is
equal to the controlled reach-avoid set R. The derivation
of the Bellman type equation is detailed in Subsection
III-A. Then, based on the derived Bellman-type equation
and the set of constraints in [8], we obtain a novel set
of constraints, which can be encoded into a semi-definite
program, to outer-approximate the controlled reach-avoid set
R. The construction of this set of constraints is elucidated
in Subsection III-B.

A. Bellman-type Equations

This section introduces the derivation of the Bellman
equation aforementioned. Its derivation relies on an auxiliary
controlled switched system, which is induced via freezing the
dynamics of DPSC outside the safe set X .

The controlled switched discrete-time nonlinear system
(or, CSDNS) from DPSC specified by (x0,X , f, U) is a
quintuple (x0, L̂, X̂ , Ŷ, F̂) where:



- L̂ = {1, 2} is a set of two locations;
- X̂ is the state constraint set;
- Ŷ = {X̂i, i = 1, 2} is a set of the safety constraints

for each location;
- x0 ∈ X̂ is the initial state;
- F̂ = {f̂i(·, ·) : X̂i × U → Rn, i = 1, 2} are the

dynamics;
which are constructed from DPSC as following:

1) X̂ = {x ∈ Rn | h(x) ≤ 0} with h(x) ∈ R[x] and

X̂ ⊇ {x ∈ Rn | x = f(y,u),y ∈ X ,u ∈ U} ∪ X ,

which means that X̂ has to contain the union of X and
all reachable states starting from X in one step;

2) X̂1 = X = {h0(x) ≤ 0};
3) X̂2 = X̂ \ X = {x ∈ Rn | h(x) ≤ 0 ∧ −h0(x) < 0};
4) f̂1(x,u) = f(x,u);
5) f̂2(x,u) = x.
Similar to DPSC, trajectories of CSDNS are defined as

follows.
Definition 5: Given an initial state x0 ∈ X̂ and a control

signal π = (u(l))l∈N, the trajectory of CSDNS, induced by
x0 and π, is a sequence (ϕ̂π

x0
(l))l∈N satisfying the iterative

piece-wise polynomial map

ϕ̂π
x0
(l + 1) = f̂(ϕ̂π

x0
(l),u(l)),∀l ∈ N,

where ϕ̂π
x0
(0) = x0 and

f̂(x,u) := 1X̂1
(x) · f̂1(x,u) + 1X̂2

(x) · f̂2(x,u) (3)

with f̂(·, ·) : S × U → Rn, S = X̂i if x ∈ X̂i, and 1X̂i
(·) :

X̂i → {0, 1}, i = 1, 2, representing the indicator function of
the set X̂i, i.e.,

1X̂i
(x) :=

{
1, if x ∈ X̂i,

0, if x /∈ X̂i.
The problem of computing the controlled reach-avoid set

R for DPSC is equivalently transformed into the problem
of computing the controlled reach set for CSDNS, i.e., the
controlled reach-avoid set R is equal to the set of all initial
states such that there exists a control signal steering CSDNS
starting from each of them to eventually enter the target set
T . This statement is formalized in Proposition 1.

Proposition 1: The reach-avoid set R in Definition 4 is
equal to the controlled reach set R̂ of CSDNS, where

R̂ =
{
x0 ∈ X

∣∣∣ ∃π ∈ U .∃k ∈ N.ϕ̂π
x0
(k) ∈ T .

}
Proof: It is observed that the states in the unsafe set X̂2

are invariant for CSDNS. Therefore, trajectories of CSDNS
is no longer able to enter the target set once they enter the
unsafe set. Consequently, if they enter the target set, they
can not leave the safe set before the first hitting time. Also,
trajectories of DPSC and CSDNS starting from the state
x0 ∈ X with the same signal π coincide until they go outside
the safe set X . Therefore, we have the conclusion.

According to Proposition 1, we can equivalently study the
computation of R̂ instead.

Next, based on CSDNS, we construct a discounted value
function, whose strict zero super-level set is equal to the
controlled reach set R̂ as stated in Proposition 2. This
discounted value function satisfies the dynamic programming
principle as shown in Lemma 1, and is finally reduced to
the unique bounded solution to a Bellman type equation in
Theorem 1. It is formalized as below:

V (x) := sup
π∈U

sup
l∈N

αl1T (ϕ̂
π
x(l)) (4)

where α ∈ (0, 1) is the discount factor and 1T (·) is the
indicate function of the set T .

Proposition 2: R = {x ∈ X | V (x) > 0}.
Proof: According to Proposition 1, we just need to

show that R̂ = {x ∈ X | V (x) > 0}.
We first show that R̂ ⊆ {x ∈ X | V (x) > 0}. Let

x0 ∈ R̂. Then there exists π ∈ U and k ∈ N such that
ϕ̂π

x0
(k) ∈ T holds. Thus, we have that

V (x0) ≥ αk1T (ϕ̂
π
x0
(k)) = αk > 0,

implying that R̂ ⊆ {x ∈ X | V (x) > 0}.
Next, we show that {x ∈ X | V (x) > 0} ⊆ R̂. Let x0 ∈

{x ∈ X | V (x) > 0}, indicating that there exists δ > 0 such
that V (x0) = δ. Since liml→∞ αl = 0, we have that there
exists π ∈ U and k ∈ N such that ϕ̂π

x0
(k) ∈ T . According to

Proposition 1, x0 ∈ R̂ and thus {x ∈ X | V (x) > 0} ⊆ R̂.
In summary, we have that R = {x ∈ X | V (x) > 0}.
Lemma 1: For x ∈ X̂ and k ∈ N,

V (x) = sup
π∈U

max{ sup
l∈[0,k)

αl1T (ϕ̂
π
x(l)), α

kV (ϕ̂π
x(k))}, (5)

where α ∈ (0, 1).
Proof: Since V (x) = supπ∈U supl∈N αl1T (ϕ̂

π
x(l)), we

have that

V (x) =

{
0, if x ∈ X̂ \ R̂,

αl0 , if x ∈ R̂,
(6)

where l0 = infπ∈U{l ∈ N | ϕ̂π
x(l) ∈ T }, which is the first

hitting time of the target set T . Thus, we just need to prove
that

sup
π∈U

max{ sup
l∈[0,k)

αl1T (ϕ̂
π
x(l)), α

kV (ϕ̂π
x(k))}

=

{
0, if x ∈ X̂ \ R̂,

αl0 , if x ∈ R̂.

Firstly, let x0 ∈ R̂. If l0 < k, we have that

sup
π∈U

max{ sup
l∈[0,k)

αl1T (ϕ̂
π
x0
(l)), αkV (ϕ̂π

x0
(k))} = αl0 .

Otherwise, if l0 ≥ k, we have that supl∈[0,k) 1T (ϕ̂
π
x0
(l)) = 0

for π ∈ U , implying that

sup
π∈U

max{ sup
l∈[0,k)

αl1T (ϕ̂
π
x0
(l)), αkV (ϕ̂π

x0
(k))}

= sup
π∈U

αkV (ϕ̂π
x0
(k)) = αkαl0−k = αl0 .



Next, let x0 ∈ X̂ \ R̂. Then, αl1T (ϕ̂
π
x0
(l)) ≡ 0

for l ∈ N and π ∈ U holds. Thus, we have that
supπ∈U max{supl∈[0,k) α

l1T (ϕ̂
π
x0
(l)), αkV (ϕ̂π

x0
(k))} = 0.

In summary, we have the conclusion.
According to Lemma 1, we deduce that the function V (x)

in (4) is the unique bounded solution to a Bellman type
equation.

Theorem 1: The value function V (·) : X̂ → R in (4) is
the unique bounded solution to the following Bellman type
equation

min{V (x)− 1T (x), V (x)− α sup
u∈U

V (f̂(x,u))} = 0 (7)

with α ∈ (0, 1).
Proof: According to Lemma 1, the value function V (x)

in (4) satisfies equation (5) when k ∈ N. Letting k = 1
in (5), we obtain that V (x) is a solution to the Bellman
type equation (7). The boundedness of the value function
V (·) : X̂ → R can easily be judged from (6).

Next, we prove the uniqueness. Assume that there exists
another bounded function V ′(·) : X̂ → R satisfying equation
(7), and there exists y ∈ X̂ such that V (y) ̸= V ′(y). Since
both V (y) and V ′(y) satisfy equation (7), we have that

|V (y)− V ′(y)|
=| sup

u∈U
max{1T (y), αV (f̂(y,u))}

− sup
u∈U

max{1T (y), αV ′(f̂(y,u))}|

≤α sup
u∈U

|V (f̂(y,u))− V ′(f̂(y,u))|

Therefore,

|V (y)−V ′(y)| ≤ αk sup
π∈U

|V (ϕ̂π
y(k))−V ′(ϕ̂π

y(k))|,∀k ∈ N.

Since the functions V (x) and V ′(x) are both bounded over
x ∈ X̂ , we conclude that |V (y − V ′(y)| = 0, which
contradicts the fact that V (y) ̸= V ′(y).

Consequently, V (·) : X̂ → R with α ∈ (0, 1) is the unique
bounded solution to equation (7).

B. Outer-approximating Controlled Reach-avoid Sets

In this subsection we present our semi-definite pro-
gramming (abbr. SDP) method for computing outer-
approximations of the controlled reach-avoid set.

Based on the system of equations in Theorem 1, we derive
a set of inequalities for outer-approximating the controlled
reach-avoid set R.

Corollary 1: If there exists a bounded function v(·) :
X̂ → R satisfying the following constraints

v(x) ≥ αv(f̂(x,u)),∀u ∈ U,∀x ∈ X \ T (8)
v(x) ≥ 1,∀x ∈ T (9)

where α ∈ (0, 1). Then the strict zero super-level set of the
function v(·) : X̂ → R is an outer-approximation of the
reach-avoid set R, i.e.

R ⊆ {x ∈ X | v(x) > 0}.

Proof: For x0 ∈ R, it holds that ∃π ∈ U .∃k ∈
N.ϕ̂π

x0
(k) ∈ T . From (8) and (9), we have that

v(x) ≥ αv(ϕ̂π
x0
(1)) ≥ · · · ≥ αkv(ϕ̂π

x0
(k)) ≥ αk > 0 (10)

Therefore, x0 ∈ {x ∈ X | v(x) > 0}, i.e. R ⊆ {x ∈ X |
v(x) > 0}.

The system of inequalities (8)-(9) can be equivalently
transformed into the following inequalities (11)-(12) respec-
tively via removing the indicator function:

v(x) ≥ αv(f(x,u)),∀u ∈ U,∀x ∈ X \ T (11)
v(x) ≥ 1,∀x ∈ T (12)

where α ∈ (0, 1). It is observed that when α = 1, we can
also calculate an outer-approximation by solving inequalities
(11)-(12). It is concluded from (10) that the computed outer-
approximation is {x ∈ X̂ | v(x)− 1 ≥ 0}.

Therefore, we can solve the following optimization

inf

∫
X
v(x)dx

s.t.(11) − (12),
(13)

where α ∈ (0, 1] is a user-defined discount factor.
The problem of addressing optimization (13) can be re-

laxed into an SDP problem as shown in (14) via sum-of-
squares decomposition for multivariate polynomials, which
can be solved efficiently in polynomial time via interior point
methods.

min c · ŵ
s.t.
v(x)− αv(f(x,u)) + s0(x,u)h0(x)

− s1(x,u)g(x) + s2(x,u)q(u) ∈
∑

[x,u],

v(x)− 1 + s3(x)g(x) ∈
∑

[x],

(14)

where α ∈ (0, 1] is a user-defined discount factor, c · ŵ =∫
X v(x)dx, ŵ is the constant vector computed by integrating

the monomial in v(x) ∈ R[x] over X , c is the vector
composed of unknown coefficients in v(x) ∈ R[x], and
si(x,u) ∈

∑
[x], i = 0, . . . , 2, and s3(x) ∈

∑
[x].

Also, we notice that the problem of calculating outer-
approximations of the controlled reach-avoid set was reduced
to an optimization problem in [8]. For convenient reference,
the optimization problem is presented below.

inf

∫
X
w(x)dx

s.t. v(x)− v(f(x,u)) ≥ 0, ∀x ∈ X , ∀u ∈ U,

w(x)− v(x)− 1 ≥ 0,∀x ∈ X ,

w(x) ≥ 0, ∀x ∈ X ,

v(x) ≥ 0, ∀x ∈ T .

(15)

Via solving it, which is encoded into SDP (9) in [8], we can
obtain an outer-approximation {x ∈ X | v(x) ≥ 0}. Due to
space limitation, we do not provide SDP (9) in [8] here and
use SDP O to denote in the sequel.



Comparing constraints in optimizations (13) and (15), we
find that constraints in optimizations (13) are weaker and
thus have more solutions than ones in (15). First, unlike the
constraint v(x)− v(f(x,u)) ≥ 0,∀x ∈ X ,∀u ∈ U in (15),
the term v(x) − αv(f(x,u)) in optimization (13) is not
required to be non-negative over the target set T . Second,
if there exists v(x) satisfying v(x)− v(f(x,u)) ≥ 0,∀x ∈
X \ T ,∀u ∈ U , it also satisfies v(x) − αv(f(x,u)) ≥
0,∀x ∈ X ,∀u ∈ U , where α = 1. This observation leads
to the conclusion that constraints in optimizations (13) have
more solutions than ones in (15), which is also formally
justified in Proposition 3.

Proposition 3: If v(x) is a solution to optimization (15),
v′(x) := v(x) + 1 is a solution to optimization (13) with
α = 1 as well.

Proof: If v(x) is a solution to optimization (15), then

v(x)− v(f(x,u)) ≥ 0,∀x ∈ X ,∀u ∈ U,

v(x) ≥ 0,∀x ∈ T .

Thus,

v′(x)− v′(f(x,u)) ≥ 0,∀x ∈ X \ T ,∀u ∈ U,

v′(x) ≥ 1,∀x ∈ T .

Consequently, the conclusion holds.
Although constraints in optimization (13) with α = 1 may

have more solutions than ones in (15), in practical computa-
tions optimization (13) with α = 1 may not perform better
than optimization (15). On the other hand, the existence of
discount factor α in optimization (13) would increase its
flexibility and contribute to the gain of less conservative
outer-approximations. Based on SDP (14) and SDP O, we
use an example to illustrate these.

Example 1 (Van der Pol oscillator): Consider the Van
der Pol oscillartor in [8] with a discrete time δt = 0.01,
which is free of control inputs,{

x(l + 1) = x(l) + 0.01(−2x(l))

y(l + 1) = y(l) + 0.01(0.8x(l) + 10(x2(l)− 0.21)y(l)))

with X = {(x, y)⊤ | x2+y2−1.5 ≤ 0} and T = {(x, y)⊤ |
x2 + y2 − 0.01 < 0}.

We respectively solve SDP (14) with α = 0.99 and α = 1,
and SDP O. In all computations, polynomials v(x) of degree
6 are used to approximate R. The approximate results from
SDP (14) with α = 0.99 and SDP O are visualized in Fig.
1. We observe that the outer-approximation computed from
SDP O is more conservative than the one from SDP (14) with
α = 0.99. However, we encountered some difficulties when
solving SDP (14) with α = 1, the only solution v(x) found
by the solver Mosek is one such that v(x)−1, which is used
to define an outer-approximation, is very close to the zero
polynomial: the coefficients are of the order 10−4. Therefore,
the plot is irrelevant (i.e., the solution is not reliable) and thus
is not shown in Fig. 1.

Comparing SDP O and (14), it is observed that they have
different objectives, which may be the reason leading to the
better performance of SDP O over SDP (14) with α = 1.
As shown in [8] the objective in SDP O is larger than zero,
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Fig. 1. An illustration of outer-approximating R for Example 1. Green
curve denotes the boundary of X . Black and red curves denote the
boundaries of computed outer-approximations by solving SDP O and (14)
with α = 0.99, respectively. Gray region corresponds to R estimated by
the Monte-Carlo simulation method.

i.e., bounded from below, and may converge to the volume
of the controlled reach-avoid set from above as the degree
of the polynomial w(x) approaches infinity. However, the
objective in SDP (14) can take on negative values and is
not pertinent to the size of computed outer-approximations.
Therefore, the introduction of such function w(x) may
enhance the performance of SDP (14) in computing outer-
approximations. Based on this, we combine the strengths of
optimizations (13) and (15) to obtain a new optimization, as
shown in (16). In optimization (16), we retain the objective
of optimization (15) and take the constraint

v(x)− αv(f(x,u)) ≥ 0,∀x ∈ X \ T ,∀u ∈ U

in optimization (13) rather than the constraint v(x) −
v(f(x,u)) ≥ 0,∀x ∈ X ,∀u ∈ U in optimization (15).

inf

∫
X
w(x)dx

s.t. v(x)− αv(f(x,u)) ≥ 0, ∀x ∈ X \ T ,∀u ∈ U,

w(x)− v(x)− 1 ≥ 0,∀x ∈ X ,

w(x) ≥ 0, ∀x ∈ X ,

v(x) ≥ 0, ∀x ∈ T .

(16)

where α ∈ (0, 1] is an user-defined discount factor.
Lemma 2: If there exist bounded functions v(x) : X → R

and w(x) : X → R satisfying the constraints in optimization
(16), {x ∈ X | v(x) ≥ 0} is an outer-approximation of the
controlled reach-avoid set R.

Proof: By following the proof of Corollary 1, we can
obtain the conclusion.

Similarly, optimization (16) can be relaxed into an SDP,
which is presented below.

We find that solving SDP (17) is able to provide tighter
outer-approximations than SDP O and (14). In the following
we continue using the system in Example 1 to illustrate this.

Example 2: Consider the system in Example 1 again.
Polynomials v(x) of degree 6 are also used to approximate R
in solving SDP (17). Also, two cases of α = 1 and α = 0.99
are considered. The results are shown in Fig. 2. Compared
with the results in Example 1, it is easy to conclude that SDP
(17) improves the performance of SDP (14) for both cases
(i.e., α = 1 and 0.99). Also, although the computed outer-
approximation from SDP (17) with α = 1 almost coincides



min c · ŵ
s.t.
v(x)− αv(f(x,u)) + s0(x,u)h0(x)

− s1(x,u)g(x) + s2(x,u)q(u) ∈
∑

[x,u],

v(x) + s3(x)g(x) ∈
∑

[x],

w(x)− v(x)− 1 + s4(x)h0(x) ∈
∑

[x],

w(x) + s5(x)h0(x) ∈
∑

[x],

(17)

where α ∈ (0, 1], c ·ŵ =
∫
X w(x)dx, ŵ is the constant vec-

tor computed by integrating the monomial in w(x) ∈ R[x]
over X , c is the vector composed of unknown coefficients
in v(x) ∈ R[x], and w(x) ∈ R[x] and si(x,u) ∈

∑
[x,u],

i = 0, . . . , 2, and si(x) ∈
∑

[x], i = 3, . . . , 5.
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Fig. 2. An illustration of outer-approximating R for Example 2. Green
curve denotes the boundary of X . Black, blue and red curves denote the
boundaries of computed outer-approximations from SDP O and (17) with
α = 1 and α = 0.99, respectively. Red dashed curve denotes the boundary
of computed outer-approximation from SDP (14) with α = 0.99. Gray
region corresponds to R estimated by the Monte-Carlo simulation method.

with the one from SDP O, the former with α = 0.99
computes much less conservative outer-approximations than
the latter. Thus, SDP (17) also improves the performance of
SDP O.

IV. EXPERIMENT

In this section we demonstrate our approach based on
SDP (17) on several examples and compare it with SDP O.
All computations were performed on an i7-10875H 2.30GHz
CPU with 16GB RAM running Windows 10. The sum-of-
squares module in YALMIP[12] and semi-definite program-
ming solver Mosek [17] are used to solve (17) and SDP O.
The related parameters are presented in Table I.

A. Van der Pol oscillator

Consider the system in Example 1 again, where poly-
nomials v(x) of degree 8 and 10 are employed to further
demonstrate advantages of our method based on solving
SDP (17). All the computed results with α = 1 and 0.99
are visualized in Fig. 3. The results show that all outer-
approximations from our method are less conservative. Also,
the computed outer-approximations from SDP (17) with
α = 0.99 match R̂ estimated via the Monte-Carlo simuation
method well, especially when polynomials of degree 10 are
used. However, the results from SDP O do not.

Ex. α dv dw ds ds1
1 0.99 8 8 14 16
1 1 8 8 14 16
1 0.99 10 10 16 20
1 1 10 10 16 20
2 0.99 10 10 10 10
2 1 10 10 10 10
3 0.99 6 6 12 14
3 1 6 6 12 14
3 0.99 8 8 14 16
3 1 8 8 14 16

TABLE I
PARAMETERS OF THE IMPLEMENTATIONS ON SOLVING (17) FOR

EXAMPLES IV-A-IV-C.
α : THE FACTOR IN (17); dv AND dw : DEGREE OF POLYNOMIALS

v AND w IN (17); ds : DEGREE OF POLYNOMIALS si IN (17),
i = 0, 2, 3, 4, 5; ds1 : DEGREE OF THE POLYNOMIAL s1 IN (17).
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Fig. 3. An illustration of outer-approximating R for Example IV-A. Black,
blue and red curves denote the boundaries of outer-approximations from
SDP O and (17) with α = 1 and α = 0.99, respectively. Gray region
corresponds to R estimated by the Monte-Carlo simulation method.

B. Double integrator

Consider a double integrator from [8] subject to control
inputs with a discrete time δt = 0.1,{

x(l + 1) = x(l) + 0.1y(l)

y(l + 1) = y(l) + 0.1u(l)

with X = {(x, y)⊤ | x2 + y2 − 12 ≤ 0}, T = {(x, y)⊤ |
x2 + y2 − 0.052 < 0} and u ∈ [−0.1, 0.1].

The computed results are showcased in Fig. 4, which also
show that the outer-approximations from SDP (17) are less
conservative than SDP O.
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Fig. 4. An illustration of outer-approximating R for Example IV-B. Green
curve denotes the boundary of X . Black, blue and red curves denote the
boundaries of outer-approximations computed from SDP O and SDP (17)
with α = 1 and α = 0.99, respectively. Gray region corresponds to R
estimated by the Monte-Carlo simulation method.
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Fig. 5. An illustration of outer-approximating R on the planes z = 0
(a) and x = 0 (b) for Example IV-C. Green curve denotes the boundary
of X . Black, blue and red curves respectively denote the boundaries of
outer-approximations computed from SDP O and SDP (17) with α = 1
and α = 0.99, when dv = 8; orange curve is the boundary of computed
outer-approximation from SDP (17) with α = 0.99 when dv = 6. Gray
region corresponds to R estimated by the Monte-Carlo simulation method.

C. Controlled 3D Van der Pol oscillator

Consider a controlled 3D Van der Pol oscillator from [11]
with a discrete time δt = 0.01,

x(l + 1) = x(l) + 0.01(−2y(l))

y(l + 1) = y(l) + 0.01(0.8x(l)− 2.1y(l)

+z(l) + 10x2(l)y(l))

z(l + 1) = y(l) + 0.01(−z(l) + z3(l) + 0.5u(l))

with X = {(x, y, z)⊤ | x2 + y2 + z2 − 12 ≤ 0}, T =
{(x, y, z)⊤ | x2 + y2 + z2 − 0.12 < 0} and u ∈ [−1, 1].

We first used polynomials v(x) of degree 6 to solve
all SDPs. However, we didn’t obtain outer-approximations
when solving SDP O and SDP (17) with α = 1. An outer-
approximation can be obtained by solving SDP (17) with
α = 0.99, which is shown in Fig. 5. Then, we used polyno-
mials v(x) of degree 8 to solve them again. The computed
results are also demonstrated in Fig. 5, which show that all
outer-approximations from our method are less conservative
than the one from the method in [8]. Especially, it is observed
that the outer-approximation computed via solving SDP (17)
with α = 0.99 and dv = 6 is less conservative than the one
from SDP O with dv = 8, which shows that our method is
able to obtain tighter outer-approximations with polynomials
of lower degree than the method in [8] for some systems.

V. CONCLUSION

In this paper we proposed a semi-definite programming
method for outer-approximating controlled reach-avoid sets
of discrete-time polynomial systems. With a discounted
function, a Bellman type equation was derived for the first
time such that the strict zero super-level set of its unique
bounded solution is equal to the exact controlled reach-avoid
set. The proposed method was built upon the combination
of a set of inequalities, which is constructed by relaxing
the Bellman type equation, and a set of inequalities from
[8]. Compared with the semi-definite programming approach
in [8], the semi-definite program in the present work is
subject to weaker constraints with more solutions and thus
can provide tighter outer-approximations for some systems,
which are further justified on several examples.
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