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Abstract— Time-delay systems are ubiquitous in nature and
occur in connection with various aspects of physical, chemical,
biological and economic systems. In this paper we propose
a semi-definite programming method to address reach-avoid
problems for time-delay systems modeled by polynomial delay
differential equations (DDEs). The reach-avoid problem of
interest is to compute an inner-approximation (i.e., sub-set) of a
reach-avoid set, which is the set of initial functions enabling the
time-delay system to eventually enter a desirable target set while
remaining inside a specified safe set till the target hit. In our
approach we first derive an estimate of discrepancies between
current states and delayed ones for the time-delay system, and
then propose a semi-definite program for inner-approximating
the reach-avoid set via incorporating the discrepancy estimate.
The incorporation of discrepancy estimates facilitates reduction
of conservativeness in computing inner-approximations. Finally,
three examples with comparisons are presented to demonstrate
the performance of our approach.

I. INTRODUCTION

Cyber-physical systems, which are mechanisms represent-
ing the tight integration and interaction of multiple physical
and software components, are becoming an integral part of
our daily lives [12]. Examples of such systems range from
robots, avionic systems and medical devices to smart grids
and automotive networks. Many of these are safety-critical
and require essential guarantees of safe operations before
deployment. This raises the question of whether the system’s
behavior satisfies given safety specifications. Reachability
analysis, i.e., computation of reach states, is a popular tool
for addressing this problem [5]. Because of insurmountable
difficulties in computing exact reachable sets, especially for
nonlinear systems, their outer (i.e., super-sets) and inner
(i.e., sub-sets) approximations are often resorted to in the
formal methods community, e.g., [2], [20]. Generally, outer
approximations are the main tool in justifying the separation
of reach states of systems originating inside a defined set
of initial states from a set of unsafe states, and inner-
approximations are used to determine a set of initial states
rendering systems safe.

Particularly, reach-avoid analysis is able to guarantee both
safety and performance of systems, and can formalize many
important engineering problems such as collision avoidance
[14] and target surveillance [8], consequently attracting wide
attention from both academic and industrial communities.
It is mainly concerned with the computation of reach-avoid
sets, which are the set of initial configurations such that the
system originating inside it will eventually hit a desired target
set over either given finite time horizons or open, i.e. not
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bounded a priori, time horizons while remaining inside a
specified safe set prior to hitting the target set.

Existing works involving reach-avoid analysis for
continuous-time systems pay high attention to ordinary
differential equations (ODEs) without accounting for time
delays [7], which are mathematical models widely used in
various areas of engineering and sciences such as mechanical
and aerospace engineering. However, ODEs fail to capture
dynamics induced by time delays, which are ubiquitous
in nature and especially man-made control systems. Time
delays are involved in sensing or actuating by physical
devices, in data forwarding to or from the controller, in signal
processing in the controller, etc. Unfortunately, in various
applications they often cause oscillations, affect the damping
reduction and may even cause instability, thus resulting in
system performance deterioration [1]. Consequently, ODEs
may be an idealized model of feedback dynamics in control
systems. As a generalization of ODEs, DDEs, which are
originally suggested by Bellman and Cooke for modeling
physical and chemical processes involving delayed dynamics
[3], are able to incorporate time delays within the framework
of differential equations. DDEs are a class of differential
equations where the derivative at the current time depends
on values of the state in the past, leading to a mapping
in a function space which is infinite dimensional and thus
rendering the reach-avoid analysis more challenging than
their ODE counterparts. Most of the available analysis results
in existing literature (e.g., [18]) for DDEs have placed
emphasis on stability, robustness, or input-output properties
rather than reachability, let alone reach-avoid analysis.

In this paper we propose a semi-definite programming
method for inner-approximating reach-avoid sets of time-
delay systems modeled by polynomial DDEs over open time
horizons. To the best of our knowledge, this is the first work
on studying the reach-avoid problem over open time horizons
akin to DDEs. Different from traditional methods (e.g.,
[17]) of simply regarding delayed states as disturbances,
which are independent of current states and thus intro-
duce significant conservativeness in conducting reachability
analysis for DDEs, we explore the relationship between
delayed states and current ones, and derive an estimate of
discrepancies between them. This estimate is important and
will facilitate reduction of the conservativeness in inner-
approximating reach-avoid sets. Then, via incorporating the
estimate, a computationally efficient semi-definite program-
ming method, which is inspired by the one in our previous
work [22] for discrete-time systems, is proposed for inner-
approximating the reach-avoid set. Finally, we demonstrate
the proposed method on three examples.



Related Work

As surveyed in [7], the research community has over
the past three decades witnessed the rapid development of
various formal methods for addressing automatic verification
of (hybrid) systems in a safety-critical context. Most of these
methods are specific to systems, whose continuous dynamics
are described by ODEs without accounting for time delays.

Stimulated by actual engineering problems, the interest in
safety verification of continuous systems featuring delayed
coupling is increasing recently. The contributions are mainly
falling into two categories. The first one pursues propagation-
based verification over bounded time horizons: a method
for simulation-based time-bounded invariant verification of
nonlinear networked dynamical systems with delayed inter-
connections was presented in [11], by analyzing sensitivity
of trajectories with respect to initial states and inputs of
the system. A class of (perturbed) DDEs featuring a local
homeomorphism property was identified in [19], [21]. The
homeomorphism analysis facilitates construction of over-
and under-approximations of reachable sets over bounded
time horizons by just performing reachability analysis on the
boundaries of initial sets as in [20]. Recently, an approach
combining Taylor models and the method of steps was
proposed to inner- and outer-approximating flowpipes for
DDEs with uncertain initial states and parameters in [9].
The second one in existing literature tackles safety verifi-
cation problem of DDEs over the unbounded time horizon.
The most notable method is based on the computation of
barrier certificates [17], which separate the state space of
a considered system into safe and unsafe parts. The other
method is by taking into account stability properties of the
dynamics under investigation. A safe enclosure method using
interval-based Taylor over-approximation was proposed in
[23] for verifying stability and safety properties of a simple
class of DDEs. Recently, a method based on linearization
techniques and spectral analysis was proposed in [6] for
verifying safety properties of exponentially stable systems
described by DDEs.

Many of the aforementioned methods are for the compu-
tation of outer-approximations of forward reach sets, which
are the set of all reachable states for the time-delay system
starting from a given set of initial functions, although some
exist for inner-approximations over given bounded time
horizons such as [19], [21] and [9]. In contrast, the method in
the present work attempts to compute inner-approximations
of reach-avoid sets over open time horizons, which is in
contrast to determine a set of initial functions such that
the time-delay system starting from them respects specified
reach-avoid requirements.

The structure of this paper is presented below. In Section II
time-delay systems and reach-avoid problems of interest are
introduced. After detailing our semi-definite programming
based method for solving the reach-avoid problem in Section
III, we demonstrate it on several examples in Section IV and
finally conclude this paper in Section V.

Notations. R and R≥0 denote the set of real numbers

and nonnegative real numbers, respectively. Rn is an n-
dimensional real Euclidean space with norm ‖ · ‖, i.e.,
‖x‖ =

√∑n
i=1 x

2
i with x ∈ Rn. Given two sets ∆ and

∆′, the sets C(∆,∆′) and C1(∆,∆′) denote the Banach
spaces of continuous functions and continuously differen-
tiable functions mapping the set ∆ onto ∆′, respectively.
For φ ∈ C([a, b],Rn), the norm of φ is defined as ‖φ‖ =
supa≤θ≤b ‖φ(θ)‖. For a set ∆, the sets ∆c, ∆ and ∂∆
denote its complement, closure and boundary, respectively.
R[·] denotes the ring of polynomials in variables given
by the argument. Vectors are denoted by boldface letters.
Besides, we use

∑
[x] to represent the set of sum-of-squares

polynomials over variables x, i.e.,

∑
[x] = {p ∈ R[x] | p =

k′∑
i=1

q2i , qi ∈ R[x], i = 1, . . . , k′}.

II. PRELIMINARIES

In this section we formally present the concepts of poly-
nomial DDEs and reach-avoid sets of interest in this paper.

A. Time-delay Systems

The system of interest in this paper is a time-delay
dynamical system modeled by DDEs of the following form

ẋ(t) = f(x(t),x(t− r)), (1)

where f(x,y) ∈ R[x,y] and r ∈ R≥0.
Unlike ODEs, an initial condition for system (1) is not

simply x(0) ∈ Rn but rather a whole function x0(·) ∈
C([−r, 0],Rn), i.e., x0(·) : [−r, 0]→ Rn, and x0(θ) = x(θ)
for θ ∈ [−r, 0]. A trajectory of system (1) starting from
a given initial condition x0(·) ∈ C([−r, 0],Rn) over a time
horizon [0, Tx0), is denoted as φt(·) ∈ C([−r, 0],Rn), where
t ∈ [0, Tx0) with Tx0 being either a positive value or ∞,
φ0(θ) = x0(θ) and φt(θ) = φ(t+ θ) for θ ∈ [−r, 0].

In addition to the above, two bounded open sets in the
n-dimensional Euclidean space are given: a safe state set
X ⊆ Rn and a target set T ⊆ Rn with T ⊆ X , where both

X = {x ∈ Rn | h(x) < 1}

and
T = {x ∈ Rn | g(x) < 1}

with h(x), g(x) ∈ R[x].
A reach-avoid set of interest in this paper is formally

presented in Definition 1.
Definition 1: A reach-avoid set RA is the set of initial

functions in C([−r, 0],X\T ) such that system (1) originating
from it will enter the target set T in finite time while
remaining inside the set X prior to the target hitting time,
i.e., RA ={

φ0(·) ∈ C([−r, 0],X \ T )

∣∣∣∣∣ ∃t ∈ R≥0.φt(0) ∈ T
∧

∀τ ∈ [0, t].φτ (0) ∈ X

}
.

An inner-approximation is a subset of the set RA.
It is worth remarking here that trajectories starting from

the reach-avoid set RA are allowed to leave the target set T



after reaching it. In addition, the reason that we require the
codomain of an initial function φ0(·) in the set RA to be the
set X \ T rather than the set X is to exclude the trivial set
{φ0(·) ∈ C([0, T ],X ) | φ0(0) ∈ T }.

III. INNER-APPROXIMATING REACH-AVOID SETS

In this section we present our semi-definite programming
approach for inner-approximating the reach-avoid set RA of
system (1). An estimate of discrepancies between current
states and delayed ones for the system (1) is presented
in Subsection III-A. Based on the estimate and the semi-
definite programming formulation in [22], Subsection III-B
presents a semi-definite programming approach for synthe-
sizing inner-approximations of the reach-avoid set RA.

A. Discrepancy Estimation
This subsection gives an estimate of the discrepancy

between the current state x(t) in Rn and its delayed one
x(t − r) for system (1) starting from an initial function
x0(·) ∈ C([−r, 0],X ). This estimate will facilitate the
conservativeness reduction of inner-approximating the reach-
avoid set RA, which is reflected in Section IV.

Proposition 1: Given x0(·) ∈ C([−r, 0],X ), and t1, t2 ∈
R≥0 satisfying that

φt(0) ∈ X ,∀t ∈ [0,max{t1, t2}],

where φ0(θ) = x0(θ) for θ ∈ [−r, 0], then

‖φt1(0)− φt2(0)‖ ≤M |t1 − t2|, (2)

where M ≥ supx,y∈X ‖f(x,y)‖.
Proof: Let τ = min{t1, t2} and τ ′ = max{t1, t2}.

Since

φt1(0) = φ0(0) +

∫ t1

0

f(φt(0),φt(−r))dt

and

φt2(0) = φ0(0) +

∫ t2

0

f(φt(0),φt(−r))dt

according to Lemma 1 in [1], we have that

‖φt1(0)− φt2(0)‖ = ‖
∫ τ ′

τ

f(φt(0),φt(−r))dt‖.

Also, since φt(θ) ∈ X for t ∈ [0, τ ′] and θ ∈ [−r, 0],

‖f(φt(0),φt(−r))‖ ≤M,∀t ∈ [0, τ ′]

holds and therefore we have that

‖φt1(0)− φt2(0)‖ ≤M |t2 − t1|.

This completes the proof.
Therefore, according to Proposition 1, if

‖x0(θ)− x0(0)‖ ≤ −Mθ

for θ ∈ [−r, 0], we have that

‖φt(0)− φt(−r)‖ ≤Mr, ∀t ∈ [0,max{t1, t2}]. (3)

An estimate of the bound M satisfying inequality (2) in
Proposition 1 can be computed via solving the semi-definite
program (4). M can take

√
M̂ .

B. Inner-Approximating Reach-Avoid Sets

Based on the discrepancy estimate (3) in Proposition 1 and
constraints addressing the reach-avoid problem for discrete-
time systems in [22], we construct constraints for inner-
approximating the reach-avoid set RA of system (1).

The functional structure mainly used for illustration in this
paper depends only on the “head” of the functional xt, and
is of the following form:

v(xt) = v0(x(t)),

where v0 ∈ C1(X ,R). It is the kind of functions used
in the Lyapunov-Razumikhin theorem for proving delay-
independent stability of time-delay systems [10], [16]. In
[17] such functions were used to construct delay-independent
conditions guaranteeing the satisfaction of specified safety
properties. Delayed states in delay-independent conditions
are regarded as disturbance inputs which are independent of
current states. This introduces significant conservativeness
and complicates the (already difficult) problem solvability,
resulting in empty resets for many cases. This statement
is further confirmed in Section IV. In order to reduce this
conservativeness, we formulate delay-dependent conditions
for inner-approximating the reach-avoid set RA via incor-
porating constraint (2). Our delay-dependent conditions are
presented formally in Lemma 1.

Lemma 1: Given system (1), the safe state set X ⊆ Rn
and the target set T ⊆ X be given, if there exist functions
v0 ∈ C1(X ,R) and u0 ∈ C1(X ,R) that satisfy the following
delay-dependent conditions:

− ∂v0(x)

∂x
f(x,y) ≥ 0,∀x ∈ X ,∀y ∈ B(x,Mr) ∩ X , (6)

v0(x) ≥ g(x) +
∂u0(x)

∂x
f(x,y),

∀x ∈ X ,∀y ∈ B(x,Mr) ∩ X ,
(7)

v0(x) ≥ 1,∀x ∈ ∂X , (8)

where B(x,Mr) is an n-ball of radius Mr and center x,
i.e., B(x,Mr) = {y ∈ Rn | ‖x − y‖2 ≤ M2r2}, then the
set IN ={

x0(·) ∈
C([−r, 0],X \ T )

∣∣∣∣∣ v0(x0(0)) < 1
∧
∀θ ∈ [−r, 0].

‖x0(θ)− x0(0)‖ ≤ −Mθ

}
is an inner-approximation of the reach-avoid set RA.

Proof: Assume that
1) x′0(·) ∈ IN,
2) there does not exist t ∈ R≥0 such that

φt(0) ∈ T
∧
∀τ ∈ [0, t].φτ (0) ∈ X ,

where φ0(θ) = x′0(θ) for θ ∈ [−r, 0].
Then, we have that either

∃t ∈ R≥0.[φt(0) ∈ ∂X
∧
∀τ ∈ [0, t).φτ (0) ∈ Y]

or
∀t ∈ R≥0.φt(0) ∈ Y,

where Y = X \ T .



min M̂

s.t. M̂ − ‖f(x,y)‖2 + s1(x,y)(h(x)− 1) + s2(x,y)(h(y)− 1) ∈
∑

[x,y],

s1(x,y) ∈
∑

[x,y], s2(x,y) ∈
∑

[x,y]

(4)

inf c> ·w
s.t.

− ∂v0(x)

∂x
f(x,y) + s1(x,y)(h(x)− 1) + s2(x,y)(‖x− y‖2 −M2r2) + s3(x,y)(h(y)− 1) ∈

∑
[x,y],

v0(x)− g(x)− ∂u0(x)

∂x
f(x,y) + s4(x,y)(h(x)− 1) + s5(x,y)(‖x− y‖2 −M2r2)

+ s6(x,y)(h(y)− 1) ∈
∑

[x,y],

v0(x)− 1 + p(x)(h(x)− 1) ∈
∑

[x],

(5)

where c> · w =
∫
X v0(x)dx, w is the constant vector computed by integrating the monomials in v0(x) ∈ R[x]

over X , c is the vector composed of unknown coffecients in v0(x) ∈ R[x], and u0(x) ∈ R[x], p(x) ∈ R[x] and
si(x,y) ∈

∑
[x,y], i = 1, . . . , 6.

Due to constraints (6), (8) and v0(φ0(0)) < 1, we
conclude that there does not exist t ∈ R≥0 such that

φt(0) ∈ ∂X
∧
∀τ ∈ [0, t).φt(0) ∈ Y.

Consequently, we have the only one choice that φt(0) ∈ Y
for t ∈ R≥0, i.e.,

g(φt(0)) ≥ 1

for t ∈ R≥0. However, constraint (7) indicates that for t ∈
R≥0,

v0(φt(0)) ≥ g(φt(0))+
∂u0(x)

∂x
|x=φt(0) f(φt(0),φt(−r)),

which implies that∫ τ

0

v0(φt(0))dt ≥
∫ τ

0

g(φt(0))dt

+

∫ τ

0

∂u0(x)

∂x
|x=φt(0) f(φt(0),φt(−r))dt

and further, together with (6), that for τ ∈ R≥0,

v0(φ0(0)) ≥
∫ τ
0
g(φt(0))dt

τ
+
u0(φτ (0))− u0(φ0(0))

τ
.

Because of u0 ∈ C1(X ,R), u0(x) is bounded over x ∈ X .
Therefore,

v0(φ0(0)) ≥ lim inf
τ→∞

∫ τ
0
g(φt(0))dt

τ
≥ 1,

contradicting v0(φ0(0)) < 1.
Consequently, there exists t ∈ R≥0 such that

φt(0) ∈ T
∧
∀τ ∈ [0, t].φτ (0) ∈ X

and thus x′0(·) ∈ RA, which implies that IN ⊆ RA.

According to Lemma 1, if we obtain a pair of continuously
differentiable functions v0(x), u0(x) ∈ C1(X ,R) satisfying
constraints (6)-(8), an inner-approximation of the reach-avoid
set RA follows. General nonlinear functions v0(x), u0(x) ∈
C1(X ,R) are challenging to obtain. However, when v0(x)
and u0(x) are searched in the space of polynomials, i.e.,
v0(x), u0(x) ∈ R[x], the problem of solving constraints (6)-
(8) can be reduced to the semi-definite programming problem
(5) via the sum-of-squares decomposition for multivariate
polynomials. The semi-definite program is a kind of convex
programs, which can be solved efficiently in polynomial time
via interior-point methods.

Theorem 1: Given system (1), sets X ⊆ Rn and T ⊆ X ,
if there exist functions v0(x) ∈ R[x] and u0(x) ∈ R[x] that
satisfy the semi-definite program (5), then{

x0(·) ∈
C([−r, 0],X \ T )

∣∣∣∣∣ v0(x0(0)) < 1
∧
∀θ ∈ [−r, 0].

‖x0(θ)− x0(0)‖ ≤ −Mθ

}
is an inner-approximation of the reach-avoid set RA.

Proof: The conclusion follows from Lemma 1 and S−
procedure presented in [4].

It follows from Theorem 1 that an inner-approximation
of the reach-avoid set RA can be computed via solving the
semi-definite program (5).

IV. EXAMPLES

In this section we demonstrate our semi-definite pro-
gramming approach on three examples. All computations
on solving (4) and (5) were performed on an i7-7500U
2.70GHz CPU with 32GB RAM running Windows 10. In the
computations the sum-of-squares module of YALMIP [13]
was first used to transform the sum-of-squares optimization
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Fig. 1. Illustration of the computed inner-approximation of the set RA for
Example 1. Black and green curves denote the boundaries of safe state set
X and target set T , respectively. The red curve denotes the boundary of
the set {x ∈ X | v0(x) < 1}. The gray curves denote the trajectories of
system (9) starting from initial conditions x0(θ) = (0.8−1.0θ, 0.4)> and
x0(θ) = (−0.8− 1.0θ,−0.4)> for θ ∈ [−0.1, 0], respectively. The blue
curves denote the boundaries of sets {x | (x1 − 0.8)2 + (x2 − 0.4)2 ≤
M2r2} and {x | (x1 + 0.8)2 + (x2 + 0.4)2 ≤M2r2}, respectively.

problems (4) and (5) into semi-definite programs, and the
solver Mosek [15] was then used to solve them.

Example 1: Consider a linear damped oscillator with de-
lays in [17],{

ẋ1(t) = γx2(t) + (1− γ)x2(t− r)
ẋ2(t) = −γx1(t)− (1− γ)x1(t− r)− 1.5x2(t)

. (9)

In this system, r > 0 is the delay, and γ ∈ [0, 1] is a
parameter.

In this example we assume that r = 0.1, γ = 0.5, the
target set

T = {x ∈ R2 | g(x) < 1}

with g(x) = 10x21 + 10x22, and the safe set

X = {x ∈ R2 | h(x) < 1}

with h(x) = x21 + x22. Two cases, with and without consid-
ering discrepancy characterization (3), are discussed below.

1) If discrepancy characterization (3) is not considered,
via the solving semi-definite program (5) without terms
pertinent to sum-of-squares polynomials s2(x,y) and
s5(x,y), we obtain an empty set, which is a correct
but useless inner-approximation. The corresponding
parameters for solving the semi-definite program (5)
are listed in Table II.

2) If discrepancy characterization (3) is considered, M =√
4.7 is computed via solving the semi-definite pro-

gram (4) with parameters in Table I, and then a
non-empty inner-approximation of the reach-avoid set
RA is obtained via solving the semi-definite program
(5). The related parameters in solving semi-definite
program (5) are presented in Table II and the computed
set {x ∈ X | v0(x) < 1} is illustrated in Fig. 1.

Example 2: Consider a PD-controller with linear dynam-
ics in [9] described by{

ẏ(t) = v(t)

v̇(t) = −Kp(y(t− r)− y∗)−Kdv(t− r)
, (10)

which controls the position y and velocity v of an au-
tonomous vehicle by adjusting its acceleration according to
the current distance to a reference position y∗. A constant
time delay r is introduced to model the time lag due to
sensing, computation, transmission, and/or actuation. We
instantiate the parameters as Kp = Kd = 0.5, y∗ = 1 and
r = 0.1. The system described by Eq. (10) then has one
equilibrium at (1, 0)>, which shares equivalent stability with
the zero equilibrium of the following system, with x1 = y−1
and x2 = v:{

ẋ1(t) = x2(t)

ẋ2(t) = −0.5(x2(t− r)− x∗2)− 0.5x1(t− r)
. (11)

Suppose the safe state set and the target set are

X = {x | x21 + x22 < 1}

and
T = {x | 10x21 + 10(x2 + 0.15)2 < 1},

respectively. Similarly, we demonstrate our approach on the
following two cases.

1) If discrepancy characterization (3) is not taken into ac-
count, an empty set {x ∈ X | v0(x) < 1} is computed
via solving the semi-definite program (5) without terms
pertinent to sum-of-squares polynomials s2(x,y) and
s5(x,y). Thus, an empty inner-approximation of the
reach-avoid set RA is obtained. The corresponding
parameters in solving the semi-definite program (5) are
listed in Table II.

2) If discrepancy characterization (2) is considered, we
obtain M =

√
1.26 via solving the semi-definite

program (4) with parameters listed in Table I and
then compute an inner-approximation of the reach-
avoid set RA via solving the semi-definite program (5).
The corresponding parameters in solving (5) are listed
in Table II. The computed set {x ∈ X | v0(x) <
1} is illustrated in Fig. 2. Two trajectories are also
showcased in Fig. 2, where one starting from the initial
condition x0(θ) = (0.2 − 0.8θ, 0.85 − 0.8θ)> for
θ ∈ [−0.1, 0] satisfies the reach-avoid specification
while the other starting from x0(θ) = (0.75, 0.6)> for
θ ∈ [−0.1, 0] fails.

Example 3: In this example we consider a two-
dimensional example of the following form,{

ẋ1(t) = x1(t)[b− ax1(t)− k1x2(t)]

ẋ2(t) = −σx2(t) + k2x1(t− r)x2(t− r)
. (12)

This delay differential equation was a model for predator-
prey populations in [16].

Let a = −0.01, b = −1, k1 = −2, σ = 1 and k2 = 2. In
this example we assume that r = 0.0001, the target set

T = {x ∈ R2 | g(x) < 1}

with g(x) = 10x21 + 10x22 and the safe set

X = {x ∈ R2 | h(x) < 1}
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Fig. 2. Illustration of the computed inner-approximation of the set RA for
Example 2. Black and green curves denote the boundaries of safe set X
and target set T . The red curve denotes the boundary of the set {x ∈ X |
v0(x) < 1}. The blue curve denotes the boundary of {x | (x1 − 0.2)2 +
(x2 − 0.85)2 ≤ M2r2}. The gray curve denotes the trajectory of system
(11) starting from the initial condition x0(θ) = (0.2−0.8θ, 0.85−0.8θ)>.
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Fig. 3. Illustration of the computed inner-approximation of the set RA for
Example 3. Black and green curves denote the boundaries of the safe set X
and target set T . The red curve denotes the boundary of the set {x ∈ X |
v0(x) < 1}. The gray curves denote the trajectories of system (12) starting
from initial conditions x0(θ) = (−0.9, 0.2)>, x0(θ) = (0.9,−0.2)> and
x0(θ) = (−0.2,−0.9)> for θ ∈ [−0.001, 0] respectively.

with h(x) = x21 + x22.
Similar to the first example, we discuss our approach on

the following two cases.

1) if discrepancy characterization (3) is not considered,
we solve the semi-definite program (5) without terms
pertinent to sum-of-squares polynomials s2(x,y) and
s5(x,y), an empty set {x ∈ X | v0(x) < 1} is
computed. Thus, an empty set, which is a correct but
useless inner-approximation, is computed. The param-
eters in solving (5) are listed in Table II.

2) If taking discrepancy characterization (3) into account,
we first compute M =

√
5.9 via solving the semi-

definite program (4) with parameters listed in Table I,
and then obtain a non-empty inner-approximation of
the reach-avoid set RA via solving the semi-definite
program (5) with parameters listed in Table II. The
computed set {x ∈ X | v0(x) < 1} via solving the
semi-definite program (5) is illustrated in Fig. 3.

It is concluded from the above three examples that discrep-
ancy characterization (2) indeed facilitates conservativeness
reduction of inner-approximating reach-avoid sets for some

Examples ds1 ds2 Time(s)

Ex.1 4 4 0.89

Ex.2 4 4 0.86

Ex.3 4 4 1.28

TABLE I
Parameters for solving the semi-definite program (4) in three Examples.

ds1 and ds2 denote the degree of the polynomial s1(x,y) and s2(x,y)

respectively. Time denotes the computation time (in seconds).

Examples Cases dv0 du0 dsi dp Time(s)

Ex.1
1) 6 6 8 8 12.04
2) 6 6 8 8 19.59

Ex.2
1) 6 6 6 6 3.03
2) 6 6 6 6 6.24

Ex.3
1) 10 10 10 10 227.36
2) 10 10 10 10 125.55

TABLE II
Parameters for solving the semi-definite program (5) in three Examples.

dv0 , du0 , dsi and dp denote the degree of the polynomial v0(x), u0(x),

si(x,y) and p(x) respectively. Time denotes the computation time.

time-delay systems, and we can compute an (non-empty)
inner-approximation of the reach-void set via solving the
semi-definite program (5).

V. CONCLUSION

In this paper we proposed a semi-definite programming
method for inner-approximating reach-avoid sets of time-
delay systems modeled by polynomial DDEs over open time
horizons. The reach-avoid set is a set of initial functions
enabling the system to reach a desired target set in finite
time while remaining inside certain legal state set preceding
the target hit. We for the first study the reach-avoid problem
over open time horizons akin to DDEs. Besides, unlike
traditional methods of simply regarding delayed states as
disturbances and formulating delay-independent constraints
in studying reachability for DDEs, we formulated delay-
dependent constraints for computing reach-avoid sets from
the inner. The constraints were efficiently solved within
the semi-definite programming framework. Finally, three
examples demonstrated the proposed method.

In our future work we would extend our approach to
reach-avoid analysis for (hybrid) time-delay systems with
competing inputs (i.e., disturbance and control inputs).
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