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Abstract—Reach-avoid analysis, which involves the computa-
tion of reach-avoid sets, is an established tool that provides hard
guarantees of safety (via avoiding unsafe states) and target reach-
ability (via reaching target sets), and therefore is widely used in
safe-critical systems design such as air traffic management sys-
tems and biomedical systems. This paper investigates the problem
of inner-approximating robust reach-avoid sets for discrete-time
polynomial dynamical systems subject to disturbances over open
(i.e., not bounded a priori) time horizons. The robust reach-avoid
set of interest is a set of all initial states such that the system
starting from each of them should reach a target set within a
bounded time horizon while staying inside a safe set before the
first target hitting time, despite the actual disturbance. Based
on a discounted value function and the dynamic programming
principle, we show that the robust reach-avoid set can be
characterized exactly via the unique bounded solution to a
Bellman-type equation. Due to the insurmountable challenge in
solving this equation analytically, we reformulate the Bellman-
type equation such that its straightforward relaxation can result
in a set of novel constraints for inner-approximating the robust
reach-avoid set. When the datum involved are polynomials, i.e.,
the safe set, target set and disturbance set are semi-algebraic,
the problem of solving this set of constraints can be encoded
into a semi-definite program, which can be solved efficiently
in polynomial time via interior point methods. Finally, several
examples demonstrate the performance of the proposed method.

Index Terms—Perturbed Discrete-time Systems; Robust
Reach-avoid Sets; Inner-approximations.

I. INTRODUCTION

The complexity of today’s technological applications in-
duces a quest for pursuing automation, a growing number
of autonomous systems are coming into our daily life [17].
Many of these systems such as medical devices, aircraft flight
control, and nuclear systems are safety-critical [14]. Their
failure will cause catastrophic consequences like loss of life
and physical destruction. Being safety-critical, their dynamic
behaviors over time have to robustly sustain safety despite
disturbances, which are ubiquitous and could degrade system
performance or result in system failure [23].

The process of designing and verifying with mathematical
rigor that a dynamical system behaves correctly is a well-
established branch of formal methods in computer science
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[8]. Because of being capable of providing formal guarantees
on safety (via avoiding unsafe states) and progress (via the
guaranteed reach of a target set) for dynamical systems, reach-
avoid analysis in formal methods has attracted increasing
attention in recent years. It becomes an important tool in
safety-critical systems design such as air traffic management
systems [20]) and biomedical systems [19]. It generally in-
volves computations of reach-avoid sets, a set of initial states
from which the system is guaranteed to reach a desired target
state set while avoiding a set of undesirable states throughout
the path to the target.

In existing literature there are two types of dynamical
systems, i.e., continuous-time ones (modeled by differential
equations) and discrete-time ones (modeled by difference
equations). The robust reach-avoid analysis against distur-
bances for discrete-time polynomial dynamical systems (mod-
eled by polynomial difference equations) [5], which describe
the evolution of a vast class of systems such as biological
systems, robots and digital controllers arising from the real
world [4], [9], [15], [16], [22], is the focus of this paper.

This paper proposes convex optimization methods for inner-
approximating robust reach-avoid sets for discrete-time poly-
nomial systems subject to disturbances over open time hori-
zons. Although there are some approaches to reach-avoid
analysis for discrete-time systems free of disturbances [29],
there is no work on investigating reach-avoid analysis for
discrete-time dynamical systems subject to disturbances over
open time horizons, to the best of our knowledge. In the
present work, the robust reach-avoid set of interest is a set of
all initial states such that for each of them, there exists a finite-
time upper bound such that every possible trajectory starting
from it will hit the target set within this finite-time upper
bound while avoiding a set of unsafe states before the first
target hitting time. Our method begins with a discounted value
function, whose strict zero upper-level set is equal to the robust
reach-avoid set. The discounted value function is built upon a
switched system, which is induced by freezing the dynamics
of the original system outside the safe set. It is then reduced
to a unique bounded solution to a Bellman-type equation,
which is challenging to solve analytically. Via reformulating
the Bellman-type equation in another form, we construct a
set of constraints for inner-approximating the robust reach-
void set. When the datum involved are polynomials, i.e., the
safe set, target set and disturbance set are semi-algebraic, the
problem of solving this set of constraints can be encoded into
a semi-definite program. Finally, several examples are used
to demonstrate the performance of the proposed method and
make comparisons with existing related methods.
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The contributions of this paper are summarized as follows.
1) The problem of inner-approximating robust reach-avoid

sets for discrete-time polynomial systems subject to
disturbances is investigated. Our approach originates
from a discounted value function that can precisely
describe the robust reach-avoid set of interest. Based on
the discounted value function, a Bellman-type equation
is then derived, which admits a unique bounded solution.
Although we did not use this equation in our compu-
tations directly, this equation plays a fundamental role
in our method, since it is the origin of the constructed
new set of quantified constraints for inner-approximating
robust reach-avoid sets. It is worth noting that although
we consider discrete-time polynomial systems in the
present work, the derived equation for characterizing the
robust reach-avoid set applies to general discrete-time
nonlinear systems.

2) We reformulate the Bellman-type equation aforemen-
tioned into another equivalent form and construct a set of
new quantified constraints for inner-approximating the
robust reach-avoid set.

3) When the datum involved are polynomials, i.e., the safe
set, target set and disturbance set are semi-algebraic, the
problem of solving the set of quantified constraints is
addressed within the semi-definite programming frame-
work, thus transforming the non-convex problem of
computing robust reach-avoid sets into a convex one
which can be solved efficiently in polynomial time via
interior point methods [3] and for which there are many
powerful off-the-shelf tools [21], [24], [26], [30].

Related Work

Reach-avoid analysis for discrete-time dynamical systems
is an important tool in designing safety-critical systems and
has attracted increasing attention.

There are some methods for computing outer and inner
approximations of reach-avoid sets over open time horizons
for discrete-time polynomial systems free of disturbances. For
instance, a moment-based convex programming method was
proposed to compute outer approximations of reach-avoid sets
in [12]. A set of constraints, which is derived from a system
of equations, was proposed in our previous work [29] to
computing inner-approximations. Although these two works
investigate the reach-avoid analysis for discrete-time systems
over open time horizons, they consider polynomial systems
free of disturbances. In this work, we extend the work [29]
and study the reach-avoid analysis for discrete-time systems
subject to disturbances. Different from the work [29], a new
value function is defined. This new value function facilitates
the derivation of a Bellman-type equation featuring a unique
bounded solution, which can describe the exact robust reach-
avoid set of interest in this paper, and a new set of constraints
for inner-approximating the robust reach-avoid set. It is worth
noting that a Bellman-type equation was also proposed in the
work [28]. However, this equation and the equation in the
present work have different objectives and thus have different
meanings. The Bellman-type equation in the present work is

constructed for characterizing robust reach-avoid sets, while
the equation in [28] is for robust invariant sets. The differences
between robust invariant sets and robust reach-avoid sets are
twofold. One is that every possible trajectory starting inside
a robust invariant set is just required to stay inside a safe
set for all time without the requirement of reaching a target
set. The other is that trajectories starting within the robust
reach-avoid set are allowed to leave the safe set after hitting
the target set. Moreover, the derivation of these two equations
are different. The equation in [28] was constructed based on
the original system, while the equation in the present work is
obtained using an auxiliary system, whose dynamics are frozen
outside the safe set and coincide with the ones of the original
system inside the safe set. Besides, the direct relaxation of the
Bellman-type equation in [28] can obtain a set of constraints
for inner-approximating robust invariant sets, as commented
in Section IV in [28]. However, a set of constraints for inner-
approximating robust reach-avoid sets cannot be obtained by
directly relaxing the Bellman-type equation in the present
work. It is obtained via reformulating the equation into another
equivalent form.

On the other hand, there are many methods developed
for stochastic discrete-time systems. For these systems, the
reach-avoid analysis is conducted in the probabilistic context,
which assures the probabilistic success of the reach-avoid
objective with at least a desired probability p, i.e., admits
initial states from which the probability of (eventually or
within a given duration) reaching the target while avoiding the
unsafe set exceeds p. Establishing methods for computation-
ally solving this problem rely on dynamic programming [1],
[25], approximate dynamic programming [13], semi-definite
programs [6] and Lagrangian techniques [10]. These works
are generally confined to reach-avoid problems of stochastic
discrete-time systems over bounded time horizons. Recently, a
set of constraints, which is derived from a system of equations,
was proposed in [27] for inner-approximating reach-avoid sets
of stochastic discrete-time systems over open time horizons.
Although a set of initial states ensuring satisfaction of reach-
avoid specifications with probability one can be computed
by the method in [27], this set considers all disturbances
modulo sets of measure zero. In contrast, the present work
considers the (inner-)approximating problem of reach-avoid
sets in the robust context rather than the probabilistic one,
thus considering all actual disturbances and further assuring
the satisfiability of reach-avoid properties robustly.

The structure of this paper is presented below. In Section
II we introduce discrete-time polynomial dynamical systems
subject to disturbances and robust reach-avoid sets generation
problems of interest. Then, Section III presents the Bellman-
type equation for estimating the exact robust reach-avoid set
and our semi-definite programming method for computing its
inner-approximations. After demonstrating and discussing the
proposed methods on several examples in Section IV, we
conclude this paper in Section V.

The following basic notions are used throughout this paper:
N stands for the set of non-negative integers, N≤k and N≥k
with k ∈ N denote the set of integers less than or equal to k
and larger than or equal to k respectively, and R for the set of
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real numbers; R[·] denotes the ring of polynomials in variables
given by the argument; vectors are denoted by boldface letters;
for a set ∆, ∂∆ denotes its boundary;

∑
[x] denotes the set

of sum of squares polynomials, i.e.,

∑
[x] =

p(x) ∈ R[x]

∣∣∣∣∣∣∣
p(x) =

k∑
i=1

q2
i (x),

qi(x) ∈ R[x], i = 1, . . . , k

 .

II. PRELIMINARIES

In this section, discrete-time polynomial dynamical systems
subject to disturbances and robust reach-avoid sets generation
problems of interest are introduced.

A discrete-time polynomial dynamical system subject to
disturbances (abbr., DPDSD) is a system being modeled by
difference equations of the following form:

x(l + 1) = f(x(l),d(l)),∀l ∈ N,
x(0) = x0,

(1)

where x(·) : N → Rn are state vectors, d(·) : N → D are
disturbances with the disturbance set

D = {d ∈ Rm | q(d) ≤ 0}

being bounded in Rm and q(d) ∈ R[d], and f(·, ·) : Rn×D →
Rn with f(x,d) ∈ R[x,d].

In the following we define disturbance trajectories and their
resulting trajectories for DPDSD.

Definition 1. A disturbance trajectory π for DPDSD is a
sequence (d(l))l∈N, where d(·) : N → D. Furthermore, we
define Π as the set of all disturbance trajectories.

Definition 2. Given an initial state x0 ∈ Rn and a disturbance
trajectory π = (d(l))l∈N, the trajectory of DPDSD, induced
by x0 and π, is a sequence (φπx0

(l))l∈N satisfying

φπx0
(l + 1) = f(φπx0

(l),d(l))

for l ∈ N.

Now, we define the robust reach-avoid set with respect to
the target set

TR = {x ∈ Rn | g(x) < 0}

and the bounded safe set

X = {x ∈ Rn | h(x) < 0},

where TR ⊆ X , g(·) : Rn → R with g(x) ∈ R[x] and
h(·) : Rn → R with h(x) ∈ R[x]. Here, although we restrict
the sets TR and X to be bounded open sets, our method in
this paper also applies to compact sets TR and X . Besides,
our method also applies to bounded sets TR and X that are
in the form of upper-level sets of intersections or unions of
polynomial inequalities. A simple technique is to apply the
max \min operator. For instance, when TR = {x ∈ Rn |
g1(x) < 0, . . . , gl(x) < 0}, we can express it equivalently
as {x ∈ Rn | maxi∈{1,...,l} gi(x) < 0}. Similarly, when
TR = ∪li=1TRi with TRi = {x ∈ Rn | gi(x) < 0}, we can
express it equivalently as {x ∈ Rn | mini∈{1,...,l} gi(x) < 0}.

Definition 3. The robust reach-avoid set RA is the set of all
initial states in the safe set X satisfying that for every initial
state in it, there exists a finite upper bound N ∈ N such that
every possible trajectory of DPDSD starting from the initial
state will enter the target set TR within the finite time horizon
[0, N ] ∩N while staying inside the safe set X before the first
target hitting time, i.e.,

RA =

{
x0 ∈ X

∣∣∣∣∣ ∃N ∈ N.∀π ∈ Π.∃k ∈ N≤N .

[φπx0
(k) ∈ TR

∧
∧kl=0φ

π
x0

(l) ∈ X]

}
.

An inner-approximation is a subset of the set RA.

Remark 1. If DPDSD is free of disturbances, i.e.,

x(l + 1) = f(x(l)),∀l ∈ N,
x(0) = x0.

Then,

RA =
{
x0 ∈ X

∣∣∣ ∃k ∈ N.φx0(k) ∈ TR
∧
∧kl=0φx0

(l) ∈ X
}
.

Its inner-approximations were computed in [29].

Remark 2. The robust reach-avoid set RA is different from the
following one

RA′ =

{
x0 ∈ X

∣∣∣∣∣ ∀π ∈ Π.∃k ∈ N.

[φπx0
(k) ∈ TR

∧
∧kl=0φ

π
x0

(l) ∈ X]

}
.

Obviously, RA is a subset of RA′, i.e., RA ⊆ RA′. The main
difference between RA and RA′ lies in that an initial state in
RA is the one, from which all trajectories starting will enter
the target set within a bounded time horizon, while such a
uniform bound may not exist for some initial states in RA′.
The condition such that RA = RA′ will be investigated in the
future work.

In this paper, we propose methods for inner-approximating
the robust reach-avoid set RA under Assumption 1.

Assumption 1. The robust reach-avoid set RA has nonempty
interiors.

III. ROBUST REACH-AVOID SETS CHARACTERIZATION

In this section, we elucidate our approach for computing
guaranteed inner-approximations of the set RA. We first derive
a Bellman-type equation such that the strict zero super-level
set of its unique bounded solution equals the robust reach-
avoid set RA. Based on this equation, we then construct a set
of quantified inequality constraints such that the certain level
sets of its solution are inner-approximations of the set RA.
Finally, the set of constraints is encoded into semi-definite
constraints via the sum-of-squares decomposition technique
for multivariate polynomials that can be solved efficiently in
polynomial time via interior-point methods.

A. Bellman-type Equations

In this subsection, we derive a Bellman-type equation such
that the strict zero super-level set of its unique bounded
solution is equal to the robust reach-avoid set RA.
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The Bellman-type equation is derived based on a switched
discrete-time system subject to disturbances. This switched
system is induced via forcing DPDSD to stay still once it goes
outside the safe set X . It differs from the one in [29] without
taking into account the presence of disturbances, which is
constructed via also requiring DPDSD to stay still once it
enters the target set TR.

Definition 4. A switched discrete-time system subject to dis-
turbances (or, SDS), which is constructed based on DPDSD,
is a system being modeled by iterative nonlinear maps of the
following form:

x(l + 1) = f̂(x(l),d(l)),∀l ∈ N,
x(0) = x0,

(2)

where

f̂(x,d) = 1X̂1
(x) · f(x,d) + 1X̂2

(x) · x

with 1X̂i(·) : X̂i → {0, 1}, i = 1, 2, representing the indicator
function of the set X̂i, i.e.,

1X̂i(x) :=

{
1, if x ∈ X̂i,

0, if x /∈ X̂i,

and
1) X̂1 = X = {x ∈ Rn | h(x) < 0};
2) X̂2 = X̂ \X = {x ∈ Rn | h0(x) ≤ 0 ∧ −h(x) ≤ 0};
3) X̂ = {x ∈ Rn | h0(x) ≤ 0} with h0(x) ∈ R[x] and

X̂ ⊇ Ω([0, 1],f , X) is a compact set in Rn, where

Ω(N≤1,f , X) = {x | x = f(y,d),y ∈ X,d ∈ D}∪X

is the union of the set X and all reach states of DPDSD
starting from X in one step.

Similarly, we define trajectories of SDS, which are formally
presented in Definition 5.

Definition 5. Given an initial state x0 ∈ X̂ and a disturbance
trajectory π = (d(l))l∈N, the trajectory of SDS, induced by
x0 and π, is a sequence (φ̂πx0

(l))l∈N satisfying

φ̂πx0
(l + 1) = f̂(φ̂πx0

(l),d(l)).

Remark 3. The existence of the set X̂ in Definition 4 can be
assured by the boundedness of sets X and D as well as the
fact that f(x,d) ∈ R[x,d]. As in [29], the set X̂ in Definition
5 can be computed by solving a semi-definite programming
problem like (3):

minR

s.t.

R− h(x) + s′0h(x) ∈
∑

[x],

R− h(f(x,d)) + s′1(x,d)h(x) + s′2(x,d)q(d) ∈
∑

[x,d],

(3)

where s′0 ∈
∑

[x] and s′i ∈
∑

[x,d] i = 1, 2.

If R ∈ R satisfies the constraints in the semi-definite
program (3), the set X̂ = {x ∈ Rn | h0(x) ≤ 0} with
h0(x) = h(x)−R satisfies the requirement.

The robust reach-avoid set RA for DPDSD can be equiva-
lently characterized via the set of initial states deriving SDS
to reach the target set TR. This relationship is detailed in
Proposition 1.

Proposition 1. The robust reach-avoid set RA is equal to

{x0 ∈ X̂ | ∃N ∈ N.∀π ∈ Π.∃k ∈ N≤N .φ̂πx0
(k) ∈ TR}.

Now we introduce the discounted value function V (·) :
X̂ → R defined in the following form:

V (x) := inf
π∈Π

sup
l∈N

αl1TR(φ̂
π
x(l)), (4)

where α ∈ (0, 1) is the discounted factor. It is easy to conclude
that V (x) ≤ 1 for x ∈ X̂ . Its relationship with the robust
reach-avoid set RA is presented in Lemma 1.

Lemma 1. The robust reach-avoid set RA is equal to the strict
zero super level set of the discounted value function V (x) in
(4), i.e.,

RA = {x ∈ X | V (x) > 0}.

The discounted value function V (x) in (4) satisfies the
following dynamic programming principle.

Lemma 2. For x0 ∈ X̂ and k ∈ N≥1,

V (x0) = inf
π∈Π

max
{

sup
l∈N≤k−1

αl1TR(φ̂
π
x0

(l)), αkV (φ̂πx0
(k))

}
.

According to Lemma 2, we deduce that the function V (x) in
(4) is the unique bounded solution to a Bellman-type equation.

Theorem 1. The function V (·) : X̂ → R in (4) is the unique
bounded solution to the following Bellman-type equation:

min
{
V (x)− 1TR(x), V (x)− α inf

d∈D
V (f̂(x,d))

}
= 0. (5)

Generally, it is challenging to solve the Bellman-type
equation (5) analytically. Due to the uniqueness of bounded
solutions to (5) with α ∈ (0, 1), an estimate of the robust
reach-avoid set RA can be obtained via the value iteration
algorithm.

Theorem 2. Suppose the sequence of functions (Vi(x))i∈N
with Vi(·) : X̂ → R is generated by the value iteration
algorithm starting from some bounded function V0(·) : X̂ → R
according to

Vi+1(x) = max{1TR(x), α inf
d∈D

Vi(f̂(x,d))} (6)

for x ∈ X̂ and i ∈ N, where α ∈ (0, 1), then the
function Vi(x) uniformly approximates V (x) over X̂ as i
tends to infinity, where V (x) is the unique bounded solution
to equation (5).

Generally, the practical implementation of the value it-
eration algorithm requires covering the state space X̂ and
disturbance space D with a discrete mesh of sufficient resolu-
tion, which exhibits exponential blow-up in complexity with
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increasing size of the system state and disturbance variables.
Please refer to [28] for more details. However, the robust
reach-avoid set computed from such an implementation is
just an approximation of the robust reach-avoid set RA, which
is neither an outer-approximation nor inner-approximation
and thus may not fulfill reach-avoid specifications in certain
formal designs which require the system starting from the
computed robust reach-void set to reach the target set safely.
To circumvent this issue, we in the sequel reformulate equation
(5) into another equivalent form and further obtain a set of
quantified inequality constraints for inner-approximating the
robust reach-avoid set, which can be efficiently addressed by
semi-definite programming methods.

Remark 4. If α = 1 in (4), that is,

V (x) = inf
π∈Π

sup
l∈N

1TR(φ̂
π
x(l)),

we have that RA′ = {x ∈ X | V (x) = 1}, where RA′ is
the set presented in Remark 2. We can show that V (x) is a
solution to equation (5) with α = 1. However, the uniqueness
of bounded solutions to this equation cannot be guaranteed,
since V (x) ≡ β for x ∈ X̂ is also a solution to equation
(1) with α = 1, where β is an arbitrary but fixed value being
larger than or equal to 1. Also, we cannot obtain a set of
inequality constraints for inner-approximating the set RA′. This
point will be further clarified in Remark 5 in Subsection III-B.

B. Inner-approximating Robust Reach-avoid Sets

In this subsection, based on equation (5), we construct a
set of novel constraints for inner-approximating the robust
reach-avoid set RA, i.e., to compute an inner-approximation
of the robust reach-avoid set RA. The problem of solving this
set of constraints can be addressed within the semi-definite
programming framework.

The direct relaxation of equation (5) by removing the min-
imum/infinimum operator leads to the following constraints

V (x)− 1 ≥ 0,∀x ∈ TR,

V (x) ≥ 0,∀x ∈ X̂ \ TR,
V (x) ≥ αV (f̂(x,d)),∀x ∈ X̂, ∀d ∈ D,

(7)

which cannot be used for inner-approximating the robust
reach-avoid set RA. Therefore, we reformulate equation (5) into
another equivalent form such that its straightforward relaxation
can lead to a system of inequalities for inner-approximating
the robust reach-avoid set RA.

It is easy to obtain that V (·) : X̂ → R in (4) satisfies

V (x) =

{
1, if x ∈ TR,

0, if x ∈ X̂ \X.

According to the Bellman-type equation (5), we have that for
x ∈ X \ TR,

min{V (x), V (x)− α inf
d∈D

V (f̂(x,d))} = 0

holds. Since V (·) : X̂ → R in (4) is larger than or equal to
zero over X̂ , we have that

V (x) = α inf
d∈D

V (f̂(x,d)),∀x ∈ X \ TR.

Consequently, V (·) : X̂ → R in (4) satisfies

V (x) =


α infd∈D V (f̂(x,d)),∀x ∈ X \ TR,
1, if x ∈ TR,

0, if x ∈ X̂ \X.

This conclusion is formally presented in Lemma 3.

Lemma 3. The function V (x) : X̂ → R in (4) with α ∈
(0, 1) is the unique bounded solution to the following system
of equations:

v(x) = α inf
d∈D

v(f̂(x,d)),∀x ∈ X \ TR, (8)

v(x) = 1,∀x ∈ TR, (9)

v(x) = 0,∀x ∈ X̂ \X. (10)

Based on the system of equations in Lemma 3, a system
of inequalities for inner-approximating the robust reach-avoid
set RA has been derived, as shown in Corollary 1.

Corollary 1. Given α ∈ (0, 1), if a bounded function v(·) :
X̂ → R satisfies the following constraints

v(x) ≤ αv(f̂(x,d)),∀x ∈ X \ TR,∀d ∈ D, (11)
v(x) ≤ 1,∀x ∈ TR, (12)

v(x) ≤ 0,∀x ∈ X̂ \X, (13)

then the strict zero upper level set of the function v(·) : X̂ → R
is an inner-approximation of the robust reach-avoid set RA, i.e.,

{x ∈ X̂ | v(x) > 0} ⊆ RA.

Remark 5. When α = 1 in (11), {x ∈ X̂ | v(x) > 0} cannot
be guaranteed to be an inner-approximation of the set RA′,
where v(x) is a bounded solution to constraints (11)-(13). For
instance, v(x) satisfying v(x) = 1 for x ∈ X and v(x) = 0
for x ∈ X̂ \X is a bounded solution to constraints (11)-(13),
but X = {x ∈ X̂ | v(x) > 0} ⊆ RA′ does not hold generally.

From Corollary 1, we obtain that an inner-approximation
of the robust reach-avoid set RA can be computed via solving
the system of inequalities (11)-(13) which can be equivalently
transformed into the following inequalities (14)-(16) via re-
moving the indicator functions:

v(x) ≤ αv(f(x,d)),∀x ∈ X \ TR,∀d ∈ D, (14)
v(x) ≤ 1,∀x ∈ TR, (15)

v(x) ≤ 0,∀x ∈ X̂ \X. (16)

Remark 6. When TR = ∪li=1TRi with TRi = {x ∈ Rn |
gi(x) < 0}, the system of inequalities (14)-(16) can be
rewritten equivalently as

v(x) ≤ αv(f(x,d)),∀x ∈ X ∩ TR′,∀d ∈ D, (17)
v(x) ≤ 1,∀x ∈ TRi, i = 1, . . . , l, (18)

v(x) ≤ 0,∀x ∈ X̂ \X, (19)

where TR′ = {x ∈ Rn | g1(x) ≥ 0, . . . , gl(x) ≥ 0}.

If only polynomials v(x) ∈ R[x] are searched for solving
the system of inequalities (14)-(16), they could be obtained
via encoding the system of inequalities (14)-(16) using the
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max c> · ŵ
s.t.
αv(f(x,d))− v(x) + s0(x,d)h(x)

− s1(x,d)g(x) + s2(x,d)q(d) ∈
∑

[x,d],

1− v(x) + s3(x)g(x) ∈
∑

[x],

− v(x) + s4(x)h0(x)− s5(x)h(x) ∈
∑

[x],

(20)

where c> ·ŵ =
∫
X̂
v(x)dx, ŵ is the constant vector computed

by integrating the monomials in v(x) ∈ R[x] over the set X̂ ,
c is the vector composed of unknown coefficients in v(x) ∈
R[x] and si(x,d) ∈ R[x,d], i = 0, . . . , 2, sj(x) ∈ R[x],
j = 3, 4, 5.

sum-of-squares decomposition for multivariate polynomials
and further solving the resulting semi-definite program (20).

Theorem 3. If a function v(x) ∈ R[x] satisfies the semi-
definite program (20), the set {x ∈ X̂ | v(x) > 0} is an inner
approximation of the robust reach-avoid set RA.

Herein, we give a discussion on the computational com-
plexity of our semi-definite programming method. The semi-
definite program (20) belongs to the category of convex
optimization, which can be efficiently solved by interior point
methods in polynomial time. However, the size of semi-
definite program (20) (i.e., the number of decision variables)
increases exponentially with the total number of state and
disturbance variables (i.e., n + m) and the degree of poly-
nomials (v(x), si(x,d), i = 0, . . . , 2, sj(x), j = 3, . . . , 5)
[2]. For fixed degrees the size of semi-definite program (20)
is polynomial with respect to the total number of state and
disturbance variables; for a given system in which the total
number of state and disturbance variables is fixed, the size of
semi-definite program (20) is also polynomial with respect to
the degree. In order to balance accuracy and computational
cost, polynomials of appropriate degree should be chosen.

IV. EXAMPLES

This section presents four examples and evaluates the per-
formance of inner-approximating the robust reach-avoid set
via solving the set of inequalities (14)-(16) based on the
semi-definite program (20). In order to gauge the quality of
computed inner-approximations, we also present the robust
reach-avoid sets obtained via the Monte-Carlo simulation
method and the value iteration algorithm for solving equation
(5) for the comparisons. All computations were performed on
an i7-P51s 2.6GHz CPU with 32GB RAM running Window
10. The sum-of-squares programming problems are formu-
lated using the sum-of-squares module YALMIP [18] and
solved by the academic version of semi-definite programming
solver MOSEK [21]. Since the work [29] considers the inner-
approximating problem of reach-avoid sets for discrete-time
polynomial systems free of disturbances, the first two exam-
ples, which involve systems without disturbances, were mainly
used to compare the performances between the semi-definite

Ex. α dv ds T
1 0.999 12 20 12.92
1 0.99 12 20 12.02
1 0.9 12 20 14.52
2 0.999 12 20 11.93
2 0.99 12 20 10.92
2 0.9 12 20 12.22
3 0.999 10 18 154.67
4 0.999 8 8 556.85
4 0.9 8 8 514.50

TABLE I
PARAMETERS OF THE IMPLEMENTATIONS ON SOLVING (20) FOR

EXAMPLES 1-4. α : THE DISCOUNTED FACTOR IN (20); dv : DEGREE OF
THE POLYNOMIAL v IN (20); ds : DEGREE OF POLYNOMIALS si IN (20),

i = 0, . . . , 5; T : COMPUTATION TIMES (SECONDS).

Ex. α ε N M
1 0.999 10−6 104 -
2 0.999 10−6 104 -
3 0.999 10−6 104 10
4 0.999 10−6 108 10

TABLE II
Parameters and performance of the value iteration on Examples 1-4. α: the

discounted factor in (5); ε: the stopping criterion in the value iteration;
N,M : numbers of uniform grids in the state and disturbance variable

spaces respectively. For more explanations, please refer to [28].

programming method in [29] and the one (20). They were also
used to discuss the effect of the discounted factor α on the
computed inner-approximations. The related parameters for
our semi-definite programming method and the value iteration
algorithm are presented in Table I and II, respectively.

Example 1. Consider the following discrete-time polynomial
system from [29]:{
x(l + 1) = x(l) + 10−2(−0.5x(l)− 0.5y(l) + 0.5x(l)y(l))

y(l + 1) = y(l) + 10−2(−0.5y(l) + 1)

with X = {(x, y)> | x2 + y2 − 1 < 0} and TR = {(x, y)> |
10x2 + 10(y − 0.6)2 − 1 < 0}.

Due to the absence of disturbances, the robust reach-
avoid set RA is also equal to the reach-avoid set in [29]
as stated in Remark 1. Both the reach-avoid sets computed
via the simulation method and the value iteration algorithm
for solving equation (5) are presented in Fig. 1. We observe
from the visualized results in Fig. 1 that the one from the
value iteration algorithm matches the one from the simulation
method well. We compute inner-approximations from the semi-
definite program (20) with α = 0.999. The set

X̂ = {(x, y)> | x2 + y2 − 1.1 ≤ 0}

is obtained for computations by solving the semi-definite pro-
gram (3). The computed inner-approximations are presented in
Fig. 1. Note that we also inner-approximate the reach-avoid set
RA via the semi-definite programming method in [29] based on
the parameters in Table I, which is also showcased in Fig. 1.
The visualized results in Fig. 1 demonstrate that the computed
inner-approximation from semi-definite programming method
(20) is less conservative than the one from [29] but they almost
coincide with each other.
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Fig. 1. An illustration of inner-approximating RA for Example 1. (Black
and purple curves denote ∂X and ∂TR, respectively. Red curve denotes ∂RA
obtained via the value iteration. Green and blue curves denote the boundaries
of computed inner-approximations of RA from [29] and (20), respectively.
Gray region denotes RA estimated via simulation methods. Blue dashded curve
denotes one trajectory starting from (0.0,−0.9)>.)

Fig. 2. An illustration of inner-approximating RA for Example 2. (Black
and purple curves denote ∂X and ∂TR, respectively. Red curve denotes ∂RA
obtained via the value iteration. Blue and green curves denote the boundaries
of computed inner-approximations of RA from [29] and (20), respectively.
Gray region denotes RA estimated via simulation methods. Blue dashed curve
denotes one trajectory starting from (0.0, 0.6)>.)

Example 2. Consider a computer-based model of the
reversed-time Van der Pol oscillator from [29]:{
x(l + 1) = x(l) + 10−2(−2y(l))

y(l + 1) = y(l) + 10−2
(
0.8x(l) + 10(x2(l)− 0.21)y(l)

)
with X = {(x, y)> | x2 + y2 − 1 < 0} and TR = {(x, y)> |
10x2 + 10y2 − 1 < 0}.

Analogous to Example 1, due to the absence of disturbances,
the robust reach-avoid set RA is equal to the reach-avoid set
in [29] as stated in Remark 1. Both the reach-avoid sets
computed via the simulation method and the value iteration
algorithm for solving equation (5) are presented in Fig. 2,
which shows that the one from the value iteration algorithm
matches the one from the simulation method well. Also, we
compute inner-approximations of the reach-avoid set RA via
solving the semi-definite program (20) with α = 0.999. The
set

X̂ = {(x, y)> | x2 + y2 − 1.1 ≤ 0}

is obtained for computations by solving the semi-definite
program (3). The computed inner-approximation is also pre-
sented in Fig. 2, which also shows the computed inner-
approximation from the semi-definite programming method in
[29]. The visualized results demonstrate that the computed
inner-approximation from semi-definite programming method
(20) is less conservative than the one obtained from [29].

Based on Examples 1 and 2, we discuss the effect of
parameter α on the computed reach-avoid sets in our semi-

definite programming method. Regarding the presence of α in
constraint (14) and liml→∞ αl = 0, if there are some states
slowly reaching the target set TR, the function v(x) satisfying
v(x) ≤ αlv(φπx0

(l)) ≤ αl (since v(x) ≤ 1 for x ∈ TR) over
these states will be approximately equal to zero in numerical
computations and thus may not fall within the computed
inner-approximation {x ∈ X | v(x) > 0} in practical
computations, leading to more conservative results, where l =
inf{i ∈ N | φπx0

(i) ∈ TR
∧
∧ij=0φ

π
x0

(j) ∈ X}. For instance,
if α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.99, we obtain
α50 = 1.00e− 50, 1.13e− 35, 7.18e− 27, 1.27e− 20, 8.89e−
16, 8.09e−12, 1.80e−08, 1.43e−05, 5.17e−03, 0.61. These
datum are presented in Fig. 3. It is observed that α50 is almost
zero when α = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. However, an
estimate of RA for Examples 1 and 2 within the 50th time steps
is too conservative, as illustrated in Fig. 4 and 6.

In order to circumvent this issue, our general suggestion
for the parameter α is to take values as close to one as
possible. This is why we choose α = 0.999 in the semi-definite
program (20) for Examples 1-2. In addition, we present the
inner-approximations computed by solving the semi-definite
program (20) with α = 0.99 and α = 0.9 for Examples 1 and
2 in Fig. 5 and 7, respectively. The visualized results in these
two figures also show that both α = 0.99 and α = 0.9 lead to
more conservative inner-approximations than α = 0.999 for
both Examples 1 and 2.

Example 3. Consider the discrete-generation predator-prey
model from [11],{

x(j + 1) = 0.5x(j)− x(j)y(j)

y(j + 1) = −0.5y(j) + (d(j) + 1)x(j)y(j)

with X = {(x, y)> | x2 + y2− 1 ≤ 0}, D = {d | d2− 0.01 <
0} and TR = {(x, y)> | 100(x4 + y4)− 1 < 0}.

The computed reach-avoid sets from the Monte-Carlo simu-
lation method and the value iteration algorithm are presented
in Fig. 8. It is observed that these two estimations match very
well. Then, we compute inner-approximations of the robust
reach-avoid set RA via solving the semi-definite program (20)
with α = 0.999. The set

X̂ = {(x, y)> | x2 + y2 − 1.6 ≤ 0}

is obtained for computations by solving the semi-definite pro-
gram (3). The computed inner-approximations are presented
in Fig. 8. The visualized results in Fig. 8 demonstrate that it
almost coincides with the robust reach-avoid sets computed
from the value iteration algorithm and the Monte-Carlo sim-
ulation method.

Example 4. Consider the discrete-time Clohessy-Wiltshire-
Hill(CWH) equation, which describes the relative motion of
chasing spacecraft for a target that is a circular orbit about
a central body,

x(l + 1) = x(l) + 0.01y(l)

y(l + 1) = y(l) + 0.01(2ω2x(l) + 2ωw(l) + u1+d
mc

)

z(l + 1) = z(l) + 0.01w(l)

w(l + 1) = w(l) + 0.01(−2ωy(l) + u2+d
mc

)
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Fig. 3. An illustration of α50.

Fig. 4. An illustration of inner-approximating RA for Example 1 within
the 50th time steps. (Gray region denotes an estimate of RA obtained via
the simulation techniques within the 10000th steps. Red region denotes an
estimate of RA obtained via the simulation techniques within the 50th steps.)

where mc = 100, ω = 1, u1 = 100, u2 = 1, X =
{(x, y, z, w)> | x2 +y2 +w2 +z2−0.25 < 0}, D = {d | d2−
1 ≤ 0} and TR = {(x, y, z, w)> | x2+y2+w2+z2−0.1 < 0}.

For this example, we can not gain an estimate of the robust
reach-avoid set RA via solving equation (1) within one hour
based on the parameters in Table II. The robust reach-avoid
sets on the planes w = z = 0 and x = w = 0 computed by
the Monte-Carlo simulation method are respectively presented
Fig. 9 and 10. In the semi-definite program (20), the set

X̂ = {(x, y, z, w)> | x2 + y2 + z2 + w2 − 0.4 ≤ 0}

is obtained by solving the semi-definite program (3). Inner-
approximations are computed with α = 0.9 and α = 0.999,
which on the planes w = z = 0 and x = w = 0 are
respectively presented Fig. 9 and 10. The visualized results
show that although the computed inner-approximation with
α = 0.999 is less conservative than the one with α = 0.9,
these two inner-approximations do not have an inclusion
relationship, i.e., the former does not include the latter.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

x
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-0.2
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0.6

0.8

1

y

Fig. 5. An illustration of inner-approximating RA for Example 1. Red,
green and blue curves respectively denote the boundaries of computed inner-
approximations of RA with α = 0.999, 0.99 and 0.9.

Fig. 6. An illustration of inner-approximating RA for Example 2 within
the 50th time steps. (Gray region denotes an estimate of RA obtained via
the simulation techniques within the 10000th steps. Red region denotes an
estimate of RA obtained via the simulation techniques within the 50th steps.)
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Fig. 7. An illustration of inner-approximating RA for Example 2. Red,
blue and cyan curves respectively denote the boundaries of computed inner-
approximations of RA with α = 0.999, 0.99 and 0.9, respectively.

Fig. 8. An illustration of inner-approximating RA for Example 3. (Black
and purple curves denote ∂X and ∂TR, respectively. Red curve denotes
∂RA obtained via the value iteration. Green curve denotes the boundary
of computed inner-approximation of RA from (20). Gray region denotes RA
estimated via the Monte-Carlo simulation method. Blue dashed curve denotes
one trajectory starting from (−0.5, 0.5)> driven by the disturbance trajectory
π = {0}.)

Fig. 9. An illustration of estimating RA on the plane w = z = 0 for
Example 4. (Red and blue curves denote the boundaries of computed inner-
approximations of RA from (20) with α = 0.99 and α = 0.9, respectively.
Gray region denotes RA estimated via simulation methods.)
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Fig. 10. An illustration of estimating RA on the plane x = w = 0 for
Example 4. (Red and blue curves denote the boundaries of computed inner-
approximations of RA from (20) with α = 0.99 and α = 0.9, respectively.
Gray region denotes RA estimated via simulation methods.)

V. CONCLUSION

This paper investigated the problem of inner-approximating
robust reach-avoid sets for discrete-time polynomial systems
subject to disturbances over open time horizons, which is to
determine initial states driving the system to meet the reach-
avoid specification. Via defining a discounted value function,
we reduced the robust reach-avoid set to the strict zero super-
level set of the unique bounded solution to a Bellman-type
equation. Based on this equation, we further obtained a set
of novel quantified inequality constraints to inner-approximate
the robust reach-avoid set, which was successfully trans-
formed into a semi-definite programming problem that can
be efficiently solved in polynomial time via interior point
methods. Finally, the proposed methods were demonstrated
and discussed in several examples.

In the future work, we would investigate the convergence
of the proposed method and extend the proposed method
to the reach-avoid sets generation problem of controlled
discrete/continuous-time systems (e.g., [7]).
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VI. APPENDIX

The proof of Lemma 1:

Proof. We first prove that RA ⊆ {x ∈ X | V (x) > 0}.
Assume that x0 ∈ RA. Then, according to Proposition 1, the

following conclusion holds:

∃N ∈ N.∀π ∈ Π.∃k ∈ N≤N .φ̂πx0
(k) ∈ TR.

Consequently, supl∈N α
l1TR(φ̂

π
x0

(l)) ≥ αN for π ∈ Π.
Therefore, V (x0) > 0, implying that

x0 ∈ {x ∈ X | V (x) > 0}

and thus RA ⊆ {x ∈ X | V (x) > 0}.
We in the following show that {x ∈ X | V (x) > 0} ⊆ RA.
Assume that x0 ∈ {x ∈ X | V (x) > 0}. Thus, V (x0) > 0.

Without loss of generality, we assume that V (x0) = ε0 > 0.
Therefore, supl∈N α

l1TR(φ̂
π
x0

(l)) ≥ ε0 for π ∈ Π. As a matter
of fact that αl ≥ αl1TR(φ̂πx0

(l)) for π ∈ Π and liml→∞ αl = 0,
we conclude that there exists N ∈ N such that every possible
trajectory φ̂πx0

(·) : N → Rn starting from x0 will hit the
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target set TR within the finite time horizon N≤N , irrespective
of disturbances. According to Proposition 1, we have that x0 ∈
RA. Therefore, {x ∈ X | V (x) > 0} ⊆ RA holds.

Thus, we conclude that {x ∈ X | V (x) > 0} = RA.

The proof of Lemma 2:

Proof.

W (k,x0) := inf
π∈Π

max
{
αkV (φ̂πx0

(k)), sup
l∈N≤k−1

αl1TR(φ̂
π
x0

(l))
}
.

We will prove that for ε > 0, |W (k,x0)− V (x0)| < ε.
According to the definition of V (x0), i.e., (4), for any ε1,

there exists a disturbance trajectory π′ = (d′(i))i∈N ∈ Π such
that

V (x) ≥ sup
i∈N

αi1TR(φ̂
π′

x0
(i))− ε1.

We then introduce two disturbance trajectories π1 =
(d1(i))i∈N ∈ Π and π2 = (d2(i))i∈N ∈ Π with d1(j) = d′(j)
for j = 0, . . . , k − 1 and d2(j) = d′(j + k) for j ∈ N
respectively. Thus we obtain that

W (k,x0) ≤ max
{
αkV (y), sup

l∈N≤k−1

αl1TR(φ̂
π1
x0

(l))
}

≤ max
{

sup
i∈N≥k

{αi1TR(φ̂π2
y (i− k))},

sup
i∈N≤k−1

αi1TR(φ̂
π1
x0

(i))
}

= max
{

sup
i∈N≥k

αi1TR(φ̂
π′

x0
(i)),

sup
i∈N≤k−1

αi1TR(φ̂
π′

x0
(i))
}

= sup
i∈N

αi1TR(φ̂
π′

x0
(i))

≤ V (x0) + ε1,

where y = φ̂π1
x0

(k). Therefore,

V (x0) ≥W (k,x0)− ε1. (21)

On the other hand, by the definition of W (k,x0), for every
ε1 > 0, there exists π1 = (d1(i))i∈N ∈ Π such that

W (k,x0) ≥max
{
αkV (φ̂π1

x0
(k)), sup

i∈N≤k−1

αi1TR(φ̂
π1
x0

(i))
}
− ε1.

Also, by the definition of V (x0), i.e., (4), for every ε1 > 0,
there exists π2 = (d2(i))i∈N ∈ Π such that

V (y) ≥ sup
i∈N

αi1TR(φ̂
π2
y (i))− ε1,

where y = φ̂π1
x0

(k). We define π = (d(i))i∈N such that d(i) =
d1(i) for i = 0, . . . , k − 1 and d(i + k) = d2(i) for i ∈ N.
Obviously, π ∈ Π. Then, it follows

W (k,x0) ≥max
{

sup
i∈N≥k

αi1TR(φ̂
π2
y (i− k)),

sup
i∈N≤k−1

{αi1TR(φ̂π1
x0

(i))}
}
− 2ε1

≥ sup
i∈N

αi1TR(φ̂
π
x0

(i))− 2ε1 ≥ V (x0)− 2ε1.

Therefore,
V (x0) ≤W (k,x0) + 2ε1. (22)

Combining (21) and (22), we finally have |V (x0) −
W (k,x0)| ≤ ε = 2ε1. Since ε1 is arbitrary, V (x0) =
W (k,x0) holds for x0 ∈ Rn and k ∈ N. This completes
the proof.

The proof of Theorem 1:

Proof. The conclusion that the function V (x) in (4) is a
solution to the Bellman type equation (5) can be assured by
Lemma 2 with k = 1: When k = 1,

V (x) = inf
π∈Π

max
{

1TR(x), αV (φ̂πx(1))
}
,

which is equal to max
{

1TR(x), α infd∈D V (f̂(x,d))
}
. That

is,

V (x)−max
{

1TR(x), α inf
d∈D

V (f̂(x,d))
}

= 0,

which is equivalent to

min
{
V (x)− 1TR(x), V (x)− α inf

d∈D
V (f̂(x,d))

}
= 0.

Below we just need to prove the uniqueness of bounded
solutions to the Bellman type equation (5) with α ∈ (0, 1).

Assume that there exists another function V ′(·) : X̂ → R
satisfying the equation (5) with α ∈ (0, 1), and there exists
y ∈ X̂ such that V (y) 6= V ′(y).

Since both V ′(·) : X̂ → R and V (·) : X̂ → R with α ∈
(0, 1) satisfy equation (5), we have that

|V (y)− V ′(y)| =
∣∣∣ inf
d∈D

max{1TR(y), αV (f̂(y,d))}

− inf
d∈D

max{1TR(y), αV ′(f̂(y,d))}
∣∣∣

≤ α sup
d∈D

∣∣∣V (f̂(y,d))− V ′(f̂(y,d))
∣∣∣.

Therefore,

|V (y)− V ′(y)| ≤ αk sup
π∈Π

∣∣∣V (φ̂πy(k))− V ′(φ̂πy(k))
∣∣∣,∀k ∈ N.

Also, due to the fact that the functions V (x) and V ′(x) are
bounded over x ∈ X̂ , we conclude that |V (y)− V ′(y)| = 0,
which contradicts V (y) 6= V ′(y).

Consequently, V (·) : X̂ → R with α ∈ (0, 1) is the unique
bounded solution to equation (5).

The proof of Theorem 2:

Proof. According to (6), we have

|Vi+1(x)− Vi(x)|
= |max{1TR(x), α inf

di∈D
Vi(f̂(x,di))}

−max{1TR(x), α inf
di∈D

Vi−1(f̂(x,di))}|

≤ max{0, |α sup
di∈D

(
Vi
(
f̂(x,di)

)
− Vi−1

(
f̂(x,di)

))
|}

≤ max
{

0, |αi sup
d1∈D

· · · sup
di∈D

(
V1(g(x,d1, . . . ,di))−

V0(g(x,d1, . . . ,di))
)∣∣∣}

(23)
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where

g(x,d1, · · · ,di) = f
(
· · ·f(f︸ ︷︷ ︸
i

(x,di),di−1), · · · ,d1

)
.

Therefore, for ∀l ∈ N and ∀k ∈ N, we have

|Vl+k(x)− Vl(x)|
= |Vl+k(x)− Vl+k−1(x) + Vl+k−1(x)− Vl+k−2(x)

+ · · ·+ Vl+1(x)− Vl(x)|
≤ |Vl+k(x)− Vl+k−1(x)|+ |Vl+k−1(x)− Vl+k−2(x)|

+ · · ·+ |Vl+1(x)− Vl(x)|

≤ max
{

0, |αl|
k∑
j=0

∣∣∣αj sup
d1∈D

· · · sup
dl+j∈D

(
V1(g(x,d1, . . . ,dl+j))

− V0(g(x,d1, . . . ,dl+j))
)∣∣∣}

(24)

Moreover, since V0(x) and 1TR(x) are bounded over X̂ ,
therefore, V1(x) is bounded as well. Thus, according to (23),
(24) and α ∈ (0, 1), we have that Vi(x) uniformly approxi-
mates a function V ′(x) over X̂ as i tends to infinity. In the rest
we just need to prove that V ′(x) = V (x) over x ∈ X̂ . This
conclusion can be assured by replacing Vi+1(x) − Vi(x) in
(23) with Vi+1(x)−V (x), resulting in that Vi+1(x) uniformly
approximates V (x) over X̂ as i tends to infinity, where V (x)
is the function in (4) with α ∈ (0, 1).

The proof of Lemma 3:

Proof. The fact that the function V (x) : X̂ → R in (4) with
α ∈ (0, 1) is the solution to the system of equations (8)-(10)
was already discussed aforementioned.

We just show the uniqueness. That is, if there exists a
function v(·) : X̂ → R satisfying the system of equations
(8)-(10), v(x) = V (x) over x ∈ X̂ , where V (·) : X̂ → R is
the function in (4).

According to the definition of V (x) in (4), we have that

V (x) =


αL, if x ∈ RA \ TR,
1, if x ∈ TR,

0, if x /∈ X̂ \ RA,

where L = supπ∈Π{k ∈ N | φ̂πx0
(k) ∈ TR}.

We just need to prove that the function v(x) over x ∈ X̂
also satisfies the condition:

v(x) =


αL, if x ∈ RA \ TR,
1, if x ∈ TR,

0, if x /∈ X̂ \ RA,

which implies that v(x) = V (x) over x ∈ X̂ . We in the
following prove that this condition holds. Assume that

Lπ = inf{l ∈ N | φ̂πx0
(l) ∈ TR}.

1) x ∈ TR ∪ [X̂ \X]: it is obvious that v(x) = V (x);
2) x ∈ RA\TR: since x ∈ RA, supπ∈Π Lπ = maxπ∈Π Lπ <
∞, we conclude that

L = sup
π∈Π

Lπ. (25)

According to constraint (8), we have that

v(x) ≤ αv(f̂(x,d)),∀d ∈ D. (26)

According to (25), there exists π ∈ Π such that
φ̂πx0

(L) ∈ TR. Also, because of constraint (9), we have
that v(x) ≤ αL. In the following, we show that

∀ε > 0.αL − ε ≤ v(x).

According to constraint (8), it holds that

∀ε1 > 0.∃dε1 ∈ D.
αv(f̂(x,dε1))− ε1 ≤ v(x) ≤ αv(f̂(x,dε1)).

(27)

If L = 1, implying that f̂(x,d) ∈ TR for d ∈ D, from
(27), we thus have that v(x) = α. The proof is com-
pleted; otherwise(i.e, L > 1), according to constraints
(27) and (9), we have that

∃δ1 > 0.∀ε1 ∈ (0, δ1).f̂(x,dε1) /∈ TR. (28)

Therefore,

∀ε1 ∈ (0, δ1).∀ε2 > 0.∃dε1,ε2 ∈ D.

α2v(f̂(f̂(x,dε1),dε1,ε2))− ε1 − αε2 ≤ v(x)
∧

v(x) ≤ v(f̂(x,dε1)) ≤ α2v(f̂(f̂(x,dε1),dε1,ε2)).
(29)

If L = 2, implying that f̂(f̂(x,dε1),d) ∈ TR for d ∈ D
when ε1 ∈ (0, δ1), thus, from (29), we have that

v(x) = α2.

The proof is completed; otherwise, according to con-
straints (29) and (9), we have that

∃δ2 > 0.∀ε1, ε2 ∈ (0, δ2).f̂(f̂(x,dε1),dε1,ε2) /∈ TR.

Continuing the above deduction, we finally obtain that
L−1∧
l=1

∀εl ∈ (0, δL−1).∀εL > 0.∃dε1,...,εL ∈ D.

αLv(φ̂
πεL
x )−

L∑
l=1

αl−1εl ≤ v(x) ≤ αLv(φ̂
πεL
x ),

where πεL(l) = dε1,...,εl for l = 1, . . . , L. For arbitrary
but fixed ε > 0, taking δl ≤ (1−α)ε for l = 1, . . . , L−1,
we have that

∑L
l=1 α

l−1εl ≤ ε, i.e.

αLv(φ̂
πεL
x )− ε ≤ v(x) ≤ αLv(φ̂

πεL
x ).

Also, due to (25), we have that v(x) = αL = V (x).
3) x ∈ X \ RA: we conclude that

∀N ∈ N.∃π ∈ Π.∀k ∈ N≤N .φ̂πx0
(k) ∈ X̂ \ TR.

Also, from constraints (8) and (10), we have that

v(x) = α inf
d∈D

v(f̂(x,d)),∀x ∈ X̂ \ TR.

Assume that the sets Π1 and Π2 satisfy

∀π ∈ Π1.∃k ∈ N.φ̂πx0
(k) ∈ TR
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and
∀π ∈ Π2.∀k ∈ N.φ̂πx0

(k) ∈ X̂ \ TR,

respectively. Then, Π1 ∪Π2 = Π holds.
3a) If Π2 = ∅, we have that for arbitrary M ∈ N, there
exists π ∈ Π1 such that Lπ ≥M .
Therefore, according to constraint (8), we have that

v(x) = inf
π∈Π1

{αLπv(φ̂πx(Lπ))}.

Consequently, v(x) = infπ∈Π1
αLπ , implying that

v(x) = 0 = V (x).
3b) If Π2 6= ∅, according to constraint (8), we have that

v(x) = inf{ inf
π∈Π1

{αLπv(φ̂πx(Lπ))}, inf
π∈Π2

{αlv(φ̂πx(l))}}

for l ∈ N. Thus,

v(x) = inf{ inf
π∈Π1

αLπ , inf
π∈Π2

{ lim
l→∞

αlv(φ̂πx(l))}},

implying that v(x) = inf{infπ∈Π1
αLπ , 0} = 0. There-

fore, v(x) = 0 = V (x).

In summary, V (x) is the unique bounded solution to the
system of equations (8)-(10).

The proof of Corollary 1:

Proof. Assume that x0 ∈ {x ∈ X̂ | v(x) > 0}. Without
loss of generality, we further assume that ε0 = v(x0) > 0.
Obviously, x0 ∈ X from constraint (13).

Firstly, we show that all trajectories φ̂πx0
(·) : N→ R starting

from x0 do not leave the safe set X before the first target
hitting time. This conclusion can be assured by constraints
(11) and (13) and the fact that v(x0) > 0.

Then we show that there exists N ∈ N such that all
trajectories φ̂πx0

(·) : N → R starting from x0 will hit the
target set TR within the finite time horizon N≤N , regardless
of disturbances.

1) Firstly, we show that all trajectories φ̂πx0
(·) : N → R

starting from x0 will hit the target set TR in finite
time, regardless of disturbances. If this is not true, then
there exists at least a trajectory driven by a disturbance
trajectory π0 such that φ̂π0

x0
(l) ∈ X \ TR for l ∈ N.

According to constraint (11), we have that

v(φ̂π0
x0

(l)) ≥ v(x0)

αl
≥ ε0
αl

for l ∈ N and thus liml→∞ v(φ̂π0
x0

(l)) =∞, contradict-
ing the fact that v(x) is bounded over x ∈ X̂ . Therefore,
all trajectories φ̂πx0

(·) : N → R starting from x0 will
hit the target set TR in finite time, regardless of the
disturbance trajectory π.

2) Secondly, we show the existence of the upper bound
N ∈ N. Assume that |v(x)| ≤ M over x ∈ X̂ .
Then, there exists N ′ ∈ N such that αlM ≤ ε0

2 for
l ≥ N ′. According to constraint (11) and v(x0) = ε0,
any trajectory φ̂πx0

(·) : N→ R for π ∈ Π will leave the
set X \ TR within the finite time horizon N≤N ′ . Due
to the fact that all trajectories φ̂πx0

(·) : N → R for
π ∈ Π do not leave the set X before the first target

hitting time, they will hit the target set TR within the
finite time horizon N≤N ′ . The existence of the upper
bound is shown.

Thus, x0 ∈ RA and further {x ∈ X̂ | v(x) > 0} ⊆ RA. The
proof is completed.
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