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Abstract. We propose a spurious region guided refinement approach for robust-
ness verification of deep neural networks. Our method starts with applying the
DeepPoly abstract domain to analyze the network. If the robustness property can-
not be verified, the result is inconclusive. Due to the over-approximation, the
computed region in the abstraction may be spurious in the sense that it does not
contain any true counterexample. Our goal is to identify such spurious regions
and use them to guide the abstraction refinement. The core idea is to make use of
the obtained constraints of the abstraction to infer new bounds for the neurons.
This is achieved by linear programming techniques. With the new bounds, we
iteratively apply DeepPoly, aiming to eliminate spurious regions. We have im-
plemented our approach in a prototypical tool DeepSRGR. Experimental results
show that a large amount of regions can be identified as spurious, and as a result,
the precision of DeepPoly can be significantly improved. As a side contribution,
we show that our approach can be applied to verify quantitative robustness prop-
erties.

1 Introduction

In the seminal work [34], deep neural networks (DNN) have been successfully applied
in Go to play against expert humans. Afterwards, they have achieved exceptional per-
formance in many other applications such as image, speech and audio recognition, self-
driving cars, and malware detection. Despite the success of solving these problems,
DNNs have also been shown to be often lack of robustness, and are vulnerable to ad-
versarial samples [39]. Even for a well-trained DNN, a small (and even imperceptible)
perturbation may fool the network. This is arguably one of the major obstacles when
we deploy DNNs in safety-critical applications like self-driving cars [42], and medical
systems [33].

It is thus important to guarantee the robustness of DNNs for safety-critical appli-
cations. In this work, we focus on (local) robustness, i.e., given an input and a ma-
nipulation region around the input (which is usually specified according to a certain
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norm), we verify that a given DNN never makes any mistake on any input in the region.
The first work on DNN verification was published in [30], which focuses on DNNs
with sigmoid activation functions with a partition-refinement approach. In 2017, Katz
et al. [20] and Ehlers [10] independently implemented Reluplex and Planet, two SMT
solvers to verify DNNs with the ReLU activation function on properties expressible
with SMT constraints. Since 2018, abstract interpretation has been one of the most pop-
ular methods for DNN verification in the lead of AI2 [13], and subsequent works like
[36,37,23,1,35,28,24] have improved AI2 in terms of efficiency, precision and more ac-
tivation functions (like sigmoid and tanh) so that abstract interpretation based approach
can be applied to DNNs of larger size and more complex structures.

Among the above methods, DeepPoly [37] is a most outstanding one regarding
precision and scalability. DeepPoly is an abstract domain specially developed for DNN
verification. It sufficiently considers the structures and the operators of a DNN, and
it designs a polytope expression which not only fits for these structures and operators
to control the loss of precision, but also works with a very small time overhead to
achieve scalability. However, as an abstraction interpretation based method, it provides
very little insight if it fails to verify the property. In this work, we propose a method
to improve DeepPoly by eliminating spurious regions through abstraction refinement.
A spurious region is a region computed using abstract semantics, conjuncted with the
negation of the property to be verified. This region is spurious in the sense that if the
property is satisfied, then this region, although not empty, does not contain any true
counterexample which can be realized in the original program. In this case, we propose
a refinement strategy to rule out the spurious region, i.e., to prove that this region does
not contain any true counterexamples.

Our approach is based on DeepPoly and improves it by refinement of the spuri-
ous region through linear programming. The core idea is to intersect the abstraction
constructed by abstract interpretation with the negation of the property to generate a
spurious region, and perform linear programming on the constraints of the spurious re-
gion so that the bounds of the ReLU neurons whose behaviors are uncertain can be
tightened. As a result, some of these neurons can be determined to be definitely acti-
vated or deactivated, which significantly improves the precision of the abstraction given
by abstract interpretation. This procedure can be performed iteratively and the precision
of the abstraction are gradually improved, so that we are likely to rule out this spurious
region in some iteration. If we successfully rule out all the possible spurious regions
through such an iterative refinement, the property is soundly verified. Our method is
similar in spirit to counterexample guided abstraction refinement (CEGAR) [6], i.e.,
we apply abstract interpretation for abstraction and linear programming for refinement.
A fundamental difference is that we use the constraints of the spurious region, instead
of a concrete counterexample (which is challenging to construct in our setting), as the
guidance of refinement.

The same spurious region guided refinement approach is also effective in quanti-
tative robustness verification. Instead of requiring that all inputs in the region should
be correctly classified, a certain probability of error in the region is allowed. Quantita-
tive robustness is more realistic and general compared to the ordinary robustness, and a
DNN verified against quantitative robustness is useful in practice as well. The spurious
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region guided refinement approach naturally fits for this setting, since a comparatively
precise over-approximation of the spurious region implies a sound robustness confi-
dence. To the best of our knowledge, for DNNs, this is the first work to verify quantita-
tive robustness with strict soundness guarantee, which distinguishes our approach from
the previous sampling based methods like [45,46,3].

In summary, our main contributions are as follows:

– We propose spurious region guided refinement to verify robustness properties of
deep neural networks. This approach significantly improves the precision of Deep-
Poly and it can verify more challenging properties than DeepPoly.

– We implement the algorithms as a prototype and run them on networks trained on
popular datasets like MNIST and ACAS Xu. The experimental results show that our
approach significantly improves the precision of DeepPoly in successfully verifying
much stronger robustness properties (larger maximum radius) and determining the
behaviors of a great proportion of uncertain ReLU neurons.

– We apply our approach to solve quantitative robustness verification problem with
strict soundness guarantee. In the experiments, we observe that, comparing to using
only DeepPoly, the bounds by our approach can be up to two orders of magnitudes
better in the experiments.

Organisations of the paper. We provide preliminaries in Section 2. DeepPoly is recalled
in Section 3. We present our overall verification framework and the algorithm in Sec-
tion 4, and discuss quantitative robustness verification in Section 5. Section 6 evaluates
our algorithms through experiments. Section 7 reviews related works and concludes the
paper.

2 Preliminaries

In this section we recall some basic notions on deep neural networks, local robustness
verification, and abstract interpretation. Given a vector x ∈ Rm, we write xi to denote
its i-th entry for 1 ≤ i ≤ m.

2.1 Robustness verification of deep neural networks

In this work, we focus on deep feedforward neural networks (DNNs), which can be
represented as a function f : Rm → Rn, mapping an input x ∈ Rm to its output y =
f(x) ∈ Rn. A DNN f often classifies an input x by obtaining the maximum dimension
of the output, i.e., arg max1≤i≤n f(x)i. We denote such a DNN by Cf : Rm → C
which is defined by Cf (x) = arg max1≤i≤n f(x)i where C = {1, . . . , n} is the set of
classification classes.

A DNN has a sequence of layers, including an input layer at the beginning, followed
by several hidden layers, and an output layer in the end. The output of a layer is the input
of the next layer. Each layer contains multiple neurons, the number of which is known
as the dimension of the layer. The DNN f is the composition of the transformations
between layers. Typically an affine transformation followed by a non-linear activation
function is performed. For an affine transformation y = Ax + b, if the matrix A is not
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sparse, we call such a layer fully connected. A DNN with only fully connected layers
and activation functions is a fully connected neural network (FNN). In this work, we
focus on the rectified linear unit (ReLU) activation function, defined as ReLU(x) =
max(x, 0) for x ∈ R. Typically, a DNN verification problem is defined as follows:

Definition 1. Given a DNN f : Rm → Rn, a set of inputs X ⊆ Rm, and a property
P ⊆ Rn, we need to determine whether f(X) := {f(x) | x ∈ X} ⊆ P holds.

Local robustness describes the stability of the behaviour of a normal input under a
perturbation. The range of input under this perturbation is the robustness region. For a
DNN Cf (x) which performs classification tasks, a robustness property typically states
that Cf outputs the same class on the robustness region.

There are various ways to define a robustness region, and one of the most popular
ways is to use the Lp norm. For x ∈ Rm and 1 ≤ p < ∞, we define the Lp norm of

x to be ‖x‖p = (
∑m

i=1 |xi|p)
1
p , and its L∞ norm ‖x‖∞ = max1≤i≤m |xi|. We write

B̄p(x, r) := {x′ ∈ Rm | ‖x−x′‖p ≤ r} to represent a (closed) Lp ball for x ∈ Rm and
r > 0, which is a neighbourhood of x as its robustness region. If we set X = B̄p(x, r)
and P = {y ∈ Rn | arg maxi yi = Cf (x)} in Def. 1, it is exactly the robustness
verification problem. Hereafter, we set p =∞.

2.2 Abstract interpretation for DNN verification

Abstract interpretation [7] is a static analysis method and it is aimed to find an over-
approximation of the semantics of programs and other complex systems so as to verify
their correctness. Generally we have a function f : Rm → Rn representing the concrete
program, a setX ⊆ Rm representing the property that the input of the program satisfies,
and a set P ⊆ Rn representing the property to verify. The problem is to determine
whether f(X) ⊆ P holds. However, in many cases it is difficult to calculate f(X) and
to determine whether f(X) ⊆ P holds. Abstract interpretation uses abstract domains
and abstract transformations to over-approximate sets and functions so that an over-
approximation of the output can be obtained efficiently.

Now we have a concrete domain C, which includes X as one of its elements. To
make computation efficient, we need an abstract domain A to abstract elements in the
concrete domain. We assume that there is a partial order ≤ on C and A, which in our
settings is the subset relation ⊆. We also have a concretization function γ : A → C
which assigns an abstract element to its concrete semantics, and γ(a) is the least upper
bounds of the concrete elements that can be soundly abstracted by a ∈ A. Naturally
a ∈ A is a sound abstraction of c ∈ C if and only if c ≤ γ(a).

The design of an abstract domain is one of the most important problems in abstract
interpretation because it determines the efficiency and precision. In practice, we use
a certain type of constraints to represent the abstract elements in an abstract domain.
Classical abstract domains for Euclidean spaces include Box, Zonotope [14,15], and
Polyhedra [38].

Not only do we need abstract domains to over-approximate sets, but we are also
required to adopt over-approximation to functions. Here we consider the lifting of the
function f : Rm → Rn defined as Tf (X) : P(Rm) → P(Rn), Tf (X) := f(X) =
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{f(x) | x ∈ X}. Now we have an abstract domain Ak for the k-dimension Euclidean
space and the corresponding concretization γ. A function T#

f : Am → An is a sound
abstract transformer of Tf , if Tf ◦ γ ⊆ γ ◦ T#

f .
When we have a sound abstraction X# ∈ A of X and a sound abstract transformer

T#
f , we can use the concretization of T#

f (X#) to over-approximate f(X) since we
have f(X) = Tf (X) ⊆ Tf (γ(X#)) ⊆ γ ◦ T#

f (X#). If γ ◦ T#
f (X#) ⊆ P , the prop-

erty P is successfully verified. Obviously, verification through abstract interpretation is
sound but not complete. Hereafter, we write f# to represent T#

f for simplicity.
AI2 [13] first adopted abstract interpretation to verify DNNs, and many subsequent

works like [36,37,23] focused on improving its efficiency and precision through, e.g.,
defining new abstract domains. As a deep neural network, the function f : Rm → Rn

can be regarded as a composition f = fl ◦ · · · ◦ f1 of its l+ 1 layers, where fj performs
the transformation between the j-th and the (j + 1)-th layer, i.e., it can be an affine
transformation, or a ReLU operation. If we choose Box, Zonotope, or Polyhedra as the
abstract domain, then for linear transformations and the ReLU functions, their abstract
transformers have been developed in [13]. After we have abstract transformers f#j for
these fj , we can conduct abstract interpretation layer by layer as f#l ◦ · · · ◦ f

#
1 (X#).

3 A Brief Introduction to DeepPoly

Our approach relies on the abstract domain DeepPoly [37], which is the state-of-the-art
abstract domain for DNN verification. It defines the abstract transformers of multiple
activation functions and layers used in DNNs. The core idea of DeepPoly is to give
every variable an upper and a lower bound in the form of an affine expression using
only variables that appear before it. It can express a polyhedron globally. Moreover,
experimentally, it often has better precision than Box and Zonotope domains.

We denote the n-dimensional DeepPoly abstract domain with An. Formally an ab-
stract element a ∈ An is a tuple (a≤, a≥, l, u), where a≤ and a≥ give the i-th variable
xi a lower bound and an upper bound, respectively, in the form of a linear combina-
tion of variables which appear before it, i.e.

∑i−1
k=1 wkxk + w0, for i = 1, . . . , n, and

l, u ∈ Rn give the lower bound and upper bound of each variable, respectively. The
concretization of a is defined as

γ(a) = {x ∈ Rn | a≤i ≤ xi ≤ a
≥
i , i = 1, . . . , n}. (1)

The abstract domain An also requests that its abstract elements a should satisfy the
invariant γ(a) ⊆ [l, u]. This invariant helps construct efficient abstract transformers.

For an affine transformation xi =
∑i−1

k=1 wkxk + w0, we set

a≤i = a≥i =

i−1∑
k=1

wkxk + w0.

By substituting the variables xj appearing in a≤i with a≤j or a≥j according to its coef-
ficient at most i − 1 times, we can obtain a sound lower bound in the form of linear
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Fig. 1. Framework of spurious region guided refinement

combination on input variables only, and li can be computed immediately from the
range of input variables. A similar procedure also works for computing ui.

For a ReLU transformation xi = ReLU(xj), we consider two cases:

– If lj ≥ 0 or uj ≤ 0, this ReLU neuron is definitely activated or deactivated,
respectively. In this case, this ReLU transformation actually performs an affine
transformation, and thus its abstract transformer can be defined as above.

– If lj < 0 and uj > 0, the behavior of this ReLU neuron is uncertain, and we
need to over-approximate this relation with a linear upper/lower bound. The best
upper bound is a≥i =

uj(xj−lj)
uj−lj . For the lower bound, there are multiple choices

a≤i = λxj where λ ∈ [0, 1]. We choose λ ∈ {0, 1} which minimizes the area of the
constraints. Basically we have two abstraction modes here, corresponding to the
two choices of λ.

Note that for a DNN with only ReLU as non-linear operators, over-approximation oc-
curs only when there are uncertain ReLU neurons, which are over-approximated using
a triangle. The key of improving the precision is thus to compute the bounds of the
uncertain ReLU neurons as precisely as possible, and to determine the behaviors of the
most uncertain ReLU neurons.

DeepPoly also supports activation functions which are monotonically increasing,
convex on (−∞, 0] and concave on [0,+∞), like sigmoid and tanh, and it supports
max pooling layers. Readers can refer to [37] for details.

4 Spurious Region Guided Refinement

We explain the main steps of our algorithm, as depicted in Fig. 1. For the input property
and network, we first employ DeepPoly as the initial step to compute f#(X#). The
concretization of f#(X#) is the conjunction of many linear inequities given in Eq. 1,
and for the robustness property P , the negation ¬P is the disjunction of several linear
inequities ¬P =

∨
t6=Cf (x)

(yCf (x) − yt ≤ 0).
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1. We check whether f#(X#) ∩# (yCf (x) − yt ≤ 0) = ⊥ holds for each t, which
follows the same method as DeepPoly, i.e., we compute the lower bound of yCf (x)−
yt and see whether it is larger than 0. In case of yes, it indicates that the label t
cannot be classified, as it is dominated by Cf (x). Otherwise, we have f#(X#)∩#
¬P 6= ⊥, we have the conjunction γ(f#(X#))∧¬P as a potential spurious region,
which represents the intersection of the abstraction of the real semantics and the
negation of the property to verify. We call such a region spurious because if the
property is satisfied, then this region does not contain a true counterexample, i.e., a
pair of input and output (x∗, y∗) such that y∗ = f(x∗) and y∗ violates the property
P . In this case, this region is spuriously constructed due to the abstraction of the
real semantics, where the counterexamples cannot be realized, and thus we aim to
rule out the spurious region.

2. If no potential spurious region is found, our algorithm safely returns yes.
3. Assume now that we have a the potential spurious region. The core idea is to use

the constraints of the spurious region to refine this spurious region. Here a natural
way to refine the spurious region is linear programming, since all the constraints
here are linear inequities. If the linear programming is infeasible, it indicates that
the region is spurious, and thus we can return an affirmative result. Otherwise, our
refinement will tighten the bounds of variables involved in the DNN, especially
the input variables and uncertain ReLU neurons, and these tightened bounds help
further give a more precise abstraction.

4. As our approach is based on DeepPoly, similarly, we cannot guarantee complete-
ness. We set a threshold N of the number of iterations as a simple termination
condition. If the termination condition is not reached, we run DeepPoly again, and
return to the first step.

Below we give an example, illustrating how refinement can help in robustness veri-
fication.

Example 1. Consider the network f(x) = ReLU

((
1 −1
1 1

)
x+

(
0

2.5

))
and the re-

gion B̄∞((0, 0)T, 1). The robustness property P here is y2 − y1 > 0. We invoke first
DeepPoly: the lower bound of y2 − y1 given by DeepPoly is −0.5. As a result, the
robustness property cannot be verified directly. Fig. 2(a) shows details of the example.

We fail to verify the property in Example 1 because for the uncertain ReLU relation
y1 = ReLU(x3), the abstraction is imprecise, and the key to making the abstraction
more precise here is to obtain as tight a bound as possible for x3.

Example 2. We use the constraints in Fig. 2(a) and additionally the constraint y2−y1 ≤
0 (i.e., ¬P ) as the input of linear programming. Our aim is to obtain a tighter bound of
the input neurons x1 and x2, as well as the uncertain ReLU neuron x3, so the objective
functions of the linear programming are minxi and min−xi for i = 1, 2, 3. All the
three neurons have a tighter bound after the linear programming (see the red part in
Fig. 2(b)). Fig. 2(b) shows the running of DeepPoly under these new bounds, where the
input range and the abstraction of the uncertain ReLU neuron are both refined. Now the
lower bound of y2 − y1 is 0.25, so DeepPoly successfully verifies the property.
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Fig. 2. Example 1 (left) and Example 2 (right): where the red parts are introduced through linear
programming based refinement and the blue parts are introduced by a second run of DeepPoly.

4.1 Main algorithm

Alg. 1 presents our algorithm. First we run abstract interpretation to find the uncertain
neurons and the spurious regions (Line 2–5). For each possible spurious region, we have
a while loop which iteratively refines the abstraction. In each iteration we perform linear
programming to renew the bounds of the input neurons and uncertain ReLU neurons;
when we find that the bound of an uncertain ReLU neuron becomes definitely non-
negative or non-positive, then the ReLU behavior of this neuron is renewed (Line 14–
20). We use them to guide abstract interpretation in the next step (Line 21–22). Here in
Line 22, we make sure that during the abstract interpretation, the abstraction of previous
uncertain neurons (namely the uncertain neurons before the linear programming step in
the same iteration) compulsorily follows the new bounds and new ReLU behaviors
given by the current C≥0, C≤0, l, and u, where these bounds will not be renewed by
abstract interpretation, and the concretization of Y is defined as

γ(Y ) = {x | ∀i. Y ≤i ≤ xi ≤ Y
≥
i } ∩ [l, u]. (2)

The while loop ends when (i) either we find that the spurious region is infeasible
(Line 11, 24) and we proceed to refine the next spurious region, with a label Verified
True, (ii) or we reach the terminating condition and fail to rule out this spurious region,
in which case we return UNKNOWN. If every while loop ends with the label Verified
True, we successfully rule out all the spurious regions and return YES. An observation
is that, if some spurious regions have been ruled out, we can add the constraints of their
negation to make the current spurious region smaller so as to improve the precision
(Line 9).

Here we discuss the soundness of Alg. 1. We focus on the while loop and claim that
it has the following loop invariant:

Invariant 1 The abstract element Y over-approximates the intersection of the seman-
tics of f on B̄∞(x, r) and the spurious region, i.e., f(B̄∞(x, r)) ∩ Spu ⊆ γ(Y ).
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Algorithm 1 Spurious region guided robustness verification
Input:

DNN f , input x, radius r.
Output:

Return “YES” if verified, or “UNKNOWN” otherwise.
1: function VERIFY(f , x, r)
2: Y0 ← f#(B̄∞(x, r)) . abstract interpretation with DeepPoly
3: Vu ← {v | v was marked as uncertain in Line 2}
4: A = {t | Y0 ∩# (yCf (x) − yt ≤ 0) 6= ⊥}
5: if A = ∅ then return YES . otherwise A = {t1, . . . , tl}
6: for i← 1 to l do
7: Verified← False, V ← Vu, Y ← Y0 . denote Y = (Y ≤, Y ≥, l, u)
8: C≥0 ← ∅, C≤0 ← ∅ . set of new activated/deactivated neurons
9: Spu← (yCf (x) − yti ≤ 0) ∧

∧i−1
j=1(yCf (x) − ytj ≥ 0) . spurious region

10: while terminating condition not satisfied do
11: if Y ∧ Spu is infeasible then
12: Verified← True
13: break
14: for v ∈ V ∪ V0 do . V0: set of input neurons
15: (lv, uv)← LP(Y ∧ Spu, v)

16: for v ∈ V do
17: if lv ≥ 0 then
18: C≥0 ← C≥0 ∪ {v}, V ← V \ {v}
19: else if uv ≤ 0 then
20: C≤0 ← C≤0 ∪ {v}, V ← V \ {v}
21: X ←

⋂
v∈V0
{lv ≤ v ≤ uv}

22: Y ← f#(X) according to C≥0, C≤0, l, and u
23: V ← {v | v was marked as uncertain in Line 22} \ (C≥0 ∪ C≤0)
24: if Y ∩# (yCf (x) − yti ≤ 0) = ⊥ then
25: Verified← True
26: break
27: if Verified = False then return UNKNOWN
28: return YES

The initialization of Y is f#(B̄∞(x, r)) and it is naturally an over-approximation.
The box X is obtained by linear programming on Y ∧ Spu, and f#(X) is calcu-
lated through abstract interpretation and the bounds given by linear programming on
Y ∧ Spu, and thus it remains an over-approximation. It is worth mentioning that, when
we run DeepPoly in Line 22, we are using the bounds obtained by linear programming
to guide DeepPoly, and this may violate the invariant γ(a) ⊆ [l, u] mentioned in Sect. 3.
Nonotheless, soundness still holds since the concretization of Y is newly defined in
Eq. 2, where both items in the intersection over-approximate f(B̄∞(x, r))∩ Spu. With
Invarient 1, Alg. 1 returns YES if for any possible spurious region Spu, the over-
approximation of f(B̄∞(x, r)) ∩ Spu is infeasible, which implies the soundness of
Alg. 1.
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4.2 Iterative refinement of the spurious region

Here we present more theoretical insight on the iterative refinement of the spurious
region. An iteration of the while loop in Alg. 1 can be represented as a functionL : A →
A, where A is the DeepPoly domain. An interesting observation is that, the abstract
transformer f# in the DeepPoly domain is not necessarily increasing, because different
input ranges, even if they have inclusion relation, may lead to different choices of the
abstraction mode of some uncertain ReLU neurons, which may violate the inclusion
relation of abstraction. We have found such examples during our experiment, which is
illustrated in the following example.

Example 3. Let f(x) = ReLU(x) with input ranges I1 = [−2, 1] and I2 = [−2, 3].
We have f#(I1) = {(x1, x2)T ∈ R2 | −2 ≤ x1 ≤ 1, x2 ≥ 0, x2 ≤ 1

3x1 + 2
3} and

f#(I2) = {(x1, x2)T ∈ R2 | −2 ≤ x1 ≤ 3, x2 ≥ x1, x2 ≤ 3
5x1 + 6

5}. We observe
(1, 0)T ∈ f#(I1) but (1, 0)T /∈ f#(I2), which implies that the transformer f# is not
increasing.

This fact also implies that L is not necessarily increasing, which violates the condition
of Kleene’s Theorem on fixed point [4].

Now we turn to the analysis of the sequence {Yk = Lk(f#(B̄∞(x, r)))}∞k=1, where
L1 := L and Lk := L ◦ Lk−1 for k ≥ 2. First we have the following lemma showing
that in our settings every decreasing chain S in the DeepPoly domain A has a meet⋂#

S ∈ A.

Lemma 1. Let An be the n-dimensional DeepPoly domain and {a(k)} ⊆ An a de-
creasing bounded sequence of non-empty abstract elements. If the coefficients in a(k),≤i

and a(k),≥i are uniformly bounded, then there exists an abstract element a∗ ∈ An s.t.
γ(a∗) =

⋂∞
k=1 γ(a(k)).

Remark: The condition that the coefficients in a(k),≤i and a(k),≥i are uniformly bounded
are naturally satisfied in our setting, since in a DNN the coefficients and bounds in-
volved have only finitely many values. Readers can refer to [50] for a formal proof.

Lemma 1 implies that if our sequence {Yk} is decreasing, then the iterative refine-
ment converges to an abstract element in DeepPoly, which is the greatest fixed point of
L that is smaller than f#(B̄∞(x, r)). A sufficient condition for {Yk} being decreasing
is that during the abstract interpretation in every Yk, every initial uncertain neuron main-
tains its abstraction mode, i.e. its corresponding λ does not change, before its ReLU
behavior is determined. A weaker sufficient condition for convergence is that change in
abstraction mode of uncertain neurons never happens after finitely many iterations.

If the abstraction mode of uncertain neurons changes infinitely often, generally the
sequence {Yk} does not converge. In this case, we can consider its subsequence in
which every Yk is obtained with the same abstraction mode. It is easy to see that such
a subsequence must be decreasing and thus have a meet, as it is an accumulative point
of the sequence {Yk}. Since there are only finitely many choices of abstraction modes,
such a accumulative points exists in {Yk}, and there are only finitely many accumu-
lative points. We conclude these results in the following theorem which describes the
convergence behavior of our iterative refinement of the spurious region:
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Theorem 2. There exists a subsequence {Ynk
} of {Yk} s.t. {Ynk

} is decreasing and
thus has a meet

⋂#{Ynk
}. Moreover, the set{⋂

#{Ynk
} | {Ynk

} is a decreasing subsequence of {Yk}
}

is finite, and it is a singleton if exact one abstraction mode of uncertain ReLU neurons
happens infinitely often.

Proof. Since the abstraction modes of uncertain ReLU neurons have only finitely many
choices, there must be one which happens infinitely often in the computation of the
sequence {Yk}, and we choose the subsequence {Ynk

} in which every item is computed
through this abstraction mode. Obviously {Ynk

} is decreasing and thus has a meet.
For a decreasing subsequence {Ynk

}, we can find its subsequnce in which the ab-
straction mode of uncertain ReLU neurons does not change, and they have the same
meet. Since there are only finitely many choices of abstraction modes of uncertain
ReLU neurons, such accumulative points of {Yk} also have finitely many values. If
exact one abstraction mode of uncertain ReLU neurons happens infinitely often, obvi-
ously there is only one accumulative point in {Yk}. ut

4.3 Optimizations

In the implementation of our main algorithm, we propose the following optimizations
to improve the precision of refinement.

Optimization 1: More precise constraints in linear programming. In Line 15 of Alg. 1,
it is not the best choice to take the linear constraints in the abstract element Y into linear
programming, because the abstraction of uncertain ReLU neurons in DeepPoly is not
the best. Planet [10] has a component which gives a more precise linear approximation
for uncertain ReLU relations, where it uses the linear constraints y ≤ u(x−l)

u−l , y ≥
x, y ≥ 0 to over-approximate the relation y = ReLU(x) with x ∈ [l, u].

Optimization 2: Priority to work on small spurious regions. In Line 6 of Alg. 1,we
determine the order of refining the spurious regions based on their sizes, i.e., a smaller
region is chosen earlier. This is based on the intuition that Alg. 1 works effectively if the
spurious region is small. After the small spurious regions are ruled out, the constraints of
large spurious regions can be tightened with the conjunction

∧i−1
j=1(yCf (x) − ytj ≥ 0).

It is difficult to strictly determine which spurious region is the smallest, and thus we
refer to the lower bound of yCf (x) − yti given by DeepPoly, i.e., the larger this lower
bound is, the smaller the spurious region is likely to be, and we perform the for loop in
Line 6 of Alg. 1 in this order.

5 Quantitative Robustness Verification

In this section we recall the notion of quantitative robustness and show how to verify a
quantitative robustness property of a DNN with spurious region guided refinement.
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In practice, we may not need a strict condition of robustness to ensure that an input x
is not an adversarial example. A notion of mutation testing is proposed in [44,43], which
requires that an input x is normal if it has a low label change rate on its neighbourhood.
They follow a statistical way to estimate the label change rate of an input, which moti-
vates us to give a formal definition of the property showing a low label change rate, and
to consider the verification problem for such a property. Below we recall the definition
of quantitative robustness [27], where we have a parameter 0 < η ≤ 1 representing the
confidence of robustness.

Definition 2. Given a DNN Cf : Rm → C, an input x ∈ Rm, r > 0, 0 < η ≤ 1, and
a probability measure µ on B̄∞(x, r), f is η-robust at x, if

µ({x′ ∈ B̄∞(x, r) | Cf (x′) = Cf (x)}) ≥ η.

Def. 2 has a tight association with label change rate, i.e., if x is η-robust, then the label
change rate should be smaller than, or close to 1 − η. Hereafter, we set µ to be the
uniform distribution on B̄∞(x, r).

It is natural to adapt spurious region guided refinement to quantitative robustness
verification. In Alg. 1, we do not return UNKNOWN when we cannot rule out a spurious
region, but record the volume of the box X as an over-approximation of the Lebesgue
measure of the spurious region. After we work on all the spurious regions, we calculate
the sum of these volume, and obtain a sound robustness confidence. Here we do not
calculate the volume of the spurious region because precise calculation of volume of
a high-dimensional polytope remains open, and we do not choose to use randomized
algorithms because it may not be sound.

We further improve the algorithm through the powerset technique [13]. Powerset
technique is a classical and effective way to enhance the precision of abstract interpre-
tation. We split the input region into several subsets, and run abstract interpretation on
these subsets, In our quantitative robustness verification setting, powerset technique not
only improves the precision, but also accelerates the algorithm in some situations: If the
subsets have the same volume, and the percentage of the subsets on which we may fail
to verify robustness is already smaller than 1 − η, then we have successfully verified
the η-robustness property.

6 Experimental Evaluation

We implement our approach as a prototype called DeepSRGR. The implementation
is based on a re-implementation of the ReLU and the affine abstract transformers of
DeepPoly in Python 3.7 and we amend it accordingly to implement Alg. 1. We use
CVXPY [8] as our modeling language for convex optimization problems and CBC [18]
as the LP solver. It is worth mentioning that we ignore the floating point error in our
re-implementation of DeepPoly because sound linear programming currently does not
scale in our experiments. In the terminating condition, we set N = 5. The two op-
timizations in Sect. 4.3 are adopted in all the experiments. All the experiments are
conducted on a CentOS 7.7 server with 16 Intel Xeon Platinum 8153 @2.00GHz (16
cores) and 512G RAM, and they use 96 sub-processes concurrently at most. Readers
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can find all the source code and other experimental materials in https://iscasmc.ios.ac.
cn/ToolDownload/?Tool=DeepSRGR.

Datasets. We use MNIST [22] and ACAS Xu [12,17] as the datasets in our experi-
ments. MNIST contains 60 000 grayscale handwritten digits of the size 28×28. We can
train DNNs to classify the images by the written digits on them. The ACAS Xu system
is aimed to avoid airborne collisions for unmanned aircrafts and it uses an observation
table to make decisions for the aircraft. In [19], the observation table is realized by
training DNNs instead of storing it.

Networks. On MNIST, we trained seven fully connected networks of the size 6 × 20,
3 × 50, 3 × 100, 6 × 100, 6 × 200, 9 × 200, and 6 × 500, where m × n refers m
hidden layers and n neurons in each hidden layer, and we name them from FNN2 to
FNN8, respectively (we also have a small network FNN1 for testing). On ACAS Xu,
we randomly choose three networks used in [20], all of the size 6× 50.

6.1 Improvement in precision

First we compare DeepPoly and DeepSRGR in terms of their precision of robustness
verification. We consider the following two indices: (i) the maximum radius that the two
tools can verify, and (ii) the number of uncertain ReLU neurons whose behaviors can be
further determined by DeepSRGR. For each network, we randomly choose three images
from the MNIST dataset, and calculate their maximum radius that the two tools can ver-
ify through a binary search on the seven FNNs. In column “# uncertin ReLU” we record
the number of the uncertain ReLU neurons when first applying DeepPoly, and also
count how many of them are renewed, namely become definitely activated/deactivated
in later iterations when applying DeepSRGR.

Table 1 shows the results. We can see from Table 1 that DeepSRGR can verify
much stronger (i.e., larger maximum radius) robustness properties than DeepPoly. The
average number of iterations for ruling out a spurious region is 2.875, and about half
of the spurious regions can be ruled out within 2 iterations. DeepSRGR sometimes
determines behaviors of a large proportion of uncertain ReLU neurons on large net-
works: Considering the last picture of the most challenging network FNN8, more than
ninety percent (92.6% ≈ 1269

1371 ) of the uncertain neurons are renewed. Improvement
in precision evaluated in this experiment works for verification of both robustness and
quantitative robustness, and this is why our method is effective in both tasks.

6.2 Robustness verification performance

In this setting, we randomly choose 50 samples from the MNIST dataset. We fix four
radii, 0.037, 0.026, 0.021, and 0.015 for the four networks FNN4 – FNN7 respectively,
and verify the robustness property with the corresponding radius on the 50 inputs. The
radius chosen here is very challenging for the corresponding network.

Table 2 presents the results. As we can see, DeepSRGR can verify significantly more
properties than DeepPoly. Linear programming in DeepSRGR takes a large amount of
time in the experiment, and thus DeepSRGR is less efficient (a DeepPoly run takes no

https://iscasmc.ios.ac.cn/ToolDownload/?Tool=DeepSRGR
https://iscasmc.ios.ac.cn/ToolDownload/?Tool=DeepSRGR
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Maximum radius # spurious
regions

# uncertain ReLU % renewed # iterations
DeepPoly DeepSRGR Original Renewed MAX AVG MAX GT

0.034 0.047 6 51 38 74.5% 48.4% 5 17
FNN2 0.017 0.023 3 47 37 78.7% 51.8% 4 9

0.017 0.023 1 34 25 73.5% 73.5% 4 4

0.049 0.066 6 88 69 78.4% 60.9% 5 15
FNN3 0.025 0.033 7 94 85 90.4% 46.0% 5 18

0.045 0.058 3 98 45 45.1% 27.2% 5 9

0.045 0.060 6 180 102 56.7% 35.2% 5 19
FNN4 0.024 0.030 6 199 144 72.4% 36.5% 4 15

0.035 0.046 2 155 103 66.5% 42.9% 5 7

0.034 0.042 7 305 245 80.3% 37.8% 5 20
FNN5 0.016 0.019 5 315 204 64.8% 34.0% 4 14

0.021 0.027 7 337 256 76.0% 34.9% 5 18

0.022 0.026 7 683 271 39.7% 19.8% 4 18
FNN6 0.011 0.013 6 657 483 73.5% 36.7% 3 14

0.021 0.025 8 723 169 23.4% 12.2% 5 21

0.021 0.023 9 987 297 30.1% 10.0% 5 29
FNN7 0.010 0.011 5 877 648 73.9% 26.8% 3 11

0.017 0.019 7 913 352 38.6% 24.3% 3 16

0.037 0.044 9 1 504 976 64.9% 45.9% 5 36
FNN8 0.020 0.022 9 1 213 818 67.4% 33.3% 3 21

0.033 0.040 9 1 371 1 269 92.6% 51.1% 5 37

Table 1. Maximum radius which can be verified by DeepPoly and DeepSRGR, and details of
DeepSRGR running on its maximum radius, where in the number of renewed uncertain nuerons,
we show the largest one among the spurious regions. MAX, AVG, and GT means the maximum,
the average, and the grant total among the spurious regions, respectively. The indices of the three
images are 414, 481, and 65 in the MNIST dataset.

more than 100 seconds on FNN7). Furthermore, we again run the 15 running examples
which are not verified by DeepSRGR on FNN4, by resetting the maximum number of
iterations to 20 and 50. We have the following observations:

– Two more properties (out of 15) are successfully verified when we change N to 20.
No more properties can be verified even if we change N from 20 to 50.

– In this experiment, 13 more spurious regions are ruled out, six of which takes 6
iterations, one takes 7, two takes 8, and the other four takes 13, 22, 27, and 32
iterations, respectively. In these running examples, the average number of renewed
ReLU behaviors is 102.8, and a large proportion are renewed in the last iteration
(47.4% on average). Fig. 3 shows the detailed results.

– As for the 13 spurious regions which cannot be ruled out within 50 iterations, the
average number of renewed ReLU behaviors is only 8.54, which is significantly
lower than the average of the 13 spurious regions which are newly ruled out. In
these running examples, changes in ReLU behaviors and ReLU abstraction modes
do not happen after the 9th iteration, and the average number is 4.4.
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Model Size Radius
# verified Time (s)

DeepPoly DeepSRGR MAX AVG

FNN4 3× 100 0.037 14 35 3 384 781
FNN5 6× 100 0.026 19 31 7 508 1 689
FNN6 6× 200 0.021 14 25 23 157 6 178
FNN7 9× 200 0.015 25 36 61 760 8 960

Table 2. The number that DeepPoly and DeepSRGR verifies among the 50 inputs, and the maxi-
mum/average running time of DeepSRGR.
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160
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in the whole loop

Fig. 3. Number of renewed ReLU behaviors in the spurious regions newly ruled out.

We observe that, by increasing the termination threshold N from 5 to 50, only two
more properties out of 15 can be verified additionally. This suggests that our method
can effectively identify these spurious regions which are relevant to verification of the
property, in a small number of iterations.

6.3 Quantitative robustness verification on ACAS Xu networks

We evaluate DeepSRGR for quantitative robustness verification on ACAS Xu networks.
We randomly choose five inputs, and compute the maximum robustness radius for each
input on the three networks with DeepPoly through a binary search. In our experiment,
the radius for a running example is the maximum robustness radius plus 0.02, 0.03,
0.04, 0.05, and 0.06. We use the powerset technique and the number of splits is 32. For
DeepPoly, the robustness confidence it gives is the proportion of the splits on which
DeepPoly verifies the property.

Fig. 4 shows the results. We can see that DeepSRGR gives significantly better over-
approximation of 1−η than DeepPoly. That is, in more than 90% running examples, our
over-approximation is no more than one half of that given by DeepPoly, and in more
than 75% of the cases, our over-approximation is even smaller than one tenth of that
given by DeepPoly.
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Fig. 4. Quantitative robustness verification using DeepPoly and DeepSRGR

7 Related Works and Conclusion

We have already discussed papers mostly related to our paper. Here we add some more
new results. Marabou [21] has been developed as the next generation of Reluplex. Re-
cently, verification approach based on abstraction of DNN models has been proposed
in [11,2]. In addition, alternative approaches based on constraint-solving [26,29,5,25],
layer-by-layer exhaustive search [16], global optimization [31,9,32], functional approx-
imation [47], reduction to two-player games [48,49], and star set abstraction [41,40]
have been proposed as well.

In this work, we propose a spurious region guided refinement approach for robust-
ness and quantitative robustness verification of deep neural networks, where abstract
interpretation calculates an abstraction, and linear programming performs refinement
with the guidance of the spurious region. Our experimental results show that our tool
can significantly improve the precision of DeepPoly, verify more robustness properties,
and often provide a quantitative robustness with strict soundness guarantee.

Abstraction interpretation based framework is quite extensive to different DNN
models, different properties, and incorporate different verification methods. As future
work, we will investigate how to increase the precision further by using more precise
linear over-approximation like [35].
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