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Towards Practical Robustness Analysis for DNNs based on
PAC-Model Learning

Anonymous Author(s)

ABSTRACT

To analyse local robustness properties of deep neural networks
(DNNs), we present a practical framework from a model learn-
ing perspective. Based on black-box model learning with scenario
optimisation, we abstract the local behaviour of a DNN via an
affine model with the probably approximately correct (PAC) guar-
antee. From the learned model, we can infer the corresponding
PAC-model robustness property. The innovation of our work is the
integration of model learning into PAC robustness analysis: that is,
we construct a PAC guarantee on the model level instead of sample
distribution, which induces a more faithful and accurate robustness
evaluation. This is in contrast to existing statistical methods with-
out model learning. We implement our method in a prototypical
tool named DeepPAC. As a black-box method, DeepPAC is scalable
and efficient, especially when DNNs have complex structures or
high-dimensional inputs. We extensively evaluate DeepPAC, with 4
baselines (using formal verification, statistical methods, testing and
adversarial attack) and 20 DNN models across 3 datasets, including
MNIST, CIFAR-10, and ImageNet. It is shown that DeepPAC out-
performs the state-of-the-art statistical method PROVERO, and it
achieves more practical robustness analysis than the formal ver-
ification tool ERAN. Also, its results are consistent with existing
DNN testing work like DeepGini.

CCS CONCEPTS
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• Computing methodologies→ Artificial intelligence.
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1 INTRODUCTION

Deep neural networks (DNNs) are now widely deployed in many
applications such as image classification, game playing, and the
recent scientific discovery on predictions of protein structure [56].
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Adversarial robustness of a DNN plays the critical role for its trust-
worthy use. This is especially true for for safety-critical applications
such as self-driving cars [67]. Studies have shown that even for a
DNN with high accuracy, it can be fooled easily by carefully crafted
adversarial inputs [62]. This motivates research on verifying DNN
robustness properties, i.e., the prediction of the DNN remains the
same after bounded perturbation on an input. As the certifiable
criterion before deploying a DNN, the robustness radius should be
estimated or the robustness property should be verified.

In this paper, we propose a practical framework for analysing
robustness of DNNs. The main idea is to learn an affine model
which abstracts local behaviour of a DNN and use the learned
model (instead of the original DNN model) for robustness analysis.
Different from model abstraction methods like [4, 17], our learned
model is not a strictly sound over-approximation, but it varies from
the DNN uniformly within a given margin subject to some specified
significance level and error rate. We call such a model the probably
approximately correct (PAC) model.

There are several different approaches to estimating the max-
imum robustness radius of a given input for the DNN, including
formal verification, statistical analysis, and adversarial attack. In
the following, we will first briefly explain the pros and cons of
each approach for and its relation with our method. Then, we will
highlight the main contributions in this paper.

Bound via formal verification is often too conservative. A DNN is
a complex nonlinear function and formal verification tools [7, 32,
37, 57, 58, 66, 82] can typically handle DNNs with hundreds to thou-
sands of neurons. This is dwarfed by the size of modern DNNs used
in the real world, such as the ResNet50 model [26] used in our ex-
periment with almost 37 million hidden neurons. The advantage of
formal verification is that its resulting robustness bound is guaran-
teed, but the bound is also often too conservative. For example, the
state-of-the-art formal verification tool ERAN is based on abstrac-
tion interpretation [58] that over-approximates the computation in
a DNN using computationally more efficient abstract domains. If
the ERAN verification succeeds, one can conclude that the network
is locally robust; otherwise, due to its over-approximation, no con-
clusive result can be reached and the robustness property may or
may not hold.

Estimation via statistical methods is often too large. If we weaken
the robustness condition by allowing a small error rate on the
robustness property, it becomes a probabilistic robustness (or quan-
titative robustness) property. Probabilistic robustness characterises
the local robustness in a way similar to the idea of the label change
rate in mutation testing for DNNs [69, 70]. In [5, 6, 11, 43, 72, 73, 76],
statistical methods are proposed to evaluate local robustness with
a probably approximately correct (PAC) guarantee. That is, with
a given confidence, the DNN satisfies a probabilistic robustness
property, and we call this PAC robustness. However, as we are going
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to see in the experiments (Section 5), the PAC robustness estima-
tion via existing statistical methods is often unnecessarily large. In
this work, our method significantly improves the PAC robustness
bound, without loss of confidence or error rate.

Bound via adversarial attack has no guarantee. Adversarial attack
algorithms apply various search heuristics based on e.g., gradient
descent or evolutionary techniques for generating adversarial in-
puts [1, 13, 42, 83]. These methods may be able to find adversarial
inputs efficiently, but are not able to provide any soundness guar-
antee. While the adversarial inputs found by the attack establish an
upper bound of the DNN local robustness, it is not known whether
there are other adversarial inputs within the bound. Later, we will
use this upper bound obtained by adversarial attack, together with
the lower bound proved by the formal verification approach dis-
cussed above, as the reference for evaluating the quality of our
PAC-model robustness results, and comparing them with the latest
statistical method.

Contributions. We propose a novel framework of PAC-model
robustness verification for DNNs. Inspired by the scenario optimi-
sation technique in robust control design, we give an algorithm
to learn an affine PAC model for a DNN. This affine PAC model
captures local behaviour of the original DNN. It is simple enough
for efficient robustness analysis, and its PAC guarantee ensures the
accuracy of the analysis. We implement our algorithm in a proto-
type called DeepPAC. We extensively evaluate DeepPAC with 20
DNNs on three datasets. DeepPAC outperforms the state-of-the-art
statistical tool PROVERO with less running time, fewer samples
and, more importantly, much higher precision. DeepPAC can assess
the DNN robustness faithfully when the formal verification and
existing statistical methods fail to generate meaningful results.

Organisation of the paper. The rest of this paper is organized as
follows. In Sect. 2, we first introduce the background knowledge.We
then formalize the novel concept PAC-model robustness in Sect. 3.
The methodology is detailed in Sect. 4. Extensive experiments have
been conducted in Sect. 5 for evaluating DeepPAC. We discuss
related work in Sect. 6 and conclude our work in Sect. 7.

2 PRELIMINARY

In this section, we first recall the background knowledge on the
DNN and its local robustness properties. Then, we introduce the
scenario optimization method that will be used later. In this fol-
lowing context, we denote 𝑥𝑖 as the 𝑖th entry of a vector 𝒙 ∈ R𝑚 .
For 𝒙 ∈ R𝑚 and 𝜆 ∈ R, we define 𝒙 + 𝜆 as (𝑥0 + 𝜆, . . . , 𝑥𝑚 + 𝜆)⊤.
Given 𝒙,𝒚 ∈ R𝑚 , we write 𝒙 ≤ 𝒚 if 𝑥𝑖 ≤ 𝑦𝑖 for 𝑖 = 1, . . . ,𝑚. We use
0 to denote the zero vector. For 𝒙 ∈ R𝑚 , its 𝐿∞-norm is defined
as ∥𝒙 ∥∞ := max1≤𝑖≤𝑚 |𝑥𝑖 |. We use the notation 𝐵(𝒙̂, 𝑟 ) := {𝒙 ∈
R𝑚 | ∥𝒙 − 𝒙̂ ∥∞ ≤ 𝑟 } to represent the closed 𝐿∞-norm ball with the
center 𝒙̂ ∈ R𝑚 and radius 𝑟 > 0.

2.1 DNNs and Local Robustness

A deep neural network can be characterized as a function𝒇 : R𝑚 →
R𝑛 with 𝒇 = (𝑓1, . . . , 𝑓𝑛)⊤, where 𝑓𝑖 denotes the function corre-
sponding to the 𝑖th output. For classification tasks, a DNN labels an
input 𝒙 with the output dimension having the largest score, denoted
by 𝐶𝒇 (𝒙) := arg max1≤𝑖≤𝑛 𝑓𝑖 (𝒙). A DNN is composed by multiple

layers: the input layer, followed by several hidden layers and an
output layer in the end. A hidden layer applies an affine function
or a non-linear activation function on the output of previous layers.
The function 𝒇 is the composition of the transformations between
layers.

Example 2.1. Fig. 1 illustrates a fully connected neural network
(FNN) that is a DNN, where each node (i.e., neuron) is connected
with all nodes from the previous layer. Each neuron has an activa-
tion value that is calculated as the weighted sum of previous layer’s
neuron activations, plus a bias. The weight and bias parameters
are highlighted on the edges and nodes respectively. For a hidden
neuron, this activation value is often followed by e.g., a ReLU func-
tion that rectifies any negative value into 0. Overall, the neural
network in Fig. 1 characterizes a function 𝒇 : R2 → R2. For an
input 𝒙 = (𝑥1, 𝑥2)⊤ ∈ [−1, 1]2, we have 𝒇 (𝒙) = (𝑓1 (𝒙), 𝑓2 (𝒙))⊤.

Input 1

Input 2

Output 1

Output 2

3

5

−10

−4

3

1

9

7

[−1, 1] −9 14

[−1, 1] −10 −10

Figure 1: An FNN with two input neurons, two hidden neu-

rons and two output neurons.

For a certain class label ℓ , we define the targeted score difference
function 𝚫 as

𝚫(𝒙) = (𝑓1 (𝒙) − 𝑓ℓ (𝒙), . . . , 𝑓𝑛 (𝒙) − 𝑓ℓ (𝒙))⊤ . (1)

For simplicity, we ignore the entry 𝑓ℓ (𝒙) − 𝑓ℓ (𝒙) and regard the
score difference function 𝚫 as a function from R𝑚 to R𝑛−1. For
any inputs 𝑥 with the class label ℓ , it is clear that 𝚫(𝒙̂) < 0 if
the classification is correct. For simplicity, when considering a 𝐿∞-
norm ball with the center 𝒙̂ , we denote by 𝚫 the difference score
function with respect to the label of 𝒙̂ . Then robustness property
of a DNN can therefore be defined as below.

Definition 2.2 (DNN robustness). Given a DNN 𝒇 : R𝑚 → R𝑛 , an
input 𝒙̂ ∈ R𝑚 , and 𝑟 > 0, we say that 𝒇 is (locally) robust in 𝐵(𝒙̂, 𝑟 )
if for all 𝒙 ∈ 𝐵(𝒙̂, 𝑟 ), we have 𝚫(𝒙) < 0.

Intuitively, local robustness ensures the consistency of the be-
haviour of a given input under certain perturbations. An input
𝒙 ′ ∈ 𝐵(𝒙̂, 𝑟 ) that destroys the robustness (i.e. 𝚫(𝑥 ′) ≥ 0) is called
an adversarial example. Note that this property is very strict so that
the corresponding verification problem is NP-complete, and the
exact maximum robustness radius cannot be computed efficiently
except for very small DNNs. Even estimating a relatively accurate
lower bound is difficult and existing sound methods cannot scale
to the state-of-the-art DNNs. In order to perform more practical
DNN robustness analysis, the property is relaxed by allowing some
errors in the sense of probability. Below we recall the definition of
PAC robustness [5].

2
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Definition 2.3 (PAC robustness). Given a DNN 𝒇 : R𝑚 → R𝑛 , an
𝐿∞-norm ball 𝐵(𝒙̂, 𝑟 ), a probability measure P on 𝐵(𝒙̂, 𝑟 ), a signifi-
cance level 𝜂, and an error rate 𝜖 , the DNN 𝒇 is (𝜂, 𝜖)-PAC robust
in 𝐵(𝒙̂, 𝑟 ) if

P(𝚫(𝒙) < 0) ≥ 1 − 𝜖 (2)

with confidence 1 − 𝜂.

PAC robustness essentially only focuses on the input samples, but
mostly ignores the behavioral nature of the original model. When
the input space is of high dimension, the boundaries between benign
inputs and adversarial inputs will be extremely complex and the
required sampling effort will be also challenging. Thus, an accurate
estimation of PAC robustness is far from trivial. This motivates us
to innovate the PAC robustness with PAC-model robustness in this
paper (Sect. 3).

2.2 Scenario Optimization

Scenario optimization is another motivation for DeepPAC. It has
been successfully used in robust control design for solving a class
of optimization problems in a statistical sense, by only consider-
ing a randomly sampled finite subset of infinitely many convex
constraints. The optimization problem can be defined as follows:

min
𝜸 ∈Γ⊆R𝑚

𝒃⊤𝜸

𝑠 .𝑡 . 𝑓𝝎 (𝜸 ) ≤ 0, ∀𝝎 ∈ Ω,
(3)

where 𝑓𝝎 is a convex and continuous function over the𝑚-dimensional
optimization variable 𝜸 for every 𝝎 ∈ Ω, and both Ω and Γ are
convex and closed. In this work, we also assume that Ω is bounded.

Generally, it is challenging, or even impossible, to solve (3).
Calafiore et al. [9] proposed the following scenario approach to
provide a solution with a PAC guarantee.

Definition 2.4. Let P be a probability measure on Ω. The scenario
approach to handle the optimization problem (3) is to solve the
following problem. We extract 𝐾 independent and identically dis-
tributed (i.i.d.) samples (𝝎𝑖 )𝐾𝑖=1 from Ω according to the probability
measure P:

min
𝜸 ∈Γ⊆R𝑚

𝒃⊤𝜸

s.t.
𝐾∧
𝑖=1

𝑓𝝎𝑖
(𝜸 ) ≤ 0.

(4)

The scenario approach relaxes the infinitely many constraints
in (3) by only considering a finite subset. Previous work (e.g., [10])
has proved a mathematical rigorous relation between the scenario
solution and the original constraints in (3).

Theorem 2.5 ([10]). If (4) is feasible and has a unique optimal
solution 𝜸∗

𝐾
, and

𝜖 ≥ 2
𝐾
(ln 1

𝜂
+𝑚), (5)

where 𝜖 and 𝜂 are the pre-defined error rate and the significance
level, respectively, then with confidence at least 1 − 𝜂, the optimal
𝜸∗
𝐾
satisfies all the constraints in Ω but only at most a fraction of

probability measure 𝜖 , i.e., P(𝑓𝝎 (𝜸∗
𝐾
) > 0) ≤ 𝜖 .

Theorem 2.5 still holds if the uniqueness of the optimal 𝜸∗
𝐾
is

removed, since a unique optimal solution can always be obtained
by using the Tie-break rule [9] if multiple optimal solutions exists.
Hereafter, we set P to be𝑈 (Ω), the uniform distribution on Ω. The
scenario optimization technique has been exploited in the context
of black-box verification for continuous-time dynamical systems in
[79]. We will propose an approach based on scenario optimization
to verify PAC-model robustness in this paper.

3 PAC-MODEL ROBUSTNESS

The formalisation of the novel concept PAC-model robustness is
our first contribution in this work and it is the basis for developing
our method. We start from defining a PAC model. Let F be a given
set of high dimensional real functions (like affine functions).

Definition 3.1 (PAC model). Let 𝒈 : R𝑚 → R𝑛 , 𝐵 ⊆ R𝑚 and P a
probability measure on 𝐵. Let 𝜂, 𝜖 ∈ (0, 1] be the given error rate
and significance level, respectively. Let 𝜆 ≥ 0 be the margin. A
function 𝒈 : 𝐵 → R𝑛 ∈ F is a PAC model of 𝒈 on 𝐵 w.r.t. 𝜂, 𝜖 and
𝜆, denoted by 𝒈 ≈𝜂,𝜖,𝜆 𝒈, if

P( | |𝒈(𝒙) − 𝒈(𝒙) | |∞ ≤ 𝜆) ≥ 1 − 𝜖, (6)

with confidence 1 − 𝜂.
In Def. 3.1, we have two parameters 𝜂 and 𝜖 which bound the

maximal significance level and the maximal error rate for the PAC
model, respectively. Meanwhile, there is another parameter 𝜆 that
bounds the margin between the PAC model and the original model.
Intuitively, the difference between a PAC model and the original
one is bounded under the given error rate 𝜖 and confidence level 𝜂.

For a DNN𝒇 , if its PACmodel𝒇 with the correspondingmargin is
robust, then𝒇 is PAC-model robust. Formally, we have the following
definition.

Definition 3.2 (PAC-model robustness). Let 𝒇 : R𝑚 → R𝑛 be a
DNN and 𝚫 the corresponding score difference. Let 𝜂, 𝜖 ∈ (0, 1] be
the given error rate and significance level, respectively. The DNN
𝒇 is (𝜂, 𝜖)-PAC-model robust in 𝐵(𝒙̂, 𝑟 ), if there exists a PAC model
𝚫̃ ≈𝜂,𝜖,𝜆 𝚫 such that for all 𝒙 ∈ 𝐵(𝒙̂, 𝑟 ),

Δ̃(𝒙) + 𝜆 < 0.

In Fig. 2, we depict the property space of PAC-model robustness,
by using the parameters 𝜂, 𝜖 and 𝜆. The properties on the 𝜆-axis
are exactly the strict robustness since Δ(𝒙) is now strictly upper-
bounded by Δ̃(𝒙) +𝜆. Intuitively, for fixed 𝜂 and 𝜖 , a smaller margin
𝜆 indicates that the PAC model Δ̃(𝒙) is more similar to the original
one Δ(𝒙), and more likely to imply a stronger PAC-model robust-
ness property. To estimate the maximum robustness radius more
accurately, we intend to compute a PAC model with the margin 𝜆
as small as possible. Moreover, the proposed PAC-model robustness
is stronger than PAC robustness, which is proved by the following
proposition.

Proposition 3.3. If a DNN𝒇 is (𝜂, 𝜖)-PAC-model robust in𝐵(𝒙̂, 𝑟 ),
then it is (𝜂, 𝜖)-PAC robust in 𝐵(𝒙̂, 𝑟 ).

Proof. With confidence 1 − 𝜂 we have

P(𝚫(𝒙) ≤ 0) ≥ P(𝚫(𝒙) ≤ ˜

𝚫(𝒙) + 𝜆)

≥ P( | |˜𝚫(𝒙) − 𝚫(𝒙) | |∞ ≤ 𝜆) ≥ 1 − 𝜖,
3
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Figure 2: Property space of PAC-model robustness.

which implies that 𝒇 is (𝜂, 𝜖)-PAC robust in 𝐵(𝒙̂, 𝑟 ). □

In this work, wo focus on the following problem:
Given a DNN 𝒇 , an 𝐿∞-norm ball 𝐵(𝒙̂, 𝑟 ), a confidence
level 𝜂, and an error rate 𝜖 , we need to determine
whether 𝒇 is (𝜂, 𝜖)-PAC-model robust.

Before introducing our method, we revisit PAC robustness (Def. 2.3)
in our PAC-model robustness theory. Statistical methods like [5]
infer PAC robustness from samples and their classification output
in the given DNN. In our PAC-model robustness framework, these
methods simplify the model to a function 𝜉 : 𝐵(𝒙̂, 𝑟 ) → {0, 1},
where 1 refers to the correct classification result and 0 a wrong one,
and infer the PAC-model robustness with the constant function
𝜉 (𝒙) ≡ 1 on 𝐵(𝒙̂, 𝑟 ) as the model. In [2], the model is modified to a
constant score difference function 𝚫̃ ≡ 𝑐 . Thesemodels are tooweak
to describe the behaviour of a DNN well. It can be predicted that,
if we learn a PAC model with an appropriate model, the obtained
PAC-model robustness property will be more accurate and practical,
and this will be demonstrated in our experiments.

4 METHODOLOGY

In this section, we present our method for analysing the PAC-model
robustness of DNNs. The overall framework is shown in Fig. 3. In
general, our method comprises of three stages: sampling, learning,
and analysing.

S1: We sample the input region 𝐵(𝒙̂, 𝑟 ) and obtain the corre-
sponding values of the score difference function 𝚫.

S2: We learn a PAC model 𝚫̃(𝑥) ≈𝜂,𝜖,𝜆 𝚫(𝑥) of the score differ-
ence function from the samples.

S3: We analyse whether 𝚫̃(𝑥)+𝜆 is always negative in the region
𝐵(𝒙̂, 𝑟 ) by computing its maximal values.

From the description above, we see it is a black-box method since
we only use the samples in the neighbour and their corresponding
outputs to construct the PAC model. So, the independence from the
structure and the size of original models bring the good scalability
and efficiency. Moreover, by model learning, we essentially recon-
structing the behavior of the original model in the region from the
score differences of these samples. So, more potential information
of the original model is used in our analysis, which supports us to
obtain more accurate results.

Note that our framework is constructive, and the PAC model
and its maximal points in the region will be constructed concretely
during the analysis. Then, we can obtain the maximal values of the
PACmodel, and infer that the original DNN satisfies the PAC-model
robustness when all maximal values are negative. Thus, DeepPAC
can be considered as a sound approach to verify the PAC-model
robustness.

DNN Score Difference
outputinput

PAC Model
Maximal Values

model learning

sampling

analysing

PAC - model robustnessSUBSECT. 4.2

SUBSECT. 4.1 & 4.3

Figure 3: Framework of PAC-model robustness analysis base

on model learning

4.1 Learning a PAC Model

To obtain a PAC model of the original score difference function
𝚫(𝒙), we first create a function template, and then determine its
parameters by model learning from the samples. Hereafter, we set
F to be the set of affine functions, and consider the PAC model
𝚫̃(𝒙) to be an affine function with bounded coefficients. A reason
for choosing an affine template is that the behaviours of a DNN in a
small 𝐿∞-norm ball 𝐵(𝒙̂, 𝑟 ) are very similar to some affine function
[51], due to the almost everywhere differentiability of DNNs. In
other words, an affine function can approximate the original model
well enough in most cases to maintain the accuracy of our robust-
ness analysis. Specifically, for the 𝑖th dimension of the DNN output
layer, we set Δ̃𝑖 (𝒙) = 𝒄⊤

𝑖
𝒙 = 𝑐𝑖,0 + 𝑐𝑖,1𝑥1 + · · · + 𝑐𝑖,𝑚𝑥𝑚 . With ex-

tracting a set of 𝐾 independent and identically distributed samples
𝑋 ⊆ 𝐵(𝒙̂, 𝑟 ), we construct the following optimisation problem for
learning the affine PAC model 𝚫̃(𝒙).

min
𝜆≥0

𝜆

s.t. −𝜆 ≤ 𝒄⊤
𝑖
𝒙 − Δ𝑖 (𝒙) ≤ 𝜆, ∀𝒙 ∈ 𝑋, 𝑖 ≠ ℓ ,

𝐿 ≤ 𝑐𝑖,𝑘 ≤ 𝑈 , 𝑖 ≠ ℓ, 𝑘 = 0, . . . ,𝑚 .

(7)

In the above formulation of PAC model learning, the problem boils
down to a linear programming (LP) optimisation. We reuse 𝜆 to
denote the optimal solution, and Δ̃𝑖 to be the function whose co-
efficients 𝒄𝑖 are instantiated according to the optimal solution 𝜆.
Specifically, we aim to compute a PAC model 𝚫̃ of 𝚫. By Theo-
rem 2.5, the confidence and the error rate can be ensured by a
sufficiently large number of samples. Namely, to make (6) hold with
confidence 1−𝜂, we can choose any𝐾 ≥ 2

𝜖 (ln
1
𝜂 + (𝑚+1) (𝑛−1) +1)

corresponding to the number of the variables in (7).
For fixed 𝜂 and 𝜖 , the number of samples 𝐾 is in 𝑂 (𝑚𝑛), so the

LP problem (7) contains 𝑂 (𝑚𝑛) variables and 𝑂 (𝑚𝑛2) constraints.
4
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Therefore, the computational cost of the above LP-based approach
can quickly become prohibitive with increasing the dimension of
input and output.

Example 4.1. For the MNIST dataset there is the input dimension
𝑚 = 28×28 = 784 and output dimension 𝑛 = 10. Even for 𝜂 =

0.001, 𝜖 = 0.4, we need to solve an LP problem with 7, 065 variables
and more than 630, 000 constraints, which takes up too much space
(memory out with 10GB memory).

To further make the PAC model learning scale better with high-
dimensional input and output, we will consider several optimisa-
tions to reduce the complexity of the LP problem in Section 4.3.

From the LP formulation in Eq. (7), it can be seen that the PAC
model learning is based on the sampling set 𝑋 instead of the norm
ball 𝐵(𝒙̂, 𝑟 ). That is, though in this paper, for simplicity, 𝐵(𝒙̂, 𝑟 )
is assumed to be an 𝐿∞-norm ball, our method also works with
𝐿𝑝 -norm robustness with 1 ≤ 𝑝 < ∞.

4.2 Analysing the PAC Model

We just detailed how to synthesise a PAC model 𝚫̃ of the score
difference function 𝚫. When the optimisation problem in (7) is
solved, we obtain the PAC model 𝚫̃(𝑥) ≈𝜂,𝜖,𝜆 𝚫(𝑥) of the score
difference function. Namely, 𝚫̃(𝒙) ± 𝜆 is the approximated upper
and lower bound of the score difference function 𝚫 with the PAC
guarantee. As aforementioned, all maximal values of 𝚫̃ + 𝜆 being
negative implies the PAC-model robustness of the original DNN.
According to the monotonicity of affine functions, it is not hard
to compute the maximum point 𝒙̆ (𝑖) of Δ̃𝑖 (𝒙) in the region 𝐵(𝒙̂, 𝑟 ).
Specifically, for Δ̃𝑖 (𝒙) in the form of 𝑐0 +

∑𝑚
𝑗=1 𝑐 𝑗𝑥 𝑗 , we can infer

its maximum point directly as

𝒙̆ (𝑖)
𝑗

=

{𝒙̂ 𝑗 + 𝑟, 𝑐 𝑗 > 0,
𝒙̂ 𝑗 − 𝑟, 𝑐 𝑗 ≤ 0.

Note that the choice of 𝒙̆ (𝑖)
𝑗

is arbitrary for the case 𝑐 𝑗 = 0. Here, we
choose 𝒙̂ 𝑗 − 𝑟 as an instance. Then let 𝒙̆ be the 𝒙̆ (𝑖) corresponding
to the maximum Δ̃𝑖 (𝒙̆ (𝑖) ), and the PAC-model robustness of the
original DNN immediately follows if Δ̃(𝒙̆) + 𝜆 < 0. Besides, each
𝒙̆ (𝑖) is a potential adversarial example attacking the original DNN
with the classification label 𝑖 , which can be further validated by
checking the sign of Δ𝑖 (𝒙̆ (𝑖) ).

Example 4.2. We consider the neural network in Fig. 1. Given
an input 𝒙̂ = (0, 0)⊤, the classification label is 𝐶𝒇 (𝒙̂) = 1. The
network is robust if 𝑓2 (𝒙) < 𝑓1 (𝒙) for 𝒙 ∈ 𝐵(𝒙̂, 1), or equivalently,
𝑓2 (𝒙)−𝑓1 (𝒙) < 0. Thus, our goal is to apply the scenario approach to
learn the score difference Δ(𝒙) = 𝑓2 (𝒙) − 𝑓1 (𝒙). In this example, we
take the approximating function of the form Δ̃(𝒙) = 𝑐0+𝑐1𝑥1+𝑐2𝑥2
with constant parameters 𝑐0, 𝑐1, 𝑐2 ∈ [−100, 100] to be synthesised.
For ease of exposition, we denote 𝒄 = (𝑐1, 𝑐2, 𝑐3)⊤.

We attempt to approximate Δ(𝒙) by minimising the absolute
difference between it and the approximating function Δ̃(𝒙). This

Δ

Δ
~

+λ

-λ

0 0.5 1- 0.5-1

0

Figure 4: The functions Δ and Δ̃ in 𝑥2 are depicted by fixing

𝑥1 = 1. It ismarked redwhereΔ(𝒙) is not bounded by Δ̃(𝒙)±𝜆.

process can be characterised as an optimisation problem:

min
𝒄,𝜆

𝜆

s.t. |Δ̃(𝒙) − Δ(𝒙) | ≤ 𝜆, ∀𝒙 ∈ [−1, 1]2 ,
𝒄 ∈ [−100, 100]3,
𝜆 ∈ [−100, 100] .

(8)

To apply the scenario approach, we first need to extract a set of 𝐾
independent and identically distributed samples 𝑋 ⊆ [−1, 1]2, and
then reduce the optimisation problem (8) to the linear programming
problem by replacing the quantifier ∀𝒙 ∈ [−1, 1]2 with ∀𝒙 ∈ 𝑋

in the constraints. Theorem 2.5 indicates that at least ⌈ 2
𝜖 (ln

1
𝜂 +

4)⌉ samples are required to guarantee the error rate within 𝜖 , i.e.
P( |Δ̃(𝒙) − Δ(𝒙) | ≤ 𝜆) ≥ 1 − 𝜖 , with confidence 1 − 𝜂.

Taking the error rate 𝜖 = 0.01 and the confidence 1 − 𝜂 = 99.9%,
we need (at least) 𝐾 = 2182 samples in [−1, 1]2. By solving the
resulting linear program again, we obtain 𝑐0 = −22.4051, 𝑐1 = 2.800,
𝑐2 = −9.095, and 𝜆 = 9.821.

For illustration, we restrict 𝑥1 = 1, and depict the functions Δ
and Δ̃ in Fig. 4. Our goal is to verify that the first output is always
larger than the second, i.e., Δ(𝒙) = 𝑓2 (𝒙) − 𝑓1 (𝒙) < 0. As described
above, according to the signs of the coefficients of Δ̃, we obtain
that Δ̃(𝒙) attains the maximum value at 𝒙 = (1,−1)⊤ in [−1, 1]2.
Therefore, the network is PAC-model robustness.

4.3 Strategies for Practical Analysis

We regard efficiency and scalability as the key factor for achieving
practical analysis of DNN robustness. In the following, we propose
three practical PAC-model robustness analysis techniques.

4.3.1 Component-based learning. As stated in Section 4.1, the com-
plexity of solving (7) can be still high, so we propose component-
based learning to reduce the complexity. As before, we use Δ̃𝑖
to approximate Δ𝑖 (𝒙) = 𝑓𝑖 (𝒙) − 𝑓ℓ (𝒙) for each 𝑖 with the same
template. The idea is to learn the functions Δ1, . . . ,Δ𝑛 separately,
and then combine the solutions together. Instead of solving a sin-
gle large LP problem, we deal with (𝑛 − 1) individual smaller LP
problems, each with 𝑂 (𝑚) linear constraints. As a result, we have
Δ̃𝑖 (𝒙) ≈𝜂,𝜖,𝜆𝑖 Δ𝑖 (𝒙), from which we can only deduce that

P
(∧
𝑖≠ℓ

|Δ̃𝑖 (𝒙) − Δ𝑖 (𝒙) | ≤ 𝜆𝑖

)
≥ 1 − (𝑛 − 1)𝜖

with the confidence decreasing to at most 1 − (𝑛 − 1)𝜂. To guar-
antee the error rate at least 𝜖 and the confidence at least 1 − 𝜂, we

5
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need to recompute the error 𝜆 between 𝚫̃(𝒙) and 𝚫(𝒙). Specifi-
cally, we solve the following optimisation problem constructed by
resampling:

min
𝜆
𝜆

s.t. |Δ̃𝑖 (𝒙) − Δ𝑖 (𝒙) | ≤ 𝜆,

∀𝒙 ∈ 𝑋 , 𝑖 ≠ ℓ .

(9)

where 𝑋 is a set of 𝐾 i.i.d samples with 𝐾 ≥ 2
𝜖 (ln

1
𝜂 + 1). Applying

Theorem 2.5 again, we have 𝚫̃(𝒙) ≈𝜂,𝜖,𝜆 𝚫(𝒙) as desired.
We have already relaxed the optimisation problem (7) into a

family of (𝑛 − 1) small-scale LP problems. If 𝑛 is too large (e.g. for
Imagenet with 1000 classes), we can also consider the untargeted
score difference function Δu (𝒙) = 𝒇ℓ (𝒙) − max𝑖≠𝑙 𝒇𝑖 (𝒙). By adopt-
ing the untargeted score difference function, the number of the
LP problems is reduced to one. The untargeted score difference
function improves the efficiency at expense of the loss of linearity,
which harms the accuracy of the affine model.

4.3.2 Focused learning. In this part, our goal is to reduce the com-
plexity further by dividing the learning procedure into two phases
with different fineness: i) in the first phase, we use a small set of
samples to extract coefficients with big absolute values; and ii) these
coefficients are “focused” in the second phase, in which we use more
samples to refine them. In this way, we reduce the number of vari-
ables overall, and we call it focused learning, which namely refers
to focusing the model learning procedure on important features. It
is embedded in the component learning procedure.

The main idea of focused learning is depicted below:
(1) First learning phase: We extract 𝐾 (1) i.i.d. samples from the

input region 𝐵(𝒙̂, 𝑟 ). We first learn Δ𝑖 on the 𝐾 (1) samples.
Thus, our LP problems have𝑂 (𝐾 (1) ) constraints with𝑂 (𝑚)
variables. For large datasets like ImageNet, the resulting LP
problem is still too large.We use efficient learning algorithms
such as linear regression (ordinary least squares) to boost
the first learning phase on these large datasets.

(2) Key feature extraction: After solving the LP problem (or the
linear regression for large datasets), we synthesise Δ̃(1)

𝑖
as

the approximating function. Let KeyF𝑖 (𝜅) ⊆ {1, 𝑥1, . . . , 𝑥𝑚}
denote the set of extracted key features for the 𝑖th component
corresponding to the 𝜅 coefficients with the largest absolute
values in Δ̃

(1)
𝑖

.
(3) Focused learning phase: We extract 𝐾 (2) i.i.d. samples from

𝐵(𝒙̂, 𝑟 ). For these samples, we generate constraints only for
our key features in KeyF𝑖 (𝜅) by fixing the other coefficients
using those in Δ̃

(1)
𝑖

, and thus the number of the undeter-
mined coefficients is bounded by 𝜅. By solving an LP prob-
lem comprised of these constraints, we finally determine the
coefficients of the features in KeyF𝑖 (𝜅).

We can determine the sample size 𝐾 (2) and the number of key
features 𝜅 satisfying

𝜅 ≤ 𝐾 (2)𝜖
2

− ln
1
𝜂
− 1 ,

which can be easily inferred from Theorem 2.5. It is worth men-
tioning that, focused learning not only significantly improves the

split

lea
rn

split ...

split

lea
rn

linear programming

λ

cfixed coefficients

margin

linear programming

PAC Model

PHASE IIPHASE I

Figure 5: A workflow of the stepwise splitting procedure.

The red color indicates the significant grids whose coeffi-

cients will be further refined, while the yellow color indi-

cates the grids whose coefficients have been determined.

efficiency, but it also makes our approach insensitive to confidence
level 𝜂 and error rate 𝜖 , because the first phase in focused learning
can provide a highly precise model, and a small number of samples
are sufficient to learn the PAC model in the second phase. This will
be validated in our experiments.

4.3.3 Stepwise splitting. When the dimensionality of the input
space is very high (e.g., ImageNet), The first learning phase of fo-
cused learning requires constraints generated by tons of samples
to make precise predictions on the key features, which is very hard
and even impossible to be directly solved. For achieving better scal-
ability, we partition the dimensions of input {1, . . . ,𝑚} into groups
{𝐺𝑘 }. In an affine model Δ̃𝑖 , for the variables with undetermined
coefficients in each certain group 𝐺𝑘 , they share the same coeffi-
cient 𝑐𝑘 . Namely, we use 𝑐𝑘 ·

∑
𝑖∈𝐺𝑘

𝑥𝑖 to construct the affine terms
for these 𝑥𝑖 . Then, a coarse model can be learned.

We compose the refinement into the procedure of focused learn-
ing aforementioned (See Fig. 5). Specifically, after a coarse model
being learned, we fix the coefficients for the insignificant groups
and extract the key groups. The key groups are then further refined,
and their coefficients are renewed by learning on a new batch of
samples. We repeat this procedure iteratively until most coefficients
of the affine model are fixed, and then we invoke linear program-
ming to compute the rest coefficients and the margin. This iterative
refinement can be regarded as multi-stage focused learning with
different fineness.

In particular, for a colour image, we can use the grid to divide its
pixels into groups. The image has three channels corresponding to
the red, green and blue levels. As a result, each grid will generate
3 groups matching these channels, i.e.𝐺𝑘,R,𝐺𝑘,G, and 𝐺𝑘,B. Here,
we determine the significance of a grid with the 𝐿2-norm of the
coefficients of its groups, i.e. (𝑐2

𝑘,R + 𝑐2
𝑘,G + 𝑐2

𝑘,B)
1
2 . Then the key

groups (saying corresponding to the top 25% significant grids) will
be further refined in the subsequent procedure. On ImageNet, we
initially divide the image into 32 × 32 grids, with each grid of the
size 7 × 7. In each refinement iteration, we split each significant
grid into 4 sub-grids (see Fig. 5). We perform 6 iterations of such
refinement and use 20 000 samples in each iteration. An example
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on stepwise splitting of an ImageNet image can be found in Fig. 8
in Sect. 5.3.

5 EXPERIMENTAL EVALUATION

In this section, we evaluate our PAC-model robustness verifica-
tion method. We implement our algorithm as a prototype called
DeepPAC. Its implementation is based on Python 3.7.8. We use
CVXPY [14] as the modeling language for linear programming and
GUROBI [25] as the LP solver. Experiments were conducted on
a Windows 10 PC with Intel i7 8700, GTX 1660Ti, and 16G RAM.
Three datasets MNIST [35], CIFAR-10 [34], and ImageNet [55] and
20 DNN models trained from them are used in the evaluation. The
details are in Tab. 1. We invoke our component-based learning and
focused learning for all evaluations, and apply stepwise splitting
for the experiment on ImageNet. All the implementation and data
used in this section are publicly available1.

In the following, we are going to answer the research questions
below.
RQ1: Can DeepPAC evaluate local robustness of a DNN more

effectively comparing with the state-of-the-art?
RQ2: Can DeepPAC retain a reasonable accuracy with higher sig-

nificance, higher error rate, and/or fewer samples?
RQ3: Is DeepPAC scalable to DNNs with complex structure and

high dimensional input?
RQ4: Is there a underlying relation between DNN local robustness

verification and DNN testing (especially the test selection)?

5.1 Comparison on Precision

We first apply DeepPAC for evaluating DNN local robustness by
computing the maximum robustness radius and compare DeepPAC
with the state-of-the-art statistical verification tool PROVERO [5],
which verifies PAC robustness by statistical hypothesis testing. A
DNN verification tool returns true or false for robustness of a DNN
given a specified radius value. A binary search will be conducted
for finding the maximum robustness radius. For both DeepPAC and
PROVERO, we set the error rate 𝜖 = 0.01 and the significance level
𝜂 = 0.001. We set 𝐾 (1) = 2000 and 𝐾 (2) = 8000 for DeepPAC.

In addition, we apply ERAN [58] and PGD [42] to bound the exact
maximum radius from below and from above, respectively. ERAN
is a state-of-the-art DNN formal verification tool based on abstract
interpretation, and PGD is a popular adversarial attack algorithm.
Note that exact robustness verification SMT tools like Marabou [32]
cannot scale to the benchmarks used in our experiment.

We run all the tools on the first 12 DNN models in Tab. 1 and the
detailed results are recorded in Fig. 6. In all cases, the maximum ro-
bustness radius estimated by the PROVERO is far larger than those
computed by other tools. In most cases, PROVERO ends up with a
maximum robustness radius over 100 (out of 255), which is even
larger than the upper bound identified by PGD. This indicates that,
while a DNN is proved to be PAC robust by PROVERO, adversarial
inputs can be still rather easily found within the verified bound.
In contrast, DeepPAC estimates the maximum robustness radius
more accurately, which falls in between the results from ERAN and
PGD. Since the range between the estimation of ERAN and PGD
1https://drive.google.com/file/d/1XwhSzKAMh0ByxTLjoAoP5vqXanereu3v/view?
usp=sharing (Anonymous)

Dataset Network Defense #Param Source

MNIST

FNN1

—

44.86 K

—

FNN2 99.71 K
FNN3 239.41 K
FNN4 360.01 K
FNN5 480.61 K
FNN6 1.65M
CNN1 —

89.61 K

ERAN

CNN2 DiffAI
CNN3 PGD
CNN4 —

1.59MCNN5 PGD, 𝜀 = 0.1
CNN6 PGD, 𝜀 = 0.3

CIFAR-10

CNN1 PGD 125.32 K
CNN2 PGD, 𝜀 = 2/255 2.07MCNN3

PGD, 𝜀 = 8/255
ResNet18 11.17M

—ResNet50 23.52M
ResNet152 58.16M

ImageNet ResNet50a PGD, 𝜀 = 4/255 25.56M MadryResNet50b PGD, 𝜀 = 8/255
Table 1: Datasets and DNNs used in our evaluation. The con-

volutional neural networks (CNN) for MNIST and CIFAR-10

are from ERAN [59]. The ResNet50 networks for ImageNet

are from the python library “Robustness” [18] produced by

MadryLab. The rest networks are trained by ourselves.

contains the exact maximum robustness radius, we conclude that
DeepPAC is a more accurate tool than PROVERO to analyse local
robustness of DNNs.

DeepPAC also successfully distinguishes robust DNN models
from non-robust ones. It tells that the CNNs, especially the ones
with defence mechanisms, are more robust against adversarial per-
turbations. For instance, 24 out of 25 images have a larger maximum
robustness radius on CNN1 than on FNN1, and 21 images have a
larger maximum robustness radius on CNN2 than on CNN1.

Other than the maximum robustness radius for a fixed input, the
overall robustness of a DNN, subject to some radius value, can be
denoted by the rate of the inputs being robust in a dataset, called
“robustness rate”. In Fig. 7, we show the robustness rate of 100 input
images estimated by different tools on the 3 CIFAR-10 CNNs. Here,
we set 𝐾 (1) = 20 000 and 𝐾 (2) = 10 000.

PROVERO, similarly to the earlier experiment outcome, results
in robustness rate which is even higher than the upper bound
estimation from the PGD attack, and its robustness rate result
hardly changes when the robustness radius increases. All such
comparisons reveal the limitations of using DNN PAC robustness
(by PROVERO) that the verified results are not tight enough.

ERAN is a sound verification method, and the robustness rate
verified by it is a strict lower bound of the exact result. However,
this lower bound could be too conservative and ERAN quickly
becomes not usable. In the experiments, we find that it is hard for
ERAN to verify a robustness radius greater than or equal to 4 (out
of 255).
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Figure 7: Robustness rate of different CNNs under the radius

of 2, 4, 6, and 8 on CIFAR-10.

DeepPAC verifies greater robustness rate and larger robustness
radius, with high confidence and low error rate. Its results fall safely
into the range bounded by ERAN and PGD. We advocate DeepPAC
as a more practical DNN robustness analysis technique. It is shown
in our experiments that, though DeepPAC does not enforce 100%
guarantee, it can be applied into awider range of adversarial settings
(in contrast to ERAN) and the PAC-model verification results by
DeepPAC can be more trusted (in contrast to PROVERO) with
quantified confidence (in contrast to PGD).
Answer RQ1: The maximum robustness radius estimated by
DeepPAC is more precise than that by PROVERO, and our
DeepPAC is a more practical DNN robustness analysis method.

5.2 DeepPAC with Different Parameters

In this part, we experiment the three key parameters in DeepPAC:
the error rate 𝜖 , the confidence level 𝜂, and the number of samples

𝐾 (1) in the first learning phase. The parameters 𝜂 and 𝜖 control
the precision between the PAC model and the original model. The
number of samples 𝐾 (1) determines the accuracy of the first learn-
ing phase. We evaluate DeepPAC under different parameters to
check the variation of the maximal robustness radius. We set either
𝐾 (1) = 20000 or 𝐾 (1) = 5000 in our evaluation and three com-
binations of the parameters (𝜖, 𝜂): (0.01, 0.001), (0.1, 0.001), and
(0.01, 0.1). Here, we fix the number of key features to be fifty, i.e.
𝜅 = 50, and calculate the corresponding number of samples 𝐾 (2) in
the focused learning phase.

The results are presented in Tab. 2. DeepPAC reveals some DNN
robustness insights that were not achievable by other verification
work. It is shown that, the DNNs (the ResNet family experimented)
can bemore robust thanmanymay think. Themaximum robustness
radius remains the same or slightly alters, along with the error rate
𝜂 and significance level 𝜖 varying. This observation also confirms
that the affine model used in DeepPAC abstraction converges well,
and the resulting error bound is even smaller than the specified
(large) error bound. Please refer to Sect. 4.1 for more details.

DeepPAC is also tolerant enough with a small sampling size.
When the number of samples in the first learning phase decreases
from 𝐾 (1) = 20, 000 to 𝐾 (1) = 5, 000, we can observe a minor de-
crease of the maximal robustness radius estimation. Recall that we
utilise the learned model in the first phase of focused learning to
extract the key features and provide coefficients to the less impor-
tant features. When the sampling number decreases, the learned
model would be less precise and thus make vague predictions on
key features and make the resulting affine model shift from the
original model. As a result, the maximum robustness radius can be
smaller when we reduce the number of sampling in the first phase.
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In practice, as it is shown by the results in Tab. 2, we do not observe
a sudden drop of the DeepPAC results when using a much smaller
sampling size.

Input Image Network

𝜂, 𝜖 and 𝐾 (1)

0.01, 0.001 0.1, 0.001 0.01, 0.1

20K 5K 20K 5K 20K 5K

ResNet18 5 4 5 4 5 4

ResNet50 8 8 8 8 9 8

ResNet152 5 5 5 5 5 5

ResNet18 16 14 15 14 15 14

ResNet50 12 11 12 12 12 11

ResNet152 10 9 10 9 10 9

ResNet18 11 10 11 10 11 10

ResNet50 6 5 6 5 6 5

ResNet152 9 8 9 8 9 8

ResNet18 1 1 1 1 1 1

ResNet50 3 3 3 3 3 3

ResNet152 6 5 6 5 6 5

ResNet18 16 13 16 14 16 14

ResNet50 17 15 17 15 17 15

ResNet152 12 10 12 10 12 10

Table 2: Themaximum robustness radius estimated by Deep-
PAC on CIFAR-10 dataset using different parameters, i.e. sig-

nificance level 𝜂, error rate 𝜖, and the number of samples in

the first learning phase 𝐾 (1)
.

Answer RQ2: DeepPAC shows good tolerance to different con-
figurations of its parameters such as the error rate 𝜖 , the confi-
dence level 𝜂, and the number of samples 𝐾 (1) .

5.3 Scalability

Robustness verification is a well-known difficult problem on com-
plex networks with high-dimensional data. Most qualitative ver-
ification methods meet a bottleneck in the size and structure of
the DNN. The fastest abstract domain in ERAN is GPUPoly [45], a
GPU accelerated version of DeepPoly. The GPUPoly can verify a
ResNet18 model on the CIFAR-10 dataset with an average time of
1 021 seconds under the support of an Nvidia Tesla V100 GPU. To
the best of our knowledge, ERAN does not support models on Ima-
geNet, which makes it limited in real-life scenarios. The statistical
methods alleviate this dilemma and extend their use further. The
state-of-the-art PAC robustness verifier PROVERO needs to draw
737 297 samples for VGG16 and 722 979 samples for VGG19 on av-
erage for each verification case on ImageNet. The average running

time is near 2208.9 seconds and 2168.9 seconds (0.003 seconds per
sample) under the support of an Nvidia Tesla V100 GPU. We will
show that DeepPAC can verify the tighter PAC-model robustness
on ImageNet with less samples and time on much larger ResNet50
models.

In this experiment, we apply DeepPAC to the start-of-the-art
DNNwith high resolution ImageNet input images. The two ResNet50
networks are from the python package named “robustness” [18].
We check PAC-model robustness of the two DNNs with the same
radius 4 (out of 255). The first evaluation is on a subset of ImageNet
images from 10 classes [27]. The second one includes ImageNet im-
ages of all 1,000 classes and the untargeted score difference function
is configured for DeepPAC. To deal with ImageNet, the stepwise
splitting mechanism in Sect. 4.3.3 is adopted. An illustrating exam-
ple of the stepwise splitting is given in Fig. 8. As we expect, the
splitting refinement procedure successfully identifies the significant
features of a golf ball, i.e. the boundary and the logo. It maintains
the accuracy of the learned model with much less running time.
The results are shown in Tab. 3.

For the 10-class setup, we evaluate the PAC-model robustness on
20 images and it takes less than 1800 seconds on each case. Deep-
PAC finds out 13 and 12 cases PAC-model robust for ResNet50a
and ResNet50b, respectively. Because the two models have been
defensed, when we perform the PGD attack, no adversarial exam-
ples were found on these images, which means that PGD gives
no conclusion for this robustness evaluation. For the 1000-class
dataset, the untargeted version of DeepPAC has even better effi-
ciency with the running time of less than 800 seconds each, which
mainly benefits from reducing the score difference function to the
untargeted one. DeepPAC proves 10 and 6 out of 50 cases to be PAC-
model robust on the 1000-class setup, respectively. For both setups,
DeepPAC uses 121 600 samples to learn a PAC model effectively.

Method Network Robust Min Max Avg
Targeted
(10 classes)

ResNet50a 13/20 1736.5 1768.8 1751.8
ResNet50b 12/20 1722.1 1781.5 1746.5

Untargeted
(1000 classes)

ResNet50a 10/50 779.2 785.3 781.7
ResNet50b 6/50 775.7 783.8 778.3

Table 3: The performance of DeepPAC analysing the two

ResNet50 models for ImageNet. “Robust” represents the ro-

bustness rate. “Min”, “Max”, and “Avg” are the minimum,

maximum, and average of the running time (second), respec-

tively.

Answer RQ3: The DeepPAC robustness analysis scales well
to complex DNNs with high-dimensional data like ImageNet,
which is not achieved by previous formal verification tools. It
shows superiority to PROVERO in both running time and the
number of samples.

5.4 Relation with Testing Prioritising Metric

We also believe that there is a positive impact from practical DNN
verification work like DeepPAC on DNN testing. For example, the
tool DeepGini uses Gini index, which measures the confidence of

9



1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ICSE 2022, May 21–29, 2022, Pittsburgh, PA, USA Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

λ

PAC - model robust

Significant Grids Significance: from 0 to 0.3

= 0.0481 λ = 0.0467 λ = 0.0387

λ = 0.0331 λ = 0.0390 λ = 0.0388

Figure 8: Stepwise splitting procedures of DeepPAC, illus-
trated by heatmaps of grid significance. Top 25% significant

grids are colored yellow in the heatmap, which is split and

refined iteratively. The margin 𝜆 of different refinement

stage is under the heatmap.

a DNN prediction on the corresponding input, to sort the testing
inputs. In Tab. 4, we report the Pearson correlation coefficient
between the DeepGini indices and the maximal robustness radii
obtained by DeepPAC, ERAN and PROVERO from the experiment
in Sect. 5.1.

As in Tab. 4, the maximum robustness radius is correlated to the
DeepGini index, a larger absolute value of the coefficient implies
a stronger correlation. It reveals the data that has low prediction
confidence is also prone to be lack robustness. From this phenome-
non, we believe DeepGini can be also helpful in data selection for
robustness analysis. Interestingly, the maximum robustness radius
computed by our DeepPAC has higher correlations with DeepGini
index on the CNNs, which are more complex, than on FNNs. Fur-
thermore, DeepPAC shows the strongest correlation on the CNNs
trained with defense mechanisms, while the correlation between
PROVERO or ERAN and DeepGini is relatively weak on these net-
works. Intuitively, complex models with defense are expected to
be more robust. Again, we regard this comparison result as the
evidence from DNN testing to support the superior of DeepPAC
over other DNN verification tools.
Answer RQ4: The maximum robustness radius estimated by
DeepPAC, ERAN, and PROVERO are all correlated to the Deep-
Gini index, where DeepPAC and DeepGini show the strongest
correlation on robust models.

6 RELATEDWORK

Here we discuss more results on the verification, adversarial attacks
and testing for DNNs. A number of formal verification techniques
have been proposed for DNNs, including constraint-solving [8, 16,
19, 22, 24, 31, 38, 46], abstract interpretation [21, 36, 57, 58, 82], layer-
by-layer exhaustive search [28], global optimisation [15, 53, 54], con-
vex relaxation [30, 48, 49], functional approximation [74], reduction
to two-player games [75, 77], and star-set-based abstraction [64, 65].
Sampling-based methods are adopted to probabilistic robustness
verification in [2, 3, 12, 44, 72, 73]. Most of them provide sound DNN
robustness estimation in the form of a norm ball, but typically for
very small networks or with pessimistic estimation of the norm ball
radius. By contrast, statistical methods [5, 6, 11, 43, 72, 73, 76] are

Network DeepPAC ERAN PROVERO
FNN1 -0.3628 -0.3437 -0.3968

FNN2 -0.4851 -0.4353 -0.5142

FNN3 -0.4174 -0.3677 -0.4223

FNN4 -0.5264 -0.4722 -0.5234
FNN5 -0.4465 -0.6016 -0.5916
FNN6 -0.4538 -0.2747 -0.3949
CNN1 -0.7340 -0.7345 -0.8223

CNN2 ★ -0.6482 -0.6478 -0.4527
CNN3 ★ -0.7216 -0.6728 -0.5218
CNN4 -0.6035 -0.6127 -0.7771

CNN5 ★ -0.7448 -0.6833 -0.3874
CNN6 ★ -0.6498 -0.6094 -0.4763

Table 4: The Pearson correlation coefficient between the

maximum robustness radius estimation and the DeepGini

index. The DNNs are marked by “★” if they are trained with

defense mechanisms.

more efficient and scalable when the structure of DNNs is complex.
The primary difference between these methods and DeepPAC is
that our method is model-based and thus more accurate. We use
samples to learn a relatively simple model of the DNNwith the PAC
guarantee via scenario optimisation and gain more insights to the
analysis of adversarial robustness. The generation of adversarial
inputs [62] itself has been widely studies by a rich literature of ad-
versarial attack methods. Some most well-known robustness attack
methods include Fast Gradient Sign [23], Jacobian-based saliency
map approach [47], C&W attack [13], etc. Though adversarial at-
tack methods generate adversarial inputs efficiently, they cannot
enforce guarantee of any form for the DNN robustness. Testing is
still the primary approach for certifying the use of software prod-
ucts and services. In recent years, significant work has been done
for the testing for DNNs such as test coverage criteria specialised for
DNNS [33, 39, 50, 60, 81] and different testing techniques adopted
for DNNs [29, 40, 41, 52, 61, 63, 68, 78, 80, 84]. In particular, our
experiments show that the results from DeepPAC are consistent
with the DNN testing work for prioritising test inputs [20, 71], but
with a stronger guarantee. This highlights again that DeepPAC is a
practical verification method for DNN robustness.

7 CONCLUSION AND FUTUREWORK

We propose DeepPAC, a method based on model learning to anal-
yse the PAC-model robustness of DNNs in a local region. With
the scenario optimisation technique, we learn a PAC model which
approximates the DNN within a uniformly bounded margin with a
PAC guarantee. With the learned PAC model, we can verify PAC-
model robustness properties under specified confidence and error
rate. Experimental results confirm that DeepPAC scales well on
large networks, and is suitable for practical DNN verification tasks.
As for future work, we plan to learn more complex PAC models
rather than the simple affine models, and we are particularly inter-
ested in exploring the combination of practical DNN verification
by DeepPAC and DNN testing methods following the preliminary
results.
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