
A Test Data Generation Tool for Unit Testing of C Programs ∗

Zhongxing Xu
State Key Laboratory of Computer Science

Institute of Software
Chinese Academy of Sciences

Graduate University
Chinese Academy of Sciences

xzx@ios.ac.cn

Jian Zhang
State Key Laboratory of Computer Science

Institute of Software
Chinese Academy of Sciences

zj@ios.ac.cn

Abstract

This paper describes a prototype tool, called SimC,
which automatically generates test data for unit testing of
C programs. The tool symbolically simulates the execution
of the given program. It simulates pointer operations pre-
cisely. This makes it capable of generating test data for pro-
grams involving pointer and structure operations. Experi-
ments on real-world programs including the GNU coreutils
are presented. Some trade-offs of simulation schemes are
also discussed.

Keywords: Test data generation, symbolic execution,
pointer operation, unit testing.

1 Introduction

Testing is a common activity in software development,
and it is crucial to software quality. However, for the
time being, few tools are available that support testing ade-
quately. In particular, automatic test data generation is de-
sirable but hard to achieve.

In this paper, we describe an approach to test data gener-
ation for unit testing of C programs, which is highly auto-
matic and efficient. It generates program paths and symbol-
ically executes the paths to collect path condition restricting
the input data that can drive the program to execute the path.
Then the path condition is solved by a constraint solver to
get the input data. In the most general cases, solving the
path condition is an undecidable problem. But under rea-
sonable assumptions (such as excluding nonlinear integer
arithmetic), the path condition can be solved.

Symbolic execution was proposed in 1970’s [11] [2]. But
some fundamental difficulties limit the application of sym-

∗Supported in part by the National Science Foundation of China (under
grant No. 60125207 and 60421001).

bolic execution to real-world programs. For example, vari-
able array indexing and symbolic pointer dereferencing are
troublesome in symbolic execution.

Our approach addresses these difficulties, and it has the
following features:

1. Simulating memory with auxiliary arrays. The address
space of a process can be seen as a large array. Ideally
we can represent all the pointer operations by array ref-
erences and index operations.

2. Differentiating between symbolic and concrete point-
ers. A symbolic pointer is treated as an unknown vari-
able, while a concrete pointer represents a memory re-
gion and is replaced by its simulated address in the
path, see Section 3.2.

3. Solving hybrid constraints which involve both boolean
variables and numerical variables.

We implemented a tool called SimC which accepts pro-
grams written in a significant subset of ANSI C. Many ex-
periments are done on code from the research literature and
GNU utilities (such as ls, make). The results are encour-
aging. Test data are generated that cover all the branches of
the flow graph, for rather complex functions.

In the next section, we recall some basic concepts and
previous work. Then in Section 3, we describe our test data
generation method in detail. We report some experience on
applying our prototype tool to GNU programs in Section 4.
Limitations of the method are discussed in Section 5. We
review related work in Section 6 and conclude in Section 7.

2 Path Feasibility Analysis

A program can be described by a flow graph which has
many paths. A path analyzer called PAT is described in [18].

PAT accepts a path as input, which is a sequence of assign-
ment statements and conditional expressions, preceded by a
set of variable declarations. The variables handled by PAT
include integer variables, real variables, Boolean variables
and arrays.

PAT can decide the feasibility of a program path under
reasonable assumptions. The tool tries to find input data
such that the program will be executed along a given path.
If successful, the input data (mainly the initial values of the
variables) will be shown to the user, and the path is said to
be feasible. Otherwise, the path is said to be infeasible.

Given a path, PAT determines if it is feasible by first sym-
bolically executing it to get a set of constraints (i.e. the path
condition) and then solving the path condition.

In this paper we use EPAT, which is an extended version
of PAT [18].

3 Automated Test Data Generation

3.1 Overview

This section gives an overview of SimC. The test data
generation process consists of the following steps:

1. Parsing the C code into an intermediate representation
and building up control flow graphs (CFG).

2. Generating program paths and translating them into a
form that can be processed by our path solver EPAT.

3. Symbolically executing each path and solving the path
condition to decide its feasibility.

4. Selecting a group of feasible paths according to certain
path coverage criteria.

In the end, a set of test data that can drive the program to
execute different paths is generated.

SimC generates paths for the user specified function. For
simplicity, we assume that each function has only one exit.
Each path starts from the entry point of the function, and
ends at the exit of the function. A path consists of two
kinds of statements: assignments and conditional expres-
sions. An assignment assigns a storage place or constant to
a storage place. A conditional expression is a mathematical
constraint on storage places which must be satisfied at the
execution point of the path. Storage places are represented
by variables or array references.

We use arrays to simulate the underlying memory. All
storage places in the program, including scalar variables,
structures, arrays, and dynamically allocated memory, are
mapped onto the array that models the memory. We record
the simulated addresses of variables and pointed-to ad-
dresses of pointers in the symbol table. With this simula-
tion, all references to storage places can be represented by

void f(char *s)
{
char *p;
p = s;
while (*p != ’a’)

p++;
}

Figure 1. A simple example

array references. All pointer operations can be converted
to array index operations. With the help of a powerful con-
straint solver, we can solve the generated path condition and
get input data for the program.

Let us look at a simple example in Figure 1. One of the
program paths can be translated into:

p = 1;
@ mem[p] != ’a’;
p++;
@ mem[p] == ’a’;

In this example, statement p = s is translated into
p = 1, where 1 is the simulated starting address of array
s. The reason that the simulated address starts from 1 in-
stead of 0 will be discussed in Section 3.2.1. Then pointer
dereference *p is translated into array reference mem[p].
Pointer increment p++ is translated into array index incre-
mentation p++. The heading @ indicates a conditional ex-
pression. This path is then checked with EPAT. We get
s[1] = ’b’ and s[2] = ’a’ which satisfies the path
condition.

In this section, we focus on path generation, which is a
translation process. SimC tries to translate various C pro-
gram constructs into a simpler path form that is acceptable
by EPAT. Below we discuss how we handle various prob-
lems in the translation process.

3.2 Arrays and Pointers

The C programming language allows the programmer to
manipulate pointers almost arbitrarily. To simulate pointer
operations precisely, we use arrays to simulate the underly-
ing memory. If a variable p is allocated on simulated mem-
ory memwith simulated address i, then it can be represented
by mem[i] in the path.

Pointer operations can be roughly classified into two
classes: pointer arithmetic and pointer dereference. Pointer
arithmetic can be simulated by array index arithmetic.
Pointer dereferences are translated into array references.

3.2.1 Simulation Schemes

There are two design choices we currently face. First we
have to decide whether to use a single array to allocate all
the variables or use multiple arrays for different objects. It
is essentially a matter of renaming.

If we use a single array, then there will be no different
variable names in the path. Every variable in the path is re-
placed by an array reference with its simulated address as
index. If we use multiple arrays, each memory object (vari-
able, array, or structure) is allocated on simulated memory
with different names.

Using a single large array simplifies path representation.
Each variable, including a pointer variable, is mapped onto
the large array and has its own simulated address. The
pointed-to address of a pointer is saved in its associated ar-
ray unit. With this scheme, all the variables are replaced by
their corresponding array references in the path.

The disadvantage of using a single array is that it in-
creases the computation cost of solving the path for input
data. An unknown pointer can point to an arbitrary address.
When we solve the path condition, we have to try each pos-
sible value for the unknown pointers. Large array increases
the search space, although this can be addressed by adding
constraints for each array reference with unknown index.

On the other hand, we can use separate arrays for differ-
ent objects in the program. We call such an array a mem-
ory region. We have to record in the symbol table both the
point-to address of a pointer and which memory region it
points to. Some programs that involve list and tree oper-
ations can not be simulated in this way. For example, in
code

struct node {
int i;
struct node *next;

}
struct node *p;
p = malloc(sizeof(struct node));

we can represent the i field of the malloced structure by
p[0]. But we can not represent the object pointed by
p->next, because we have no place in the symbol table
to record the name of the memory region p->next points
to.

Second we have to decide whether to allocate pointer
variables themselves on the simulated memory. If we do
not allocate simulated memory unit for a pointer, we must
record the simulated address it points to in its meta-data in
the symbol table. If a pointer is allocated a simulated mem-
ory unit, its point-to address can be recorded in the simu-
lated memory unit.

We think the most powerful scheme is to use a single ar-
ray to simulate the entire memory and allocate pointers on

void f(void)
{

int a, *p, **q;
a = 1000;
p = &a;
q = &p;
**q = 1000;
p--;

}
Translated into path:
mem[1] = 1000;
mem[2] = 1;
mem[3] = 2;
mem[mem[mem[3]]] = 1000;
mem[2] = mem[2] - 1;

Figure 2. Using a single array and allocating
pointers on the simulated memory can simu-
late complex pointer operations.

the simulated memory. The power of this scheme is illus-
trated by the example in Figure 2.

Suppose we use array mem to simulate the memory. The
simulated addresses of variables a, p, q are 1, 2, 3 respec-
tively. Simulated address 0 is reserved for the NULL pointer.
The program can be translated into the path at the bottom of
Figure 2. Everything is translated naturally.

Simulated address starts from 1 instead of 0. We explain
the reason below. Pointers are often compared with NULL.
They are replaced by their point-to addresses in the gener-
ated path. If a simulated address starts from 0, then 0 would
be a legal address that can be pointed to. This is inconsistent
with the real machine. Thus simulated address 0 is reserved
to represent a NULL pointer.

3.2.2 Symbolic and Concrete Pointers

To simplify exposition, from now on we use the term the
address of a pointer to refer to the address that the pointer
points to.

SimC is designed as a unit testing tool. When doing unit
testing, we usually do not have the full runtime information
of the program. This lack of information causes no diffi-
culty for treating local pointers, since they are always as-
signed values before being used (otherwise it is a potential
bug). But pointers as function parameters are hard to treat
uniformly.

We observed that there are three cases when a pointer is
passed as a function parameter.

1. The pointer is a concrete pointer, which means that it
points to the beginning of an existing memory region,

void foo(char *s)
{

int i;
for (i = 0; i < 10; i++)

s[i] = i;
}

Figure 3. Function parameter pointer p is
used as a concrete pointer.

void mem_free(char *buf, char *p)
{

...
position = (p - buf) / 16;
...

}

Figure 4. Function parameter pointer p is
used as a symbolic pointer.

such as a malloced buffer. This is the most preva-
lent case. Most function parameter pointers are used
to pass a memory region from the caller to the callee,
such as the example in Figure 3.

In such cases, we should assign a simulated address
to the parameter pointer and let it point to a chunk
of memory. The value of a concrete pointer is not
changed in the called function.

2. The pointer is a symbolic pointer. The symbolic point-
ers do not point to the beginning of a memory region.
They represent some arbitrary addresses. For our pur-
pose of test data generation, the addresses they point to
should be solved according to different program paths.

For example, in the code in Figure 4, buf is a concrete
pointer which points to a memory region. We should
allocate a chunk of memory and assign the beginning
address to buf. But p does not point to another chunk
of memory. We infer from the code that p should point
to somewhere in the memory region pointed by buf.
Its value should be solved according to different paths.

3. The pointer is both a concrete pointer and a symbolic
pointer. This is possible. Some pointers are first used
to pass a memory region to the callee, then used as a
symbolic pointer. The value of such pointers may be
changed during path execution.

Let us look at the code in Figure 5. s is first used
to pass a memory region to function bar. Then it is
assigned a new address.

void bar(char *s)
{

...
putchar(s[0]);
...
s = strchr(s, ’a’);
...

}

Figure 5. Function parameter pointer that is
used both as a concrete and as a symbolic
pointer

In general, there is no easy way for a testing tool to know
whether a pointer is concrete or symbolic. We let the user
specify whether the pointer is concrete or symbolic when it
appears as a function parameter. In addition, the user may
specify the size of the memory region which the concrete
pointer points to.

A concrete pointer represents a memory region. Its simu-
lated address is known during the execution of the program
path. It is replaced by its simulated address when it appears
in the path.

A symbolic pointer represents a simulated address. Its
address is unknown. We must solve it for test data genera-
tion. It appears in the path literally as an unknown variable.
So the statement in Figure 4 is translated into:

position = (p - 1) / 16;

Note that buf is replaced by its simulated address 1.
Operations on symbolic pointers appear in the path as

usual variable operations. Because their addresses are un-
known, we can not operate on their meta-data in the sym-
bol table directly (as for concrete pointers). Take statement
p++ for example, if p is a concrete pointer, we increase its
point-to address field in the symbol table. If p is a symbolic
pointer, we generate p = p+1 in the path. Dereferenc-
ing them introduces array references with unknown indices.
Our path solver EPAT can check such paths.

3.3 Function Calls

There are two common approaches to dealing with func-
tion calls in programs. One is inlining the called function.
The other is modeling the function.

Inlining the called function is straightforward. We make
the argument passing process explicit as assignments in the
generated path. Then the called function is expanded. The
value return process is translated into assignments again.

To model a function we use several conditional expres-
sions to describe the behavior of the called function. For

example, when we encounter an input function, we often
don’t care about its internal mechanism, say how it interacts
with the disk or network. We only need to know that it re-
turns an int value. It is suitable to describe the behavior of
the function by a conditional expression characterizing its
return value. Furthermore, some library functions’ source
code is not available and can not be executed symbolically.

In SimC, we use both methods to handle function calls.
We model library functions in a simple constraint form. For
example, for function c = getchar();, we translate it
into:

c = INPUT;
@ 0 <= c <= 255;

As another example, function call p=strchr(s,c); can
be modeled as :

(p==NULL) ||
(*p==c && s<=p && p<=s+lengthOf(s))

These function models work well in our experiments.

3.4 Path Generation Strategy

The strategy for generating paths from CFG is crucial to
the effectiveness of our method for generating test data.

Depth-first search of CFG is not effective when the CFG
has nested loops. Some loops are executed many times
while others are never executed.

Currently we use breadth-first search with a maximum
path length limit to generate paths. The CFG of the program
is processed with the standard BFS method. Additionally,
we compute the partial path length for each node before it
is entered into the queue. If the partial path length exceeds
the specified maximum path length, the node is discarded.
When the exit node of the CFG leaves the queue, the com-
plete path is recorded.

Even if the path length is limited, we may still generate
hundreds of feasible paths for some functions (see Section
4). We use an optimal path-selection mothod described in
[15]. The main idea is to take edge covering of the CFG as
path selection criteria. To make sure every edge of the CFG
be covered at least once in some path, the problem can be
formulated as a zero-one integer programming problem.

We developed a separate tool to select paths. We use
lp_solve [12] as the integer linear programming back
end. It works well in our experiments: usually fewer than
ten paths can fulfill the edge covering.

4 Experiments

Many previous test generation papers experimented on
small, custom programs written in restricted languages [6]

Function File
remove suffix() basename.c
cat() cat.c
cut bytes() cut.c
parse line() dircolors.c
set prefix() fmt.c
attach() ls.c
bsd split 3() md5sum.c
hex digit() md5sum.c
isint() test.c
make printable char() tr.c
strtol() strtol.c

Table 1. Code experimented on from GNU
coreutils 5.2.1 package

[13]. We experimented our method on programs includ-
ing coreutils and make. The code fragments from
coretuils are listed in Table 1.

The criteria for selecting functions are: (1) that the func-
tion should have intensive pointer operations and several
loop and branch statements; (2) that the function should not
call other non-library functions. The second restriction is
due to our tool’s inability to generate interprocedure paths.
We will extend the tool in the future. Detailed experimenta-
tion is described in the following subsections.

Since our current implementation can only accept ANSI
C code, the programs were slightly modified to eliminate
GCC extensions before being processed by SimC. Some
macros were expanded by hand to keep things simple. But
none of the essential functionalities were altered.

Experiments were done on a PC with a Pentium 4
3.4GHz CPU and 1G memory. The computation time of
each experiment is less than two minutes.

4.1 Example: remove suffix() in GNU
coreutils

This is a typical piece of code that SimC is good at gen-
erating test data for. The code has extensive pointer arith-
metic and dereference operations. Pointer aliases also exist.
SimC maps the storage of the program onto the simulated
memory. All program operations are done naturally on the
simulated memory.

void remove_suffix(char *name,
const char *suffix)

{ ...
np = name + strlen(name);
sp = suffix + strlen(suffix);
while (np > name && sp > suffix)

if (*--np != *--sp) return;

if (np > name) *np = ’\0’;
}

The code is part of the implementation of the basename
command. Although it is small, it is sufficiently complex
to frustrate all of the test generation tools that we know.
SimC generates 5 sets of test data covering all branches of
the function.

4.2 Example: strtol() in GNU coreutils

This section presents a more complex example from
GNU coreutils package. The code related to pointer op-
erations is listed below.

int strtol(const STRING_TYPE *nptr,
STRING_TYPE **endptr,
int base,
int group LOCALE_PARAM_PROTO)

{
...
save = s = nptr;
while (ISSPACE (*s))

++s;
if (*s == L_(’-’)) {

negative = 1;
++s;

}
...

}

We limited the path length to 20, and 10 sets of test data
are generated.

4.3 Example: getop()

This example is from K & R’s C programming language
book [10] and it is used by Bertolino and Marré [1] as an
example.

This program has complex control structures, and is dif-
ficult to test manually. We limited the path length to 20.
SimC generates 178 sets of test data from 297 paths. Af-
ter applying the optimal path selection method described in
Section 3.4, we got 4 paths that can cover all of the edges in
the CFG of the function. In [1], the authors described how
to generate a set of paths which are likely to be feasible.
They generated 7 paths and have no automatic tool support.

4.4 Example: InsertionSort()

This is a common implementation of the insertion sort
algorithm.

void sort(int *a, int n)
{

int cur, j, low_ind, temp;
for (cur = 0; cur < n-1; cur++) {
low_ind = cur;
for (j = cur + 1; j < n; j++) {

if (a[j] < a[low_ind])
low_ind = j;

}
...
return;

}

In this example, there are nested loops. Generating paths
which need different input data are not trivial. Depth-first
search performs poorly in this case.

We limited the maximum path length to 20. EPAT gen-
erated 9 sets of test data: {0}, {0,1} {1,0} {0,1,2} {1,2,0}
{0,2,1} {1,0,2} {2,1,0} {2,0,1}. The program is executed
through different paths for these inputs.

4.5 Example: dosify() in GNU make 3.80

This section applies SimC to the dosify() function of
GNU’s make 3.80.

static char *
dosify (char *filename)
{

...
df = dos_filename;
...
if (*filename != ’\0’) {

*df++ = *filename++;
for (i = 0; *filename != ’\0’ &&

i < 3 && *filename != ’.’; ++i)
*df++ = ...;

}
while (*filename != ’\0’ &&

*filename != ’.’)
++filename;

}

This example has intensive pointer operations. Parame-
ter filename is passed in as a pointer to a character array.
It is compared to 0 and dereferenced. We let it be a concrete
pointer.

Among the 420 paths whose lengths were less than 20,
EPAT found 50 feasible paths, and generated 50 sets of test
data in less than one minute. After applying the optimal
path selection model, 3 paths were selected covering all of
the edges of the CFG.

5 Discussion

We made the following observations after experimenting
our method.

1. Not all of the functions need automatic testing. Many
functions have simple control structures and data struc-
tures. Their correctness is easy to ensure. Only a few
’core’ functions need to be tested thoroughly.

2. Our method can generate test data for functions with
complex control structures and pointer arithmetic. The
test data is effective with respect to path coverage met-
rics.

3. Many library function calls are easy to model. And
some can be ignored safely.

4. Some library functions are hard to model precisely, es-
pecially functions that deal with strings. We are im-
proving our modeling system for them.

Although the above simulation scheme is effective for
a large number of programs with pointers, there are a few
limitations of the scheme.

1. Function pointers can not be simulated under current
simulation scheme. There is no way to symbolically
execute a function call when we do not know which
function to execute.

2. The current scheme can not generate test data for pro-
grams with structurally complex inputs, such as linked
lists and binary trees.

3. The path generation strategy must be refined when
dealing with recursive function calls.

4. Our current path analyzer EPAT can not handle nonlin-
ear and bitwise path condition.

6 Related Works

The initial idea of this paper appeared in [18]. An ex-
tension to a custom language was described in [19]. Struc-
tures and pointers are treated in a following paper [17]. This
work extends the method in these papers significantly. First,
pointers and structures are treated more thoroughly. Sec-
ond, path generation strategy is considered. Third, a com-
plete prototype tool is implemented. Last and the most im-
portant, the method was experimented on real-world pro-
grams.

6.1 Symbolic Execution

Symbolic execution was proposed in 1970’s [2, 11]. The
basic idea is generating logical condition for each program
path, and solving this condition to provide input data which
will drive the program through the path. But few systems
implement the idea fully. And even fewer ones can process

programs with the complexity as ours. For example, Denaro
et al. [5] describe a system which can deal with a small
subset of C.

Recently there are some renascent research on program
testing and bug finding based on symbolic execution [8]
[14]. These works are all dynamic testing.

The DART project [8] and CUTE project [14] combined
concrete and symbolic execution. DART runs the unit be-
ing tested on a concrete random input. It symbolically col-
lects path constraints during the execution. Then the last
constraint is negated to generate the next test input. DART
only handles constraints on integers and resolves to random
testing when symbolic pointers are encountered.

CUTE extends DART to handle simple symbolic pointer
constraints of the form: p == NULL, p != NULL. But
it fails to deal with symbolic array index expressions. In
contrast to both DART and CUTE, SimC models symbolic
pointers and array indexes precisely, and thus it can generate
more accurate test data.

CBMC is a bounded model checker for ANSI-C pro-
grams [3]. It is designed to check program properties in-
cluding pointer safety, array bounds, and user-provided as-
sertions. Like SimC, CBMC runs code entirely symboli-
cally. It translates the program to boolean formula that is
satisfiable if there exists an error trace. The formula is then
checked by using a SAT procedure. CBMC unwinds all
loops and recursive calls. This sometimes makes the check-
ing procedure run forever unwinding loops. Also the lack of
support for library functions makes it hard to apply CBMC
to real-world code.

Xie et al. [16] described how to generate test data for
object-oriented programs using symbolic execution. But ar-
ray expressions are not considered.

6.2 Test Generation

Previous test generation work mostly experimented on
small, custom programs written in a subset of real program-
ming languages [13, 6]. The programs do not involve point-
ers and structures. Programming languages like C are much
more complex and versatile. This makes test data genera-
tion more difficult. Our method simulates the language op-
erations precisely and can generate test data for more com-
plex programs.

Gotlieb et al. [9] developed an automatic test data gener-
ation technique based on SSA and constraint solving. Their
system accepts a subset of the C language, which does not
include pointers and dynamically allocated structures. The
largest program they experimented on was less than 20 lines
of code. In contrast, our system can process programs with
pointers and dynamically allocated structures.

An attempt at using symbolic execution for test data gen-
eration for fault based criteria is described in [4]. In this

work, a test data generation system based on a collection
of heuristics for solving a system of constraints is devel-
oped. The constraint solving method is incomplete, result-
ing in an approximate solution on which the path may not
be traversed. Again, EPAT can guarantee the selected path
is traversed on the generated test data.

An approach to automatic generation of test data for a
given path using the actual execution of the program is pre-
sented in [6]. Another program execution based approach
that uses program instrumentation for test data generation
for a given path has been reported in [7]. These approaches
consider only one branch predicate and one input variable
at a time and use backtracking. Therefore, they may require
a large number of iterations even if all the branch condi-
tionals along the path are linear. If several conditionals on
the selected path depend on common input variables, a lot
of effort can be wasted in backtracking. They cannot con-
sider all the branch predicates on the path simultaneously
because the path may not be traversed on an intermediate
input.

7 Conclusion

Testing is an important step in software development,
and test data generation is quite challenging for non-trivial
programs. In this paper, we have presented an automatic
test data generation tool SimC. It uses symbolic execution
and constraint solving techniques. A new method to simu-
late pointer operations precisely is proposed.

Experimental results show that our tool is effective in
handling real-world programs. It can generate test data
for programs involving complex pointer operations. This
should be very helpful to programmers and testers.

Although we did not experiment our system on large
benchmarks, we believe that a good implementation and
increasing computational power can make the techniques
scalable to large programs.

In the future, we plan to extend our tool further, so that
more code fragments can be handled. For example, we in-
tend to study bit operations. We are also going to write error
checkers which can check for some common bugs (such as
array index out of bound errors) automatically.

References

[1] A. Bertolino and M. Marré. Automatic generation of
path covers based on the control flow analysis of computer
programs. IEEE Transactions on Software Engineering,
20(12):885–899, 1994.

[2] R. S. Boyer, B. Elspas, and K. N. Levitt. SELECT — a for-
mal system for testing and debugging programs by symbolic
execution. In Proc. of the Int’l Conf. on Reliable Software,
pages 234–245, 1975.

[3] E. Clarke and D. Kroening. Hardware verification using
ANSI-C programs as a reference. In Proceedings of the
ASP-DAC 2003, pages 308–311, 2003.

[4] R. A. DeMillo and A. J. Offutt. Constraint-based automatic
test data generation. IEEE Transactions on Software Engi-
neering, 17(9):900–910, September 1991.

[5] G. Denaro et al. A symbolic execution based approach for
verifying safety critical software. 2004.

[6] R. Ferguson and B. Korel. The chaining approach for soft-
ware test data generation. ACM Trans. on Software Engi-
neering and Methodology, 5(1):63–86, 1996.

[7] M. J. Gallagher and V. L. Narasimhan. ADTEST: A test data
generation suite for ada software systems. IEEE Trans. on
Software Engineering, 23(8), 1997.

[8] P. Godefroid, N. Klarlund, and K. Sen. DART: Directed
automated random testing. In Proceedings of the 2005 ACM
SIGPLAN conference on Programming language design and
implementation, pages 213–223, 2005.

[9] A. Gotlieb, B. Botella, and M. Rueher. Automatic test data
generation using constraint solving techniques. In Proceed-
ings of the 1998 ACM SIGSOFT international symposium
on Software testing and analysis, pages 53–62, 1998.

[10] B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Prentice Hall PTR, 1978.

[11] J. C. King. Symbolic execution and program testing. Com-
munications of the ACM, 19(7):385–394, July 1976.

[12] lp solve. http://groups.yahoo.com/group/lp solve/.
[13] R. P. Pargas, M. J. Harrold, and R. R. Peck. Test-data genera-

tion using genetic algorithms. Software Testing, Verification
and Reliability, 9:263–282, 1999.

[14] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unit
testing engine for C. In Proceedings of the 10th European
software engineering conference held jointly with 13th ACM
SIGSOFT international symposium on Foundations of soft-
ware engineering, 2005.

[15] H. S. Wang, S. R. Hsu, and J. C. Lin. A generalized optimal
path-selection model for structural program testing. Journal
of Systems and Software, 10:55–63, 1989.

[16] T. Xie, D. Marinov, W. Schulte, and D. Notkin. Symstra:
A framework for generating object-oriented unit tests using
symbolic execution. In Proc. TACAS 2005, LNCS 3440,
pages 365–380.

[17] J. Zhang. Symbolic execution of program paths involv-
ing pointers and structure variables. In Proceedings of the
Fourth International Conference on Quality Software, pages
87–92, 2004.

[18] J. Zhang and X. Wang. A constraint solver and its ap-
plication to path feasibility analysis. International Jour-
nal of Software Engineering and Knowledge Engineering,
11(2):139–156, 2001.

[19] J. Zhang, C. Xu, and X. Wang. Path-oriented test data gener-
ation using symbolic execution and constraint solving tech-
niques. In Proceedings of the Second International Confer-
ence on Software Engineering and Formal Methods, 2004.

